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A monotone numerical flux for quasilinear convection
diffusion equation

C. Chainais-Hillairet, R. Eymard and J. Fuhrmann

Abstract

We propose a new numerical 2-point flux for a quasilinear convection–diffusion equation. This numerical
flux is shown to be an approximation of the numerical flux derived from the solution of a two-point
Dirichlet boundary value problem for the projection of the continuous flux onto the line connecting
neighboring collocation points. The later approach generalizes an idea first proposed by Scharfetter
and Gummel for linear drift-diffusion equations. We establish first that the new flux satisfies sufficient
properties ensuring the convergence of the associate finite volume scheme, while respecting the maximum
principle. Then, we pay attention to the long time behavior of the scheme: we show relative entropy
decay properties satisfied by the new numerical flux as well as by the generalized Scharfetter-Gummel
flux. The proof of these properties uses a generalization of some discrete (and continuous) log-Sobolev
inequalities. The corresponding decay of the relative entropy of the continuous solution is proved in the
appendix. Some 1D numerical experiments confirm the theoretical results.

Keywords: Quasilinear convection–diffusion equation, Scharfetter–Gummel flux, long time behavior,
log-Sobolev inequalities.

2021 AMS Classification: 65N08, 65N12, 35A23, 35B40

1 Introduction

Many problems arising in physics, biology or engineering involve convection-diffusion equations.
They consist of conservation laws of the form

ut + divJ = 0, with J = −∇ζ(u) + η(u)q. (1)

Under this general form, the diffusion as well as the convection are assumed to be nonlinear
functions, respectively ζ and η, of the unknown u, which may represent for instance the density
of a given species. In general, the equation (1) is set on a bounded domain Ω ⊂ Rd (d ≥ 1) and
supplemented with initial and boundary conditions. We will assume that the boundary ∂Ω of
the domain splits into two parts ΓD and ΓN and consider Dirichlet boundary conditions on ΓD

and no-flux boundary conditions on ΓN .
Let us give some examples of applications leading to (1). The porous media equation, which
describes the flow of a gas through a porous interface, may be rewritten with a time dependent-
scaling into the nonlinear form (1) with ζ(u) = um, m > 1 and q = −x, see [7]. In order
to describe the dynamics of bosons and fermions, Kaniadakis in [18] considers linear diffusion
ζ(u) = u with nonlinear convection η(u) = u(1 + ku) (k = 1 for the bosons, k = −1 for the
fermions) with q = −x. This equation has been studied later by Carrillo et al. in [6, 5]. In order
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Fig. 1: Two control volumes in a finite volume scheme.

to describe electrochemical processes, Onsager in [20, 21], describes the flux J as proportional
to the gradient of an electrochemical potential. It means that

J = −η(u)∇ (µ(u) + zuV (x)) , (2)

where µ(u) defines the chemical potential of a given charged species, zu its charge, η(u) its
mobility and V (x) an external electrical potential. The same definition of the flux is used in
the modeling of semiconductor devices. In this framework, the mobility is assumed to be linear
η(u) = u and the quantity µ(u) + zuV (x) is referred as the quasi-Fermi potential of the charged
species (electrons or holes), see for instance the seminal papers by Gajewski and Gröger [14, 15] .
Moreover, in the modeling of semiconductor devices, the electrical potential V is defined through
a Poisson equation, so that (1) is just a part of a coupled system of equations.
In this paper, we are interested in the numerical approximation of (1) by finite volume schemes
based on a two-point flux approximation (the notations will be introduced in Section 3.2 and
are already shown on Figure 1). The discretization in time is a backward Euler discretization,
with a time step ∆t. Such a scheme has the generic form

mK
un+1
K − unK

∆t
+

∑
σ∈EK,int∪EDK

mσFn+1
Kσ = 0. (3)

In (3), the quantity Fn+1
Kσ represents the numerical flux through the edge σ of the control volume

K, outward K. It should be a consistent and conservative approximation of

1

mσ

∫
σ
J · nK,σ.

When we consider two-point flux approximations, Fn+1
Kσ is defined as a function of un+1

K and
un+1
L if σ is the common edge to the control volumes K and L (we will denote σ = K|L, and
σ ∈ EK,int). It is a function of un+1

K and uDσ if σ is an edge of K included in the Dirichlet
boundary ΓD (we will denote σ ∈ EDK in this case and define by uDσ an approximation of the
Dirichlet data uD on σ).
In the linear case (η(u) = u, ζ(u) = u), different choices for the numerical fluxes have already
been proposed and studied. As shown by Chainais-Hillairet and Droniou in [8], some of them
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may be written under a generic form:

Fn+1
Kσ = F(un+1

K , un+1
Kσ , qK,σ, dσ), (4)

with F : R3 × R+ → R such that F(a, b, q, h) =
aB(−qh)− bB(qh)

h
(5)

letting un+1
Kσ = un+1

L if σ = K|L and un+1
Kσ = uDσ if σ ∈ EDK , (6)

and where qK,σ is defined by

qK,σ =
1

mσ

∫
σ
q · nKσds ∀σ ∈ EK

and dσ is introduced on Figure 1. With a classical two-point flux approximation of the linear
diffusion term, an upwinding of the convection term corresponds to the case B(s) = 1+(−s)>0,
while a centered approximation corresponds to the case B(s) = 1 − s/2. The choice of the
Bernoulli function, B(s) = s/(es − 1), leads to the Scharfetter-Gummel numerical fluxes intro-
duced in [22].
The main advantage of the Scharfetter-Gummel numerical fluxes is that they preserve the ther-
mal equilibria. Indeed, when q = −∇V , if u is proportional to e−V , the flux vanishes (J = 0)
and this property is preserved at the discrete level: if B is the Bernoulli function, qK,σ is defined
by qK,σ = (VL−VK)/dσ, un+1

K = e−VK and un+1
L = e−VL , then Fn+1

Kσ = 0 for σ = K|L. Recently,
Heida, Kantner and Stephan in [16] have proposed a family of fluxes which are designed for
the preservation of thermal equilibria. These fluxes have the generic form (4), (5), (6) with B
defined by B(x) = Sα,β(1, e−x), where Sα,β is a Stolarsky mean defined by

Sα,β(x, y) =

(
β

α

xα − yα

xβ − yβ

) 1
α−β

, for α 6= 0, β 6= 0, α 6= β, x 6= y,

and extended in a continuous way in the critical points. With α = 0 and β = −1, one recovers
the Scharfetter-Gummel fluxes.
As shown by Lazarov, Mishev and Vassilevski in [19], the Scharfetter-Gummel scheme has an
order 2 in space, as the centered scheme but without any stability assumption on the Péclet
number. Therefore, the question of its extension to nonlinear equations seems of great interest
and has already given rise to numerous studies. Let us mention the works by Jüngel and Pietra
[17] and by Bessemoulin-Chatard [1] where only the diffusion is assumed to be nonlinear, by Ey-
mard, Fuhrmann and Gärtner [10], and by Bessemoulin-Chatard and Filbet [2] which deal with
nonlinear diffusion and convection. Except in [17], all the schemes preserve thermodynamical
equilibria. The only scheme which is second order in space even when the diffusion degenerates
in the one proposed in [2].
As we will recall in Section 2.2, the construction of the scheme proposed by Eymard, Fuhrmann
and Gärtner in [10] (we will denote it in what follows SGnl-scheme) follows the main lines of the
original idea by Scharfetter and Gummel. It leads to numerical fluxes defined as the solution of
a nonlinear boundary-value problem for each interface of the mesh. They are therefore defined
in an implicit way, which is the main drawback of the SGnl-scheme and which limits its use.
Therefore, the aim of this paper is to introduce and analyze a numerical scheme for (1) based
on the SGnl-scheme but which offers an easy computation of the numerical fluxes. The new
numerical fluxes will consist in an approximation of the numerical fluxes defined in the SGnl-
scheme, up to a precision δ not depending on the size of the mesh.
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The organization of the paper is the following. In Section 2, we analyze both the SGnl-flux
and the δ-approximation of this flux. We prove that the δ-approximation satisfies a series of
properties gathered in Definition 2.1, which are sufficient for yielding the convergence of a finite
volume scheme based on this flux to the transient solution of a convection-diffusion problem.
This first result is stated in Proposition 2.9. We then turn to numerical analysis of the scheme
in Section 3 in the special case of fluxes defined by (2). After the proof of standard properties
(including the existence and uniqueness of a discrete solution to the scheme), we turn to the
study of the long time behavior of the scheme in Section 3.3. This study extends the one which
is done in [3] to the more general choices for η and µ than η(s) = s and µ(s) = log(s). New
difficulties must then be handled, like the proof of the existence of a strictly positive lower bound
of the discrete solution, or the adaptation of the mean discrete Poincaré inequality to a nonlinear
setting (log-Sobolev inequalities no longer hold in this case). We establish in Theorem 3.11 the
exponential decay of the discrete solution to the scheme towards a discrete thermal equilibrium,
up to the δ-approximation of the SGnl-flux. Finally, a series of numerical results in Section 4
show that the theoretical result of approximate exponential decay is observed in practice.

