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In this publication, we present how the AltaRica 3.0 modelling language can be used to efficiently design a model of an offshore windmill farm and evaluate its performance. The system we consider is composed of combinations of series-parallel components, combining different states for components and different modes for parts of the system and implements complex reconfiguration strategies.

Knowing the syntax and semantics of languages such as AltaRica 3.0 is however not sufficient to efficiently design models. First, models should make it possible to efficiently calculate performance indicators. Second, individual models should be designed quickly (and without bugs!) and modelling knowledge should be capitalized from models to models. With both respects, architectural and behavioural modelling patterns are of great help. The AltaRica 3.0 model we propose in this article for the assessment of an offshore windmill farm achieves both goals. We show that the design of the model is very efficient thanks to the advanced structural constructs of the AltaRica 3.0 modelling language. Finally, we use assessment tools available for AltaRica 3.0, e.g. the stochastic simulator, to evaluate the model of the system.

Introduction

In this article we study how to assess the production availability, over a given period of time, of an offshore windmill farm by means of AltaRica 3.0 [START_REF] Batteux | Altarica 3.0 in 10 modeling patterns[END_REF]. Such an industrial production system is composed of several production lines, uses complex reconfiguration and maintenance strategies and so on. Furthermore, on the one hand the power production follows a demand based on houses and industries consumption, which depends on the seasons (spring, winter, autumn, summer) and the different parts of the day (morning, day, evening, night). On the other hand, the power production also depends on the force of the wind.

As of today, AltaRica 3.0 is probably the most advanced modelling language dedicated to probabilistic risk and safety analyses. AltaRica 3.0 results from the combination of a powerful mathematical framework, guarded transition systems, and a versatile and coherent set of model structuring constructs stemmed from object-and prototype-oriented programming, S2ML [START_REF] Batteux | From models of structures to structures of models[END_REF]. Guarded transition systems provide the expressive power required for the analysis of such production systems [START_REF] Batteux | Altarica 3.0 assertions: the why and the wherefore[END_REF][START_REF] Rauzy | Guarded transition systems: a new states/events formalism for reliability studies[END_REF].

Knowing the syntax and semantics of languages such as AltaRica 3.0 is however not sufficient to efficiently design models. First, models should make it possible to efficiently calculate performance indicators. What is feasible in reliability engineering is actually over-determined by computational complexity issues, see [START_REF] Rauzy | Notes on computational uncertainties in probabilistic risk/safety assessment[END_REF] for an in-depth discussion. Second, individual models should be designed quickly (and without bugs!) and modelling knowledge should be capitalised from models to models. With both respects, architectural and behavioural modelling patterns are of great help. Modelling patterns can be thought as ways of organising the model, in a similar way design patterns are used to organise software, see [START_REF] Gamma | Design Patterns -Elements of Reusable Object-Oriented Software[END_REF] for a seminal book. The AltaRica 3.0 model we propose in this article achieves both goals.

Thus, in this publication, we show how the AltaRica 3.0 modelling language can be used to efficiently design models of production systems like an offshore windmill farm. The model combines the use of different modelling patterns: multi-state components, maintenance policies with shared resources, reconfiguration of the system taking into account the power demand and so on.

Finally, we use assessment tools available for AltaRica 3.0, e.g. the stochastic simulator [START_REF] Aupetit | Improving performance of the AltaRica 3.0 stochastic simulator[END_REF], to evaluate performance indicators of the system.

The contribution of this publication is thus twofold: first, it shows how to efficiently design AltaRica 3.0 models of production systems; second it demonstrates the interest of AltaRica 3.0 advanced modelling constructs. Furthermore it continues the presentation of "how to model some features with AltaRica 3.0" started with [START_REF] Batteux | Altarica 3.0 in 10 modeling patterns[END_REF] presenting several modelling patterns, [START_REF] Batteux | Reliability assessment of phased-mission systems with Altarica 3.0[END_REF] presenting a modelling pattern for phased-mission systems, [START_REF] Batteux | Modeling patterns for the assessment of maintenance policies with AltaRica 3.0[END_REF] presenting the modelling of maintenance policies, and [8] presenting how to model large scale Markov chains with AltaRica 3.0.

