

Modelling high-*T***^c superconducting dynamos**

Mark Ainslie

EPSRC Early Career Fellow **Department of Engineering** University of Cambridge

Presentation Outline

- **The high-***T***^c superconducting (HTS) dynamo**
- **Numerical modelling of the HTS dynamo**
	- Benchmark problem
	- Efficient 3D models
	- Modelling dynamic coil charging behaviour
	- Future view

High-*T***^c Superconducting (HTS) Dynamo**

• **Inject large DC supercurrents into a**

Mataira et al. *APL* 114 (2019) 112601

 $B|S|G$

HTS Dynamo

UNIVERSITY OF

- **Inject large DC supercurrents into a closed superconducting circuit**
- Energise HTS coils in NMR/MRI magnets, superconducting rotating machines *without need for current leads*

Mataira et al. *APL* 114 (2019) 112601

RE-BCO CC

a

HTS Dynamo

• Energise HTS coils in NMR/MRI magnets, superconducting rotating machines *without need for current leads*

Mataira et al. *APL* 114 (2019) 112601

HTS Dynamo – Device Characterisation

HTS Dynamo – Current Injection Without Leads

Can be used to drive large DC current into a superconducting coil, without current leads

Jiang et al. *APL* 105 (2014) 112601

Benchmark Problem Definition

- **Several numerical models have been developed recently to model the HTS dynamo**
- **Benchmark problem:**
	- A specific simplified geometry with well-defined inputs (i.e. assumptions)
	- An expected set of outputs (i.e. the solution)
	- Allows any modelling technique to be validated & its performance critically compared

Benchmark Problem Definition

Based on experimental setup in Badcock et al. *IEEE TAS* 27 (2017) 5200905 **General definitions**

HTS dynamo benchmark parameters

E-*J* power law: $\mathbf{E} = \frac{E_0}{J_c} \left| \frac{J}{J_c} \right|^{n-1} \mathbf{J}$

DC component:

$$
V_{DC} = -\frac{L}{T} \int_{t}^{t+T} E_{ave}(t') dt'
$$

Equivalent instantaneous voltage:

$$
V_{eq}(t) = -LE_{ave}(t)
$$

Cumulative time-averaged voltage:

$$
V_{cumul}(t) = \frac{1}{t} \int_0^t V_{eq}(t) dt
$$

$$
I(t) = \iint_S J_z(x, y, t) dS = 0
$$

Numerical Modelling Frameworks

- **H-formulation methods**
	- Coupled H-A
	- H-formulation + shell current
	- Segregated H-formulation
- **Coupled T-A formulation**
	- 1D (line) or 2D (finite thickness) object
	- 'Pure' T-A (vector potential only)
	- Mixed scalar-vector potential

• **MEMEP**

- Variational method
- Solves **J** by minimising a functional containing all variables of problem: **A**, **J**, *φ*
- **Integral equation (IE)**
	- Current distribution along 1D superconducting layer obtained from IE
- **Volume integral equation (VIE)**
	- Solves $\mathbf{E} = -\frac{\partial \mathbf{A}^{int}}{\partial t} \mathbf{v} \times \mathbf{B}^{PM} \nabla \varphi$

Comparison of Key Results – $V_{eq}(t)$

Open-circuit equivalent instantaneous voltage

 $V_{eq}(t) = -LE_{ave}(t)$

2nd transit of PM past HTS wire, ignoring any initial transient effects in 1st cycle

Qualitatively, four distinct peaks with left-to-right asymmetry, as observed in experiments

Excellent quantitative agreement (see cumulative voltage next)

Comparison of Key Results – *V***cumul(***t***)**

Cumulative time-averaged equivalent voltage

$$
V_{cumul}(t) = \frac{1}{t} \int_0^t V_{eq}(t) dt
$$

*V*_{cumul} over 10 cycles

Converges to non-zero asymptotic value \rightarrow V_{DC}

Excellent quantitative agreement: $-9.41 \mu V$ average with 0.34 μV standard deviation

Comparison of Key Results – *J***/***J***c0,** *E*

Comparison of Modelling Frameworks

Methods emphasising reduction of mesh elements / DOFs performed best

PC specications:^aIntel® Core™ i7-8700 CPU @ 3.20 GHz, 31.1 GB RAM (10% memory used for MEMEP model), Ubuntu 16.04 LTS, 64-bit^bIntel® CoreTM is 7900X CPU @ 3.30 GHz, 63.7 GB RAM, Microsoft Windows 10 Pro, 64-bitOther notes:¹ Tolerance for the mutual interaction matrix²Default settings for MATLAB/ode23b solver

H-A, T-A = rotating machine-like frameworks; stability issues with 'pure' T-A → **use of mixed scalar-vector potential performed significantly better**

Prigozhin Method

- **Benchmark problem also implemented by Prigozhin & Sokolovsky in 2021**
	- Uses expansions in Chebyshev polynomials for approximation in space, method of lines for integration in time
	- Offers a potentially even faster method to model the HTS dynamo
	- See *Supercond. Sci. Technol.* 34 (2021) 065006 for more details
	- **Also talk today PM (OS-M1-PM)**

Efficient 3D Models

3D models can consider the return of the current within the wire & more complex geometries, e.g., magnet shape

Efficient 3D Models

Mixed FEM, fast Fourier transform methods

Prigozhin & Sokolovsky *IEEE TAS* 31 (2021) 5201107

HTS 2022 – 14-16 June 2022 – Nancy, France $\mathbb{E} \leftarrow \text{B} \|\mathbf{S}\|\mathbf{G}$

Modelling Dynamic Coil Charging Behaviour

HTS 2022 - 14-16 June 2022 - Nancy, France

UNIVERSITY OF

Modelling Dynamic Coil Charging Behaviour

Total flux pump output voltage *V***(***t***) & its constituent components:** $V_{\text{eq}}(t)$ from $E_{\text{av}} + A_{\text{J},\text{av}} + A_{\text{M},\text{av}}$

Dynamic charging current curve Freq. $= 25$ Hz Analytical equation vs MEMEP, SEG-H

Modelling Dynamic Coil Charging Behaviour

Total flux pump output voltage *V***(***t***) & its constituent components:** $V_{\text{eq}}(t)$ from $E_{\text{av}} + A_{\text{J},\text{av}} + A_{\text{M},\text{av}}$

1 st five cycles: 135.4 mW, 135.7 mW 5001st cycle: 135.7 mW, 135.9 mW

Future View

NIVERSITY OF

- **More complicated models** → **kA-class dynamo design**
- **Coupling of FEM models**
	- e.g. dynamo \leftarrow $>$ coil
	- See Pengbo Zhou talk tomorrow AM (Applications)
- **Use of machine learning to accelerate dynamo design optimisation**
	- Proposed in Wen et al. *SUST* 34 (2021) 125019 to obtain V_{oc} for various key parameters (freq, airgap, B_r of PM etc.)

Presentation Summary

- **The high-***T***^c superconducting (HTS) dynamo**
- **Numerical modelling of the HTS dynamo**
	- Benchmark problem
	- Efficient 3D models
	- Modelling dynamic coil charging behaviour
	- Future view

Contact email: mark.ainslie@eng.cam.ac.uk

