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Abstract: In the context of cognitive radio, smart cities and Internet-of-Things, the need for advanced
radio spectrum monitoring becomes crucial. However, surveillance of a wide frequency band without
using extremely expensive high sampling rate devices is a challenging task. The recent development
of compressed sampling approaches offers a promising solution to these problems. In this context, the
Modulated Wideband Converter (MWC), a blind sub-Nyquist sampling system, is probably the most
realistic approach and was successfully validated in real-world conditions. The MWC can be realized
with existing analog components, and there exist calibration methods that are able to integrate the
imperfections of the mixers, filters and ADCs, hence allowing its use in the real world. The MWC
underlying model is based on signal processing concepts such as filtering, modulation, Fourier series
decomposition, oversampling and undersampling, spectrum aliasing, and so on, as well as in-flow
data processing. In this paper, we develop an MWC model that is entirely based on linear algebra,
matrix theory and block processing. We show that this approach has many interests: straightforward
translation of mathematical equations into simple and efficient software programming, suppression of
some constraints of the initial model, and providing a basis for the development of an extremely fast
system calibration method. With a typical MWC acquisition device, we obtained a speed-up of the
calibration computation time by a factor greater than 20 compared with a previous implementation.

Keywords: compressed sampling; hardware calibration; spectrum monitoring; linear algebra; matrix
theory; modulated wideband converter

1. Introduction

Digital wireless radio signals are often composed of a small number of narrow-band
transmissions spread across a wide spectrum range. For example, the Internet-of-Things
(IoT) communications have recently emerged in contexts such as smart cities. Cognitive ra-
dios are able to manage the spectrum dynamically but require advanced sensing techniques
for spectrum monitoring.

Basically, spectrum monitoring is based on the Shannon–Nyquist sampling
theorem [1,2]. This theorem states that the signal must be sampled at a rate greater than its
Nyquist frequency, which is twice its frequency band. However, when we have to monitor
a large frequency band, this requirement can exceed the capabilities of existing Analog to
Digital Converters (ADC) or require very expensive components. Furthermore, sampling
at a very high rate may require huge storage capacities to store the digital samples.

Recently, new approaches have been proposed allowing sampling at sub-Nyquist
rates. These approaches, known as compressed sensing, or compressive sampling [3], have
emerged as a promising framework for signal acquisition in difficult applications, such as
monitoring a wideband spectrum [4]. The basic idea of compressed sampling is to take
advantage of the fact that a signal that has a sparse representation on a given basis can
theoretically be recovered from a small set of linear measurements [5,6]. The price to pay is
the need to develop sophisticated signal processing algorithms to reconstruct the signal
from this small set of measurements, these algorithms being much more complex than the
usual demodulators.
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A great deal of the theoretical aspects of compressed sampling has been addressed
in the literature. For example, many studies have been proposed in relation to the design
of the measurement scheme as in [7,8]. However, few studies have considered the prac-
tical limitations of compressed acquisition. In fact, designing measurement schemes and
applying them to practical acquisition systems remains a significant challenge.

In this context, the Modulated Wideband Converter (MWC) has been proposed as an
efficient system for real-world compressed sampling [9]. The MWC does sub-Nyquist sam-
pling without prior information about the spectral support of the transmitters present in the
monitored wideband. It can be realized with existing devices [10] and has been successfully
tested on real-world problems, including surveillance of a wideband spectrum [11].

A few real-world compressed sensing acquisition systems have already been
proposed [11–18]. An analog circuit board with discrete components was designed by us to
prototype compressed sensing based on the MWC principle [19].

A necessary step when using MWC in real-world conditions is the calibration of
the acquisition system. Indeed, analog components are never ideal, especially when fed
with wideband signals. Then, using a purely theoretical model leads to extremely poor
performances of signal reconstruction. An efficient calibration method, which is considered
a reference, has been proposed in [13]. It consists of estimating the sensing matrix column
after column by injecting sine waves at a specific frequency and recording the corresponding
output signals. The procedure is repeated by changing the input frequency until all columns
are estimated. Some researchers have exploited this work to calibrate their systems or to
propose variants of the calibration algorithms [18,20–23]. While this procedure is efficient,
it can be time-consuming because the number of columns to estimate is usually at least a
few dozen. That is why a few authors [24,25], including us [19], have recently proposed
alternative calibration algorithms requiring only one input signal.

The MWC theoretical background is signal processing theory (filters, modulation,
Fourier series, sampling theory, spectrum aliasing, etc.). Most signal processing theoretical
tools are asymptotic. However, when signals are processed in real-world conditions, they
are always finite; thus, block processing and purely matrix-based algorithms may be more
natural and efficient.

Moreover, a quick look at the literature shows that most people use Matrix-based
programming tools, such as Octave or Matlab, for signal processing in this context, but
without really exploiting the power of these tools. To take full advantage of the power of
Matrix-oriented software, it would then be preferable to process data by blocks instead of
in-flow. It is, therefore, interesting to view the whole MWC acquisition and reconstruction
in terms of block processing. The most natural framework to achieve this objective is matrix
theory and linear algebra.

In this paper, we elaborate on an MWC model using linear algebra only (without any
signal processing theory). While this approach will probably appear less intuitive than
the approach based on signal processing, because most people are less familiar with linear
algebra than with signal processing, it has strong advantages:

• Once the model is established, programming it becomes extremely simple, straightfor-
ward and efficient.

• Furthermore, computational complexity is significantly reduced.
• The border effects are implicitly taken into account in the model. Indeed, using a

signal processing model, people have to deal with the fact that the signals processed
in the real world are not infinite, while when using a linear algebra model, the finite
nature of the data is implicitly taken into account and the mathematical equations are
exact and not approximate.

• In the original version of the MWC, the number of physical branches is increased by a
factor q, which must be an odd integer due to signal processing considerations. An
interesting aspect of the linear algebra model is that it allows even integers for q.

The main contributions of this paper are:



Sensors 2022, 22, 7381 3 of 32

• The development of a pure linear-algebra model of the MWC. Despite the fact that
establishing this model is rather hard because it requires non-trivial matrix manipula-
tions, once established, it is extremely simple and allows programming MWC-related
software, such as calibration, in a very fast, compact and efficient way.

• Its application to the development of a very fast calibration method. With typical
choices of parameters, the calibration is more than 20 times faster than our previous
method (this previous method being itself very fast compared to a reference method
because it required only one calibration signal instead of dozens of sinusoidal signals
in the reference method).

The remainder of this paper is organized as follows: Section 2 provides the main
mathematical tools used in the paper. Then, Section 3 presents an overview of our hardware
acquisition board and the MWC principle. Section 4 establishes a system model based
on linear algebra, and an equivalent model, useful for signal reconstruction and system
calibration, is then derived in Section 5. In Section 6, we show how this model allows us
to considerably improve a calibration method that we proposed previously, leading to
speeding up the process by a factor greater than 20. Then, some experimental results are
shown in Section 7.

