



# Modelling high-T<sub>c</sub> superconducting dynamos

# **Mark Ainslie**

EPSRC Early Career Fellow Department of Engineering University of Cambridge

#### **Presentation Outline**

- The high-*T*<sub>c</sub> superconducting (HTS) dynamo
- Numerical modelling of the HTS dynamo
  - Benchmark problem
  - Efficient 3D models
  - Modelling dynamic coil charging behaviour
  - Future view



# High-T<sub>c</sub> Superconducting (HTS) Dynamo



Inject large DC supercurrents into a

closed superconducting circuit

Mataira et al. APL 114 (2019) 112601





## **HTS Dynamo**

UNIVERSITY OF

- Inject large DC supercurrents into a closed superconducting circuit
- Energise HTS coils in NMR/MRI magnets, superconducting rotating machines without need for current leads









## **HTS Dynamo**



• Energise HTS coils in NMR/MRI magnets, superconducting rotating machines without need for current leads







#### **HTS Dynamo – Device Characterisation**



## **HTS Dynamo – Current Injection Without Leads**

# Can be used to drive large DC current into a superconducting coil, without current leads



Jiang et al. APL 105 (2014) 112601





### **Benchmark Problem Definition**

- Several numerical models have been developed recently to model the HTS dynamo
- Benchmark problem:
  - A specific simplified geometry with well-defined inputs (i.e. assumptions)
  - An expected set of outputs (i.e. the solution)
  - Allows any modelling technique to be validated & its performance critically compared





### **Benchmark Problem Definition**

#### Based on experimental setup in Badcock et al. *IEEE TAS* 27 (2017) 5200905

HTS dynamo benchmark parameters

| Permanent magnet (PM)                                                                                                                                   | Width, $a$<br>Height, $b$<br>Active length<br>(depth), $L$<br>Remanent flux<br>density, $B_r$                               | 6 mm<br>12 mm<br>12.7 mm<br>1.25 T |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| HTS stator wire                                                                                                                                         | Width, <i>e</i><br>Thickness, <i>f</i><br>Critical current,<br><i>I<sub>c</sub></i> [self-field,<br>77 K]<br><i>n</i> value | 12 mm<br>1 μm<br>283 A<br>20       |
| Rotor external radius, <i>R<sub>rotor</sub></i><br>Distance between PM face and HTS surface, <i>airgap</i><br>Frequency of rotation<br>Number of cycles |                                                                                                                             | 35 mm<br>3.7 mm<br>4.25 Hz<br>10   |

#### **General definitions**

*E-J* power law:  $\mathbf{E} = \frac{E_0}{J_c} \left| \frac{J}{J_c} \right|^{n-1} \mathbf{J}$ 

DC component:

$$V_{DC} = -\frac{L}{T} \int_{t}^{t+T} E_{ave}(t') dt'$$

Equivalent instantaneous voltage:

$$V_{eq}(t) = -LE_{ave}(t)$$

#### Cumulative time-averaged voltage:

$$V_{cumul}(t) = \frac{1}{t} \int_0^t V_{eq}(t) dt$$
$$I(t) = \iint_S J_z(x, y, t) dS = 0$$





## **Numerical Modelling Frameworks**

- H-formulation methods
  - Coupled H-A
  - H-formulation + shell current
  - Segregated H-formulation
- Coupled T-A formulation
  - 1D (line) or 2D (finite thickness) object
  - 'Pure' T-A (vector potential only)
  - Mixed scalar-vector potential

#### • MEMEP

- Variational method
- Solves J by minimising a functional containing all variables of problem: A, J, φ

#### Integral equation (IE)

- Current distribution along 1D superconducting layer obtained from IE
- Volume integral equation (VIE)

• Solves 
$$\mathbf{E} = -\frac{\partial \mathbf{A}^{int}}{\partial t} - \mathbf{v} \times \mathbf{B}^{PM} - \nabla \varphi$$



# Comparison of Key Results – $V_{eq}(t)$

#### Open-circuit equivalent instantaneous voltage

 $V_{eq}(t) = -LE_{ave}(t)$ 

2<sup>nd</sup> transit of PM past HTS wire, ignoring any initial transient effects in 1<sup>st</sup> cycle

Qualitatively, four distinct peaks with left-to-right asymmetry, as observed in experiments

Excellent quantitative agreement (see cumulative voltage next)





# Comparison of Key Results – $V_{cumul}(t)$

Cumulative time-averaged equivalent voltage

$$V_{cumul}(t) = \frac{1}{t} \int_0^t V_{eq}(t) dt$$

 $V_{\rm cumul}$  over 10 cycles

Converges to non-zero asymptotic value  $\rightarrow V_{DC}$ 

Excellent quantitative agreement: -9.41 µV average with 0.34 µV standard deviation





