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Abstract

To strengthen public trust and counter disinfor-
mation, computational fact-checking, leverag-
ing digital data sources, attracts interest from
the journalists and the computer science com-
munity. A particular class of interesting data
sources comprises statistics, that is, numeri-
cal data compiled mostly by governments, ad-
ministrations, and international organizations.
Statistics are often multidimensional datasets,
where multiple dimensions characterize one
value, and the dimensions may be organized
in hierarchies.

This paper describes STATCHECK, a statis-
tic fact-checking system jointly developed by
the authors, which are either computer sci-
ence researchers or fact-checking journalists
working for a French-language media with a
daily audience of more than 15 millions (aud,
2022). The technical novelty of STATCHECK
is twofold: (i) we focus on multidimensional,
complex-structure statistics, which have re-
ceived little attention so far, despite their
practical importance; and (ii) novel statisti-
cal claim extraction modules for French, an
area where few resources exist. We validate
the efficiency and quality of our system on
large statistic datasets (hundreds of millions of
facts), including the complete INSEE (French)
and Eurostat (European Union) datasets, as
well as French presidential election debates.

1 Introduction

Professional journalism work has always involved
verifying information with the help of trusted
sources. In recent years, the proliferation of media
in which public figures make statements, in partic-
ular online, has led to an explosion in the amount
of content that may need to be verified to distin-
guish accurate from inaccurate, and even poten-
tially dangerous, information.

To help journalists deal with the deluge of in-
formation, computational fact-checking (Cazalens
et al., 2018; Nakov et al., 2021) emerges as a grow-
ing, multidisciplinary field. The main tasks of a
fact-checking system are: identifying the claims
made in an input document, finding the relevant
evidence from a reference corpus, and (optionally)
producing an automated verdict (is the claim true
or false?). A reference corpus can be a knowl-
edge graph (Ciampaglia et al., 2015), Web sources
such as Wikipedia (Nie et al., 2019; Yoneda et al.,
2018), or relational tables (Chen et al., 2020;
Herzig et al., 2020; Jo et al., 2019; Karagiannis
et al., 2020).

For fact-checks to be convincing, professional
journalists prefer reference sources of high qual-
ity, carefully built by specialists. These include
statistics produced and shared by governmental
and international organizations, such as INSEE,
the French national statistics institute 1 and Euro-
stat, the equivalent European Union office 2. Tech-
nically speaking, such statistics are multidimen-
sional tables, where a fact is a number, charac-
terized by one or more a dimensions, such as a ge-
ographical unit, time interval, and other categories
such as ”Education level”, etc. Unfortunately,
such data sources are significantly more complex
than relational tables, making their usage chal-
lenging. Consequently, despite the interest in such
sources, only a few works have used them for au-
tomatic fact-checking (Cao et al., 2018; Duc Cao
et al., 2019).

In our collaboration between computer scien-
tists and fact-checking journalists, we have de-
veloped, deployed, and continue to be extending
STATCHECK, a fact-checking system specialized
in the French media arena. STATCHECK builds

1https://www.insee.fr
2https://https://ec.europa.eu/eurostat



upon the open-source code base of (Cao et al.,
2018; Duc Cao et al., 2019). We significantly im-
proved its data ingestion speed and more than dou-
bled its statistic corpus by adding Eurostat data.
Different from (Chen et al., 2020; Herzig et al.,
2020; Jo et al., 2019; Karagiannis et al., 2020;
Ciampaglia et al., 2015; Nie et al., 2019; Yoneda
et al., 2018; Aly et al., 2021), STATCHECK also in-
cludes a claim detection step, which saves journal-
ists’ time by focusing their attention on the claims
worth checking; our claim detection module sig-
nificantly outperforms the only one we know of
for French (Duc Cao et al., 2019).

Outline. Below, we start by presenting a set
of functional requirements derived from the jour-
nalist authors’ experience in Section 2. Next,
we describe the actual organization of statistic
databases, and the STATCHECK architecture, in
Section 3. Then, we explain how this architecture
is instantiated over two different sources, INSEE
and Eurostat, whose size and organization signif-
icantly vary, in Section 4; we ingest and index all
the data to support efficient search over it (Sec-
tion 5). Finally, our claim detection modules are
described in Section 6, then we conclude.