The remainder of this article is organised as follows. Section 2 presents the case study, an offshore windmill farm that we use throughout the publication. Section 3 briefly presents the AltaRica 3.0 modelling language and its assessment tools. Section 4 explains how to model the case study with AltaRica 3.0. Section 5 provides the results of experiments with stochastic simulation. Finally, Sect. 6 concludes the article.

Case Study: An Offshore Windmill Farm

In order to illustrate how the AltaRica 3.0 modelling language can be used to efficiently model and assess performance of large scale technical systems, we consider an offshore windmill farm depicted Fig. 1. The system producing power is composed of five lines of five wind turbines WM1, WM2, . . . , WM5 connected in series by cables C1, C2, . . . , C5 to an electrical substation ESS located at sea. The cables connecting the wind turbines to each other and the first wind turbine to the electrical substation ESS may be lost. When a wind turbine is out of service, the power can still be transmitted from the wind turbines located upstream to the substation ESS. If a cable is failed, it isolates the wind turbines located upstream. The substation ESS is itself connected to the power plant PP by a series of five cables, which can be failed.

We assume that the failures of wind turbines and cables follow exponential distributions with a failure rate λ = 10 -5 . The wind turbines may fail when they are stopped with a failure rate λ * = 10 -6 .

There is a limited number of repairers. If a repair crew is available, the maintenance starts as soon as a line is failed. The end of the maintenance follows a uniform distribution with two parameters: α = 12 h (start of the maintenance) and β = 72 h (end of the maintenance).

The power production of the windmill farm depends on the force of the wind and the power production demand. When the wind is too weak or too strong, the wind turbines do not produce power because they must be stopped. Otherwise, the power production depends on the force of the wind (in first approximation, we consider that it is a linear function).

The power production demand depends on the season of the year and the time of the day.

We would like to estimate the power production of the offshore windmill farm over a year and the difference between the power demand and the power production over a year.

AltaRica 3.0 Modelling Language and Assessment Tools

AltaRica 3.0 is a high level and stochastic event based modelling language, initially dedicated to the assessment of complex critical systems [START_REF] Batteux | Altarica 3.0 in 10 modeling patterns[END_REF]. The language is based on the mathematical framework GTS (for Guarded Transition Systems [START_REF] Rauzy | Guarded transition systems: a new states/events formalism for reliability studies[END_REF]- [START_REF] Batteux | Altarica 3.0 assertions: the why and the wherefore[END_REF]) to describe the behaviour of the system under study. The execution of an AltaRica 3.0 model is quite similar to other event-based formalisms. It means that when a transition is enabled, it is scheduled and will be potentially fired after its associated delay (see [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] and [START_REF] Zimmermann | Stochastic Discrete Event Systems[END_REF] for introductions of such executions of Discrete Event Systems). This behavioural part of AltaRica 3.0, based on GTS, is combined with a structural part named S2ML. S2ML stands for System Structure Modelling Language [START_REF] Batteux | From models of structures to structures of models[END_REF], and gathers in a coherent way structuring constructs stemmed from object-oriented programming, (see, e.g., [START_REF] Abadi | A Theory of Objects[END_REF]), and prototype-oriented programming, (see, e.g., [START_REF] Noble | Prototype-Based Programming: Concepts. Languages and Applications[END_REF]). The AltaRica 3.0 modelling language comes with a versatile set of assessment tools to design and evaluate models:

-The integrated modelling environment AltaRica Wizard [START_REF] Batteux | Altarica wizard: an integrated modeling and simulation environment for Altarica 3.0[END_REF], which provides the expected functionalities of a code editor and a project management; -An interactive simulator to simulate, by hand, AltaRica 3.0 models; -A compiler to fault trees in Open-PSA format [START_REF] Prosvirnova | Automated generation of minimal cut sets from Altarica 3.0 models[END_REF] and ch10epstein2008psam, this compiler is chained with the fault tree engine XFTA [START_REF] Rauzy | Anatomy of an efficient fault tree assessment engine[END_REF]; -A generator of critical sequences of events leading from an initial state to failed states; -Finally, a stochastic simulator [START_REF] Aupetit | Improving performance of the AltaRica 3.0 stochastic simulator[END_REF].