In an appendix, we briefly state the exponential decay properties which hold for the long term
behavior of the continuous problem involving the same general framework for η and µ as the
one which is studied in Section 3.

Notation for the whole paper: for a, b ∈ R, we denote by a>b (resp. a⊥b) the maximum
(resp. the minimum) between a and b. We also denote by a+ = max(a, 0) the positive part of a
and a− = max(−a, 0) its negative part.

2 Numerical fluxes

2.1 General framework

In the spirit of (5), we investigate the definition and the needed properties for a function F :
R3×R+ → R used in the definition of numerical fluxes (4), for nonlinear functions η and ζ. Let
us first specify the hypotheses we consider on the nonlinearities η and ζ involved in (1).

Assumption 2.1:

i) η ∈ C(R,R) is a Lipschitz continuous function and we denote by Lη its Lipschitz constant.

ii) ζ ∈ C1(R,R) is a Lipschitz continuous function with a Lipschitz constant denoted by Lζ .
We assume moreover:

∃r > 0 such that ζ ′(s) ≥ r ∀s ∈ R.

We also define ξ : R→ R by ξ(s) =

∫ s

0

√
ζ ′(t)dt.

The convergence analysis of the finite volume scheme proposed in [10] relies on some sufficient
properties satisfied by the numerical fluxes. We recall these properties in Definition 2.1.

Definition 2.1 (Admissible numerical flux): Under Assumption 2.1, the function F : (a, b, q, h) ∈
R3 × R+ 7→ F(a, b, q, h) ∈ R defines an admissible numerical flux if it satisfies the following
properties:
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i) F is Lipschitz-continuous with respect to a and b.

ii) F is increasing with respect to a, decreasing with respect to b.

iii) F(a, b, q, h) + F(b, a,−q, h) = 0 for all (a, b, q, h) ∈ R3 × R+.

iv) There exists c ∈ [a⊥b, a>b] such that F(a, b, q, h) = qη(c)− ζ(b)− ζ(a)

h
.

v) There holds (a− b)F(a, b, q, h) ≥ −
∫ b

a
qη(s)ds+

(ξ(b)− ξ(a))2

h
.

Remark 2.2: In the B-schemes for the case η(s) = s and ζ(s) = ξ(s) = s, the function F is
defined by (5), for a given function B. The following assumptions are sufficient conditions to
ensure that the associated flux F defined by (5) is admissible in the sense of Definition 2.1:

B is a nonnegative and nonincreasing Lipschitz continuous function,

B(0) = 1,

B(s)−B(−s) = −s for all s ∈ R,
B(s) ≥ 1− s/2 for all s ∈ R.

(7)

Let us mention that the functions defined by B(s) = 1 + (−s)>0 (leading to the upwind fluxes)
and B(s) = s/(es − 1) (leading to the Scharfetter-Gummel fluxes) verify (7). The centered
fluxes, for which B(s) = 1 − s/2, satisfy the positivity assumption only for s ≤ 2, so that the
convergence analysis needs an additional condition on the meshsize h related to the velocity field
(Péclet condition).
Let us also recall that, in the case of the Scharfetter-Gummel fluxes (which means B(s) =
s/(es − 1)), then F(a, b, q, h) defined by (5) is equal to the constant value of qy(s) − y′(s) for
s ∈ [0, h], when y : [0, h]→ [a⊥b, a>b] is the solution to the boundary-value problem

d

ds

(
q y(s)− y′(s)

)
= 0,

y(0) = a,

y(h) = b,

(8)

as it is initially noticed in [22].

2.2 The nonlinear Scharfetter-Gummel numerical fluxes

The numerical fluxes, introduced by Eymard, Fuhrmann and Gärtner in [10], are an adaptation
of the initial construction of the Scharfetter-Gummel fluxes, based on the solution to (8), to the
nonlinear case ; they will be called “SGnl-fluxes” in this paper. They are obtained by replacing
Problem (8) by the following one: search for the solution y : [0, h]→ [a⊥b, a>b] to the following
boundary-value problem 

d

ds

(
q η(y(s))− (ζ(y))′(s)

)
= 0,

y(0) = a,

y(h) = b.

(9)
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Then F(a, b, q, h) is defined as the constant value of the expression q η(y(s)) − (ζ(y))′(s). Let
us start with recalling how the function F can be obtained.
We first remark that when a = b, y(s) = a is the solution to (9), so that

F(a, a, q, h) = qη(a). (10)

When a 6= b, if y is a solution to (9), then z(t) = y(h− t) verifies
d

dt

(
− q η(z(t))− (ζ(z))′(t)

)
= 0,

z(0) = b,

z(h) = a.

This implies the conservativity of the numerical fluxes given in Definition 2.1 iii). Then, it is
sufficient to define the numerical fluxes for a < b following [10]. Therefore, let us recall the

definition of the Godunov flux F (q)
god(a, b) for the approximation of the convective term:

F (q)
god(a, b) =


min
s∈[a,b]

qη(s) if a ≤ b,

max
s∈[b,a]

qη(s) if b ≤ a.
(11)

In the case a < b, the solution y to (9) is such that y′(s) > 0 (see Lemma 3.1 in [10]), which
implies

F(a, b, q, h) < qη(y(s)) for all s ∈ [0, h]

and
F(a, b, q, h) < F (q)

god(a, b).

It is then proved that F(a, b, q, h) is such that there holds∫ h

0

ζ ′(y(s))y′(s)

qη(y(s))−F(a, b, q, h)
ds = h.

Applying the change of variable s→ y(s), we define for any x ∈ (−∞,F (q)
god(a, b))

H(x) =

∫ b

a

ζ ′(s)

qη(s)− x
ds, (12)

and F(a, b, q, h) is defined as the unique solution to the nonlinear equation:

H(F(a, b, q, h)) = h. (13)

The following result is proved in [10].

Lemma 2.3: Under Assumption 2.1, the flux F(a, b, q, h) is uniquely defined as the solution to
(13) if a < b, by (10) if a = b and by the conservativity relation iii) if a > b. Moreover it is an
admissible flux in the sense of Definition 2.1.
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2.3 Approximation of F(a, b, q, h) : the δ-fluxes Fδ(a, b, q, h)

As stated in the previous section, there is generally no clear way for getting an explicit expression
of F(a, b, q, h) solution to (13). Therefore we consider in this paper a new method for defining
a numerical flux, which can approximate as closely as desired the expression given by (13), and
which is easy to compute.

Let (yi)i∈Z ⊂ R be a given sequence, independent of a, b, q, h, such that:

1. the sequence (yi)i∈Z is strictly increasing,

2. yi tends to ±∞ as i→ ±∞,

3. supi∈Z(yi+1 − yi) = δ ∈ (0,+∞).

We then use δ in an abuse of notation for indexing the new flux, denoted by Fδ(a, b, q, h), for
q ∈ R and h > 0 (it should be indexed by the whole sequence (yi)i∈Z).
In the case a = b, we let

Fδ(a, a, q, h) = qη(a). (14)

Moreover, we impose the conservativity relation iii) for Fδ, so that it is sufficient to consider
now that a < b.
Let ia ∈ Z be such that a ∈ [yia , yia+1) and let ib ∈ Z be such that b ∈ (yib , yib+1]. If ia = ib,
we let N = 1, and we define y0 = a, y1 = b. Otherwise, we have ia < ib, and we define
N = 1 + ib − ia, y0 = a, y1 = yia+1, . . . , yN−1 = yib , yN = b.

Let us then define the function Hδ(x), for any x ∈ (−∞,F (q)
god(a, b)), by

Hδ(x) =
N−1∑
i=0

ζ(yi+1)− ζ(yi)

F (q)
god(yi, yi+1)− x

, (15)

where we recall that F (q)
god is defined by (11), and therefore satisfies F (q)

god(a, b) ≤ F (q)
god(yi, yi+1)

for all i = 0, . . . , N − 1. Then Fδ(a, b, q, h) is defined as the solution to the nonlinear equation:

h = Hδ(Fδ(a, b, q, h)). (16)

The aim of this section is now to establish that the δ-fluxes are well defined and that they are
admissible in the sense of Definition 2.1, see Proposition 2.9. We start with Lemma 2.4 which
states the existence and uniqueness of the δ-flux Fδ(a, b, q, h).

Lemma 2.4: Let assume Assumption 2.1 and a < b. Then the function Hδ defined by (15) is
strictly increasing and strictly convex, and there holds

lim
x→−∞

Hδ(x) = 0 and lim
x→< F

(q)
god(a,b)

Hδ(x) = +∞. (17)

As a consequence, Fδ(a, b, q, h) is well defined as the unique solution to the equation Hδ(x) = h.