2. Mathematical Background
2.1. Notations

Unless otherwise stated, lowercase symbols denote row vectors (e.g., x, p), uppercase
symbols denote matrices (e.g., C, Z), x̄ stands for the DFT (Discrete Fourier Transform) of x.
The symbols N, K, L, a, b will be used to denote the size of vectors or matrices.

We will denote Dx as the square diagonal matrix whose diagonal is vector x.
The vectorization of a K × L matrix Q, denoted vec(Q), is the 1 × KL row vector

obtained by reading the matrix row after row, from top to bottom:

vec(Q) =
(

q11 · · · q1L q21 · · · q2L · · · qK1 · · · qKL
)

(1)

M∗ stands for the Hermitian transpose of matrix M.
IK stands for the K× K identity matrix.
The nearest lower or equal integer will be noted b c and the nearest greater or equal

integer d e.

2.2. Circulant Matrices

Let x be a 1× N row vector. A circulant matrix Cx is a square matrix whose first row is
x and each next row is a circular shift one element to the right of the preceding row. That is:

Cx =


xo x1 x2 · · · xN−1

xN−1 x0 x1 · · · xN−2
xN−2 xN−1 x0 · · · xN−3

...
...

...
. . .

...
x1 x2 x3 · · · x0

 (2)

It is convenient to define the cyclic permutation matrix as the N × N matrix below:

JN =


0 1 0 · · · 0
0 0 1 0
...

. . .
0 0 0 1
1 0 0 · · · 0

 (3)
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Then, Cx is a polynomial in JN :

Cx =
N−1

∑
n=0

xn Jn
N (4)

The effect of multiplication of a matrix M by JN is as follows. The rows of MJN are the
rows of M circularly shifted one element to the right. The columns of JN M are the columns
of M circularly shifted one element to the top.

Matrices JN and Cx commute:

JNCx = Cx JN (5)

because

JNCx = JN

(
N−1

∑
n=0

xn Jn
N

)
(6)

=
N−1

∑
n=0

xn Jn+1
N (7)

=

(
N−1

∑
n=0

xn Jn
N

)
JN (8)

= Cx JN (9)

2.3. Discrete Fourier Transform (DFT)

Let us note ω the Nth square root of unity below:

ω = exp
(
−i

2π

N

)
(10)

The DFT matrix FN is an N × N square symmetric matrix whose element at row l
column k is ωlk (assuming row 0 is the first row, and column 0 the first column):

FN =


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)2

 (11)

The inverse DFT matrix is
F−1

N =
1
N

F∗N (12)

The DFT of a vector x is
x̄ = xFN (13)

and the inverse DFT (IDFT) is given by x̄F−1
N .

A circulant matrix is diagonalized by the DFT matrix. That is

Cx = FN Dx̄F−1
N (14)

It follows that the elements of x̄ are the eigenvalues of Cx and the columns of F−1
N are

the eigenvectors.
We also have

Dx̄ = F−1
N CxFN (15)

and
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1
N

Cx̄ = F−1
N DxFN . (16)

2.4. Kronecker Product

The Kronecker product is a bilinear matrix operation, denoted by ⊗. If A is a K× L
matrix and B is a M× N matrix, it produces the KM× LN block matrix C below:

C = A⊗ B =

 a11B · · · a1LB
...

. . .
...

aK1B · · · aKLB

 (17)

A useful property about the inverse is:

(A⊗ B)−1 = A−1 ⊗ B−1 (18)

Assuming the sizes are such that one can form the matrix products AC and BD, an
interesting property, known as the mixed-product property, is:

(A⊗ B)(C⊗ D) = (AC)⊗ (BD) (19)

The product is not commutative, but there exist permutation matrices (shuffle matrices)
such that if A is an a× a square matrix and B a b× b square matrix, then [26]:

A⊗ B = Pa,b(B⊗ A)Pb,a (20)

Matrix Pa,b represents the permutation obtained when elements, written row by row
in an a× b matrix, are read column by column. For instance, set a = 2 and b = 3, and write
the elements 1, 2, 3, 4, 5, 6 row by row in a a× b matrix(

1 2 3
4 5 6

)
(21)

Reading column by column, we obtain 1, 4, 2, 5, 3, 6. The permutation matrix is then
the matrix such that:(

1 4 2 5 3 6
)
=
(

1 2 3 4 5 6
)

P2,3 (22)

That is:

P2,3 =



1
1

1
1

1
1

 (23)

If N = KL, an interesting property with the permutation matrix defined in (3) is

JK
N = JL ⊗ IK. (24)

2.5. General Radix Identity

If N is a composite number, i.e., N = KL, then [26]:

FN = (FK ⊗ IL)TK,L(IK ⊗ FL)PK,L (25)

where TK,L is a diagonal matrix (twiddle matrix) and PK,L a permutation matrix (shuffle
matrix defined in Section 2.4).
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The twiddle matrix TK,L is an N × N diagonal matrix, the diagonal of which is
vec(QK,L) with ω defined in Equation (10) and

QK,L =


1 1 1 · · · 1
1 ω ω2 · · · ωL−1

1 ω2 ω4 · · · ω2(L−1)

...
...

...
. . .

...
1 ωK−1 ω2(K−1) · · · ω(K−1)(L−1)

 (26)

For instance, with K = 2 and L = 3, we have

Q2,3 =

(
1 1 1
1 e−iπ/3 e−2iπ/3

)
(27)

and the diagonal of T2,3 is

diag(T2,3) =
(

1 1 1 1 e−iπ/3 e−2iπ/3
)

(28)

Let us note θK and 1K as the (1× K) vectors below

θK =
[

1 1 · · · 1
]

(29)

1K =
[

1 0 · · · 0
]

(30)

Note that for any 1× L vector p, we have

(1K ⊗ p)TK,L = (1K ⊗ p) (31)

because only the first L elements of 1K ⊗ p are non null, and the L first elements of TK,L are
ones.

Note also that

(1K ⊗ p)PK,L = p⊗ 1K (32)

when elements of 1K ⊗ p are written row by row in a K× L matrix, the elements of p go on
the first row and the K− 1 next rows are null. Then, when this matrix is read column by
column, we obtain elements of p separated by K− 1 zeroes, that is, p⊗ 1K

Similarly, it is easy to check that

T−1
a,b (Ia ⊗ 1T

b ) = Ia ⊗ 1T
b (33)

and

P−1
a,b (Ia ⊗ θT

b ) = θT
b ⊗ Ia. (34)

2.6. Selection Matrix

Let us define the selection matrix S(r)
N,K as the N × K matrix below:

S(r)
N,K =

 0r×K
IK

0(N−K−r)×K

 (35)

If x = (x0 · · · xN−1) is a 1× N vector, then y = xS(r)
N,K is the 1× K vector below:

y = (xr · · · xr+K−1) (36)

We consider the indices modulo N, so r may be negative.
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2.7. Moore–Penrose Pseudo-Inverse

Let us consider a rectangular matrix Z whose size is L× K with L ≤ K. The Moore–
Penrose pseudo-inverse [27] of Z, denoted Z+, is a K × L matrix, which generalizes the
concept of inverse and, among other interesting properties, provides a mean to compute
a least squares solution to a system of linear equations that lacks an exact solution. The
pseudo-inverse is defined and unique for all complex matrices. It is usually computed
using the singular value decomposition (SVD).