The design of advanced AltaRica 3.0 models relies on the application of modelling patterns [START_REF] Batteux | Altarica 3.0 in 10 modeling patterns[END_REF]. The pattern-based approach in model-based safety assessment is strongly inspired from the corresponding approach in software engineering [START_REF] Gamma | Design Patterns -Elements of Reusable Object-Oriented Software[END_REF]. Not only patterns make it possible to avoid the "blank page syndrome", i.e. not to know where and how to start a model, but they unify modelling styles (alleviating maintenance tasks) and they prove to be a very good way to document and to share models. Observers are quantities of the model that we would like to evaluate. Basically, in our example it is the power production and the difference between the power demand and the power production.

The model of the environment includes the simplified models of the wind and of the power production demand. The model of the wind provides the wind force to the windmill farm model. The model of the power production demand provides the value of the production demand or need to the technical system.

The model of the technical system includes the model of the windmill farm detailed below. It transmits the value of the power production to the observers.

Modelling the Technical System

First, we start with modelling of the basic classes representing the behaviour of the wind turbines, the cables and the electrical station. Second, we assemble these classes to create the model of the lines. Finally, we define controllers to implement reconfiguration and maintenance strategies. define the state of a StandbyRepairableUnit. Then this class is defined. An AltaRica 3.0 class is an on-the-shelf modelling component that can be instantiated as many times as necessary in the models. This class declares several elements: a state variable vsState of type UnitState, Boolean flow variables vfStartDemanded and vfStopDemanded, and several parameters and events. All these elements are used in the transition part to define the behaviour of a StandbyRepairableUnit, i.e. the changes of values of the state variable according to the occurrences of the events, as represented in Fig. 3a.

An AltaRica 3.0 transition starts with the name of the event, also called a label, then there is a guard (i.e. a Boolean condition on variables), and finally the action, which is an instruction that changes the value of (some of) the state variables. For example, in Fig. 4, the first transition defines the failure of the component. Its label is the event evFailure, which is associated with a delay obeying the inverse of a negative exponential distribution of parameter pFailure. To fire this transition the unit state must be working, so the guard imposes that the state variable vsState must be equal to the value WORKING. Finally, when the transition is fired the unit is failed, and the action sets the state variable vsState to the value FAILED.

A wind turbine may be started or stopped when it receives an order represented by flow variables vfStartDemanded and vfStopDemanded. It is modelled by two immediate events evStart and evStop. The transitions labeled by these events should be fired as soon as the their guards become satisfied.

A wind turbine may also fail when it is in standby mode. It is represented by the event evDormantFailure, which is associated with a delay obeying the inverse of a negative exponential distribution of parameter pDormantFailure.

A wind turbine may be repaired. The event evRepair is associated with a uniform distribution with parameters pStartRepair and pEndRepair. The values of the parameters can be changed at will while performing experiments with models.

The The global controller is used to implement reconfiguration and maintenance strategies. It receives the diagnosis on the state of each line, the power production demand and the production of the lines. Based on these data, it sends the commands to start or to stop the line to the local controllers of each line. We assume that there is a priority between the lines. The controller always starts with the Line 1, then if the demand is not satisfied, it starts the Line 2, and so on. If the demand gets lower, the controller first stops the Line 5, then the Line 4 and so on in the reverse order.

