
HAL Id: hal-03791088
https://hal.science/hal-03791088

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance assessment of an offshore windmill farm
with AltaRica 3.0

Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. Performance assessment of an offshore windmill
farm with AltaRica 3.0. International Symposium on Model Based Safety Assessment, IMBSA 2022,
Sep 2022, Munich, Germany. �10.1007/978-3-031-15842-1_10�. �hal-03791088�

https://hal.science/hal-03791088
https://hal.archives-ouvertes.fr

Performance Assessment of an Offshore
Windmill Farm with AltaRica 3.0

Michel Batteux1, Tatiana Prosvirnova2(B), and Antoine Rauzy3

1 IRT SystemX, Palaiseau, France
michel.batteux@irt-systemx.fr

2 ONERA/DTIS, Université de Toulouse, Toulouse, France
tatiana.prosvirnova@onera.fr

3 Norwegian University of Science and Technology, Trondheim, Norway

antoine.rauzy@ntnu.no

Abstract. In this publication, we present how the AltaRica 3.0 mod-
elling language can be used to efficiently design a model of an offshore
windmill farm and evaluate its performance. The system we consider is
composed of combinations of series-parallel components, combining dif-
ferent states for components and different modes for parts of the system
and implements complex reconfiguration strategies.

Knowing the syntax and semantics of languages such as AltaRica 3.0
is however not sufficient to efficiently design models. First, models should
make it possible to efficiently calculate performance indicators. Second,
individual models should be designed quickly (and without bugs!) and
modelling knowledge should be capitalized from models to models. With
both respects, architectural and behavioural modelling patterns are of
great help. The AltaRica 3.0 model we propose in this article for the
assessment of an offshore windmill farm achieves both goals. We show
that the design of the model is very efficient thanks to the advanced
structural constructs of the AltaRica 3.0 modelling language. Finally,
we use assessment tools available for AltaRica 3.0, e.g. the stochastic
simulator, to evaluate the model of the system.

Keywords: AltaRica 3.0 · Offshore windmill farm · Production
availability

1 Introduction

In this article we study how to assess the production availability, over a given
period of time, of an offshore windmill farm by means of AltaRica 3.0 [6]. Such
an industrial production system is composed of several production lines, uses
complex reconfiguration and maintenance strategies and so on. Furthermore,
on the one hand the power production follows a demand based on houses and
industries consumption, which depends on the seasons (spring, winter, autumn,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15842-1_10&domain=pdf

summer) and the different parts of the day (morning, day, evening, night). On
the other hand, the power production also depends on the force of the wind.

As of today, AltaRica 3.0 is probably the most advanced modelling language
dedicated to probabilistic risk and safety analyses. AltaRica 3.0 results from the
combination of a powerful mathematical framework, guarded transition systems,
and a versatile and coherent set of model structuring constructs stemmed from
object- and prototype-oriented programming, S2ML [5]. Guarded transition sys-
tems provide the expressive power required for the analysis of such production
systems [3,15].

Knowing the syntax and semantics of languages such as AltaRica 3.0 is how-
ever not sufficient to efficiently design models. First, models should make it pos-
sible to efficiently calculate performance indicators. What is feasible in reliabil-
ity engineering is actually over-determined by computational complexity issues,
see [17] for an in-depth discussion. Second, individual models should be designed
quickly (and without bugs!) and modelling knowledge should be capitalised from
models to models. With both respects, architectural and behavioural modelling
patterns are of great help. Modelling patterns can be thought as ways of organ-
ising the model, in a similar way design patterns are used to organise software,
see [12] for a seminal book. The AltaRica 3.0 model we propose in this article
achieves both goals.

Thus, in this publication, we show how the AltaRica 3.0 modelling language
can be used to efficiently design models of production systems like an offshore
windmill farm. The model combines the use of different modelling patterns:
multi-state components, maintenance policies with shared resources, reconfigu-
ration of the system taking into account the power demand and so on.

Finally, we use assessment tools available for AltaRica 3.0, e.g. the stochastic
simulator [2], to evaluate performance indicators of the system.

The contribution of this publication is thus twofold: first, it shows how to
efficiently design AltaRica 3.0 models of production systems; second it demon-
strates the interest of AltaRica 3.0 advanced modelling constructs. Furthermore
it continues the presentation of “how to model some features with AltaRica 3.0”
started with [6] presenting several modelling patterns, [9] presenting a modelling
pattern for phased-mission systems, [7] presenting the modelling of maintenance
policies, and [8] presenting how to model large scale Markov chains with AltaRica
3.0.

The remainder of this article is organised as follows. Section 2 presents the
case study, an offshore windmill farm that we use throughout the publication.
Section 3 briefly presents the AltaRica 3.0 modelling language and its assessment
tools. Section 4 explains how to model the case study with AltaRica 3.0. Section 5
provides the results of experiments with stochastic simulation. Finally, Sect. 6
concludes the article.

2 Case Study: An Offshore Windmill Farm

In order to illustrate how the AltaRica 3.0 modelling language can be used to
efficiently model and assess performance of large scale technical systems, we
consider an offshore windmill farm depicted Fig. 1.

Fig. 1. An offshore windmill farm.