Let us note the SVD of Z as [28]:

Z = USV∗ (37)

where U is a L × L unitary matrix (i.e., UU∗ = U∗U = I), V is a K × L matrix with
orthonormal columns (i.e., V∗V = I) and S is a diagonal matrix whose diagonal elements
are the singular values (non-negative real numbers, ranked by decreasing order). The SVD
exists for all complex matrices.

Here we consider a version of the SVD usually called “thin-SVD”, which is a compact
version of the more general SVD decomposition (in which matrices S and V are larger),
because this compact version is sufficient for the purpose of computing the pseudo-inverse.
The computational cost of computing the thin-SVD is 6KL2 + 20L3 flops ([28], p. 254). Note
that for complex matrices, it is usual to redefine the floating point operation (flop) in order
to count only one flop for the product of two complex numbers, while in reality it requires
four real multiplications. Since only ratios between the computational costs of algorithms
are of interest, applying this does not change the result.

The pseudo-inverse is given by:

Z+ = VS+U∗ (38)

where S+ is the pseudo-inverse of S. It is a diagonal matrix in which the diagonal contains
the inverses of the singular values of S, which are above a small tolerance value, and 0
elsewhere.

The cost of the inversion plus the computation of the matrix product is 2L + KL2 '
KL2.

Overall, the cost of computing the pseudo-inverse is 7KL2 + 20L3.

3. Acquisition Device and System Parameters

The MWC is a compressed sampling device that samples a signal x(t) at a sampling
frequency Fs significantly lower than its Nyquist frequency Fnyq. The input signal is
assumed sparse in the frequency domain. From the outputs of this acquisition device, one
can reconstruct the input signal using a compressed sensing algorithm, such as Orthogonal
Matching Pursuit (OMP) [29].

The principle of the MWC is shown in Figure 1:

• The input signal x(t) is multiplied (using a mixer) by a scrambling signal s(t).
• The resulting signal v(t) goes through a low-pass filter whose impulse response is

h(t).
• Then, the filter output w(t) is sampled by an Analog to Digital Converter (ADC),

providing the output samples y[n].

Figure 1. Principle of MWC acquisition (one physical branch).

The scrambler s(t) is a periodic signal: it is a basic waveform p(t) repeated Fp times
per second. The analog waveform p(t) itself is generated at sampling frequency Fnyq from
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an L samples digital sequence, which is usually a pseudo-random sequence. Consequently,
we have Fp = Fnyq/L.

The performance of the system can be enhanced by using M parallel branches with
different scrambling signals. However, since generalization to M branches is trivial, we
will restrict the discussions below to one branch.

The digital outputs y[n] are provided at Fs samples per second.
In previous practical realizations, in order to reduce aliasing, the ADC output samples

go through a digital filter, which provides properly filtered samples at a frequency Fss lower
than Fs. In the original MWC model, Fss is an odd multiple of Fp, that is Fss = qFp with
q an odd integer. In this paper, since the linear algebra model allows a less constrained
post-processing, this digital filter is not required and q is not necessarily odd. Indeed, we
will see that the linear algebra model also allows even values of q.

When designing an actual acquisition device, we have to choose some parameters:

• The sampling frequency Fnyq of the scramblers, which will impact the Nyquist fre-
quency of acceptable input signals (i.e., input signal maximum frequency must remain
under Fnyq/2).

• The sampling frequency Fs of the ADC, which should be significantly lower than Fnyq
(otherwise the system would have no interest compared to direct sampling at Fnyq).
This frequency determines the subsampling factor b = Fnyq/Fs.

• The length L of the scrambler periodic pattern. This parameter determines the fre-
quency of repetition Fp = Fnyq/L of the scrambling pattern.

Figure 2 illustrates, in a very simplified case (L = 5), an example of scrambling signal.
It is formed from a length-L binary pseudo-random sequence, which is repeated. In the
time domain, the duration of a binary symbol is 1/Fnyq, and the period of the signal is 1/Fp
(where Fnyq and Fp are the frequencies defined above).

Figure 2. Illustration of the scrambling signal.

Figure 3 illustrates the low-pass filter response. The scrambled signal, which occupies
a frequency band of width Fnyq, goes through a low-pass filter. The filter output is sampled
at a frequency Fs, high enough to avoid aliasing.

Figure 3. Illustration of the low-pass filter response and output spectrum.

The scrambler and the ADC are controlled by a common central clock to avoid syn-
chronization problems.

Reconstruction of the input signal, and calibration of the system, are based on the
information provided by a block of a output samples. In order to avoid unnecessary
mathematical complications, the value of a is chosen such that it corresponds to an integer
number K of scrambling patterns, then a = KL/b. This output block then corresponds to



Sensors 2022, 22, 7381 9 of 32

N = KL scrambler samples (and also to N input samples if the input signal were sampled
at Fnyq). The size of the block determines the frequency resolution Fs/a = Fnyq/N.

For our experiments on real-world data, we designed a 4-channel MWC analog board
(Figure 4), which was described in more detail in a previous paper [19]. The scramblers are
sampled at Fnyq = 1 GHz and their length is L = 96. Therefore, their repetition frequency
is Fp = Fnyq/L = 10.41667 MHz . The device is then able to monitor a wideband spectrum
of 1 GHz.

Figure 4. Our analog acquisition board.

The prototype includes M = 4 physical channels. Each channel features an M1-0008
mixer from MArki©, and an SXLP-36+ low-pass filter from Mini-Circuits©. The filter
cut-off frequency is 40 MHz (at -3 dB). The SXLP-36+ filter was chosen because it is quite
close to the ideal low-pass filter. Indeed, it has a sharp cut-off, linear phase and flat band
(attenuation < 0.5 dB) in the frequency range (0–36) MHz. The ADC sampling frequency is
Fs = 10Fp = 104.1667 MHz (at Fs/2 the filter attenuation is more than 30 dB); therefore, the
downsampling factor is b = 9.6. Table 1 sums up the main parameters.

Table 1. Parameters of our MWC prototype.

Symbol Meaning Value

M Number of physical channels 4

L Length of scramblers 96

Fnyq Sampling frequency of
scramblers

= bandwidth to monitor

1 GHz

Fs Sampling frequency of
physical ADC

104.1667 MHz

b = Fnyq/Fs Physical subsampling factor 9.6

Fp = Fnyq/L Repetition frequency of
scramblers

10.41667 MHz

The frequency response of the low-pass filter implemented on our acquisition board is
shown in Figure 5 and its phase i n Figure 6. Details on filter calibration can be found in
one of our previous papers [30].
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Figure 5. Frequency response of the low-pass filter.

Figure 6. Phase of the low-pass filter.

Fnyq being the Nyquist frequency of the input signal, we can consider a digital equiv-
alent model at Fnyq without loss of information. Furthermore, as previously mentioned,
since calibration and signal processing are always performed on a limited amount of data
in real-world applications, we can consider an input block of N samples (at Fnyq).