The global controller also implements the maintenance policy. There is a limited number of repairers. We assume that if a line is failed, and a repairer is available then the maintenance of the line can start immediately. The end of the maintenance is modelled by a uniform distribution with two parameters pEndMaintenanceTimeMin equal to 24 h and pEndMaintenanceTimeMax equal to 72 h. To implement this maintenance policy we use a modelling pattern presented in [START_REF] Batteux | Modeling patterns for the assessment of maintenance policies with AltaRica 3.0[END_REF].

Modelling the Lines. The structure of the AltaRica 3.0 model of the class Line is given Fig. 7. Each line is composed of 5 wind turbines, 5 cables and a local controller. Connections between cables and wind turbines are defined in the assertion part. First, each wind turbine W M i receives the value of the wind force. Second, each wind turbine W M i is connected to its cable C i . Finally, the production of the line vfProductionOut is calculated taking into account the fact that if a cable C i is failed then the wind turbines located upstream W M i+1 , W M i+2 , . . . are isolated.

The line receives the orders to stop and to start the wind turbines from the global controller. We assume that there is a priority between the wind turbines. First, the wind turbine W M 1 is attempted to start, then the wind turbine W M 2 , and so on. This priorities are implemented in the assertion part of the class Line, when the variables WMi.vfStartDemanded and WMi.vfStopDemanded are assigned.

The diagnosis part is also defined in the assertion. The value of the variables vfNumberOfStoppedWM, vfIsFailed and others are calculated in the assertion and sent to the global controller. Then these values are used to define global reconfiguration and maintenance strategies.

The block Controller is used to define when the maintenance can be started and stopped. It uses synchronisations as explained in [START_REF] Batteux | Modeling patterns for the assessment of maintenance policies with AltaRica 3.0[END_REF].

Modelling the Environment

Simplified Model of the Wind. The wind force can be modelled by a discretetime Markov chain.

In our model we assume that the wind force may be NULL, LOW, NORMAL, HIGH and STORM. When the wind force is NULL or STORM, the wind turbines must be stopped. The wind force changes every 4 h. The discrete-time Markov chain modelling the force of the wind is given Fig. 8. In AltaRica 3.0 this Markov chain is partially represented Fig. 9. First, we define a domain WindForce, which is an enumeration of five values: NULL, LOW, NORMAL, HIGH, STORM. Second, we define a class Wind. This class declares a state variable vsWindForce, which takes its values in the domain WindForce, to represent the internal state of the class, i.e. the wind force. It declares a flow variable vfWindForceOut which takes the same value. The parameter pWindChangePeriod is used to represent when the force of the wind changes. Its value can be changed to perform experiments. Events evStayNull, evStayStorm, . . . and transitions represent how the state changes. The probability of the event is given by the attribute expectation. For instance, if the wind force is NULL, then there is a probability of 0.5 for the events evStayNull and evIncreaseLow to occur. The values of expectations may be declared using parameters and can be changed at will. Of course, it is possible to use a more realistic model of the wind force taking into account real data coming from weather reports for a given region. Model of the Power Production Demand. We assume that the power production demand depends on the season of the year and the time of the day. In our model the power production demand can be NULL, LOW, NORMAL or HIGH. Table 1 summarises how the power production demand depends on the season (spring, summer, autumn, winter) and the time of the day (morning, day, evening, night). To represent this demand in AltaRica 3.0 we use a deterministic model. It can also be modeled by a discrete-time Markov chain by adding some uncertainties to the events.

Experiments

As previously introduced in part 3, the AltaRica 3.0 modelling language comes with a versatile set of assessment tools to design and evaluate models. Thus for our specific offshore windmill farm case study, we use the stochastic simulator to perform evaluations. Of course, the modelling environment AltaRica Wizard, and the interactive simulator are used during the design and evaluation to get qualitative and quantitative information about the model.