2 Fact-Checking Work Routine and
Requirements

The journalist authors are part of the same team,
specializing in fact-finding and fact-checking in
a French-speaking national media. The material
they author is disseminated through both the na-
tive and online media channels of their news orga-
nization. Their work is split among the two main
classes identified in (Juneja and Mitra, 2022):
short-term claim centric, focusing on the verac-
ity of statements made continuously by public fig-
ures, which need to be checked relatively quickly;
and long-term issue-centric, whereas individual
journalists maintain and increase their knowledge
of application topics, such as ”law enforcement”,
”education and research”, ”defense”, etc.

The short-term, claim-centric work raises sev-
eral requirements. First, journalists know whose
claims might interest their audience. Thus, they
need an interesting subset (selection) of social me-
dia content to be made available through a Web
platform. Journalists specify a set of social media
account handles (currently Twitter and Facebook),
and need the ability to modify this set themselves,
as people gravitate in and out of the public’s atten-

tion. Second, whenever claims about statistic en-
tities are made in this social media content sphere,
bringing these claims to their attention, isolating
them from the mass of social communication of
the figures they follow, saves journalists time and
effort. Third, as previously noted in (Cazalens
et al., 2018; Saeed and Papotti, 2021), data sources
relevant to a given claim must be quickly identi-
fied and as precisely as possible. This again saves
journalists time to search statistic data sources that
may be very large, i.e., Eurostat publishes thou-
sands of datasets, some with millions of rows.

The long-term, issue-centric work also bene-
fits from these functionalities, yet it is more open;
journalists may peruse claims for which they have
not identified relevant sources yet, but still ap-
preciate a recommendation of most likely check-
worthy claims. User-friendly means to filter mes-
sages considered check-worthy (Should messages
about the future, such as electoral promises, be
considered, or not? Is a number required in a sta-
tistical claim, or not?) are also appreciated.

Common to both kinds of work, the newsroom
involved in this project has the core tenet that any
verdict or judgment must be vetted by journal-
ists, since publishing it engages their professional
responsibility. This has a set of consequences.
(i) Journalists need to analyze the facts relevant
to a claim and interpret them in a nuanced way for
their audience. For instance, a difference of 5%
between a number stated in a claim, and the value
in a reference source, may be negligible or, on the
contrary, a serious attempt to mislead, depending
on the context. Thus, unlike prior systems (Chen
et al., 2020; Herzig et al., 2020; Jo et al., 2019;
Karagiannis et al., 2020), STATCHECK does not
compute a ”true/false” verdict, leaving this tasks
to journalists. (ii) For transparency and trust, links
to any fact on its original publishing site must be
provided together in the fact-check.

3 Fact-checking Based on
Multidimensional Statistics

A multidimensional dataset consists of a set of
facts, each having one value along a set of di-
mensions. For instance, Figure 1 (top) represents
a three-dimensional dataset: French departments
are on the horizontal axis, education levels on the
vertical axis, while years are on the third (depth)
axis. In each cell, the dataset stores the number
of students in the respective department, level of



Figure 1: Multidimensional statistic data: conceptual
view (top), structure of actual published dataset (bot-
tom).

study, and year. In practice, actual Open Data
statistics published by the government or interna-
tional organizations are typically much more com-
plex, as shown at the bottom of Figure 1. First,
to save space, dimension values may be encoded
into short codes, e.g., ”HI” for ”High school”,
”MI” for ”Middle school”, etc.; a decoding dic-
tionary, associating a human-understandable term
to each code, is published with, or close to the
data cells. Although not shown in the figure, di-
mension names are similarly encoded. Second,
header cells, shown in yellow and green in the fig-
ure, may be mixed with data cells; this requires
effort to interpret them correctly. Note also that
there can be a hierarchy of headers, e.g., a dataset
at the granularity of departments may also include
region names, e.g., ”Île-de-France” and ”Grand
Est”, placed in the data files above, or close to,
the region header cells. Third, datasets may also
contain partially aggregated results, illustrated by
the orange box holding the sum of all facts for
one region (Grand Est), one education level (el-
ementary), and the three years. Fourth, for each
dataset, there may exist a separate, textual descrip-
tion, which contains a title, e.g., ”French student
population”, and other comments.
Data representation in files. In practice, a multi-
dimensional statistic dataset is published as a file,
which can be CSV, a spreadsheet etc. For that, it is
laid out in a bidimensional format, with some facts
on each line, and as many lines as needed. If the
data has more than two dimensions, which is of-
ten the case, this leads to row header cells encod-