Modern implementations of the FFT [31] contain a special code to handle splittings
not only of size 2 but also of sizes 3 (and sometimes 5 and 7). Therefore, for the efficiency
of the FFT, we will preferably choose block sizes whose prime factors belong to {2, 3, 5, 7}.
In our experiments, we have taken K = 448, N = KL = 43, 008 = 211 × 3 × 7 and
a = 4480 = 29 × 5× 7. The frequency resolution is then Fnyq/N ' 23 kHz, which is far
sufficient unless we would like to detect extreme narrow-band transmitters.
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4. System Model and Matrix Representation
4.1. System Equations in the Time Domain

Let us note:

• x the vector representing the input signal.
• s the vector representing the scrambling signal.
• v the vector representing the scrambler output.
• h the vector representing the low-pass filter impulse response.
• w the vector representing the low-pass filter output.
• y the 1× a vector containing the digital output samples (at Fs).

All of these vectors, except for y, are (1× N) vectors and represent the signals at
Fnyq samples per second. In Figure 7, we show the links between these vectors. In the
time domain (top of the figure), the signals are represented by vectors. Symbol ∗ stands
for cyclic convolution. These vectors can be transposed in the frequency domain using a
multiplication by matrix FN or Fa. A post-processing, described later, is then performed in
the frequency domain. The post-processing outputs q vectors ỹn of size 1× K.

Figure 7. Principle of the system, using vector notations, in the time and frequency domains

In the figure, we have used different symbols for down-sampling because the operation
in the time and frequency domains are different. For instance, when b is an integer, down-
sampling in the time domain consists of picking one sample out of b while its equivalent in
the frequency domain is a multiplication of the down-sampling matrix Ξ, which will be
defined later.

Notations used below have already been defined in Section 2. Since the system is
linear, in the time domain, we have

y = xB (39)

where B is an N × a matrix. The structure of B can be easily computed from the system
model (Figure 7):

B = DsCh

(
Ia ⊗ 1T

b

)
(40)

Indeed, the scrambler output is given by:

v = xDs (41)

The filter output is:
w = vCh (42)
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For the moment, let us consider that b is an integer (we will see later that this is not a
requirement). In that case, down-sampling consists of picking one sample out of b in w.
Mathematically, that is:

y = w
(

Ia ⊗ 1T
b

)
(43)

Otherwise, down-sampling can be modeled using an interpolation matrix. However,
we will not detail this because only the equations in the frequency domain will be useful
for our purpose. We will see later that in the frequency domain, thanks to the presence of a
low pass filter, b being an integer is not a requirement anymore.

4.2. System Equations in the Frequency Domain

Multiplying Equation (39) by Fa and inserting the identity FN F−1
N where appropriate,

we obtain:

yFa = (xFN)
(

F−1
N BFa

)
(44)

That is
ȳ = x̄A (45)

where A is an N × a matrix.
A = F−1

N BFa (46)

The structure of A can be detailed further. Replacing B with its expression
(Equation (40)) and inserting the identity FN F−1

N where it is appropriate, we obtain:

A =
(

F−1
N DsFN

)(
F−1

N ChFN

)(
F−1

N

(
Ia ⊗ 1T

b

)
Fa

)
(47)

Then, using Equations (15) and (16) we obtain:

A =
1
N

Cs̄Dh̄Ξ (48)

As proved in the appendix (see Appendix A.1), the frequency-domain down-sampling
matrix Ξ is:

Ξ =
1
b

θT
b ⊗ Ia (49)

That is:

Ξ =
1
b

 Ia
...
Ia

 (50)

where sub-matrix Ia is repeated b times. Here we remind that h is a low-pass filter. Since
the ADC sampling frequency is Fs, we assume that the elements of h̄, which correspond to
frequencies outside the interval ]− Fs/2, Fs/2 [are almost null. Since h̄ contains N elements,
the frequency resolution is Fnyq/N, so Fs/2 corresponds to index (Fs/2)/(Fnyq/N) =
N/(2b), that is, a/2. Let us note

c = ba/2c (51)

and
δ = a mod 2 (52)

Therefore, the elements of h̄ are almost null for indices outside the interval [−c, c + δ]
(the indices are considered modulo N). Hence, we can redefine Ξ as the N × a matrix
below:

Ξ =
1
b

 Ic+δ 0
0 0
0 Ic

 (53)
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without changing the product Dh̄Ξ. Here, the zeros stand for null sub-matrices. We see
that, thanks to the low-pass pass filter which leads to this structure of Ξ, it is not required
any more that b is an integer (this requirement was only due to the need for an integer
number of occurrences of Ia in Equation (50)).

Finally, let us define the (1× a) vector h̃:

h̃ =
[

h̄0 · · · h̄c+δ−1 h̄−c · · · h̄−1
]

(54)

where the indices are modulo N. We then have:

Dh̄Ξ = ΞDh̃ (55)

and the expression of matrix A becomes:

A =
1
N

Cs̄ΞDh̃ (56)

4.3. Unconstrained System Equations in the Time Domain

Now we can go back to the time domain to obtain a matrix B, which does not require
b being an integer. We have:

y = ȳF−1
a (57)

= x̄AF−1
a (58)

=
(

x̄F−1
N

)(
FN AF−1

a

)
(59)

= xB (60)

where
B = FN AF−1

a (61)

4.4. Fast Simulation of the Acquisition System

A first interest of the linear algebra model is that it makes the design of a fast simulator
obvious. Indeed, multiplication by a diagonal matrix D is efficiently implemented as
an element-by-element vectors product, and multiplication by a Fourier matrix F (or
its inverse) is efficiently implemented by Fast Fourier Transform (FFT). On the contrary,
multiplications by circulant matrices C should be avoided because of their computational
cost. Then, the method to design a fast simulator is to insert identities FF−1 or F−1F where
it is appropriate in order to suppress the circulant matrices. For instance, we have:

y = xB (62)

= xFN
1
N

Cs̄ΞDh̃F−1
a (63)

= x
(

FN
1
N

Cs̄F−1
N

)
FNΞDh̃F−1

a (64)

= xDsFNΞDh̃F−1
a (65)

using Equation (16). Here we have only fast operations, as shown in Figure 8.



Sensors 2022, 22, 7381 14 of 32

Figure 8. Fast simulation. Dotted arrows are for a elements, full arrows are for N elements.

5. Equivalent Model and Post-Processing
5.1. Equivalent Model

Until now, we have not taken advantage of the periodicity of the scrambler. This opens
the way to an equivalent model with interesting properties.

The scrambler is a (1× N) vector s, which contains K replica of a basic waveform
represented by a (1× L) vector p. Then, the scrambler can be written:

s = θK ⊗ p (66)

and we have (see proof in Appendix A.2)

s̄ = Kp̄⊗ 1K (67)

It follows that s̄ is sparse (only one element out of K is non-zero). It will be easier to
take benefit of the sparsity of s̄ if we permute x̄ and s̄ in the expression of ȳ:

ȳ =
1
N

x̄Cs̄ΞDh̃ (68)

=
1
N

s̄Cx̄ΞDh̃ (69)

The proof is trivial: since the multiplication is commutative, we can permute x and s
(see Figure 7); therefore, we can also permute x̄ and s̄.

