

Study of the current limiting capacity of 2G HTS tapes

Ghazi Hajiri¹ ghazi.hajiri@univ-lorraine.fr <u>Rémi Dorget</u>^{1,2} remi.dorget@safrangroup.com

Yanis Laïb¹ yanis.laib@univ-lorraine.fr

Kévin Berger¹ kevin.berger@univ-lorraine.fr

Quentin Nouailhetas¹ quentin.nouailhetas@univ-lorraine.fr Jean Lévêque¹ jean.leveque@univ-lorraine.fr

¹ Université de Lorraine, GREEN, F-54000 Nancy, France

² Safran Tech, Electrical & Electronic Systems Research group, Rue des Jeunes Bois, Châteaufort,
78114 Magny-Les-Hameaux, France

Context

Electro-thermal model

Experiment principle

Validation of the tape model on a simpler case:
 Capacitor bank discharged in a coil throug a single tape
 Pulsed current >> Ic

Tape characteristics

- One tape tested so far
- Goal: Validate the model on tapes with different widths and copper thicknesses
- Tape properties at 77 K:

Manufacturer	Shanghai Superconductors
Ic	138,5 A
n	22
Width	4 mm

Model results

Experimental setup

1 Coil

- 2 Capacitor bank
- 3 Sample + Cryostat
- **4** Current measurement
- 5 Voltage measurement

HTS tape

Temperature estimation from resistance

- Direct measurement of temperature is impossible
- Indirect measurement above *T*c
 - * Tape's R(T) characteristics is measured with a cryocooler
 - Temperature deducted from voltage measurement above Tc

Results: Peak current

 Very good agreement on peak current
 Depends mostly on the coil inductance and resistance

Results: Voltage and temperature

8th International workshop on numerical modelling of high temperature superconductors, 14th - 16th June, 2022

Results: Pulse ~ $Ic (U_{C0} = 200 \text{ V})$

Results: Pulse >> $Ic (U_{C0} = 700 \text{ V})$

Results: Voltage and temperature

Results: Pulse at 400 V

Results: Pulse at 500 V

Diverging points appears close to Tc• *I*c and *n* around *T*c

- ✤ Ic and n characterized at 77 K and extrapolated linearly
- Convection heat exchange coefficient
 - Coefficient vs temperature comes from literature [1,2]
 - ✤ Important impact on the temperature
 - ♦ Below 105 K \rightarrow Nucleate boiling

[1] De Sousa, W. T. B., Polasek, A., Dias, R., Matt, C. F. T., & de Andrade Jr, R. (2014). Thermal–electrical analogy for simulations of superconducting fault current limiters. Cryogenics, 62, 97-109.
[2] Baudouy, B., Defresne, G., Duthil, P., & Thermeau, J.-P. (2015). Transfert de chaleur à basse température. Techniques de l'ingénieur Froid industriel, be9812. https://doi.org/10.51257/a-v1-be9812

coefficient (W/(m²K))

Convection

Results: Differences causes

Destructive pulse

Pulse value (<u>from model</u>):
Peak current: 1 300 A
Peak voltage: 33 V
Peak temperature: ~5 000 K

8th International workshop on numerical modelling of high temperature superconductors, 14th - 16th June, 2022

Conclusions

- Electro-thermal model of the tape validated
- Main error cause is convection coefficient:
 - ♦ Present setup \rightarrow Natural phase change convection
 - ♦ Actual cable \rightarrow Forced single phase convection

• Next steps:

- ✤ Model of a complete cable
- ✤ Simulate the fault behavior

Thank you for your attention

Rémi Dorget, 🖂 e-mail: <u>remi.dorget@univ-lorraine.fr</u>