Proof. From the definition of Hδ, we compute the first and second order derivatives of Hδ:

H ′δ(x) =

N−1∑
i=0

ζ(yi+1)− ζ(yi)

(F (q)
god(yi, yi+1)− x)2

and H ′′δ (x) = 2

N−1∑
i=0

ζ(yi+1)− ζ(yi)

(F (q)
god(yi, yi+1)− x)3

.
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As ζ is a strictly increasing function,we deduce that Hδ is strictly increasing and strictly convex

on (−∞,F (q)
god(a, b)). The limit of Hδ in −∞ is straightforward. We now remark that there

exists i0 ∈ {0, . . . , N − 1} such that

F (q)
god(yi0 , yi0+1) = F (q)

god(a, b),

since

N−1⋃
i=0

[yi, yi+1] = [a, b]. We therefore have

Hδ(x) ≥ ζ(yi0+1)− ζ(yi0)

F (q)
god(a, b)− x

,

which provides the limit of Hδ in F (q)
god(a, b).

Letting δ → +∞ in the definition of the function Hδ yields

H∞(x) =
ζ(b)− ζ(a)

F (q)
god(a, b)− x

,

so that we may define the associate flux F∞(a, b, q, h) by

F∞(a, b, q, h) = F (q)
god(a, b)− ζ(b)− ζ(a)

h
. (18)

Lemma 2.5 brings now a comparison between the δ-flux and its limits δ → ∞, F∞(a, b, q, h),
and δ → 0, F(a, b, q, h).

Lemma 2.5: Letting Q ≥ |q|, and a ≤ b, there holds

F∞(a, b, q, h) ≤ Fδ(a, b, q, h) ≤ F(a, b, q, h) ≤ F (q)
god(a, b)− δF ,

with

δF =
QLη(b− a)

2(exp(
QLηh
r )− 1)

.

Proof. Thanks to (11) and (18), we first notice that

F (q)
god(yi, yi+1)−F∞(a, b, q, h) ≥ ζ(b)− ζ(a)

h
, ∀i ∈ Z,

so that the definition (15) of Hδ, together with the definition (18) of F∞, implies

Hδ(F∞(a, b, q, h)) ≤ h.

We then deduce the first inequality F∞(a, b, q, h)) ≤ Fδ(a, b, q, h) from the monotonicity of Hδ.

Using F (q)
god(yi, yi+1) ≤ qη(s) for all s ∈ [yi, yi+1], we have

N−1∑
i=0

∫ yi+1

yi

ζ ′(s)

F (q)
god(yi, yi+1)−Fδ(a, b, q, h)

ds ≥
N−1∑
i=0

∫ yi+1

yi

ζ ′(s)

qη(s)−Fδ(a, b, q, h)
ds,
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which can be rewritten Hδ(Fδ(a, b, q, h)) ≥ H(Fδ(a, b, q, h)). But Hδ(Fδ(a, b, q, h)) = h =
H(F(a, b, q, h)), so that the monotonicity of H provides the second inequality Fδ(a, b, q, h) ≤
F(a, b, q, h).

It remains to prove the last inequality. Let us set e = F (q)
god(a, b)−F(a, b, q, h). We already know

that e ≥ 0 but want to establish that e ≥ δF . Let consider s0 ∈ [a, b] such that F (q)
god(a, b) =

qη(s0), we have that, for all s ∈ [a, b],

qη(s)−F(a, b, q, h) = q(η(s)− η(s0)) + e

and
qη(s)−F(a, b, q, h) ≤ QLη|s− s0|+ e.

As h = H(F(a, b, q, h)) and ζ ′(s) ≥ r for all s ∈ R, this yields

h ≥
∫ b

a

r

QLη|s− s0|+ e
ds,

and

h ≥ r
∫ b−a

2

0

1

QLηx+ e
dx =

r

QLη
log

QLη
b−a

2 + e

e
.

We then deduce the expected inequality:

e ≥ QLη(b− a)

2(exp(
QLηh
r )− 1)

.

We give with Lemma 2.6 a bound of the distance between F(a, b, q, h) and Fδ(a, b, q, h) in term
of δ.

Lemma 2.6: There exists CF > 0, only depending on Q, M , Lη, Lζ and r where M ≥ h and
Q > |q|, such that, for a ≤ b,

0 ≤ F(a, b, q, h)−Fδ(a, b, q, h) ≤ CF δ, (19)

which therefore implies

∀a, b ∈ R, (a− b)(Fδ(a, b, q, h)−F(a, b, q, h)) ≥ 0. (20)

Proof. The lower bound in (19) has already been established in Lemma 2.5 and implies (20)
due to the conservativity of the fluxes. It remains to prove the upper bound in (19).
We have H(F(a, b, q, h))−Hδ(Fδ(a, b, q, h)) = 0, which can be rewritten as

N−1∑
i=0

∫ yi+1

yi

ζ ′(s)


(
F (q)

god(yi, yi+1)− qη(s)
)

+
(
F(a, b, q, h)−Fδ(a, b, q, h)

)
(
qη(s)−F(a, b, q, h)

)(
F (q)

god(yi, yi+1)−Fδ(a, b, q, h)
)
 ds = 0.
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Remarking that |qη(s)−F (q)
god(yi, yi+1)| ≤ QLηδ for all s ∈ [yi, yi+1] and introducing

A =
N−1∑
i=0

∫ yi+1

yi

 ζ ′(s)(
qη(s)−F(a, b, q, h)

)(
F (q)

god(yi, yi+1)−Fδ(a, b, q, h)
)
ds,

B =

N−1∑
i=0

∫ yi+1

yi

 ζ ′(s)QLη(
qη(s)−F(a, b, q, h)

)(
F (q)

god(yi, yi+1)−Fδ(a, b, q, h)
)
ds,

we obtain that A|Fδ(a, b, q, h)−F(a, b, q, h)| ≤ δB. But, from Lemma 2.5, we have

F (q)
god(yi, yi+1)−Fδ(a, b, q, h) ≥ F (q)

god(a, b)−Fδ(a, b, q, h) ≥ δF (21)

and qη(s)−F(a, b, q, h) ≥ F (q)
god(a, b)−F(a, b, q, h) ≥ δF ∀s ∈ [yi, yi+1],

so that

B ≤ QLη
δ2
F

(ζ(b)− ζ(a)). (22)

We also have that

0 ≤ F (q)
god(yi, yi+1)−Fδ(a, b, q, h) ≤ F (q)

god(yi, yi+1)−F∞(a, b, q, h) ≤ QLη|b− a|+
ζ(b)− ζ(a)

h
,

(23)

and 0 ≤ qη(s)−F(a, b, q, h) ≤ QLη|b− a|+
ζ(b)− ζ(a)

h
∀s ∈ [a, b],

yielding

A ≥ ζ(b)− ζ(a)(
ζ(b)−ζ(a)

h +QLη(b− a)
)2 . (24)

From (22) and (24), we deduce that

|Fδ(a, b, q, h)−F(a, b, q, h)| ≤ δQLη
δ2
F

(
ζ(b)− ζ(a)

h
+QLη(b− a)

)2

≤ δQLη
(ζ(b)− ζ(a)

h
+QLη(b− a)

)2 4
(

exp(
QLηh
r )− 1

)2

(
QLη(b− a)

)2 ,

≤ δ 4

QLη

(
exp(

QLηh

r
)− 1

)2
(

1

h

ζ(b)− ζ(a)

b− a
+QLη

)2

.

This leads finally to

|Fδ(a, b, q, h)−F(a, b, q, h)| ≤ 4δ

(
Lζ +QLηh

)2

QLη

(exp(
QLηh
r )− 1

h

)2
.

We conclude the proof of the lemma by setting

CF = 4 max
x∈[0,M ]

(
Lζ +QLηhx

)2

QLη

(exp(
QLηx
r )− 1

x

)2
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Let us now establish the regularity and the monotonicity of the fluxes.

Lemma 2.7: The function Fδ(a, b, q, h) is Lipschitz-continuous with respect to a and b, increasing
with respect to a, decreasing with respect to b.

Proof. Since Fδ(a, b, q, h) is piecewise Lipschitz continuous, for given a < b, we have by

differentiation of (16): A1∂1Fδ(a, b, q, h) = A2ζ
′(a) +A3∂1F (q)

god(a, y1), with

A1 =
N−1∑
i=0

ζ(yi+1)− ζ(yi)

(F (q)
god(yi, yi+1)−Fδ(a, b, q, h))2

,

A2 =
1

F (q)
god(a, y1)−Fδ(a, b, q, h)

,

and

A3 =
ζ(y1)− ζ(a)

(F (q)
god(a, y1)−Fδ(a, b, q, h))2

.

As A1, A2 and A3 are nonnegative, we first notice that ∂1Fδ(a, b, q, h) ≥ 0. Using the bound
(23) and (16), we obtain that

A1 ≥
h

ζ(b)−ζ(a)
h +QLη(b− a)

≥ h

(b− a)(
Lζ
h +QLη)

.

We also have that A3 ≤ A1 and ∂1F (q)
god(a, y1) ≤ QLη. Moreover, due to (21), A2 ≤ 1/δF and

we get that

0 ≤ ∂1Fδ(a, b, q, h) ≤ Lζ(
Lζ
h

+QLη)
2(exp(

QLηh
r )− 1)

hQLη
+QLη.

Similar reasoning on b proves the result.