The system producing power is composed of five lines of five wind turbines
WM1, WM2, . . . , WM5 connected in series by cables C1, C2, . . . , C5 to an
electrical substation ESS located at sea. The cables connecting the wind turbines
to each other and the first wind turbine to the electrical substation ESS may be
lost. When a wind turbine is out of service, the power can still be transmitted
from the wind turbines located upstream to the substation ESS. If a cable is
failed, it isolates the wind turbines located upstream. The substation ESS is
itself connected to the power plant PP by a series of five cables, which can be
failed.

We assume that the failures of wind turbines and cables follow exponential
distributions with a failure rate λ = 10−5. The wind turbines may fail when they
are stopped with a failure rate λ∗ = 10−6.

There is a limited number of repairers. If a repair crew is available, the
maintenance starts as soon as a line is failed. The end of the maintenance follows
a uniform distribution with two parameters: α = 12h (start of the maintenance)
and β = 72h (end of the maintenance).

The power production of the windmill farm depends on the force of the wind
and the power production demand. When the wind is too weak or too strong, the
wind turbines do not produce power because they must be stopped. Otherwise,
the power production depends on the force of the wind (in first approximation,
we consider that it is a linear function).

The power production demand depends on the season of the year and the
time of the day.

We would like to estimate the power production of the offshore windmill
farm over a year and the difference between the power demand and the power
production over a year.

3 AltaRica 3.0 Modelling Language and Assessment
Tools

AltaRica 3.0 is a high level and stochastic event based modelling language, ini-
tially dedicated to the assessment of complex critical systems [6]. The language
is based on the mathematical framework GTS (for Guarded Transition Systems
[15]- [3]) to describe the behaviour of the system under study. The execution
of an AltaRica 3.0 model is quite similar to other event-based formalisms. It
means that when a transition is enabled, it is scheduled and will be potentially
fired after its associated delay (see [10] and [18] for introductions of such execu-
tions of Discrete Event Systems). This behavioural part of AltaRica 3.0, based
on GTS, is combined with a structural part named S2ML. S2ML stands for
System Structure Modelling Language [5], and gathers in a coherent way struc-
turing constructs stemmed from object-oriented programming, (see, e.g., [1]),
and prototype-oriented programming, (see, e.g., [13]).

The AltaRica 3.0 modelling language comes with a versatile set of assessment
tools to design and evaluate models:

– The integrated modelling environment AltaRica Wizard [4], which provides
the expected functionalities of a code editor and a project management;

– An interactive simulator to simulate, by hand, AltaRica 3.0 models;
– A compiler to fault trees in Open-PSA format [14] and ch10epstein2008psam,

this compiler is chained with the fault tree engine XFTA [16];
– A generator of critical sequences of events leading from an initial state to

failed states;
– Finally, a stochastic simulator [2].

The design of advanced AltaRica 3.0 models relies on the application of mod-
elling patterns [6]. The pattern-based approach in model-based safety assessment
is strongly inspired from the corresponding approach in software engineering [12].
Not only patterns make it possible to avoid the “blank page syndrome”, i.e. not
to know where and how to start a model, but they unify modelling styles (alle-
viating maintenance tasks) and they prove to be a very good way to document
and to share models.

4 Case Study Modelling and Assessment

Figure 2 shows the global architecture of the model. It is composed of the model
of the environment, the model of the technical system under study and the
observers.

Fig. 2. Model structure diagram of an offshore windmill farm.

Observers are quantities of the model that we would like to evaluate. Basi-
cally, in our example it is the power production and the difference between the
power demand and the power production.

The model of the environment includes the simplified models of the wind
and of the power production demand. The model of the wind provides the wind
force to the windmill farm model. The model of the power production demand
provides the value of the production demand or need to the technical system.

The model of the technical system includes the model of the windmill farm
detailed below. It transmits the value of the power production to the observers.

4.1 Modelling the Technical System

First, we start with modelling of the basic classes representing the behaviour
of the wind turbines, the cables and the electrical station. Second, we assemble
these classes to create the model of the lines. Finally, we define controllers to
implement reconfiguration and maintenance strategies.

AltaRica 3.0 Classes of the Wind Turbines and Cables. We model the
behaviour of the wind turbines by a state machine StandbyRepairableUnit rep-
resented in Fig. 3a. Stochastic transitions are represented with plain arrows while
the deterministic ones, labeled by the events start and stop, are represented
with dashed arrows.

The AltaRica 3.0 model of the class StandbyRepairableUnit is given Fig. 4.
It first defines a domain UnitState containing four values. It will be used to

(a) State machine of the class
StandbyRepairableUnit

(b) State machine of the class
RepairableUnit

Fig. 3. Behaviour of the generic classes

define the state of a StandbyRepairableUnit. Then this class is defined. An
AltaRica 3.0 class is an on-the-shelf modelling component that can be instan-
tiated as many times as necessary in the models. This class declares several
elements: a state variable vsState of type UnitState, Boolean flow variables
vfStartDemanded and vfStopDemanded, and several parameters and events.
All these elements are used in the transition part to define the behaviour of a
StandbyRepairableUnit, i.e. the changes of values of the state variable accord-
ing to the occurrences of the events, as represented in Fig. 3a.

An AltaRica 3.0 transition starts with the name of the event, also called a
label, then there is a guard (i.e. a Boolean condition on variables), and finally
the action, which is an instruction that changes the value of (some of) the state
variables. For example, in Fig. 4, the first transition defines the failure of the com-
ponent. Its label is the event evFailure, which is associated with a delay obeying
the inverse of a negative exponential distribution of parameter pFailure. To fire
this transition the unit state must be working, so the guard imposes that the
state variable vsState must be equal to the value WORKING. Finally, when the
transition is fired the unit is failed, and the action sets the state variable vsState
to the value FAILED.