ing several dimensions and their values, such as
”HI 2019”, ”MI 2019” etc. in the figure. The file
may start with the column headers (yellow), then
the encoded multidimensional row header cell ”EL
2019” followed by the four cells corresponding to
it, then a similar line for ”MI 2019”, a line for ”HI
2019”, followed by similar lines for 2020, then
2021 etc. Partially aggregated results are inter-
spersed between such lines.
Challenges. To exploit such datasets for fact-
checking, a set of challenges must be addressed.
The useful information, e.g., ”How many elemen-
tary school students were in Île-de-France region
in 2019?”, is a number in a cell. To find such infor-
mation, we must identify and store its relation-
ships with human-understandable descriptions
of its dimensions, such as ”Education level: Ele-
mentary school”. In this example, the question is
asked at a granularity (region) that is more coarse
than the granularity of the data. To find the answer,
we must exploit the fact that Paris and Essonne are
departments in the Île-de-France region. Further,
statistic claims may use similar but different lan-
guage, e.g., a claim may be made about ”pupils
in Île-de-France”. Linguistic knowledge must be
leveraged to connect the claim terminology with
that of the dataset. As mentioned in our require-
ments (Section 2), fine-granularity answers are
preferred, that is: if the answer consists of one
or a few cells only, those should be extracted from
the dataset and returned, to avoid journalists’ ef-
forts to search in potentially large files. Finally,
speed at scale is important, to enable journalists
to work efficiently.
Architecture. To address these challenges, based
on the requirements described in Section 2, we
have devised an architecture shown in Figure 2.
The modules in the lower row acquire and pro-
cess reference datasets (Section 4), e.g., statis-
tics about education in France. Those in the up-
per row acquire content to be fact-checked, e.g.,
a tweet stating: ”More teachers are needed to
educate 200K pupils in Île-de-France!”, extract
claims (Section 6), in this case ”200K pupils in Île-
de-France”, and identify the most relevant facts
for checking these claims, by searching the appro-
priately indexed reference datasets (Section 5).

4 Statistic Fact Database and Storage

By crawling, we acquired the complete INSEE
and Eurostat statistics, and store them as follows.



Figure 2: STATCHECK architecture overview.

INSEE publishes each statistic report as an
HTML page containing a description (title and
comments on the data), and statistic tables in Ex-
cel or in HTML. As of May 2022, there are 60,002
Excel files (each of which may contain several ta-
bles) and 58,849 HTML tables. The table orga-
nization varies significantly across the datasets;
nested headers are frequent. The largest table has
50.885 lines. Following (Cao et al., 2017), to cap-
ture all the elements of an INSEE dataset, we turn
it in an RDF graph (www-rdf), where each data
cell, header cell, and partial aggregate becomes an
RDF node (URI). Each data cell or partial aggre-
gate node is connected, through an RDF triple, to
the cells corresponding to its closest header cells.
Thus, the number of elementary school students in
Paris in 2019 is connected to header cells labeled
”Paris”, respectively, ”Elementary school 2019”
(where ”EL 2019” was decoded using the dic-
tionary). Finally, each header cell is connected
through an RDF triple to its parent header cell.
This allows us to easily find out that the elemen-
tary school students in Paris in 2019 are also to
be counted as being in the Île-de-France region.
We also create an RDF node per dataset, which
is connected to all its header cells and to the tex-
tual title and comments (each modeled as an RDF
literal). The INSEE corpus lead to 7,362,538,629
RDF triples, including 22,366,376 header cells.
We store them in the Jena Fuseki server with the
TDB2 persistent back-end (www-tdb2).