In order to conclude the proof of admissibility of the δ-fluxes in the sense of Definition 2.1, it
remains to establish that they satisfy the properties iv) and v). This is the aim of Lemma 2.8

Lemma 2.8: The δ-fluxes satisfy the consistency and dissipativity properties: for all a, b ∈ R,

∃c ∈ [a⊥b, a>b] such that Fδ(a, b, q, h) = qη(c)− ζ(b)− ζ(a)

h
,

and (a− b)Fδ(a, b, q, h) ≥ (ξ(b)− ξ(a))2

h
− q

∫ b

a
η(s)ds.

Proof. Due to the conservativity of the fluxes, we can restrict the proof to the case a < b. By
definition of the Godunov fluxes,

min
s∈[a,b]

qη(s) ≤ F (q)
god(yi, yi+1) ≤ max

s∈[a,b]
qη(s) ∀i ∈ Z.

Using (16), this implies

min
s∈[a,b]

qη(s) ≤ Fδ(a, b, q, h) +
ζ(b)− ζ(a)

h
≤ max

s∈[a,b]
qη(s),
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so that there exists c ∈ [a⊥b, a>b] such that

Fδ(a, b, q, h) +
ζ(b)− ζ(a)

h
= qη(c).

Since we have established in Lemma 2.5 that Fδ(a, b, q, h) ≤ F(a, b, q, h) when a < b, we obtain

(a− b)Fδ(a, b, q, h) ≥ (a− b)F(a, b, q, h)

and the dissipativity property of the δ-fluxes is a direct consequence of the dissipativity property
of the SGnl-fluxes established in [10, Lemma 2.5].

We are now able to state that the δ-fluxes are admissible in the sense of Definition 2.1. This is
a consequence of Lemmas 2.7 and 2.8.

Proposition 2.9: The δ-fluxes defined by (14)-(15)-(16) for a ≤ b and the conservativity relation
for a > b are admissible in the sense of Definition 2.1.

Since the convergence analysis of the finite volume scheme in [10] relies on the admissibility of
the fluxes, it still holds with Fδ(a, b, q, h) instead of F(a, b, q, h).

3 Numerical analysis of the schemes

In this section, we will let d = 2 or d = 3.

3.1 Specification on the continuous model

The convergence analysis of the SGnl-scheme has been achieved in [10] for the convection-
diffusion equation (1) under Assumption 2.1, with divq = 0, Dirichlet boundary conditions
and an initial condition u0 ∈ L2(Ω). As already mentioned, this analysis extends to the δ-
schemes under the same hypotheses as the keypoint is the admissibility of the fluxes established
in Proposition 2.9.
In what follows, we want to focus on the long-time behavior of the SGnl- and δ-schemes. There-
fore, we consider additional hypotheses on the continuous problem. Indeed, our aim is to deal
with generic fluxes à la Onsager (2). Let us specify the new framework of this Section.

Assumption 3.1:

i) The mobility function satisfies η(0) = 0 and η(s) > 0 for all s > 0.

ii) The convection field derives from a potential V ∈ L∞(Ω)∩H1(Ω) such that

∫
Ω
V = 0 and

g := −∆V ∈ L2(Ω). We set q = −∇V , and we assume that

q · n = 0 on Γ = ∂Ω.

iii) The boundary conditions are no-flux boundary conditions: J · n = 0 on Γ, with J =
−∇ζ(u) + η(u)q.

iv) u0 ∈ L∞(Ω) with u0 := essinf u0 > 0 and u0 := esssupu0.
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Under Assumptions 2.1 and 3.1, we may define µ : (0,+∞)→ R by

∀t ∈ (0,+∞), µ(t) =

∫ t

1

ζ ′(s)

η(s)
ds. (25)

The function µ is obviously strictly increasing. Moreover, as 0 ≤ η(s) ≤ Lηs, for all s ∈ [0,+∞),
we have

µ(1)− µ(s) ≥ − r

Lη
log s ∀s ∈ (0, 1),

and µ(s)− µ(1) ≥ r

Lη
log s ∀s ∈ (1,+∞),

yielding
lim
s→0

µ(s) = −∞ and lim
s→+∞

µ(s) = +∞.

The new assumptions permit to rewrite the convection-diffusion flux J in (1) as

J = −
(
∇ζ(u)− η(u)q(x

)
= −η(u)∇

(
µ(u) + V (x)

)
, (26)

which corresponds to (2) with zu = 1. Some results – existence and uniqueness of a solution
to the model (1) with (26), existence of a thermal equilibrium and exponential decay in time
towards this equilibrium- are presented in Appendix A.
Lemma 3.1 shows that the SGnl-fluxes defined by (12)-(13) are consistent with this formulation
of the continuous fluxes.

Lemma 3.1: Under Assumptions 2.1 and 3.1, for all a, b ∈ (0,+∞), there exists c ∈ [a⊥b, a>b],
denoted in the sequel c = χ(a, b), such that

F(a, b, q, h) = −η(c)

(
µ(b)− µ(a)

h
− q
)
. (27)

Proof. If a = b, we have F(a, b, q, h) = qη(a) and (27) holds with c = a. Let us now assume
a < b. We rewrite the function H defined by (12) as

H(x) =

∫ b

a

η(s)µ′(s)

qη(s)− x
ds.

The function t 7→ t
qt−x is nondecreasing on the interval [min[a,b] η,max[a,b] η] if x ≤ 0 while

nonincreasing if x ≥ 0 on the same interval. Assume first that F(a, b, q, h) defined by (12)-(13)
is nonpositive, then we have

(µ(b)− µ(a)) min[a,b] η

qmin[a,b] η −F(a, b, q, h)
≤ h ≤

(µ(b)− µ(a)) max[a,b] η

qmax[a,b] η −F(a, b, q, h)
,

which implies

−max
[a,b]

η

(
µ(b)− µ(a)

h
− q
)
≤ F(a, b, q, h) ≤ −min

[a,b]
η

(
µ(b)− µ(a)

h
− q
)
.

A similar inequality holds, up to an exchange of the min and the max, when F(a, b, q, h) is
nonnegative. And, in any case, we can deduce (27).
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3.2 Numerical schemes and existence results

Let us first introduce the notations describing the mesh. The meshM = (T , E ,P) of the domain
Ω is given by a family T of open polygonal or polyhedral control volumes, a family E of edges
(or faces), and a family P = (xK)K∈T of points such that xK ∈ K for all K ∈ T . We assume
that there exists a path between any pair of control volumes. As it is classical for TPFA finite
volume discretizations including diffusive terms, we also assume that the mesh is admissible in
the sense of [11, Definition 9.1]. It implies that the straight line between two neighboring centers
of cells (xK ,xL) is orthogonal to the face σ = K|L.
In the set of edges E , we distinguish the interior edges Eint and the boundary edges Eext. For
a control volume K ∈ T , we define the set of its edges EK , which is also partitioned into
EK = EK,int ∪ EK,ext. We assume that, for each edge σ ∈ EK,int, there exist exactly two cells
K,L ∈ T such that σ ∈ EK ∩EL, and we denote σ = K|L. We define xσ as the center of gravity
of σ for all σ ∈ E .
For all control volume K ∈ T (resp. σ ∈ E), we denote by mK (resp. mσ) its d-dimensional
measure (resp. d−1-dimensional measure). For all σ ∈ Eint, σ = K|L, we define dσ = d(xK ,xL).
Then the transmissibility coefficient is defined by τσ = mσ/dσ, for all σ ∈ Eint.
Let us recall that, from [11, Lemma 10.2], there exists CP , only depending on Ω, such that the
following discrete Poincaré inequality holds (in the case d = 2 or d = 3).

∀(uK)K∈T ∈ RT ,
∑
K∈T

mK(uK −
1

mΩ

∑
L∈T

mLuL)2 ≤ CP |u|21,M, (28)

with
|u|21,M =

∑
σ∈Eint,σ=K|L

τσ(uK − uL)2. (29)

For any K ∈ T , we use the simplified notation∑
σ=K|L

term(σ,K,L) instead of
∑

σ∈EK,int,σ=K|L

term(σ,K,L).

We first define the approximation of the potential V and the associate approximation of the
convective field q. The scheme is the usual TPFA-finite volume scheme for the Poisson equation
with no-flux boundary conditions. Defining

gK =
1

mK

∫
K
g(x)dx,

the family (VK)K∈T is uniquely defined by

−
∑

σ=K|L

τσ(VL − VK) = mKgK , ∀K ∈ T ,

∑
K∈T

mKVK = 0.
(30)

Let us now define

qK,L = −VL − VK
dσ

∀σ = K|L ∈ Eint. (31)
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Let ∆t > 0 be the time step, we consider a Euler implicit in time scheme combined with a
TPFA-finite volume scheme in space, based on the δ-numerical fluxes. For a given δ ≥ 0 (δ = 0
corresponding to the SGnl-fluxes), we define the δ- scheme by

u0
K =

1

mK

∫
K
u0(x)dx, ∀K ∈ T , (32)

mK
un+1
K − unK

∆t
+
∑

σ=K|L

mσ Fδ(un+1
K , un+1

L , qK,L, dσ) = 0, ∀K ∈ T , ∀n ≥ 0. (33)

The conservativity of the numerical fluxes ensures the preservation of the initial mass along
time, as stated in Lemma 3.2.