A wind turbine may be started or stopped when it receives an order repre-
sented by flow variables vfStartDemanded and vfStopDemanded. It is modelled
by two immediate events evStart and evStop. The transitions labeled by these
events should be fired as soon as the their guards become satisfied.

A wind turbine may also fail when it is in standby mode. It is represented
by the event evDormantFailure, which is associated with a delay obeying the
inverse of a negative exponential distribution of parameter pDormantFailure.

A wind turbine may be repaired. The event evRepair is associated with
a uniform distribution with parameters pStartRepair and pEndRepair. The
values of the parameters can be changed at will while performing experiments
with models.

The AltaRica 3.0 model of the class WindTurbine is given Fig. 5. It extends
the class StandbyRepairableUnit and defines other parameters, flow variables

domain UnitState {WORKING, FAILED, HIDDEN_FAILED, STANDBY}

class StandbyRepairableUnit
UnitState vsState (init = WORKING);
Boolean vfStartDemanded (reset = false);
Boolean vfStopDemanded (reset = false);

parameter Real pFailure = 1.0e-5;
parameter Real pDormantFailure = 1.0e-6;
parameter Real pStartRepair = 12;
parameter Real pEndRepair = 24;

event evFailure (delay = exponential(pFailure));
event evDormantFailure (delay = exponential(pDormantFailure));
event evStart (delay = Dirac(0.0));
event evStop (delay = Dirac(0.0));
event evRepair (delay = uniform(pStartRepair, pEndRepair));

transition
evFailure: vsState == WORKING -> vsState := FAILED;
evDormantFailure: vsState == STANDBY -> vsState := HIDDEN_FAILED;
evStart: vsState == STANDBY and vfStartDemanded -> vsState := WORKING;
evStart: vsState == HIDDEN_FAILED and vfStartDemanded -> vsState := FAILED;
evStop: vsState == WORKING and vfStopDemanded -> vsState := STANDBY;
evRepair : vsState == FAILED -> vsState := STANDBY;

end

Fig. 4. AltaRica 3.0 class StandbyRepairableUnit.

class WindTurbine
extends StandbyRepairableUnit;

parameter Real pLowProduction = 40.0;
parameter Real pNormalProduction = 70.0;
parameter Real pHighProduction = 100.0;

Real vfProductionOut(reset = 0.0);
WindForce vfWindForceIn (reset = NULL);

assertion
vfProductionOut := if vsState == WORKING then

(if (vfWindForceIn == NULL or vfWindForceIn == STORM) then 0.0
else if vfWindForceIn == LOW then pLowProduction
else if vfWindForceIn == NORMAL then pNormalProduction
else pHighProduction) else 0.0;

end

Fig. 5. AltaRica 3.0 class WindTurbine.

and an assertion. The production of a wind turbine depends on the wind
force, which is represented by a flow variable vfWindForce. The dependency
is expressed in the assertion. An assertion is an instruction which modifies the
value of flow variables. It is executed after each transition firing.

The values of parameters (e.g. pLowProduction, pNormalProduction) are
arbitrary. They can be changed while performing experiments with the model.

The behaviour of the cables and the electrical station is represented by a
state machine given Fig. 3b. They may be failed and repaired. Their AltaRica 3.0
model is quite similar to the model of the wind turbines given Fig. 5. It uses the
same principles: we, first, define a generic class and then a class which extends
it, and define its flow variables and its assertion.

Modelling Reconfiguration and Maintenance Strategies. Figure 6 shows
the structural diagram of the block WindmillFarm. It is composed of 5 lines of
wind turbines Line1, . . . , Line5, an electrical station ESS, a series of cables MC1,
. . . , MC5 and a global controller Controller.

The global controller is used to implement reconfiguration and maintenance
strategies. It receives the diagnosis on the state of each line, the power produc-
tion demand and the production of the lines. Based on these data, it sends the
commands to start or to stop the line to the local controllers of each line.

Fig. 6. Structure diagram of the block WindmillFarm.

We assume that there is a priority between the lines. The controller always
starts with the Line 1, then if the demand is not satisfied, it starts the Line 2,
and so on. If the demand gets lower, the controller first stops the Line 5, then
the Line 4 and so on in the reverse order.

The global controller also implements the maintenance policy. There is a
limited number of repairers. We assume that if a line is failed, and a repairer
is available then the maintenance of the line can start immediately. The end
of the maintenance is modelled by a uniform distribution with two parameters
pEndMaintenanceTimeMin equal to 24 h and pEndMaintenanceTimeMax equal to
72 h. To implement this maintenance policy we use a modelling pattern presented
in [7].