Let us define the L× N matrix C(K)
x̄ obtained by picking one row out of K in Cx̄. That

is:
C(K)

x̄ = (IL ⊗ 1K)Cx̄ (70)

More explicitly, that is:

C(K)
x̄ =


x̄0 · · · x̄N−1

x̄−K · · · x̄N−K−1
...

...
x̄−(L−1)K · · · x̄K−1

 (71)

where the indices are considered modulo N.
Let us denote

p̃ =
1
L

p̄ (72)

Using Equation (67), the mixer output becomes:

1
N

s̄Cx̄ =
1
N
(Kp̄⊗ 1K)Cx̄ (73)

=
1
L
(( p̄IL)⊗ 1K)Cx̄ (74)

=
1
L

p̄(IL ⊗ 1K)Cx̄ (75)

= p̃C(K)
x̄ (76)
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An interesting property of matrix C(K)
x̄ , which will be exploited later, is (see proof in

Appendix A.3):
C(K)

x̄ JK
N = JLC(K)

x̄ (77)

Finally, let us define
ỹ = ȳD1/h̃ (78)

We then have:

ỹ =
1
N

s̄Cx̄Ξ (79)

= p̃C(K)
x̄ Ξ (80)

5.2. Post-Processing

The post-processing extracts frequency blocks of K samples from ỹ.
Using definition (35), let us note Sn the a× K selection matrix below

Sn = bS(r+nK)
a,K (81)

and Rn the N × K selection matrix below

Rn = S(r+nK)
N,K (82)

Denoting ỹn a 1× K vector representing the selected data, we have:

ỹn = ỹSn (83)

ỹn contains the elements of ỹ whose indices (modulo a) are in the interval
Φ = [r + nK, r + nK + K− 1].

The indices are considered modulo a, so r may be negative. We will consider that
Φ ⊂ [−c, c + δ], so

ΞSn = ΞbS(r+nK)
a,K (84)

= S(r+nK)
N,K (85)

= Rn (86)

We can note that:

Rn = J−nK
N R0 (87)

This is a matrix similar to R0 but with sub-matrix IK circularly shifted nK positions
downwards. We can note that we have also:

Rn+1 = J−K
N Rn (88)

Eventually, using Equations (76) and (77) we have:

ỹn = p̃C(K)
x̄ ΞSn (89)

= p̃C(K)
x̄ Rn (90)

= p̃C(K)
x̄ J−nK

N R0 (91)

= ( p̃J−n
L )(C(K)

x̄ R0) (92)

= p̃nZx̄ (93)

where
p̃n = p̃J−n

L (94)
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and
Zx̄ = C(K)

x̄ R0 (95)

More explicitly, Zx̄ is the L× K matrix below:

Zx̄ =


x̄r · · · x̄r+K−1

x̄r−K · · · x̄r−1
...

...
x̄r−(L−1)K · · · x̄r−(L−2)K−1

 (96)

were the indices are considered modulo N. The interesting feature in Equation (93) is that
Zx̄ does not depend on n. Hence, we can take q different values of n and write

...
ỹn
...

 =


...

p̃n
...

Zx̄ (97)

assuming we know the filter frequency response (which should be the case because the
filter is part of the acquisition system). More compactly, this fundamental equation can be
noted:

Y = PZ (98)

were Y is the (q× K) matrix below:

Y =


...

ỹn
...

 (99)

P is the (q× L) matrix below:

P =


...

p̃n
...

 (100)

and Z is the (L× K)matrix below:
Z = Zx̄ (101)

Therefore, the sizes of the matrices appearing in Equation (98) are (q×K), (q× L), (L×
K). Then, if the number of non-zero rows in Z is less than q the matrix Z can be reconstructed
from this equation using an algorithm such as OMP [29]. Eventually, from Z we can retrieve
x̄ as shown below. Indeed, it is easy to see that x̄ can be rebuilt from Z with

x̄ = vec(ALZ)Jr+K
N (102)

where AL is the K× K anti-diagonal matrix:

AL =


0 · · · 0 1
... . . .

1 0

0 . . . . . . ...
1 0 · · · 0

 (103)

The effect of the multiplication of a matrix by AL on the left is to reverse the order of
its rows.
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If we have M channels instead of one in the physical system, the number of rows of Y
becomes qM; hence, we can theoretically rebuild the signal if the number of non-zero rows
in Z is less than qM.

Let us note q = 2ρ + τ the Euclidean division of q by 2. In our experiments, we have
set r = 0 for q even and r = −bK/2c for q odd. For n we take the integers in the interval
−ρ to ρ + τ− 1. This choice, while not compulsory, is designed to take into account equally
distributed values around frequency 0 in ỹ, which is a priori the best choice. Indeed, the
indices of the samples taken into account go from r− ρK to r + (ρ + τ)K− 1, that is:

• For q odd: from −ρK− bK/2c to ρK + dK/2e − 1
• For q even: from −ρK to ρK− 1

For this choice, Figure 9 illustrates how the elements of x̄ are arranged into matrix Zx̄
and Figure 10 illustrates how the elements of ỹ are arranged into matrix Y.

Figure 9. Arrangement of the elements of x̄ into matrix Zx̄, for L = 4.

Figure 10. Arrangement of the elements of ỹ into matrix Y, for q = 4 and q = 3.

5.3. Application of the Equivalent Model to Reconstruction

The input of the reconstruction algorithm is the vector y provided by the acquisition
device. The output is an estimation of x̄.

We assume that:
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• The frequency response h̄ of the low-pass filter is known (or has been estimated). Then
h̃ can be precomputed using Equation (54).

• Matrix P has been precomputed, using Equations (72), (94) and (100), or (better) has
been estimated by the calibration process (see Section 6).

The procedure is as follows:

1. Using an a-points FFT compute ȳ
2. Compensate the filter by computing ỹ (Equation (78))
3. Extract q sub-vectors ỹn from ỹ (Equation (83))
4. Compute matrix Y (Equation (99))
5. Use a compressed sensing algorithm, such as OMP [29], to estimate matrix Z from

Equation (98)
6. Reconstruct x̄ from Z using Equation (102)

As an illustration of how the linear algebra model makes things simple from the
programming point of view, this is the Octave program, which builds matrix Y from y and
then obtains x from the reconstructed matrix Z:

ytilde = fft(y,[],2)./htilde;
ind = 1+mod(r+[-rho*K:(rho+tau)*K-1], a);
Y = reshape(ytilde(ind),K,q).’;
% Insert here estimation of Z from Y and P (using OMP, for instance)
xbs = reshape(Z(L:-1:1,:).’,1,N);
xb = circshift(xbs,[0 r+K]);
x = ifft(xb,[],2);

If there are M > 1 physical channels, the q × K matrices Y corresponding to each
channel are stacked vertically, leading to a qM× K matrix Y.