Lemma 3.2 (Preservation of mass): Let (unK)K∈T ,n∈N be such that (33) holds. Then we have∑
K∈T

mKu
n
K =

∑
K∈T

mKu
0
K , ∀n ≥ 0. (34)

Lemma 3.3 (Monotony of the δ-scheme): For given n ∈ N, let (unK)K∈T and (vnK)K∈T be given,
with unK ≤ vnK (respectively unK ≥ vnK) for all K ∈ T . Let (un+1

K )K∈T and (vn+1
K )K∈T be the

corresponding solutions to the δ-scheme (33) with δ ≥ 0. Then these values satisfy un+1
K ≤ vn+1

K

(respectively un+1
K ≥ vn+1

K ) for all K ∈ T .

Proof. Let (unK)K∈T and (vnK)K∈T be given. Starting from (33), the monotonicity properties
of Fδ ensure that, for all K ∈ T ,

mKu
n+1
K ≥ mKu

n
K⊥vnK −∆t

∑
σ=K|L

mσFδ(un+1
K , un+1

L ⊥vn+1
L , qK,L, dσ)

and mKv
n+1
K ≥ mKv

n
K⊥unK −∆t

∑
σ=K|L

mσFδ(vn+1
K , vn+1

L ⊥un+1
L , qK,L, dσ).

Hence, since the minimum value between un+1
K and vn+1

K is one of them, we get

mKu
n+1
K ⊥vn+1

K ≥ mKu
n
K⊥vnK −∆t

∑
σ=K|L

mσFδ(un+1
K ⊥vn+1

K , un+1
L ⊥vn+1

L , qK,σ, dσ).

Subtracting the above inequality to (33) written for u, we obtain, for all K ∈ T ,

mK max(un+1
K − vn+1

K , 0) ≤ mK max(unK − vnK , 0)

−∆t
∑

σ=K|L

mσ

(
Fδ(un+1

K , un+1
L , qK,σ, dσ)−Fδ(un+1

K ⊥vn+1
K , un+1

L ⊥vn+1
L , qK,σ, dσ)

)
.

Summing over K ∈ T , we get∑
K∈T

mK max(un+1
K − vn+1

K , 0) ≤
∑
K∈T

mK max(unK − vnK , 0).

If unK ≤ vnK for all K ∈ T , the left-hand-side vanishes, implying that un+1
K ≤ vn+1

K for all K ∈ T .
If unK ≥ vnK for all K ∈ T , we obtain that un+1

K ≥ vn+1
K for all K ∈ T by exchanging the role of

u and v.
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We establish now the a priori-positivity of a solution (unK)K∈T ,n∈N to (33). Combined with
Lemma 3.2, Lemma 3.4 brings the existence of a solution to the scheme stated in Proposition
3.5.

Lemma 3.4 (Values of unK are nonnegative for nonnegative initial values): Let (unK)K∈T ,n∈N be a so-
lution to (33), with u0

K ≥ 0 for all K ∈ T . Then, for all n ∈ N, there holds∑
K∈T mKu

0
K

minK mK
≥ unK ≥ 0 ∀K ∈ T . (35)

Proof. We observe that the family (0)K∈T is solution to (33) since Fδ(0, 0, qK,σ, dσ) = 0
(recall that η(0) = 0). Applying Lemma 3.3 provides unK ≥ 0 forall K ∈ T and n ∈ N. Then
the relation (34) gives the left inequality of (35).

Proposition 3.5 (Existence and uniqueness of a solution to the scheme): Let (u0
K)K∈T be given, such

that u0
K ≥ 0 for all K ∈ T . Then there exists a unique solution (unK)K∈T ,n∈N to the scheme

(33), which satisfies unK ≥ 0 for all K ∈ T and n ≥ 0.

Proof. Reasoning by induction, we consider the mapping F : RT × [0, 1]→ RT defined, for
θ ∈ [0, 1] and K ∈ T , by

FK(v, θ) = mK
vK − unK

∆t
+ θ

∑
σ=K|L

mσ Fδ(vK , vL, qK,L, dσ).

Since F (v, θ) = 0 implies vK ∈ [0, (
∑

K∈T mKu
0
K)/minK mK ] by Lemma 3.4, and since F (v, 0) =

0 has a solution with the same bounds, the invariance of the topological degree by homotopy
enables to conclude that F (v, 1) = 0 has at least one solution. The uniqueness of the solution is
a direct consequence of the monotony of the scheme stated in Lemma 3.3.

The analysis of the convergence of the scheme to a solution of (1) on Ω×(0, T ) for a given T > 0
can then be completed, by a simple adaptation of the proof done in [10] and is not detailed here.

3.3 Long time behavior of the SGnl-scheme and of the δ-scheme

A particularity of the Scharfetter-Gummel numerical fluxes designed for linear convection-
diffusion equations is that they preserve any thermal equilibrium. Indeed, for all λ ≥ 0,
uth = λe−V is a thermal equilibrium (depending on the boundary conditions) as the contin-
uous flux verifies J = −∇uth−uth∇V = 0. With the Scharfetter-Gummel numerical fluxes, the
numerical fluxes similarly vanish for any discrete thermal equilibrium :

uth,K = λe−VK =⇒ FK,σ = 0, ∀K ∈ T ,∀σ ∈ EK .

Under Assumptions 2.1 and 3.1, a thermal equilibrium satisfies µ(u) + V = λ, with λ ∈ R.
In practice, when the boundary conditions are no-flux boundary conditions, the value of λ is
prescribed by the initial mass, which is preserved along time. Lemma 3.6 shows that the SG-nl
scheme preserves the thermal equilibria.
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Lemma 3.6 (Thermal equilibrium): For any M0 > 0, there exists one and only one (uK)K∈T with
uK ≥ 0 such that ∑

K∈T
mKuK = M0 > 0, (36)

and
∀K ∈ T , ∀σ ∈ EK,int, σ = K|L, F(uK , uL, qK,L, dσ) = 0. (37)

Moreover, we have uK > 0 for all K ∈ T , and there exists one and only one λ ∈ R such that

∀K ∈ T , µ(uK) + VK = λ.

Proof. Let us consider q ∈ R, h > 0 and a, b ∈ [0,+∞), with a ≤ b. If F(a, b, q, h) = 0,
then a consequence of Lemma 3.1 is that: either µ(b) − µ(a) = qh or η(χ(a, b)) = 0. The first
condition can be satisfied only if a > 0 and b > 0, as lim0 µ = −∞. The second one implies
χ(a, b) = 0 and then a = 0 and min[a,b] qη ≤ 0. In this case, b > 0 is impossible, since for
b > a = 0, the numerical flux is the unique solution x to the equation H(x) = h and must
satisfy x < min[a,b] qη. This means that b = a = 0. We deduce the following alternative to get
F(a, b, q, h) = 0:

• either a > 0, b > 0 and µ(b)− µ(a) = qh,

• or a = b = 0.

We obtain the same result if a ≥ b by exchanging the role of a and b and using the conservativity
relation.
Let (uK)K∈T satisfying (36)-(37), with uK ≥ 0 for all K ∈ T . If there exists K ∈ T such that
uK = 0, then all neighboring values are null as well. This implies, since we assume that all the
control volumes are connected, that all the values (uK)K∈T are null. This is in contradiction
with M0 > 0.
Hence we get that necessarily uK > 0 for all K ∈ T and that

∀K ∈ T , ∀σ ∈ EK,int, σ = K|L, µ(uL)− µ(uK) = VK − VL.

This implies, using again that all control volumes are connected, that there exists λ ∈ R such
that

∀K ∈ T , µ(uK) = −VK + λ. (38)

Using (36), we obtain that λ ∈ R is the unique solution of the equation

f(λ) :=
∑
K∈T

mKµ
−1(−VK + λ) = M0,

owing to the fact that f is a strictly increasing function satisfying f(s) → 0 as λ → −∞ and
f(s)→ +∞ as λ→ +∞.

Let us introduce Φ : s ∈ (0,+∞) 7→
∫ s

1 µ(t)dt. Φ is obviously a convex function, as the following
one:

s 7→ Φ(s)− Φ(s∞)− µ(s∞)(s− s∞) for any s∞ ∈ (0,∞).