Modelling the Lines. The structure of the AltaRica 3.0 model of the class
Line is given Fig. 7. Each line is composed of 5 wind turbines, 5 cables and a
local controller. Connections between cables and wind turbines are defined in
the assertion part. First, each wind turbine WMi receives the value of the wind
force. Second, each wind turbine WMi is connected to its cable Ci. Finally,
the production of the line vfProductionOut is calculated taking into account

class Line

WindTurbine WM1, WM2, WM3, WM4, WM5 (vsState.init = STANDBY, evRepair.hidden = true);
Cable C1, C2, C3, C4, C5(evRepair.hidden = true);

WindForce vfWindForceIn (reset = NULL);
Boolean vfStartDemanded (reset = false);
Boolean vfStopDemanded (reset = false);

Real vfProductionOut (reset = 0.0);

Integer vfNumberOfWorkingWM (reset = 0);
Integer vfNumberOfFailedWM (reset = 0);
Integer vfNumberOfStoppedWM (reset = 0);
Boolean vfIsFailed (reset = true);

block Controller

end

assertion

WM1.vfWindForceIn := vfWindForceIn;

C1.vfProductionIn := WM1.vfProductionOut;

vfProductionOut := if not C1.vfWorking then 0.0
else if not C2.vfWorking then C1.vfProductionOut
else if not C3.vfWorking then C2.vfProductionOut +

C1.vfProductionOut
else if not C4.vfWorking then C3.vfProductionOut +

C2.vfProductionOut + C1.vfProductionOut
else if not C5.vfWorking then C4.vfProductionOut +

C3.vfProductionOut + C2.vfProductionOut + C1.vfProductionOut
else C5.vfProductionOut + C4.vfProductionOut + C3.vfProductionOut

+ C2.vfProductionOut + C1.vfProductionOut;

WM1.vfStartDemanded := vfStartDemanded;
WM2.vfStartDemanded := vfStartDemanded and not (WM1.vsState == STANDBY);

WM1.vfStopDemanded := vfStopDemanded and not (WM5.vsState == WORKING) and not
(WM4.vsState == WORKING) and not (WM3.vsState == WORKING) and not (WM2.vsState
== WORKING);

WM2.vfStopDemanded := vfStopDemanded and not (WM5.vsState == WORKING) and not
(WM4.vsState == WORKING) and not (WM3.vsState == WORKING);

vfNumberOfStoppedWM := #(WM1.vsState == STANDBY, WM2.vsState == STANDBY, WM3.vsState
== STANDBY, WM4.vsState == STANDBY, WM5.vsState == STANDBY);

vfIsFailed := (WM1.vsState == FAILED or WM2.vsState == FAILED or WM3.vsState ==
FAILED or WM4.vsState == FAILED or WM5.vsState == FAILED

or C1.vsState == FAILED or C2.vsState == FAILED or C3.vsState ==
FAILED or C4.vsState == FAILED or C5.vsState == FAILED) ;

Fig. 7. AltaRica 3.0 class Line.

the fact that if a cable Ci is failed then the wind turbines located upstream
WMi+1,WMi+2, . . . are isolated.

The line receives the orders to stop and to start the wind turbines from the
global controller. We assume that there is a priority between the wind turbines.
First, the wind turbine WM1 is attempted to start, then the wind turbine WM2,
and so on. This priorities are implemented in the assertion part of the class

Line, when the variables WMi.vfStartDemanded and WMi.vfStopDemanded are
assigned.

The diagnosis part is also defined in the assertion. The value of the variables
vfNumberOfStoppedWM, vfIsFailed and others are calculated in the assertion
and sent to the global controller. Then these values are used to define global
reconfiguration and maintenance strategies.

The block Controller is used to define when the maintenance can be started
and stopped. It uses synchronisations as explained in [7].

4.2 Modelling the Environment

Simplified Model of the Wind. The wind force can be modelled by a discrete-
time Markov chain.

In our model we assume that the wind force may be NULL, LOW, NORMAL,
HIGH and STORM. When the wind force is NULL or STORM, the wind turbines
must be stopped. The wind force changes every 4 h. The discrete-time Markov
chain modelling the force of the wind is given Fig. 8.

Fig. 8. Discrete-time Markov chain representing the wind force.

In AltaRica 3.0 this Markov chain is partially represented Fig. 9. First, we
define a domain WindForce, which is an enumeration of five values: NULL,
LOW, NORMAL, HIGH, STORM. Second, we define a class Wind. This class
declares a state variable vsWindForce, which takes its values in the domain
WindForce, to represent the internal state of the class, i.e. the wind force.
It declares a flow variable vfWindForceOut which takes the same value. The
parameter pWindChangePeriod is used to represent when the force of the wind
changes. Its value can be changed to perform experiments. Events evStayNull,
evStayStorm, . . . and transitions represent how the state changes. The proba-
bility of the event is given by the attribute expectation. For instance, if the
wind force is NULL, then there is a probability of 0.5 for the events evStayNull
and evIncreaseLow to occur. The values of expectations may be declared using
parameters and can be changed at will.

Of course, it is possible to use a more realistic model of the wind force taking
into account real data coming from weather reports for a given region.

domain WindForce {NULL, LOW, NORMAL, HIGH, STORM}

class Wind
WindForce vsWindForce (init = NORMAL);
WindForce vfWindForceOut (reset = NULL);

parameter Real pWindChangePeriod = 4;

event evStayNull(delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0);
event evStayStorm(delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0);
event evIncreaseLow (delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0);
event evDecreaseHigh (delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0);
event evStay (delay = Dirac(pWindChangePeriod), expectation = 1.0/3.0);
event evIncrease (delay = Dirac(pWindChangePeriod), expectation = 1.0/3.0);
event evDecrease (delay = Dirac(pWindChangePeriod), expectation = 1.0/3.0);

transition

assertion
vfWindForceOut := vsWindForce;

end

Fig. 9. AltaRica 3.0 model of the Wind.