5.4. Interest of Q Even

The linear algebra model allows even values of q, instead of previous models that
required q to be odd. The main interest is that it puts lower constraints on the design of the
acquisition board. If the acquisition board is already available, it may also allow a better
use of the MWC output data if the acquisition board is not perfectly optimized.

Let us consider our own acquisition board, which was designed before we established
the linear-algebra model. We remind that the ADC sampling frequency is Fs ' 104.2 MHz
and the scramblers repetition frequency is Fp = Fnyq/L ' 10.42 MHz. Using Fs = Fnyq/b
and N = KL = ab, it is easy to see that Fp = KFs/a. In the frequency domain, the a output
samples correspond to Fs, then qK output samples correspond to qKFs/a = qFp.

• With q = 7, we put into Y a total of qK samples corresponding to a frequency half-
band qFp/2 = 36.47 MHz. This choice perfectly fits the frequency response of the
low-pass filter, which is an almost perfectly flat and linear phase in [DC-36MHz] (see
Figures 5 and 6).

• With q = 6, we would put into Y samples corresponding to a frequency half-band
qFp/2 = 31.26 MHz. This corresponds to an even better area of the filter response, but
in doing this, we would not use all the available information.

• On the contrary, with q = 8, we would put it into Y samples corresponding to a
frequency half-band qFp/2 = 41.68 MHz. This allows us to take more information
into account, but we see that we take into account some samples corresponding to a
lower quality of the filter response.

This result is not surprising, because our acquisition board was designed and opti-
mized for q = 7, but for a future design of a new board, the possibility to have q may even
be interesting because it puts fewer constraints on the choice of the commercial filters.

Indeed, applying the proposed method to our analog board did not need any change
because odd values of q are allowed by our method. If a new analog board were to be
designed, our method adds an additional degree of freedom because it allows even values
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of q also. This would allow, for example, the designer of the analog board to use a low-pass
filter with a cut-off frequency of about 34 MHz (using q = 6) instead of 40 MHz (using
q = 7).

6. Application to Fast Calibration
6.1. Proposed Approach

The objective of calibration is to estimate the true matrix P. Indeed, for real-world
applications, using the theoretical matrix (Equation (100)) leads to very poor results [13].
In a previous paper [19], we proposed an approach that uses a single wideband signal for
calibration, contrary to previous approaches that required successive injections of sinusoids
in the system. In that paper, we presented spectrum reconstruction performances and
examples of spectrum reconstruction obtained with our calibration method. In the present
paper, we will mainly focus on simplifying and speeding up the method thanks to the
linear algebra model.

The signal we used for calibration has a spectrum that is totally flat in the[
−Fnyq/2, Fnyq/2

]
frequency band and random phase. Compared to methods based on iter-

ative injections of sinusoidal waves, our new calibration method is time-saving and is more
practical in terms of the simplicity of implementation because it requires a single measure-
ment to perform the calibration. The calibration method uses advanced resynchronization
preprocessing. Our calibration method offers slightly better spectrum reconstruction per-
formances compared to reference method [13].

If we know matrices Y and Z, using Equation (98), we can estimate matrix P by:

P̂ = YZ+ (104)

where Z+is the Moore–Penrose pseudo-inverse [27] of Z. Matrix Y depends on the MWC
outputs, and matrix Z depends on its input signal. The problem in a real-world context is
that we cannot reliably synchronize the input of the MWC with the ADC sampling, which
provides the output, and even if a costly synchronization device was implemented, there
are delays in the analog board itself, which are intractable. Then, the input signal must
be designed such that a synchronization can be performed numerically. Otherwise, in
Equation (104), we would multiply matrices Y and Z+ corresponding to desynchronized
data, which would make no sense.

In order to allow an efficient numerical synchronization, we used, for the MWC input,
a periodical signal with a flat spectrum and random phase. More precisely, the period of
this signal corresponds to the chosen block size, that is N/Fnyq, and one period can be
represented by a length-N row vector x. This vector is generated as follows:

1. A length-N vector x̄ is generated such that, for any of its elements x̄(k), we have
|x̄(k)| = 1 and Arg(x̄(k)) is random in [0, 2π[ under the constraint Arg(x̄(−k)) =
−Arg(x̄(k)) (this constraint ensures that x is real).

2. x is deduced from x̄ by an inverse FFT: x = x̄F−1
N

Reminding that matrix Z contains the elements of x̄ (Equation (101)), the constant
modulus |x̄(k)| = 1 ensures that no element of Z is privileged or disadvantaged by the
input signal. Furthermore, the random phase ensures that the input signal has good
localization properties, which is desired for efficient synchronization. Finally, choosing a
periodic signal has a strong advantage: a time shift of a block taken on the input signal is
equivalent to a cyclic permutation of vector x.

On the programming point of view, building Z from x is very simple:

xb = fft(x, [], 2);
xbs = circshift(xb,[0 -(r+K)]);
Z(L:-1:1,:) = reshape(xbs,K,L).’;
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In the following, we will note x0 = x as the signal pattern and xd a cyclic permutation,
d positions to the right, of the pattern. This means that

xd = xJd
N (105)

The procedure that we propose is as follows:

1. Feed the acquisition device with a periodic signal, which is a repetition of a known
pattern x0

2. Record a samples at the output of the acquisition device (this is vector y), then compute
matrix Y using steps 1 to 4 of the reconstruction procedure.

3. Perform cyclic permutations of the input pattern x0. For each vector xd, compute
matrix Zd = Zx̄d (using Equations (96) and (101)) and then P̂ (using Equation (104)).

Let us note the residue
Rd = Y− P̂dZd. (106)

The criterion to determine the best cyclic permutation of the input pattern x0 is the
inverse Frobenius norm of Rd (the Frobenius norm is the square root of the sum of the
square modules of the elements of the matrix).

The computational cost per iteration (i.e., per value of d tested) can be estimated as
follows:

• A FFT is required to compute x̄d, that is LK log2(LK) flops (because N = LK).
• Computation of the pseudo-inverse Z+

d : 7KL2 + 20L3 flops (see Section 2.7).
• Computation of P̂ = YZ+

d (the sizes of the matrices are qM× K and K × L): qMKL
flops.

• Computation of P̂Zd requires qMLK flops.
• Computation of the Frobenius norm requires KL flops

Globally, since the computation of the Frobenius norm can be neglected compared to
the other terms, the algorithm requires about L(2qMK + 7LK + 20L2 + K log2(LK)) flops
per iteration.