Eurostat publishes 6,803 statistic tables, rang-
ing from 2 lines to 37 million lines, and 580 dic-
tionaries that, together, decode 243,083 statisti-
cal concepts codes into natural-language descrip-
tions, all of which we acquired in STATCHECK’
database. Together, the Eurostat data files total
414.908.786 lines. In Eurostat, dimension hier-
archies are described in the dictionaries; we store
these in memory. The statistic tables are simple-
structure TSV files, thus, storing each of them as a

table in a relational database was an option. How-
ever, their number is relatively high, and storing
a file in a database inevitably increases its storage
footprint. Therefore, to keep the data more com-
pact, in view also of future extensions of our plat-
form with more statistics from the World Health
Organization, World Development Index etc., we
store them as plain files, complemented by spe-
cialized indexes, as we explain below.

5 Statistic Search

Given a keyword query Q = {k1, k2, . . . , kn},
such as ”middle school pupils in Île-de-France in
2020”, the task we consider here is to find:

• the most relevant facts from our complete IN-
SEE and Eurostat corpus;

• or, if a concrete fact is not found, but some
datasets as a whole appear related to the
query, return those datasets.

There may be several fact- (or cell-) level as
well as dataset-level answers; we return a ranked
list based on their relevance.

We call metadata of a statistic dataset all the
natural-language elements that are part of or asso-
ciated with the dataset: its title, comments, and
human-understandable versions of all its header
values. We use L = {T,C,H} to denote the
set of the locations in which a term can appear
in metadata, respectively: the dataset title, a com-
ment, or a header. The locations are important
since a term appearing in a title is more signifi-
cant than one appearing in a header, and we exploit
this when retrieving the datasets most relevant for
a query (Section 5.1). Also, locations help deter-
mine whether a dataset matches some keywords
headers of different dimensions - in which case
the cell(s) at the intersection of those dimensions
likely have a very relevant result (Section 5.2).



5.1 Dataset Indexing and Search
We split the metadata of each dataset d into a set of
tokens T = {t1, . . . , tN}, and remove stop words.
For each token t, we identify based on a Word2Vec
model the 50 tokens t′ closest semantically to t.
Next, for each appearance of a token t in a location
l within d, our term-location index ITL stores:
(i) the index entry (t, d, l) corresponding to the to-
ken actually found in d; and (ii) 50 entries of the
form (t′, d, l, dist), for the 50 tokens closest to t.
These extra entries enable answering queries on
terms close to (but disjoint from) the dataset con-
tent. For instance, when t is ”school”, t′ could be
”teacher”, ”pupil”, ”student”, etc. For fast access,
ITL is hosted in the Redis in-memory key-value
store (www-redis). To find the datasets relevant
for the queryQ, we look up the query keywords in
ITL, and consider relevant any dataset associated
with at least one keyword.

The above indexing mechanism leverages word
distances. Separately, we used geographic re-
sources, in particular (Eurostat, 2022) for EU lo-
cations, to make our system aware of the rela-
tionships between geographic units (cities, depart-
ments, regions) across Europe. This ensures that a
dataset is considered relevant if it mentions a ge-
ographic unit that includes or is included in the
query. It is important to identify geographic names
in the metadata. We have adopted the FlashText
algorithm (Singh, 2017), capable of finding, in a
dataset metadata of size N , one of M fixed key-
words in O(N) time complexity. This is much
faster than the O(NM) cost of regular expression
pattern matching used in the previous system (Cao
et al., 2018) and significantly sped up indexing of
the INSEE corpus3.

Coarser-grain indexing of Eurostat statistics
The large size of this corpus prevents cell- or row-
level metadata indexing, as the index might out-
grow the memory. Instead, we index occurrences
of statistical concept codes in datasets, as follows.
Let c be a Eurostat concept, e.g., ”EL”, appear-
ing in dataset d at a location l ∈ L, and dc be the
decoding of c, e.g., ”Elementary school” for ”EL”.
Let Tdc = {t1, t2, . . . , tN} be the tokens in dc, and
for 1 ≤ i ≤ N , let tji , for 1 ≤ j ≤ 50, be the to-
kens closest to ti. For each ti ∈ Tdc, we insert in
the term-dataset index IT , also stored in Redis:

3Together with other optimizations related to batching
calls to the Spacy tokenizer and pipelining the indexing with
the data acquisition process, this brought the total INSEE in-
dexing time from 29 hours to 4 minutes.