Model of the Power Production Demand. We assume that the power
production demand depends on the season of the year and the time of the day.
In our model the power production demand can be NULL, LOW, NORMAL or
HIGH. Table 1 summarises how the power production demand depends on the
season (spring, summer, autumn, winter) and the time of the day (morning, day,
evening, night).

Table 1. Power production demand.

Heading level Spring Summer Autumn Winter

Morning (5a.m. - 9a.m.) NORMAL LOW NORMAL HIGH

Day (9a.m. - 4p.m.) LOW LOW LOW NORMAL

Evening (4p.m. - 10p.m.) NORMAL LOW NORMAL HIGH

Night (10p.m. - 5a.m.) LOW NULL LOW NORMAL

To represent this demand in AltaRica 3.0 we use a deterministic model. It can
also be modeled by a discrete-time Markov chain by adding some uncertainties
to the events.

5 Experiments

As previously introduced in part 3, the AltaRica 3.0 modelling language comes
with a versatile set of assessment tools to design and evaluate models. Thus for
our specific offshore windmill farm case study, we use the stochastic simulator
to perform evaluations. Of course, the modelling environment AltaRica Wizard,

and the interactive simulator are used during the design and evaluation to get
qualitative and quantitative information about the model.

Table 2 resumes the quantitative information about the model. We consider
the designed AltaRica 3.0 model and the flattened one resulting from the compi-
lation process. The main interpretation of these quantitative information is the
huge difference between the number of models elements. In fact, when design-
ing the AltaRica 3.0 model, we intensively used the powerful mechanisms of
the language: the classes and the inheritance, the synchronisation of events, etc.
For instance, the design of the fives lines, each one composed of five wind tur-
bines and five cables is realised with different classes: a class for wind turbines
with 5 atomic variables, a class for cables with 3 atomic variables, and a class
Line (instantiating five wind turbines and five cables) with 8 atomic variables.
The number of declared atomic variables is thus 16, whereas the real number of
variables for all the lines, when the classes are instantiated, is 80.

Table 2. Quantitative information about the model.

AltaRica 3.0 model Designed Flattened

Number of lines 450 1260

Number of classes 5 −
Number of state variables 6 67

Number of flow variables 26 244

Number of parameters 25 175

Number of events 39 159

Number of transitions 46 190

Number of instructions in assertion(s) 60 244

Quantitative results are obtained with the AltaRica 3.0 stochastic simula-
tor. We define different observers in the model and indicators to evaluate these
observers. Then statistics are made on the indicators by the stochastic simulator.
Figure 10 defines the three main observers used to obtain the results. The two
observers oProd and oDiffProdNeed are real observers. oProd gets the value of
the production, whereas oDiffProdNeed gets the difference between the value of
the production and the value of the need. Finally the observer oNeedSatisfied
is Boolean and checks if the production is more than the demand, meaning “the
demand is satisfied”.

block WindmillFarm
block ProductionNeed

end
block ProductionSystem

end

observer Real oProd = ProductionSystem.out;
observer Real oDiffProdNeed = ProductionSystem.out - ProductionNeed.need;
observer Boolean oNeedSatisfied = ProductionSystem.out >= ProductionNeed.need;

end

Fig. 10. AltaRica 3.0 observers.

We define indicators on these observers. For the two real observers oProd and
oDiffProdNeed, we define mean-value indicators, meaning the mean value of the
observer through the time period [0, t], with t representing a time instant (the
mission time for these experiments). For the Boolean observer oNeedSatisfied,
it is a sojourn-time with the value true, meaning the time the observer had the
value true from the time instant 0 to the time instant t (the mission time for
these experiments). Then mean, standard deviation and confidence range are
computed for these indicators.

The stochastic simulator produced 100000 runs for a mission time of 43800 h
(representing 5 years). It calculated statistics on indicators not only at the end
of the mission time, but also at intermediate time instants: every year at 8760 h
17520 h, 26280 h and 35040 h). Table 3 presents these results divided in two parts.

Table 3. Quantitative results.

Fired events Mean Min Max

128943.0 123381 134143

Indicator Date Mean Standard deviation

Mean-value(oProd) 8760 770.871 18.7466

17520 770.562 13.2972

26280 770.457 10.868

35040 770.391 9.38924

43800 770.384 8.39527

Mean-value(oDiffProdNeed) 8760 −434.722 18.7466

17520 −435.031 13.2972

26280 −435.137 10.868

35040 −435.203 9.38924

43800 −435.209 8.39527

Sojourn-time(oNeedSatisfied) 8760 5100.25 135.047

17520 10200.6 191.6

26280 15300.6 234.779

35040 20400.2 271.06

43800 25501.0 302.954

Table 4. Sojourn times for a given wind force and a maximum production.

Wind force

NULL LOW NORMAL HIGH STORM
P
ro

du
ct
io
n NULL 501.3 749.69 740.6 731.59 496.79

LOW 3174.73 4774.95 4757.46 4738.58 3184.28

NORMAL 2385.97 3548.67 3558.77 3565.07 2391.52

HIGH 695.66 1039.13 1036.85 1036.18 692.17

The first part indicates the number of fired events: 128943 on average. This
number seems high, but it can be explained by the fact that after each modi-
fication of the demand, starts or stops of wind turbines are fired. For instance,
at the beginning of each simulation, the need is set to 2000 and with an initial
wind force set to NORMAL, all the 25 wind turbines must be started, which means
that 25 events are triggered.