We can now prove that under Assumptions 2.1 and 3.1, the δ-scheme satisfies a discrete en-
tropy/entropy dissipation property, as stated in Lemma 3.7.
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Lemma 3.7 (Decay of the relative entropy): Let (u0
K)K∈T with u0

K > 0 be given. Let (u∞K )K∈T
be the thermal equilibrium given by Lemma 3.6 for M0 =

∑
K∈T mKu

0
K , and let (unK)K∈T ,n≥0

be the solution to the δ-scheme (δ ≥ 0), defined by (30)–(33). For any n ∈ N, we define the
discrete entropy En and the associated discrete dissipation Dn+1 by:

En =
∑
K∈T

mK

(
Φ(unK)− Φ(u∞K )− µ(u∞K )(unK − u∞K )

)
(39)

Dn+1 =
∑

σ∈Eint,σ=K|L

τση(un+1
σ )

(
µ(un+1

K )− µ(un+1
L )− µ(u∞K ) + µ(u∞L )

)2
, (40)

with un+1
σ = χ(un+1

K , un+1
L ) defined by (27). Then there exists β ≥ 0, only depending on Ω,

‖g‖L2(Ω), Lη, Lζ , such that

En+1 − En

∆t
+Dn+1 ≤ βδ. (41)

Proof. Let us first notice that we can rewrite the dissipation term (40), thanks to (27) and
(38), as

Dn+1 =
∑

σ∈Eint,σ=K|L

mσF(un+1
K , un+1

L , qK,L, dσ)
(
µ(un+1

K )− µ(un+1
L )− µ(u∞K ) + µ(u∞L )

)
Due to the convexity of the function Φ, we have

En+1 − En ≤
∑
K∈T

mK(un+1
K − unK)(µ(un+1

K )− µ(u∞K )).

Then, multipling (33) by µ(un+1
K )− µ(u∞K ) and summing over K ∈ T , we get

En+1 − En ≤ −∆t
∑
K∈T

∑
σ=K|L

mσFδ(un+1
K , un+1

L , qK,L, dσ)(µ(un+1
K )− µ(u∞K ))

≤ −∆t
∑

σ∈Eint,σ=K|L

mσFδ(un+1
K , un+1

L , qK,L, dσ)
(
µ(un+1

K )− µ(un+1
L )− µ(u∞K ) + µ(u∞L )

)
,

≤ −∆t(Dn+1 +Rn+1), (42)

with, setting Gδ(un+1
K , un+1

L , qK,L, dσ) = Fδ(un+1
K , un+1

L , qK,L, dσ)−F(un+1
K , un+1

L , qK,L, dσ),

Rn+1 =
∑

σ∈Eint,σ=K|L

mσGδ(un+1
K , un+1

L , qK,L, dσ)
(
µ(un+1

K )− µ(un+1
L )− µ(u∞K ) + µ(u∞L )

)
.

But, using (20) and the monotonicity of µ, we have that

Gδ(un+1
K , un+1

L , qK,L, dσ)
(
µ(un+1

K )− µ(un+1
L )

)
≥ 0 ∀σ = K|L

and therefore, using (38) again and applying the Cauchy-Schwarz inequality, we get

Rn+1 ≥
∑

σ∈Eint,σ=K|L

mσGδ(un+1
K , un+1

L , qK,L, dσ)(VK − VL),

≥ −

 ∑
σ∈Eint,σ=K|L

mσdσ(Gδ(un+1
K , un+1

L , qK,L, dσ))2

1/2

|V |1,M,
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where we use the discrete H1-seminorm defined by (29). Owing to Lemma 2.6, we finally obtain

Rn+1 ≥ CF δ(dmΩ)1/2|V |1,M.

Note that, using (30) and the discrete Poincaré inequality with null average (28), we have

|V |1,M ≤ CP ‖g‖2,

where CP only depends on Ω. This, together with (42), yields (41). This concludes the proof of
Lemma 3.7.

Lemma 3.8 (Existence of strictly positive stationary states, with imposed lower or upper bounds):
For any A > 0, there exists B > 0 only depending on A, maxK VK , minK VK and µ, and there
exists δ0 > 0, only depending on A, maxK VK , minK VK , µ and on M, such that, for any

δ ∈ [0, δ0), one can find (u
(δ)
K )K∈T with A ≥ u(δ)

K ≥ B (respectively A ≤ u(δ)
K ≤ B) for all K ∈ T

and
∀K ∈ T ,

∑
σ=K|L

mσ Fδ(u
(δ)
K , u

(δ)
L , qK,L, dσ) = 0. (43)

Proof. The starting point of the proof is similar to that of Lemma A.3. Let λ ∈ R be defined
by µ−1(λ − minK VK) = A/2. We then consider the thermal equilibrium (u∞K )K∈T with total
mass M∞ defined by

∀K ∈ T , u∞K := µ−1(λ− VK) and M∞ :=
∑
K∈T

mKu
∞
K .

Setting B = 1
2µ
−1(λ − maxK VK), this thermal equilibrium satisfies u∞K ∈ [2B,A/2] for all

K ∈ T .
For any δ ≥ 0 and k > 0, we define (uK(k))K∈T as the unique solution to

∀K ∈ T , mK
uK(k)− u∞K

k
+
∑

σ=K|L

mσFδ(uK(k), uL(k), qK,L, dσ) = 0.

It corresponds to the first iterate in time of the δ-scheme for an initial condition coinciding
with the thermal equilibrium and with a time step k. Thanks to Lemma 3.4, which holds since
u∞K > 0 for all K ∈ T , the solution satisfies uK(k) ∈ [0, U ] for all K ∈ T with U = M∞

minK mK
.

Moreover, as the initial discrete entropy is equal to zero, Lemma 3.7 implies that

1

k
E1 +D1 ≤ βδ,

with E1 ≥ 0 and

D1 =
∑

σ∈Eint,σ=K|L

τση(uσ(k))
(
µ(uK(k))− µ(uL(k))− µ(u∞K ) + µ(u∞L )

)2
.

Notice that we have∑
σ∈Eint,σ=K|L

mσdσ(F(uK(k), uL(k), qK,L, dσ))2 =

∑
σ∈Eint,σ=K|L

τση(uσ(k))2
(
µ(uK(k))− µ(uL(k))− µ(u∞K ) + µ(u∞L )

)2
≤ max

[0,U ]
η D1.
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We then consider a sequence (km)m which tends to +∞. For any m, we then have∑
σ∈Eint,σ=K|L

mσdσ(F(uK(km), uL(km), qK,L, dσ))2 ≤ max
[0,U ]

η βδ,

and therefore, denoting by C2 = β
max[0,U ] η

minσ∈Eint (mσdσ) ,

∀σ = K|L, F(uK(km), uL(km), qK,L, dσ)2 ≤ C2δ.

Up to the extraction of a subsequence, we obtain a converging sequence in [0, U ]T , whose limit

as m→∞ is denoted (u
(δ)
K )K∈T . It satisfies u

(δ)
K ∈ [0, U ] for all K ∈ T ,∑

K∈T
mKu

(δ)
K = M∞,

∀K ∈ T ,
∑

σ=K|L

mσ Fδ(u
(δ)
K , u

(δ)
L , qK,σ, dσ) = 0,

and
∀σ = K|L, F(u

(δ)
K , u

(δ)
L , qK,L, dσ)2 ≤ C2δ.

It remains to prove that there exists δ0 > 0 such that, for all δ < δ0, u
(δ)
K ∈ [B,A] for all K ∈ T .

Therefore, we consider a sequence (δm) which tends to 0. We can extract a subsequence such

that (u
(δm)
K )m converges. Then, its limit denoted by (uK)K∈T satisfies uK ∈ [0, U ] for all K ∈ T ,∑

K∈T
mKuK = M∞,

and, by continuity of F(a, b, q, h) with respect to a and b,

∀σ = K|L, F(uK , uL, qK,L, dσ) = 0.

This means that (uK)K∈T is a nonnegative thermal equilibrium with the mass M∞, therefore
equal to (u∞K )K∈T as shown by Lemma 3.6. By uniqueness of the limit (u∞K )K∈T , we get that

the whole sequence (u
(δ)
K )K∈T converges to (u∞K )K∈T as δ → 0. Hence, one can find δ0 such that

∀δ < δ0, ∀K ∈ T , |u(δ)
K − u

∞
K | ≤ min(B,

A

2
),

which then implies that

∀δ < δ0, ∀K ∈ T , A ≥ u(δ)
K ≥ B.

The second case where A is a fixed lower bound instead of the upper bound is similarly handled,
defining λ ∈ R by µ−1(λ−maxK VK) = 2A.

Lemma 3.9 (Discrete solutions are uniformly bounded for δ small enough):
Let (u0

K)K∈T be given, with u0
K > 0 for all K ∈ T . Then there exist B > 0 and B > 0, only

depending on maxK u
0
K , minK u

0
K , maxK VK , minK VK and µ, and δ0 > 0, only depending on

maxK u
0
K , minK u

0
K , maxK VK , minK VK , µ and on M, such that, for all δ < δ0, any solution

(unK)K∈T ,n≥0 of the δ- scheme (33) is such that

∀n ∈ N, ∀K ∈ T , 0 < B ≤ unK ≤ B.
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Proof. Let A = minK∈T u
0
K , and let δ

(1)
0 > 0 and B := B > 0 be given by the first statement

of Lemma 3.8. For δ < δ
(1)
0 , let (u

(δ)
K )K∈T be a stationary solution given by Lemma 3.8 (which

therefore satisfies the δ- scheme (33)). It satisfies

u0
K ≥ u

(δ)
K ≥ B, ∀K ∈ T .