#### Comparison of Key Results – $J/J_{c0}$ , E



### **Comparison of Modelling Frameworks**

#### Methods emphasising reduction of mesh elements / DOFs performed best

| Key metrics assessed for each benchmark model |                     |              |        |                     |                                      |                          |  |  |
|-----------------------------------------------|---------------------|--------------|--------|---------------------|--------------------------------------|--------------------------|--|--|
| Model                                         | Mesh (SC)           | Mesh (total) | DOFs   | Rel./abs. tolerance | Approx. time/cycle (min/cycle)       | Software implementation  |  |  |
| MEMEP                                         | $120(120 \times 1)$ | 120          | 120    | $1e-4^{1}$          | <0.25 <sup>a</sup>                   | C++                      |  |  |
| SEG-H                                         | $120(120 \times 1)$ | 2653         | 4071   | 1e-4/0.1            | 1.1 <sup>b</sup><br>2.6 <sup>b</sup> | COMSOL 5.4<br>COMSOL 5.5 |  |  |
| VIE                                           | $120(120 \times 1)$ | 120          | 120    | $1e-3^{2}/1e-6^{2}$ | 1.6 <sup>b</sup>                     | MATLAB                   |  |  |
| H-A                                           | $120(120 \times 1)$ | 4176         | 3061   | 1e - 4/0.1          | 2.1 <sup>b</sup>                     | COMSOL 5.5               |  |  |
| T-A (2D) SP                                   | $240~(60 \times 4)$ | 3800         | 2863   | 1e - 5/1e - 4       | 3.9 <sup>b</sup>                     | COMSOL 5.5               |  |  |
| IE                                            | $120(120 \times 1)$ | 5932         | 12 451 | 5e-3/0.1            | 5.1 <sup>b</sup>                     | COMSOL 5.5               |  |  |
| T-A (1D) SP                                   | $120(120 \times 1)$ | 4876         | 2779   | 1e - 5/1e - 4       | 6.5 <sup>b</sup>                     | COMSOL 5.5               |  |  |
| H+SC                                          | 120(120 	imes 1)    | 11 272       | 16 988 | 1e-5/1e-3           | 7.9 <sup>b</sup><br>> 120            | COMSOL 5.4<br>COMSOL 5.5 |  |  |
| T-A (1D) VP                                   | $120(120 \times 1)$ | 6064         | 12715  | 1e - 4/0.1          | 21.6 <sup>b</sup>                    | COMSOL 5.5               |  |  |
| T-A (2D) VP                                   | $240(60 \times 4)$  | 5286         | 13 696 | 1e-4/0.1            | 64.6 <sup>b</sup>                    | COMSOL 5.5               |  |  |

PC specifications:<sup>a</sup>Intel<sup>®</sup> Core<sup>™</sup> i7-8700 CPU @ 3.20 GHz, 31.1 GB RAM (10% memory used for MEMEP model), Ubuntu 16.04 LTS, 64-bit<sup>b</sup>Intel<sup>®</sup> Core<sup>™</sup> i9-7900X CPU @ 3.30 GHz, 63.7 GB RAM, Microsoft Windows 10 Pro, 64-bitOther notes:<sup>1</sup>Tolerance for the mutual interaction matrix<sup>2</sup>Default settings for MATLAB/*ode23b* solver

H-A, T-A = rotating machine-like frameworks; stability issues with 'pure' T-A → use of mixed scalar-vector potential performed significantly better



# **Prigozhin Method**

- Benchmark problem also implemented by Prigozhin & Sokolovsky in 2021
  - Uses expansions in Chebyshev polynomials for approximation in space, method of lines for integration in time
  - Offers a potentially even faster method to model the HTS dynamo
  - See Supercond. Sci. Technol. 34 (2021) 065006 for more details
  - Also talk today PM (OS-M1-PM)





#### **Efficient 3D Models**

3D models can consider the return of the current within the wire & more complex geometries, e.g., magnet shape





#### **Efficient 3D Models**

3D models can consider the return of the current within the wire & more complex geometries, e.g., magnet shape



Mixed FEM, fast Fourier transform methods

Prigozhin & Sokolovsky IEEE TAS 31 (2021) 5201107





# **Modelling Dynamic Coil Charging Behaviour**



HTS 2022 – 14-16 June 2022 – Nancy, France

**UNIVERSITY OF** 



# **Modelling Dynamic Coil Charging Behaviour**



Total flux pump output voltage V(t)& its constituent components:  $V_{eq}(t)$  from  $E_{av} + A_{J,av} + A_{M,av}$  **Dynamic charging current curve** Freq. = 25 Hz Analytical equation vs MEMEP, SEG-H



# **Modelling Dynamic Coil Charging Behaviour**



Total flux pump output voltage V(t)& its constituent components:  $V_{eq}(t)$  from  $E_{av} + A_{J,av} + A_{M,av}$ 

1<sup>st</sup> five cycles: 135.4 mW, 135.7 mW 5001<sup>st</sup> cycle: 135.7 mW, 135.9 mW



#### **Future View**

- More complicated models
  → kA-class dynamo design
- Coupling of FEM models
  - e.g. dynamo <-> coil

IVERSITY OF

- See Pengbo Zhou talk tomorrow AM (Applications)
- Use of machine learning to accelerate dynamo design optimisation
  - Proposed in Wen et al. *SUST* 34 (2021) 125019 to obtain  $V_{oc}$  for various key parameters (freq, airgap,  $B_r$  of PM etc.)



#### **Presentation Summary**

- The high-*T*<sub>c</sub> superconducting (HTS) dynamo
- Numerical modelling of the HTS dynamo
  - Benchmark problem
  - Efficient 3D models
  - Modelling dynamic coil charging behaviour
  - Future view

# Contact email: mark.ainslie@eng.cam.ac.uk