The second part indicates statistics for the different indicators at every year.
We only consider the mean and the standard deviation. What one can observe is
that the need is satisfied only during 25501 h for the five years (43800), and the
difference between the production and the power demand is always negative (on
average). To analyse these results, we can consider the Table 4 summarising the
sojourn times for a given wind force and a maximum production (when the 25
wind turbines are started). We indicate in gray when the production is lower than
the power demand during the 5 years. By summing all these sojourn-times in
gray, we obtain the sojourn-time when the need is not satisfied. Thus it means
that during a certain period of time (the sum of the sojourn-times) the wind
force is not sufficient to satisfy the power demand with all the 25 wind turbines
started.

6 Conclusion and Perspectives

In this publication, we presented how the AltaRica 3.0 modelling language can
be used to efficiently design models of large scale reconfigurable systems and to
assess their performances using the stochastic simulation. The presentation was
based on an example of an offshore windmill farm composed of several lines of
wind turbines connected in series. We have shown that the advanced constructs
of AltaRica 3.0 help to easily model several different features of such a system:
combination of multi-states, resource sharing, reconfiguration, maintenance, etc.
We calculated some indicators on this model using the stochastic simulator.

Modelling of these features involved a pattern based approach: resource shar-
ing, limited number of repairers, reconfiguration, etc. This not only increases the
set of already presented AltaRica 3.0 modelling patterns but it also confirms that
modelling patterns are a very efficient mean to design models and, more funda-
mentally, they are a way to reason about the system under study.

Finally, the designed AltaRica 3.0 model can be easily extended so to intro-
duce new elements, such as new lines or more repairers, or new features, such
as different maintenance policies or more quantitative production values of the
units according, for instance, to their degradation and failures. Different exper-
iments may be conducted with different models of the wind force, of the power
production demand, with different number of lines and different number of wind
turbines per line, and of course with different values of parameters.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag, New-York, USA
(1998)

2. Aupetit, B., Batteux, M., Rauzy, A., Roussel, J.M.: Improving performance of
the AltaRica 3.0 stochastic simulator. In: Podofillini, L., Sudret, B., Stojadinovic,
B., Zio, E., Kröger, W. (eds.) Proceedings of Safety and Reliability of Complex
Engineered Systems: ESREL 2015, pp. 1815–1824. CRC Press (2015)

3. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 assertions: the why and
the wherefore. J. Risk Reliab. 231(6), 691–700 (2017). https://doi.org/10.1177/
1748006X17728209

4. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica wizard: an integrated modeling
and simulation environment for Altarica 3.0. In: Actes du congrès Lambda-Mu 21
(actes électroniques). IMdR, Reims, France (2018)

5. Batteux, M., Prosvirnova, T., Rauzy, A.: From models of structures to structures
of models. In: 4th IEEE International Symposium on Systems Engineering, ISSE
2018. Rome, Italy (2018)

6. Batteux, M., Prosvirnova, T., Rauzy, A.: Altarica 3.0 in 10 modeling patterns. Int.
J. Crit. Comput. Based Syst. 9(1–2), 133–165 (2019). https://doi.org/10.1504/
IJCCBS.2019.098809

7. Batteux, M., Prosvirnova, T., Rauzy, A.: Modeling patterns for the assessment of
maintenance policies with AltaRica 3.0. In: Papadopoulos, Y., Aslansefat, K., Kat-
saros, P., Bozzano, M. (eds.) IMBSA 2019. LNCS, vol. 11842, pp. 32–46. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32872-6 3

8. Batteux, M., Prosvirnova, T., Rauzy, A.: Efficient Modeling of large Markov chains
models with AltaRica 3.0. In: Proceedings of the 31st European Safety and Relia-
bility Conference (ESREL). Angers, France (2021). https://hal.archives-ouvertes.
fr/hal-03429225

9. Batteux, M., Prosvirnova, T., Rauzy, A., Yang, L.: Reliability assessment of
phased-mission systems with Altarica 3.0. In: Proceedings of the 3rd Interna-
tional Conference on System Reliability and Safety (ICSRS), pp. 400–407. IEEE,
Barcelona, Spain (2018). https://doi.org/10.1109/ICSRS.2018.00072

10. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
New-York, NY, USA (2008)

11. Epstein, S., Reinhart, M., Rauzy, A.: The open PSA initiative for next generation
probabilistic safety assessment. In: Proceeding of 9th International Conference on
Probabilistic Safety Assessment and Management 2008, PSAM 2008, vol. 1, pp.
542–550. IAPSAM, Hong-Kong, China (2008)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley professional computing series,
Addison-Wesley, Boston, MA 02116, USA (1994)

https://doi.org/10.1177/1748006X17728209
https://doi.org/10.1177/1748006X17728209
https://doi.org/10.1504/IJCCBS.2019.098809
https://doi.org/10.1504/IJCCBS.2019.098809
https://doi.org/10.1007/978-3-030-32872-6_3
https://hal.archives-ouvertes.fr/hal-03429225
https://hal.archives-ouvertes.fr/hal-03429225
https://doi.org/10.1109/ICSRS.2018.00072

13. Noble, J., Taivalsaari, A., Moore, I.: Prototype-Based Programming: Concepts.
Languages and Applications, Springer-Verlag, Berlin and Heidelberg, Germany
(1999)