Therefore, the monotonicity of the δ-scheme stated in Lemma 3.3 yields, by induction,

unK ≥ u
(δ)
K ≥ B ∀K ∈ T , ∀n ≥ 0.

Let A = maxK∈T u
0
K , and let δ

(2)
0 > 0 and B := B > 0 be given by the second statement of

Lemma 3.8. For δ < δ
(2)
0 , let (u

(δ)
K )K∈T be a stationary solution given by Lemma 3.8. It satisfies

u0
K ≤ u

(δ)
K ≤ B, ∀K ∈ T .

and we obtain, as previously,

unK ≤ u
(δ)
K ≤ B ∀K ∈ T , ∀n ≥ 0.

We conclude the proof by taking δ0 = min(δ
(1)
0 , δ

(2)
0 ).

The following lemma replaces the log-Sobolev inequalities used for the exponential decay of the
relative entropy in the case η(s) = s and µ(s) = log(s) [3].

Lemma 3.10 (Discrete nonlinear mean Poincaré inequality): Let A,B be two reals such that 0 <
B ≤ A. Then there exists CP , only depending on Ω, such that, for any (uK)K∈T and (vK)K∈T
belonging to [B,A]T and satisfying∑

K∈T
mKuK =

∑
K∈T

mKvK ,

we have ∑
K∈T

mK(uK − vK)(µ(uK)− µ(vK)) ≤ 1

min[B,A] µ′
CP |µ(uK)− µ(vK)|21,M.

Proof. This proof is similar to that of the Poincaré inequality proved in Lemma A.4. Let us
introduce

C =
1

mΩ

∑
K∈T

mK(µ(uK)− µ(vK)).

For any K ∈ T , let us denote wK = µ(uK)−µ(vK)−C. The mean discrete Poincaré inequality
(28) can be applied to (wK)K∈T , yielding∑

K∈T
mKw

2
K ≤ CP |µ(uK)− µ(vK)|21,M, (44)

where CP ≥ 0 is only depending on Ω. We then have

uK = µ−1(µ(vK) + C + wK) = vK + (µ−1)′(zK)(C + wK),
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with zK ∈ [µ(uK)⊥µ(vK), µ(uK)>µ(vK)] ⊂ [µ(B), µ(A)]. Then we introduce

αK := (µ−1)′(zK) =
1

µ′(µ−1(zK))
∈ [α, α],

with

α =
1

maxs∈[B,A] µ′(s)
and α =

1

mins∈[B,A] µ′(s)
.

We therefore have ∑
K∈T

mK(vK + αK(C + wK)) =
∑
K∈T

mKvK ,

which implies

C = −
∑

K∈T mKαKwK∑
K∈T mKαK

.

We then get∑
K∈T

mK(uK − vK)(µ(uK)− µ(vK)) =
∑
K∈T

mKαK(C + wK)2

= −

(∑
K∈T mKαKwK

)2∑
K∈T mKαK

+
∑
K∈T

mKαKw
2
K ≤ α

∑
K∈T

mKw
2
K

Together with (44), this concludes the proof.

Theorem 3.11 (Convergence to the discrete thermal equilibrium): Let (u0
K) be given, with u0

K > 0
for all K ∈ T and M0 the associate mass. Let (unK)K∈T ,n≥0 the solution to the scheme (33) and
(u∞K )K∈T the thermal equilibrium defined by Lemma 3.6. Let δ0 > 0, B > 0 and B > 0 be given
by Lemma 3.9, and β > 0 be given by Lemma 3.7. Then there exists α > 0 only depending on
µ, η, B and B, such that, for any δ ∈ [0, δ0) and for any n ∈ N, it holds

1

2
min
[B,B]

µ′
∑
K∈T

mK(unK − u∞K )2 ≤ En ≤ βδ (1− (1 + α∆t)−n)

α
+ E0(1 + α∆t)−n.

Note that, for ∆t ≤ 1/α, it holds (1 + α∆t)−n ≤ exp(−1
2αn∆t), which shows in this case the

exponential decay of En, up to δ.

Proof.
The inequality

∀a, b > 0,Φ(b)− Φ(a)− µ(b)(b− a) =

∫ b

a
(µ(s)− µ(a))ds ≤ (b− a)(µ(b)− µ(a))

yields, applying Lemma 3.10,

En ≤ 1

α
Dn with

1

α
:=

CP
min[B,B] µ

′
1

min[B,B] η
.
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We then get, by Lemma 3.7,

En+1(1 + α∆t) ≤ En + βδ∆t,

leading, by induction,

En ≤ βδ (1− (1 + α∆t)−n)

α
+ E0(1 + α∆t)−n ∀n ≥ 0.

Moreover, the left hand side of the expected inequality is a straightforward consequence of the
Taylor expansion up to order 2 of the function Φ in the definition (39) of En.

4 Numerical experiments

4.1 Implementation of the scheme

In order to find an approximate value of the function Fδ(a, b, q, h) defined by (16), we use the
following algorithm.

1. find the smallest n such that Hδ(x
(n)
ini ) > h with x

(n)
ini = F (q)

god(a, b)− ζ(b)−ζ(a)
10nh ,

2. solve Hδ(x) = h by Newton’s method, with x0 = xini:

The convergence of Newton’s method is ensured, since Hδ is convex and the choice of the initial
guess x0 leads to Fδ(a, b, q, h) ≤ x0.
This algorithm is efficient and cheap, and takes a large benefit of parallel computing, since
there is no sequential dependence between the values of the numerical fluxes. A byproduct of
this algorithm is the easy computation of the partial derivatives of Fδ(a, b, q, h), used in the
implementation of the numerical scheme (33).
Note that the definition of Fδ(a, b, q, h) implies that a sequence (yi)i be defined. This is com-
pleted in our implementation by fixing y0 = 0 and then by requiring

∀i ∈ Z, ζ(yi+1)− ζ(yi) = δ̃, (45)

for a given value of δ̃ > 0. This enables to apply our scheme to cases where ζ is only nonde-
creasing. For the simplicity of the notation, in the remaining of this section we simply denote
by δ the value δ̃.

4.2 Validation of the theoretical results

In this section, we consider Ω ⊂ R and the data of (1) are given by

ζ(u) = αu+ |u|msign(u), η(u) = u and q = ρ0 + ρ1x, (46)

for different values of m ≥ 1, α ≥ 0, ρ0, ρ1 ∈ R and for x ∈ Ω, with various initial and boundary
conditions. This example is inspired by [2].

Accuracy with respect to δ

We first investigate the influence of the value of δ used in (45) on the accuracy of the scheme. We
consider the numerical solutions uN corresponding to δ = 10−N , with N = 0, 1, 2, 3, 4, 5, together
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Fig. 2: Left: Numerical solution uN at T = 0.2 with different values of δ = 10−N , with N =
0, 1, 2, 3, 4, 5. Right: difference uN − uex.

with letting m = 2, α = 10−6, ρ0 = 1, ρ1 = 0 in (46). Furthermore, we define Ω = (0, 1), we
consider the initial condition u(x, 0) = 0 and the nonhomogeneous Dirichlet boundary conditions
u(0, t) = 3t and u(1, t) = max(3t − 1, 0). Let us observe that, in this case, the numerical flux
Fδ(a, b, q, h) computed with δ = 1 is identical to the numerical flux F∞(a, b, q, h) (this flux is
defined in (18), and corresponds to the use of a simple Godunov scheme in the convection term
combined with a 2-point diffusion flux).

We let the mesh step size constant equal to 1/20 and the time step constant equal to k = 0.001.
We obtain the results provided by Figure 2. In this figure, the function uex(x, t) = max(3t−x, 0)
is the analytical solution of (1) in the case α = 0 (then the difference between uex(x, t) and the
analytical solution of (1) with α = 10−6 is much smaller than the numerical error). We observe
that δ = 10−N , with N = 4, 5 provides significantly more accurate results than the simple
Godunov scheme (obtained with N = 0), and that u5 is close to u4. This suggests that it is not
interesting to consider greater values for N .

Entropy decay in a degenerate parabolic case

Following [2, Example 8], we now let α = 0, ρ0 = 0, ρ1 = −1 in (46), so that

ζ(u) = |u|msign(u), η(u) = u, q = ρ0 + ρ1x. (47)

We consider Ω = (−5.5, 5.5) and homogeneous Neumann boundary condition with the following
initial value

u0(x) =

{
1, 0.7 < |x| < 3.7

0, otherwise.