• a (ti, d, l) entry;

• for every tji similar to ti, an entry
(tji , d, l, dist, ti), where dist is the distance
between ti and tji .

Indexing the complete Eurostat data in this way
took around 4 minutes.

Given the query Q = {k1, . . . , kn}, we search
ICL and IT for entries of the form (ki, d, l) or
(ki, d, l, dist, k

′
i). Any dataset having an entry for

at least one ki is potentially interesting; we retain
the 20 highest-score ones.

Dataset ranking We rank datasets based on the
relevance score introduced in (Cao et al., 2018). It
is a weighted combination of the word distances
between the query keywords and the datasets’
metadata; the weights reflect the locations where
relevant terms appear in each dataset. We have
also experimented with the classic BM25 (Robert-
son and Zaragoza, 2009) computed over all the
datasets’ metadata, but the results were less good,
in particular, because BM25 does not handle
synonyms well. We also considered embed-
ding the query and the metadata using Sentence-
Bert (Reimers and Gurevych, 2019) and compar-
ing these with the query embedding, but opted not
to use it because, for our purposes, the term loca-
tion in the metadata is important, and treating the
metadata as a single text loses this information.

5.2 Data Cell Indexing and Search

Our next task is to extract results at the finest gran-
ularity level possible. Let d be one of the most in-
teresting datasets, and I(d) be the set of all index
entries for the query Q and d. For our sample
query Q and dataset in Figure 1, I(d) contains:

• For ”middle school”, header (H) entries for
”Middle school” (exact), as well as for ”High
school” and ”Elementary school” (similar); a
title (T ) entry for ”student” (similar); and a
comment (C) entry for ”school” (similar);

• For ”pupils”,H , T , andC entries for the sim-
ilar words above;

• For ”Île-de-France”, an exact H entry, and
two similar H entries for ”Paris” and ”Es-
sonne”;

• For ”2020”, exact H entries.



If I(d) only features title (T ) or comment (C)
locations, then d is pertinent as a whole, and we
do not search for cell-level answers.

On the contrary, if I(d) has several header en-
tries (having l = H), matching two or more dis-
tinct query keywords (or close terms), this means
that d holds some fine-granularity results for the
query. If I(d) holds an entry along each dataset
dimension d, these entries, together, designate ex-
actly one cell, which we should return. Otherwise,
the result is a collection of all the cells from d char-
acterized by the dimension values designated by
the entries in I(d).

In our example, we should return the cells for
”MI 2019”, ”2020”, and locations ”Paris” and ”Es-
sonne”, which belong to Île-de-France. For that:

1. If d is an INSEE dataset, I(d) contains the
headers of the respective row and column
headers. Then, the cell is identified by asking
a SPARQL (W3C, 2013) query, evaluated by
Fuseki, as in (Cao et al., 2018). The query re-
quests ”all the data cells from dataset dwhose
closest header cells are those from I(d)”.

2. If d is an Eurostat dataset, I(d) only specifies
that ”some row (column) headers match”, and
more effort is needed to identify the relevant
cells. A Eurostat file has at most a few dozen
columns, but it may have tens of millions of
rows.

• To find the column referred to by an I(d)
entry whose key is k, we search for k in
the first (header) line of d.

• To identify the relevant rows efficiently,
we created another index IR on the Eu-
rostat data files, inspired by the Adap-
tive Positional Map of (Alagiannis et al.,
2015). IR stores the positions, in the
data file of d, of the rows containing a
certain keyword k in their header. We
store IR directly as a binary file on disk.

• Knowing the rows and column indexes,
we read those row(s) from d, and extract
from them the relevant data cell(s).