14. Prosvirnova, T., Rauzy, A.: Automated generation of minimal cut sets from Altar-
ica 3.0 models. Int. J. Crit. Comput. Based Syst. 6(1), 50–79 (2015). https://doi.
org/10.1504/IJCCBS.2015.068852

15. Rauzy, A.: Guarded transition systems: a new states/events formalism for reli-
ability studies. J. Risk Reliab. 222(4), 495–505 (2008). https://doi.org/10.1243/
1748006XJRR177

16. Rauzy, A.: Anatomy of an efficient fault tree assessment engine. In: Virolainen, R.
(ed.) Proceedings of International Joint Conference PSAM 2011/ESREL 2012, pp.
3333–3343. Helsinki, Finland (2012)

17. Rauzy, A.: Notes on computational uncertainties in probabilistic risk/safety assess-
ment. Entropy 20(3), 162 (2018). https://doi.org/10.3390/e20030162

18. Zimmermann, A.: Stochastic Discrete Event Systems. Springer, Berlin, Heidelberg,
Germany (2008)

https://doi.org/10.1504/IJCCBS.2015.068852
https://doi.org/10.1504/IJCCBS.2015.068852
https://doi.org/10.1243/1748006XJRR177
https://doi.org/10.1243/1748006XJRR177
https://doi.org/10.3390/e20030162

	 Preface
	 Organization
	 Contents
	Safety Analysis Automation
	An AEBS Use Case for Model-Based System Design Integrating Safety Analyses and Simulation
	1 Challenges and State of the Art
	2 An Integrated MBSE/MBSA Methodology for ADAS
	3 Function Concept
	3.1 Regulatory Requirements (UNECE)
	3.2 Test Protocol (Euro NCAP)
	3.3 Stakeholder Constraints, Goals, and Assumptions
	3.4 Extracting Top-Level Function Requirements
	3.5 Hazard and Risk Assessment (HARA)

	4 Designing the AEBS Functional Architecture
	4.1 Functional Architecture Modeling and Refinement
	4.2 Functional Behavior Modeling
	4.3 Iterations of the Functional Architecture Driven by Analyses and Simulation

	5 Moving from the Functional to the Physical Architecture
	5.1 Allocation of Functional Architecture to Physical Architecture
	5.2 Trade Studies to Identify Optimal Implementation Solutions
	5.3 Iterations of the Physical Architecture Driven by Analyses and Simulation

	6 Conclusion
	References

	COMPASTA: Extending TASTE with Formal Design and Verification Functionality
	1 Introduction
	2 The COMPASTA Approach
	3 An Illustrative Example
	4 Conclusions
	References

	MBSA Practices
	MBSA in Aeronautics: A Way to Support Safety Activities
	1 Introduction
	2 Related Works
	3 Case Study Description
	3.1 System Description
	3.2 Safety Requirements

	4 Safety Assessment with MBSA
	4.1 General Process
	4.2 Iteration “n”
	4.3 Iteration “n + 1”

	5 Conclusion
	References

	Modeling the Variability of System Safety Analysis Using State-Machine Diagrams
	1 Introduction
	2 Related Work
	3 Background
	3.1 Software Product Lines and Base Variability Resolution
	3.2 The ISO 26262 Safety Lifecycle
	3.3 CHESS Framework and CHESS State-Based Analysis

	4 A State-Based Dependable Software Product Line
	4.1 Domain Engineering Phase
	4.2 Application Engineering Phase

	5 Evaluation
	5.1 Hybrid Braking System
	5.2 HBS: Domain Engineering Phase
	5.3 HBS: Application Engineering Phase

	6 Conclusions
	References

	Model-Based Safety Analysis: A Practical Experience
	1 MBSA at Safran Aircraft Engines
	1.1 Needs
	1.2 2018–2021: Exploration and Maturity Increase
	1.3 State of the Art

	2 Exploration of Approaches
	2.1 Modelling a Physical Phenomenon with Effects Upstream
	2.2 Re-use of Existing Models
	2.3 Reliability of Dynamic Systems

	3 New Challenges
	References

	Practical Application of Model-Based Safety Analysis to the Design of Global Operating System of New Rolling Stock on Automatic Metro Lines
	1 Introduction of MBSA in Railway Context
	2 Related Works
	3 Automatic Metro Lines System Case Study
	4 Methodology of MBSA Deployment
	5 Proposed and Used Tools and Methods
	5.1 Architecture and Behavioral Specification
	5.2 GOS Component Library Development
	5.3 System Modeling from the Library
	5.4 Launch RAMS Analysis

	6 Case Study Analysis
	7 Discussion
	8 Conclusion and Future Works
	References

	Plug-and-Produce... Safely!
	1 Introduction
	2 Background and Related Work
	3 Use Case
	4 I4.0-enabled Safety Engineering
	5 A Worked Example
	6 Conclusion
	References

	Causal Models and Failure Modeling Strategies
	Strategies for Modelling Failure Propagation in Dynamic Systems with AltaRica
	1 Introduction
	2 Case Study Description
	3 Related Works
	3.1 Static and Dynamic Failure Propagation Models
	3.2 AltaRica Modelling Language

	4 Case Study Modelling and Analysis Using AltaRica DataFlow
	4.1 Issues Raised by Failure Propagation Modelling of Systems with Control Feedback Loops
	4.2 ``Cut the Loop'' Solution
	4.3 The ``Dirac'' Solution
	4.4 The ``Double Flow'' Solution
	4.5 Summary