6.2. Fast Update of Matrix Z

While evaluating all possible shifts d, computation of matrix Zd = Zx̄d requires an
N-points FFT to obtain x̄d, which requires approximately Nlog2(N) multiplication at each
iteration. However, we can reduce the complexity just by computing the first matrix and
then updating it at each iteration as described below. Let us consider a vector xd, which is a
cyclic permutation, d positions to the right of pattern x. We have:

xd = x0 Jd
N (107)

Then

x̄d = x0 Jd
N FN (108)

= x0FN F−1
N Jd

N FN (109)

= x̄0Dαd (110)

where

αd =

0 · · · 0︸ ︷︷ ︸
d

10 · · · 0

 (111)

Indeed, since Jd
N = Cαd , using Equation (15) we have:

F−1
N Jd

N FN = F−1
N Cαd FN (112)

= Dαd (113)
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Since αd = αdFN , it is easy to see that αd is the (d + 1)th row of FN , that is (see
Equations (10) and (11)):

αd =
[

1 ωd ω2d · · · ω(N−1)d
]

(114)

Then, we have:

Zd = Zαd•x̄0 (115)

= Zαd • Z0 (116)

where • stands for element by element multiplication. This equation can also be written

Zd = ω−rdΘ∗dZ0Ωd (117)

with
Θd = diag

[
1 ωKd ω2Kd · · · ω(L−1)Kd

]
(118)

Ωd = diag
[

1 ωd ω2d · · · ω(K−1)d
]

(119)

To see where this formula comes from, we must remind that multiplication by a
diagonal matrix on the left (right) multiplies the rows (columns) by the elements of the
diagonal. Then, denoting ωd = ωd we can see that:

ω−r
d vec(Θd)

∗vec(Ωd) = ω−r
d


1

ω−K
d
· · ·

ω
−(L−1)K
d

[ 1 ωd · · · ωK
d
]

(120)

= ω−r
d


1 ωd · · · ωK−1

d
ω−K

d ω−K+1
d · · · ω−1

d
...

...
...

ω
−(L−1)K
d ω

−(L−1)K+1
d · · · ω

−(L−2)K−1
d

 (121)

= Zαd (122)

If we evaluate by step g, we can use:

Zd = Zαg • Zd−g (123)

Matrix Zαg can be precomputed. Therefore, at each iteration, we need only N multi-
plications, which is less complex than computing x̄d each time. This update requires only
N = LK multiplications at each iteration, instead of approximately Nlog2(N).

If we want to allow sub-sample precision (i.e., g < 1), we just have to note η = N/2
and write αg as follows:

αg =
[

1 ωg · · · ωη−1 ω−ηg · · · ω−g ] (124)

This is very interesting because sub-sample precision is then allowed without any
additional cost due to oversampling (with this method, no oversampling is required).
Matrix Zαg is computed as follows:

alpha = exp(-i*2*pi*g*[0:eta-1 -eta:-1]/N);
alpha = circshift(alpha,[0 -(r+K)]);
Zalpha(L:-1:1,:) = reshape(alpha,K,L).’;

Then, at each iteration, updating matrix Z is achieved by:

Z = Z .* Zalpha;
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6.3. Fast Update of Matrix Z+

The approach is similar to the pseudo-inverse: we can reduce the complexity just
by computing the first pseudo-inverse matrix and then updating it at each iteration, as
described below. This update requires only N multiplications at each iteration.

According to discussions above, denoting Z0 = USV∗ as the SVD of Z0, we have

Zd = ω−rdΘ∗d(USV∗)Ωd (125)

= (ω−rdΘ∗dU)S(Ω∗dV)∗ (126)

This equation directly provides the SVD of Zd. It follows that Z+
d is

Z+
d = (Ω∗dV)S+(ω−rdΘ∗dU)∗ (127)

= ωrdΩ∗dZ+
0 Θd (128)

This update can be realized by element-by-element multiplication :

Z+
d = Z∗αd

• Z+
0 (129)

If we evaluate by step g we can update the matrix at each iteration by:

Z+
d = Z∗αg

• Z+
d−g (130)

where Z∗αg
can be precomputed.

6.4. Fast Synchronization

To obtain a synchronization, we must evaluate the Frobenius norm of Rd at each
iteration.

We can evaluate the computational complexity of this fast algorithm as follows:

• Updating matrix Zd and Z+
d requires 2LK flops.

• Computing YdZ+
0 requires qMKL flops.

• Multiplying YdZ+
0 by Z0 requires qMKL flops.

• Computing the Frobenius norm requires KL flops.

Globally, the algorithm requires 2qMKL + 3KL ' 2qMKL flops per iteration, which
is to be compared to L(2qMK + 7LK + 20L2 + K log2(LK)) for the previous version. The
gain is, approximately:

G ' 1 +
7L

2qM
+

10L2

qMK
+

log2(L)
2qM

+
log2(K)

2qM
(131)

' 21 (132)

Computation time on Octave is 54 s for the slow version and 1.6 s for the fast version,
which is then 34 times faster.

As a function of K, the gain decreases until K = 20 ln(2)L2 = 127761 (which is a huge
value, not expected for real-world acquisition devices), where it reaches a minimum of 13.4,
then increases slowly, behaving asymptotically as log2(K)/(2qM), as shown in Figure 11.
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Figure 11. Gain as a function of K (the red dot shows the values corresponding to our acquisition
board).

7. Experimental Results

Using a step g > 1 for the evaluation of the synchronization criterion allows a decrease
in the computation time by a factor g. A good strategy is to obtain a coarse synchroniza-
tion with a step g > 1, and then to perform a fine synchronization around the detected
peak. The fine synchronization may even be realized at sub-sample precision, if desired.
However, a too large initial step must be avoided because it may lead to missing the
synchronization peak during the coarse synchronization. In our experiments, we first used
a coarse synchronization with step g = 16, then a fine synchronization with step g = 1
around the coarse synchronization peak. Figure 12 shows the obtained synchronization
data. Figures 13 and 14 present are magnifications of the synchronization peak to show
more details.

Figure 12. Synchronization (overview).
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Figure 13. Synchronization (zoom 1).

Figure 14. Synchronization (zoom 2).

If the response of the filter is not taken into account in Equation (78) (i.e., assuming an
ideal low-pass filter), the synchronization peak is only slightly lower (4.75 instead of 5.22).
This is due to the fact that the low-pass filter used in our analog board has good character-
istics (almost flat response, and almost linear phase, in the band of interest). The difference
would be higher with a lower quality filter. Anyway, it is always better to integrate the
filter response in the equations, as we did, because the additional computational cost is
negligible.

Once the signal is synchronized, the estimated matrix P̂ is obtained using
Equation (104) (at no additional cost because this computation was already part of the
synchronization process). Figure 15 shows the modulus of the matrix elements. Here, since
we have M = 4 physical channels and we have taken q = 7, the matrix has qM = 28 rows
(and L = 96 columns). The first q = 7 rows correspond to the first physical channel, then
the next q rows to the second physical channel, and so on.
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Figure 15. Estimated mixture matrix P (modulus).

The theoretical (ideal) matrix Pth can be computed using Equation (100). Since the
analog scrambling sequence is the output of a Digital to Analog Converter (DAC), fed with
a digital pseudo-random sequence, it is (ideally) piecewise constant in the time domain.
In the spectral domain, this is equivalent to a multiplication by the sinc function in which
first zero is at Fnyq. We take that into account when computing our theoretical matrix in
order to be as close as possible to the real-world matrix. Figure 16 shows the modules of
the elements of this matrix.

Figure 16. Theoretical mixture matrix Pth (modulus).