Using Fuseki, cell extraction takes 35ms up to
2.86s. On Eurostat, using IR, we record 4.76µs up
to 2.66s. The lower bound is higher for INSEE
because we have to pass SPARQL queries across
a connection to the Fuseki server.

6 Claim Detection

A claim is a statement to be validated, that is, we
aim to establish if it is true or false. The validation
is achieved by finding related statements, called
evidence, which back up or disprove the claim. In
our work, the claims are detected in an input text,
while the evidence is retrieved from a set of trusted
sources, our reference datasets. Our platform de-
tects claims from text stored in .txt, .odt, .docx or
.pdf files, and from the Twitter and Facebook posts
of public figures. Our platform regularly retrieves
the most recent updates of a predefined group of
users for posts.

6.1 Statistical Claim Detection

Previous work addresses statistical claim detec-
tion in a supervised manner by predicting statis-
tical entity-value pair from text patterns (Vlachos
and Riedel, 2015). In (Duc Cao et al., 2019),
the authors introduced a statistical claim detec-
tion method that given an input set of statisti-
cal entities, e.g. chômage, coefficient budgétaire)
and a sentence, it retrieves all the statistical
statements of the form 〈statistical entity,

numerical value, and unit, date〉 present in
the sentence. The statistical statement, if present,
represents the statistical claim to be verified. The
statistical entities and units are retrieved using ex-
act string matching, while the date is extracted us-
ing HeidelTime (Strötgen and Gertz, 2010), a time
expression parser. If the parser finds no date, the
posting timestamp is used. More context about the
claim to be verified is found using a Named Entity
Recognition (NER) model, which returns organi-
zations and locations. We note, however, that the
organization and location are optional, while a sta-
tistical statement is not complete without one of its
three elements. The initial statistical entity list is
constructed from the reference datasets by taking
groups of tokens from the headers of tables, we
refer to (Duc Cao et al., 2019) for more details.

We improved this method to optimize both its
speed and the quality of extractions. We refer to
the two methods as OriginalStatClaim (Duc Cao
et al., 2019) and StatClaim. We first performed
a more careful match between the tokens of a
sentence and our input statistical entities. Using
the syntactic tree of the sentence and a lemma-
tizer, statistical entities are matched using their
lemma and are extended to contain the entire nom-
inal group of the matched token. Numerical val-



ues are associated with units using both lemmas
matching from our set of units and syntactic anal-
ysis. Units can be a noun following a numerical
value or a nominal group containing one or more
units. (e.g. ”millions d’euros”). As in the origi-
nal approach, if we retrieve a statistical statement
of the form 〈statistical entity, numerical

value, and unit, date〉, we have found a claim
to verify. In the default setting of our algorithm,
a claim should contain all three elements. In ad-
dition, we filter out claims from sentences whose
verb is in the future tense or the first person since
these are promises about the future and not ver-
ifiable. Journalists found, however, that these
may also be interesting for their long-term, issue-
centric work (Juneja and Mitra, 2022). Thus,
STATCHECK allows them to turn the future and
first-person filters on and off.

6.2 Check-worthy Claim Detection

To complement the statistical claim detection
model, we developed a model that is not condi-
tioned on a set of initial statistical entities. The
model classifies a sentence as check-worthy or
not, where check-worthiness is defined as sen-
tences containing factual claims that the gen-
eral public will be interested in learning about
their veracity (Arslan et al., 2020). We lever-
aged the ClaimBuster dataset (Arslan et al., 2020),
containing check-worthy claims in English from
the U.S. Presidential debates, to train a cross-
lingual language model, XLM-R (Conneau et al.,
2019), which can perform zero-shot classification
on French sentences after training on English data.

The ClaimBuster dataset ClaimBuster is a
crowd-sourced dataset where the sentences from
the 15 U.S. presidential elections debates from
1960 to 2016 have been annotated. The labels are
Non-Factual Sentences (NFS), Unimportant Fac-
tual Sentences (UFS) or Check-Worthy Factual
Sentences (CFS). The dataset contains 23K sen-
tences, and the authors produced a subset of higher
quality of 11K sentences for training models on
classification tasks. In this smaller dataset, the
NFS and UFS labels are grouped as negative la-
bels, and the CFS labels are considered positive.
We chose this higher-quality dataset to fine-tune
the XLM-R model.