	5 Conclusion and Perspectives
	References

	Towards Causal Model-Based Engineering in Automotive System Safety
	1 Introduction
	2 Related Work
	2.1 Terminology of Scenarios
	2.2 Sources of Knowledge

	3 Causal Models
	3.1 Terminology of Causal Models
	3.2 Inference in Causal Models

	4 Causal Models and Scenario-Based Testing
	4.1 Models in Automotive Safety Engineering
	4.2 Development of Causal Models
	4.3 Towards Discovering Edge and Corner Cases

	5 Conclusion
	References

	Performance Assessment of an Offshore Windmill Farm with AltaRica 3.0
	1 Introduction
	2 Case Study: An Offshore Windmill Farm
	3 AltaRica 3.0 Modelling Language and Assessment Tools
	4 Case Study Modelling and Assessment
	4.1 Modelling the Technical System
	4.2 Modelling the Environment

	5 Experiments
	6 Conclusion and Perspectives
	References

	Component Fault and Deficiency Tree (CFDT): Combining Functional Safety and SOTIF Analysis
	1 Introduction
	2 Background: Component Fault Tree (CFT)
	3 Component Fault and Deficiency Tree (CFDT)
	4 Analysis Using Component Fault and Deficiency Trees
	5 Conclusions and Future Work
	References

	Designing Mitigations of Faults and Attacks
	A Capella-Based Tool for the Early Assessment of Nano/Micro Satellites Availability
	1 Introduction
	2 ELMASAT Tool
	2.1 System Architecture in Capella
	2.2 Building an Availability Assessment Viewpoint
	2.3 Availability Computation

	3 Case Study
	4 Related Work
	5 Conclusion
	References

	Analysing the Impact of Security Attacks on Safety Using SysML and Event-B
	1 Introduction
	2 Generic Architecture of Networked Control System
	3 SysML Representation of NCSs
	4 Modelling and Refinement in Event-B
	5 From SysML to Event-B: Translation Methodology
	6 Analysing the Impact of Cyber Attacks on Safety
	7 Related Work
	8 Conclusion
	References

	Data Based Safety Analysis
	A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms
	1 Introduction
	2 Research Questions
	3 Methodology
	3.1 Data Preparation and Pre-processing
	3.2 Building the LSTM Network
	3.3 Training of the LSTM Network
	3.4 Testing and Prediction

	4 Results and Discussion
	4.1 Results
	4.2 Benefits for Industry
	4.3 Integration into Industry
	4.4 Current Limitations

	5 Conclusions and Future Work
	References

	Tool Paper: Time Series Anomaly Detection Platform for MATLAB Simulink
	1 Motivation and General Concept
	2 Related Work
	3 Dataset
	3.1 Dataset from Simulation of Unmanned Aerial Vehicle (UAV)
	3.2 Dataset from Simulation of Autonomous Vehicle System (AVS)
	3.3 Real World Dataset: Secure Water Treatment (SWaT)

	4 Data Preprocessing
	4.1 Normalization and Standardization
	4.2 Data Preparation for Deep Learning Models

	5 Deep Learning Models
	5.1 Deep Learning Approaches for Anomaly Detection
	5.2 Hyperparameters
	5.3 Predictive Models
	5.4 Reconstructive Models

	6 Anomaly Detection
	6.1 Problem Statement
	6.2 Supervised Thresholding
	6.3 Unsupervised Dynamic Thresholding
	6.4 Online Detection Block

	7 Conclusion
	7.1 Results
	7.2 Limitation and Future Work

	References

	Keep Your Distance: Determining Sampling and Distance Thresholds in Machine Learning Monitoring
	1 Introduction
	1.1 SafeML
	1.2 Motivation
	1.3 Paper Contribution and Outline

	2 Background and Related Work
	3 Methodology
	3.1 Process Workflow
	3.2 Experiment Setup

	4 Results
	4.1 Preliminary Findings
	4.2 Experiment Results

	5 Conclusion and Future Work
	References

	Dynamic Risk Assessment
	Engineering Dynamic Risk and Capability Models to Improve Cooperation Efficiency Between Human Workers and Autonomous Mobile Robots in Shared Spaces
	1 Introduction
	2 Safe Human-Robot Cooperation
	2.1 Safe Human-Robot Cooperation in Smart Logistics
	2.2 Related Work

	3 Situation-Aware Behavior Safety Analysis
	3.1 Method Overview
	3.2 Behavior Causality Model Engineering
	3.3 Dynamic Safety Monitoring Architecture Integration

	4 Expected Efficiency Benefit Evaluation
	4.1 Passing Scenario
	4.2 Overtake Scenario

	5 Conclusion
	References

	SafeDrones: Real-Time Reliability Evaluation of UAVs Using Executable Digital Dependable Identities
	1 Introduction
	2 Background
	2.1 Fault Tree Analysis
	2.2 Reliability Modelling Using Semi-Markov Processes (SMP)
	2.3 Reliability Modeling Using Arrhenius Equation
	2.4 The Executable Digital Dependable Identity (EDDI)

	3 Methodology
	4 Experimental Implementation
	5 Experimental Results
	5.1 Reliability Analysis of the Fault-Free Scenario
	5.2 Reliability Analysis of the Faulty Scenario

	6 Conclusion and Future Work
	A Appendix
	A.1 Proposed Fault Tree of a Generic UAV

	References

	Author Index