The estimated (real-world) mixture matrix P̂ may be compared with the theoretical
(ideal) mixture matrix Pth. On the basis of the elements modules, we can see that their
overall aspects are close despite noticeable differences. In fact, the main differences are in
the phases of the elements. If we draw the normalized correlation coefficients between the
columns of both matrices (Figure 17), we obtain low values, which confirms significant
differences. We remind that a normalized correlation coefficient is the absolute value of the
cosine of the angle between two vectors (here the columns of both matrices), then values
around 0.5 mean that the angle is about 60 degrees, and thus, the columns are significantly
different.
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Figure 17. Normalized correlation coefficients.

In a previous paper [19], we showed that despite the good quality of our real-world
acquisition board, calibration of the system is absolutely required: using the theoretical
matrix leads to poor reconstruction performances. Without calibration, the system usually
incorrectly detects the active sub-bands, and even when the active sub-bands are correctly
identified, the spectrum reconstruction provided by the uncalibrated system is extremely
poor, as illustrated in Figure 18.

Figure 18. Example of sub-band spectrum reconstruction with and without calibration.

Figure 19 shows the relative error between computed and observed system output, as
a function of output frequency. The computation is performed using a formula similar to
the criterion used in [32].
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ε( f ) = 20 log10


∥∥∥outputreal( f )− outputcomputed( f )

∥∥∥
‖outputreal( f )‖

 (133)

Figure 19. Relative error between computed and observed system output, as a function of output
frequency.

Here the frequency band of the acquisition system output signal has been divided into
28 subbands, and outputreal is the real output signal comprised in the subband centered
on f . Similarly, outputcomputed( f ) is the computed output signal comprised in the subband
centered on f , “computed” meaning that it is computed from the input signal using the
system model and a given matrix P. The three curves correspond to using different matrices
P in this computation. It can be seen that our method and the reference method provide a
good prediction of the real output (relative errors around −18 dB), while the theoretical
uncalibrated matrix provides poor results (large relative errors). We remind that in any
case, even for the theoretical matrix, we always use a low-pass filter that is calibrated: the
true frequency response of the filter (Figures 5 and 6) is being taken into account in the
equations through the diagonal matrix Dh̃.

To further illustrate the interest of the approach, Figure 20 shows the spectrum of the
reconstructed signal using different matrices P. On top, it is the true spectrum. Here we
have two transmitters in the monitored bandwidth. We can see that our method, as well
as the reference method [13], correctly identifies the presence of two active transmitters.
On the contrary, when using the theoretical matrix, the number of transmitters and their
frequency locations are incorrect.
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Figure 20. Example of spectrum reconstruction with 2 transmitters. The horizontal axes are frequen-
cies, labeled in MHz.

If we zoom in on Figure 20, we can see (Figure 21) that the frequency location of the
second transmitter is more precise when using matrix P provided by our method than
when using the matrix provided by the reference method.

Figure 21. Example of spectrum reconstruction with 2 transmitters (zoom). The horizontal axes are
frequencies, labeled in MHz.

Let us now consider a much more difficult case, where six transmitters are simultane-
ously active in the monitored bandwidth (Figure 22). Using the matrix P provided by our
approach leads to a correct estimation of the number of transmitters and of their frequency
location, despite imperfect shapes of the spectrum reconstruction for some transmitters.
The reference method produced quite good results also, but missed one transmitter (around
330 MHz) and detected a non-existing transmitter (around 180 MHz). Finally, as anticipated,
using the theoretical matrix P lead to a reconstruction that is almost totally false.
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Figure 22. Example of spectrum reconstruction with 6 transmitters. The horizontal axes are frequen-
cies, labeled in MHz.

This shows that calibration is unavoidable. An interest of the extremely fast calibration
procedure proposed in this paper is the possibility of performing quick recalibration of
the system as soon as the performances appear to decrease. Indeed, many factors, such as
temperature, external perturbation, components aging, etc., modify the characteristics of
the system, making a recalibration necessary.

8. Conclusions

In this paper, we have established an MWC model solely based on linear algebra. It is
very convenient as a basis for fast and efficient programming of simulation, reconstruction
and calibration algorithms related to MWC. It suppresses a previous restriction on the chan-
nels augmentation factor, hence providing more degrees of liberty to the systems designer.
It also allowed us to develop an extremely fast implementation of a previously proposed
calibration algorithm, leading to a gain of a factor greater than 20 on the computation time.
This fast calibration allows quick recalibration of the system as soon as it becomes necessary.
Our future work will include more in-depth exploitation of the advantages and interesting
properties of this model.
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Appendix A. Mathematical Proofs

Appendix A.1. Frequency-Domain Downsampling Matrix Ξ

Using the general radix identity, with N = ab, the inverse DFT matrix can be decom-
posed as:

F−1
N = P−1

a,b (Ia ⊗ F−1
b )T−1

a,b (F−1
a ⊗ Ib) (A1)

Then, the frequency-domain downsampling matrix Ξ is:

Ξ = F−1
N

(
Ia ⊗ 1T

b

)
Fa (A2)

= P−1
a,b (Ia ⊗ F−1

b )T−1
a,b (F−1

a ⊗ Ib)
(

Ia ⊗ 1T
b

)
Fa (A3)

= P−1
a,b (Ia ⊗ F−1

b )T−1
a,b (F−1

a ⊗ 1T
b )Fa (A4)

= P−1
a,b (Ia ⊗ F−1

b )T−1
a,b (Ia ⊗ 1T

b ) (A5)

= P−1
a,b (Ia ⊗ F−1

b )(Ia ⊗ 1T
b ) (A6)

=
1
b

P−1
a,b (Ia ⊗ θT

b ) (A7)

=
1
b

θT
b ⊗ Ia (A8)

Appendix A.2. Periodic Scrambler

Using the general radix identity, with N = KL, the DFT matrix can be decomposed as:

FN = (FK ⊗ IL)TK,L(IK ⊗ FL)PK,L (A9)

Then, we have:

s̄ = sFN (A10)

= (θK ⊗ p)(FK ⊗ IL)TK,L(IK ⊗ FL)PK,L (A11)

= (θKFK)⊗ (pIL)TK,L(IK ⊗ FL)PK,L (A12)

= K(1K ⊗ p)TK,L(IK ⊗ FL)PK,L (A13)

= K(1K ⊗ p)(IK ⊗ FL)PK,L (A14)

= K(1K IK)⊗ (pFL)PK,L (A15)

= K(1K ⊗ p̄)PK,L (A16)

= Kp̄⊗ 1K (A17)
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Appendix A.3. Commutation Property of C(K)
x̄

C(K)
x̄ JK

N = (KIL ⊗ 1K)Cx̄ JK
N (A18)

= K(IL ⊗ 1K)JK
NCx̄ (A19)

= K(IL ⊗ 1K)(JL ⊗ IK)Cx̄ (A20)

= K(IL JL)⊗ (1K IK)Cx̄ (A21)

= JL(KIL ⊗ 1K)Cx̄ (A22)

= JLC(K)
x̄ (A23)

where we have used Equation (24).
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