Fine-tuning the XLM-R model The XLM-R
model is a Transformer-based masked language
model trained on one hundred languages with

Dataset P R F1 score
ClaimBuster 0.883 0.848 0.865
French tweets 0.612 0.769 0.682

Table 1: Evaluation of the fine-tuned XLM-R model.

Models P R F1 score
OriginalStatClaim 0.692 0.466 0.557
StatClaim 0.833 0.517 0.638
CheckWorthyClaim 0.701 0.915 0.794

Table 2: Model evaluation on verifiable numerical
claims.

Models P R F1 score
OriginalStatClaim 0.282 0.688 0.400
StatClaim 0.333 0.750 0.462
CheckWorthyClaim 0.195 0.938 0.323

Table 3: Model evaluation on INSEE statistical claims.

2.5TB of Common Crawl data. It achieves state-
of-the-art results on multilingual tasks such as the
XNLI benchmark (Conneau et al., 2018), while
remaining competitive on monolingual tasks. We
used a pretrained model with a vocabulary size of
250K, 12 hidden layers of size 768 and 12 atten-
tion heads. We used a weighted cross-entropy loss
to account for the unbalanced ratio of labels. The
dataset was split into train, dev and test datasets
with a ratio of 80%/%10%/10%.

Evaluation To optimize the performance, we
trained the model with different hyperparameters.
The best results were obtained with a learning rate
of 5 · 10−5, a batch size of 64, and using the
AdamW optimizer. To evaluate the performance
of the different models on French data, we anno-
tated 200 randomly sampled French tweets and la-
beled them as check-worthy or not following the
definition in (Arslan et al., 2020). Two annota-
tors labeled each tweet; in the golden standard, a
tweet is deemed check-worthy if both annotators
agree on it, and not check-worthy otherwise. The
Cohen Kappa score for inter-annotator agreement
is 0.6, which is considered moderate to substan-
tial agreement. The results can be found in Ta-
ble 1. The performance on this test set is encour-
aging, however lower than on the original English
dataset. This is expected given the zero-shot set-
ting, as the tweets’ format and vocabulary might
differ from the ones in the training dataset.



Figure 3: Screen captures of STATCHECK’ GUI. Top: statistic search interface with sample query result (data cell
with row header in blue and column header in red); bottom: tweet analysis interface.

6.3 Integration and Evaluation of the Claim
Detection Models

We evaluate the claim detection models, (Origi-
nalStatClaim (Duc Cao et al., 2019), StatClaim
and CheckWorthyClaim), on a set of 1595 tweets.
Each tweet was labeled with two classes: ”Verifi-
able numerical claim” (True if the tweet contains
at least one numerical and verifiable claim”) and
”INSEE statistical claim” (True if the tweet con-
tains at least one numerical, statistical claim verifi-
able against the INSEE dataset”). We chose these
two labels as the first one gives us an indication of
the tweets that can be verified if we had unlimited
access to resources, while the second class iden-
tifies the tweets verifiable in the setting in which
we have access to only one resource. We gath-
ered 1595 random tweets from our scraped dataset
to construct our set. Then, we automatically de-
tected if a tweet contained a numerical value, if
not, the tweet was labeled as negative for both
classes. After that first step, we manually labeled
the remaining 101 tweets. Two annotators labeled
each tweet, and the gold standard was chosen as
True if both annotators agreed. For the class ”ver-
ifiable numerical claim”, we obtained a Kappa
inter-Annotator Agreement score of 0.917 (almost
perfect agreement), and 59 tweets were labeled as
positive. For the class ”INSEE statistical claim”
we obtained an inter-annotator Agreement score of
0.807 (substantial agreement) and 16 tweets were
labeled as positive.