Table 2 resumes the quantitative information about the model. We consider the designed AltaRica 3.0 model and the flattened one resulting from the compilation process. The main interpretation of these quantitative information is the huge difference between the number of models elements. In fact, when designing the AltaRica 3.0 model, we intensively used the powerful mechanisms of the language: the classes and the inheritance, the synchronisation of events, etc. For instance, the design of the fives lines, each one composed of five wind turbines and five cables is realised with different classes: a class for wind turbines with 5 atomic variables, a class for cables with 3 atomic variables, and a class Line (instantiating five wind turbines and five cables) with 8 atomic variables. The number of declared atomic variables is thus 16, whereas the real number of variables for all the lines, when the classes are instantiated, is 80. Quantitative results are obtained with the AltaRica 3.0 stochastic simulator. We define different observers in the model and indicators to evaluate these observers. Then statistics are made on the indicators by the stochastic simulator. Figure 10 defines the three main observers used to obtain the results. The two observers oProd and oDiffProdNeed are real observers. oProd gets the value of the production, whereas oDiffProdNeed gets the difference between the value of the production and the value of the need. Finally the observer oNeedSatisfied is Boolean and checks if the production is more than the demand, meaning "the demand is satisfied". We define indicators on these observers. For the two real observers oProd and oDiffProdNeed, we define mean-value indicators, meaning the mean value of the observer through the time period [0, t], with t representing a time instant (the mission time for these experiments). For the Boolean observer oNeedSatisfied, it is a sojourn-time with the value true, meaning the time the observer had the value true from the time instant 0 to the time instant t (the mission time for these experiments). Then mean, standard deviation and confidence range are computed for these indicators.

The stochastic simulator produced 100000 runs for a mission time of 43800 h (representing 5 years). It calculated statistics on indicators not only at the end of the mission time, but also at intermediate time instants: every year at 8760 h 17520 h, 26280 h and 35040 h). Table 3 presents these results divided in two parts. The first part indicates the number of fired events: 128943 on average. This number seems high, but it can be explained by the fact that after each modification of the demand, starts or stops of wind turbines are fired. For instance, at the beginning of simulation, the need is set to 2000 and with an initial wind force set to NORMAL, all the 25 wind turbines must be started, which means that 25 events are triggered.

The second part indicates statistics for the different indicators at every year. We only consider the mean and the standard deviation. What one can observe is that the need is satisfied only during 25501 h for the five years (43800), and the difference between the production and the power demand is always negative (on average). To analyse these results, we can consider the Table 4 summarising the sojourn times for a given wind force and a maximum production (when the 25 wind turbines are started). We indicate in gray when the production is lower than the power demand during the 5 years. By summing all these sojourn-times in gray, we obtain the sojourn-time when the need is not satisfied. Thus it means that during a certain period of time (the sum of the sojourn-times) the wind force is not sufficient to satisfy the power demand with all the 25 wind turbines started.

Conclusion and Perspectives

In this publication, we presented how the AltaRica 3.0 modelling language can be used to efficiently design models of large scale reconfigurable systems and to assess their performances using the stochastic simulation. The presentation was based on an example of an offshore windmill farm composed of several lines of wind turbines connected in series. We have shown that the advanced constructs of AltaRica 3.0 help to easily model several different features of such a system: combination of multi-states, resource sharing, reconfiguration, maintenance, etc. We calculated some indicators on this model using the stochastic simulator.

Modelling of these features involved a pattern based approach: resource sharing, limited number of repairers, reconfiguration, etc. This not only increases the set of already presented AltaRica 3.0 modelling patterns but it also confirms that modelling patterns are a very efficient mean to design models and, more fundamentally, they are a way to reason about the system under study.