In this case, the evolutive equation (1) has an equilibrium solution defined by

ueq =

(
C̄ − (m− 1)

2m
|x|2
) 1
m−1

+

where C̄ is calculated from the mass conservation condition
∫

Ω u0(x)dx =
∫

Ω u
eq(x)dx by some

nonlinear solution method. Here, we choose the default nonlinear solver from NLSolve.jl. Note
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Fig. 3: Time evolution of the solution of (47) for δ = 0.01. Left: α = 0. Right: α = 0.1.
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Fig. 4: Case α = 0. Left: Evolution of the relative entropy En+1 from (39) for different values

of δ. Right: Evolution of the dissipation Dn+1 from (40) (lines) and −En+1−En
∆t (dots).

that this case does note enter into the mathematical framework of the paper, since 2.1 ii) does
not hold. The solution for t ∈ (0, 10) is shown in the left part of Fig. 3.
We observe in the left part of Fig. 4 that the asymptotic decay of relative entropy is prescribed
by the value of δ. The right part of Fig. 4 shows that, in this degenerate case, the rate of the
dissipation decay seems to depend on δ (such a result is not stated by Theorem 3.11, established

in the case of nondegenerate problems). Moreover, the quantity Dn+1+En+1−En
∆t seems to behave

as the precision of the computer, which means that, in Lemma 3.7, there is a numerical evidence
that β = 0 could be chosen. If we compare the results with those provided in [2, Example 8], we
do not retrieve the rate −12, but we see that this rate decreases as δ tends to 0 (it is equal to
−9 for the smallest value of δ). This can be intuitively expected, since Fδ(a, b, q, h) converges
to F(a, b, q, h) as δ → 0.



A Some properties of the continuous model 26

Entropy decay in a nondegenerate parabolic case

As noticed in the preceding example, the choice α = 0 is not compatible with 2.1 ii). Therefore
we investigate the case α = 0.1 in (46) with the same initial value.
The equilibrium solution ueq(x) can be calculated from the condition

α log u+
m

m− 1
um−1 − (C̄ − x2

2
) = 0

using e.g. Newton’s method. To achieve this, the logarithm is regularized such that for a given
ε > 0 we replace, for any x < ε, log x by log ε+(x−ε)/ε, and we can tolerate small negative values
during the iteration. We note that in this case, the solution loses its finite support property,
however for this particular example, the absolute values of ueq(x) and u(x, 10) at the boundaries
are less than 10−18, and we get meaningful data for the comparison on a finite domain.
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Fig. 5: Case α = 0.1. Left: Evolution of the relative entropy En+1 from (39) for different values

of δ. Right: Evolution of the dissipation Dn+1 from (40) (lines) and −En+1−En
∆t (dots).

The solution for t ∈ (0, 10) is shown in the right part of Fig. 3. As in the case α = 0, we again
observe the dependence of the asymptotic decay of relative entropy with respect to δ (left part
of Fig. 5). But, contrary to the case α = 0, the dissipation decay rate (see right part of Fig. 5)
seems to no longer depend on δ. As stated by Theorem 3.11, the values of the dissipation are
proportional to a linear function of δ for n large enough. Since the vertical axis is in logarithmic
scale, this is approximately observed in the right part of Fig. 5 for sufficiently small values of
δ and sufficiently large times. Here again, Dn+1 + En+1−En

∆t seem to behave as the precision of
the computer, which again means that, in Lemma 3.7, there is a numerical evidence that β = 0
could be chosen. Note that the proof of this result is an open problem.

A Some properties of the continuous model

We have the following properties.

Lemma A.1 (Existence and uniqueness of a solution to the continuous problem):
Under Assumptions 2.1 and 3.1, there exists one and only one solution u such that, for all T > 0,
u ∈ L2(0, T ;H1(Ω)) with ut ∈ L2(0, T ;H1(Ω)′) to Problem (1) supplemented with Neumann
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boundary conditions and an initial data u0. Moreover, the solution u satisfies u ≥ 0 a.e. and∫
Ω u(., t) =

∫
Ω u0 for all t ∈ R+.

Proof. The hypothesis ζ ′ ≥ r implies that the space operator is strongly elliptic. Standard
results lead to the existence of a unique solution u ∈ L2(0, T ;H1(Ω)) with ut ∈ L2(0, T ;H1(Ω)′).
The integration of (1) on Ω provides the conclusion.

Lemma A.2 (Thermal equilibrium): There exists one and only one function u∞ ∈ L∞(Ω) with
u∞ := essinf u∞ > 0 such that ∫

Ω
u∞ =

∫
Ω
u0

and µ(u∞) + V is constant in Ω.

Proof. If such a function exists, it must verify that there exists λ ∈ R be such that µ(u∞)+V =
λ a.e. in Ω. This value λ must therefore satisfy∫

Ω
µ−1(λ− V ) =

∫
Ω
u0. (48)

By dominated convergence, we have

lim
λ→−∞

∫
Ω
µ−1(λ− V ) = 0,

and lim
λ→+∞

∫
Ω
µ−1(λ− V ) = +∞.

Since the function λ 7→
∫

Ω µ
−1(λ − V ) is continuous and strictly increasing, we obtain the

existence and uniqueness of λ satisfying (48), which implies that the function u∞ defined by

u∞ := µ−1(λ− V )

is the only one which satisfies the conclusions of the lemma.

Lemma A.3 (Strict positivity of the solution and bounds): There exist reals B ≥ B > 0, only de-
pending on essinf V , esssupV , u0, u0 and µ, such that B ≥ u ≥ B a.e. in Ω× R+.

Proof. Let λ ∈ R such that
µ−1(−essinf V + λ) ≤ u0.

Then the function w(x, t) := µ−1(−V (x)+λ) is solution to Problem (1) with the initial condition
w0 := µ−1(−V + λ) ≤ u0. By monotony, we deduce that µ−1(−esssupV + λ) ≤ w ≤ u a.e. in
Ω× R+.
Similarly, let λ ∈ R such that

µ−1(−esssupV + λ) ≥ u0.

Then the function w(x, t) := µ−1(−V (x)+λ) is solution to Problem (1) with the initial condition
w0 := µ−1(−V + λ) ≥ u0. By monotony, we deduce that µ−1(−essinf V + λ) ≥ w ≥ u a.e. in
Ω× R+.
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Lemma A.4 (Long time behavior): Let Φ(s) :=
∫ s

1 µ(a)da and

E(t) =

∫
Ω

(
Φ(u(x, t))− Φ(u∞(x))− µ(u∞(x))(u(x, t)− u∞(x))

)
dx.

Then there exists C > 0, only depending on Ω, d, essinf V , esssupV , u0, u0, η and µ, such that
E(t) ≤ E(0) exp(Ct).

Proof. We have, multiplying Problem (1) by µ(u(x, t))−µ(u∞(x)) and integrating on Ω×(0, T ),

E(T )− E(0) +

∫ T

0

∫
Ω
η(u(x, t))|∇(µ(u(x, t))− µ(u∞(x)))|2dxdt = 0

Let

C(t) =
1

mΩ

∫
Ω

(µ(u(x, t))− µ(u∞(x)))dx.

From the Poincaré inequality on functions with null average, we know that there exists CP such
that ∫

Ω
w(x, t)2dx ≤ CP

∫
Ω
|∇(µ(u(x, t))− µ(u∞(x)))|2dx,

where we define w(x, t) = µ(u(x, t))−µ(u∞(x))−C(t). Observing that, for all t ∈ R+, we have∫
Ω

(u(x, t)− u∞(x))dx = 0,

and that, applying the mean value theorem for the function µ−1 between µ(u(x, t)) and µ(u∞(x))

u(x, t) = u∞(x) + α(x, t)(w(x, t) + C(t)),

where α(x, t) = (µ−1)′(β(x, t)), where β(x, t) belongs to the interval with bounds µ(u(x, t)) and
µ(u∞(x)). From Lemma A.3, this implies that

α(x, t) ∈ [
1

maxB,B µ
′ ,

1

minB,B µ
′ ]

This yields, by integration of the preceding equality on Ω,∫
Ω
α(x, t)(w(x, t) + C(t))dx = 0,

and therefore

C(t) = − 1∫
Ω α(x, t)dx

∫
Ω
α(x, t)w(x, t)dx.

We therefore get that∫
Ω

(u(x, t)− u∞(x))(µ(u(x, t))− µ(u∞(x)))dx =

∫
Ω
α(x, t)(w(x, t) + C(t))2dx

= C(t)2

∫
Ω
α(x, t)dx+ 2C(t)

∫
Ω
α(x, t)w(x, t)dx+

∫
Ω
α(x, t)w(x, t)2dx

= −C(t)2

∫
Ω
α(x, t)dx+

∫
Ω
α(x, t)w(x, t)2dx ≤ 1

minB,B µ
′

∫
Ω
w(x, t)2.
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Since we have

E(t) ≤
∫

Ω
(u(x, t)− u∞(x))(µ(u(x, t))− µ(u∞(x)))dx,

we deduce that

E(t) ≤ esssupα CP

∫
Ω
|∇(µ(u(x, t))− µ(u∞(x)))|2dx

≤ CP
minB,B µ

′minB,B η

∫
Ω
η(u(x, t)|∇(µ(u(x, t))− µ(u∞(x)))|2dx.

Gathering the previous inequalities, we get

E(T )− E(0) +
minB,B µ

′minB,B η

CP

∫ T

0
E(t)dt ≤ 0,

which provides the result using the Gronwall inequality.
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[7] José A. Carrillo and Giuseppe Toscani. Asymptotic L1-decay of solutions of the porous
medium equation to self-similarity. Indiana University Mathematics Journal, 49(1):0–0,
2000.
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