Evaluation procedure For StatClaim and Orig-
inalStatClaim, a tweet is considered positive if
models return at least one extracted statistical
statement. Our StatClaim was used in its default
configuration: extractions with numerical values
and without verbs conjugated in the future or in
the first person. For CheckWorthyClaim, a tweet

is considered positive if the model returns a check-
worthy score > 0.9. We report the results in Ta-
ble 2 and Table 3. StatClaim performs better than
the original at detecting INSEE verifiable claims,
and CheckWorthyClaim vastly outperforms both
models on the detection of numerical claims, as
they are a subset of check-worthy sentences that
the model was trained to detect.

Finally, we evaluate the performance of our
model directly against the journalist authors’ prior
manual work. For example, during the 2022
French presidential debate, the journalist team
highlighted 29 of the 1954 uttered sentences and
fact-checked them. The XLM-R model, on the
other hand, classifies 443 of these sentences as
check-worthy, and 27 of the 29 sentences chosen
by the journalists are correctly classified. In other
words, our model reduces by 77% the number
of sentences to consider while retaining 93% of
the sentences the journalists actually want to fact-
check, saving the journalists considerable time
without them missing too many important claims.

Default claim detection strategy. By default,
STATCHECK uses StatClaim for statistical claim
detection. However, given the good performance
of CheckWorthyClaim on numerical claims, we
allow users to switch to it, even if we might not be
able to verify them against the reference datasets.

7 Conclusion and Perspectives

Fact-checking journalists need automated tools to
help scale up their daily work. We developed
the STATCHECK tool, which allows the journal-
ist authors to focus their attention directly on
check-worthy statements falling into one of two
overlapping classes: those that can be checked
based on statistics from two major institutions; and
those that human users find interesting, even if the



data to back up the checks is not present in the
database. STATCHECK is in daily use in the fact-
checking team; Figure 3 illustrates its GUI.

Quantitative question answering based on open
data is gaining interest (Ho et al., 2020, 2022).
In our continuing collaboration, we will work to
extend STATCHECK with more multidimensional
statistic datasets from national governments and
international organizations.
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A Multidimensional Datasets Example

A.1 Insee

(a) An Insee table

(b) Insee multidimensional statistic dataset view

Figure 4: Example of Insee dataset

A.2 Eurostat

(a) An example of an encoded eurostat table

Statistical Code Statistical Concept
FR FMCZ FR FMEE DZAOUDZI airport -SAINT DENIS GILLOT airport
FR FMCZ FR LFML DZAOUDZI airport -MARSEILLE-PROVENCE airport
FR FMCZ FR LFPG DZAOUDZI airport -PARIS-CHARLES DE GAULLE airport
FR FMCZ FR LFPO DZAOUDZI airport -PARIS-ORLY airport
FR FMCZ KE HKJK DZAOUDZI airport -NAIROBI/JOMO KENYATTA INTL. TWR/APP/NOF/MET/CIVIL AIRLINES airport
FR FMCZ KM FMCH DZAOUDZI airport -MORONI/PRINCE SAID IBRAHIM airport
FR FMCZ KM FMCV DZAOUDZI airport -ANJOUAN/OUANI airport
FR FMCZ MG FMMI DZAOUDZI airport -ANTANANARIVO/IVATO airport
FR FMCZ MG FMNM DZAOUDZI airport -MAHAJANGA/PH. TSIRANANA airport
FR FMCZ MG FMNN DZAOUDZI airport -NOSY-BE airport
FR FMEE AU YSSY SAINT DENIS GILLOT airport -SYDNEY/SYDNEY (KINGSFORD SMITH) INTL airport
FR FMEE CN ZGGG SAINT DENIS GILLOT airport -GUANGZHOU/BAIYUN airport
FR FMEE FR FMCZ SAINT DENIS GILLOT airport -DZAOUDZI airport
FR FMEE FR FMEP SAINT DENIS GILLOT airport -SAINT PIERRE PIERREFONDS airport
FR FMEE FR LFBD SAINT DENIS GILLOT airport -BORDEAUX-MERIGNAC airport
FR FMEE FR LFBO SAINT DENIS GILLOT airport -TOULOUSE/BLAGNAC airport

(b) An subsample of a dictionnary used to decode the encoded
table (a)

(c) The decoded Eurostat table

(d) Eurostat multidimensional statistic dataset view

Figure 5: Example of Eurostat dataset