Finally, the designed AltaRica 3.0 model can be easily extended so to introduce new elements, such as new lines or more repairers, or new features, such as different maintenance policies or more quantitative production values of the units according, for instance, to their degradation and failures. Different experiments may be conducted with different models of the wind force, of the power production demand, with different number of lines and different number of wind turbines per line, and of course with different values of parameters.
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 2 Figure 2 shows the global architecture of the model. It is composed of the model of the environment, the model of the technical system under study and the observers.
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 30 Classes of the Wind Turbines and Cables. We model the behaviour of the wind turbines by a state machine StandbyRepairableUnit represented in Fig. 3a. Stochastic transitions are represented with plain arrows while the deterministic ones, labeled by the events start and stop, are represented with dashed arrows. The AltaRica 3.0 model of the class StandbyRepairableUnit is given Fig. 4. It first defines a domain UnitState containing four values. It will be used to
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 45 Fig. 4. AltaRica 3.0 class StandbyRepairableUnit.
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 6 Fig. 6. Structure diagram of the block WindmillFarm.

  WM2, WM3, WM4, WM5 (vsState.init = STANDBY, evRepair.hidden = true); Cable C1, C2, C3, C4, C5(evRepair.hidden = true); WindForce vfWindForceIn (reset = NULL); Boolean vfStartDemanded (reset = false); Boolean vfStopDemanded (reset = false); Real vfProductionOut (reset = 0.0); Integer vfNumberOfWorkingWM (reset = 0); Integer vfNumberOfFailedWM (reset = 0); Integer vfNumberOfStoppedWM (reset = 0); Boolean vfIsFailed (reset = true); block Controller end assertion WM1.vfWindForceIn := vfWindForceIn; C1.vfProductionIn := WM1.vfProductionOut; vfProductionOut := if not C1.

Fig. 8 .

 8 Fig. 8. Discrete-time Markov chain representing the wind force.

domain

  WindForce {NULL, LOW, NORMAL, HIGH, STORM} class Wind WindForce vsWindForce (init = NORMAL); WindForce vfWindForceOut (reset = NULL); parameter Real pWindChangePeriod = 4; event evStayNull(delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0); event evStayStorm(delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0); event evIncreaseLow (delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0); event evDecreaseHigh (delay = Dirac(pWindChangePeriod), expectation = 1.0/2.0); event evStay (delay = Dirac(pWindChangePeriod), expectation = 1.0/3.0); event evIncrease (delay = Dirac(pWindChangePeriod), expectation = 1.0/3.0); event evDecrease (delay = Dirac(pWindChangePeriod), expectation = 1.0/3.0); transition assertion vfWindForceOut := vsWindForce; end

Fig. 9 .

 9 Fig. 9. AltaRica 3.0 model of the Wind.
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 10 Fig. 10. AltaRica 3.0 observers.

Table 1 .

 1 Power production demand.

	Heading level	Spring	Summer Autumn	Winter
	Morning (5a.m. -9a.m.) NORMAL LOW	NORMAL HIGH
	Day (9a.m. -4p.m.)	LOW	LOW	LOW	NORMAL
	Evening (4p.m. -10p.m.) NORMAL LOW	NORMAL HIGH
	Night (10p.m. -5a.m.)	LOW	NULL	LOW	NORMAL

Table 2 .

 2 Quantitative information about the model.

	AltaRica 3.0 model	Designed Flattened
	Number of lines	450	1260
	Number of classes	5	-
	Number of state variables	6	67
	Number of flow variables	26	244
	Number of parameters	25	175
	Number of events	39	159
	Number of transitions	46	190
	Number of instructions in assertion(s) 60	244

Table 3 .

 3 Quantitative results.

	Fired events	Mean	Min	Max
		128943.0 123381	134143
	Indicator	Date	Mean	Standard deviation
	Mean-value(oProd)	8760	770.871	18.7466

Table 4 .

 4 Sojourn times for a given wind force and a maximum production.

		Wind force
		NULL LOW NORMAL HIGH STORM
	P r o d u c t i o n	NULL LOW NORMAL 2385.97 3548.67 3558.77 3565.07 2391.52 501.3 749.69 740.6 731.59 496.79 3174.73 4774.95 4757.46 4738.58 3184.28 HIGH 695.66 1039.13 1036.85 1036.18 692.17