N

N

COMPARISON OF THE ASAR ALTERNATIVE
POLARISATION MODE TO FULL POLARIMETRIC
ACQUISITION FOR LAND USE ESTIMATION OVER

TROPICAL REGIONS

Cédric Lardeux, Pierre-Louis Frison, Céline Tison, D Deleflie, Jean-Claude

Souyris, Jean-Paul Rudant, Benoit Stoll

» To cite this version:

Cédric Lardeux, Pierre-Louis Frison, Céline Tison, D Deleflie, Jean-Claude Souyris, et al.. COM-
PARISON OF THE ASAR ALTERNATIVE POLARISATION MODE TO FULL POLARIMETRIC
ACQUISITION FOR LAND USE ESTIMATION OVER TROPICAL REGIONS. Envisat Symposium
2007 highlights EO satellite achievements, Apr 2007, Montreux, Switzerland. hal-03791081

HAL Id: hal-03791081
https://hal.science/hal-03791081v1

Submitted on 29 Sep 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03791081v1
https://hal.archives-ouvertes.fr

COMPARISON OF THE ASAR ALTERNATIVE POLARISATION MODE TO FULL
POLARIMETRIC ACQUISITION FOR LAND USE ESTIMATION OVER TROPICAL
REGIONS

C.Lardeux®, P.-L. Frison ®, C. Tison®, D. Deleflie, J.-C. Souyris?, J.-P. Rudant®, B. Stoll®

Buniversité de Marne la Vallée, laboratoire G2I-IFSB\boulevard Descrates, 77 454 Marne la Valléeexe?i
Email: cedric.lardeux@univ-mlv.fr

@)Centre National d’Etudes Spatiales, DCT/SI/AR, t8naie Edouard Belin, 31 401 Toulouse Cedex 4, Franc
Email: celine.tison@cnes.fr

®GUniversité de Polynésie Francaise, B.P. 6570 987AA'A Tahiti - Polynésie Francaise
Email : benoit.stoll@upf.pf

ABSTRACT

This study comes within the framework of the global
cartography and inventory of the Polynesian langsca
An AIRSAR airborne acquired fully polarimetric data

L band, in August 2000, over the main Polynesian
Islands. This study focuses on Tubuai Island, where
several ground surveys allow the validation of the
different results. While they preserve some of the
polarimetric information as those that would be
recorded by a full polarimetric (FP) radar sensor,
compact polarimetry (CP) architectures are relevant
systems constraints reduction. For example the ASAR
Alternate Polarization mode provides the intensitie
recorded in 2 linear polarization channels withphase
information between them. On the other hand anrothe
CP mode, called thé 774" mode, has been proposed
due to its optimum compromise between system
architecture and polarimetric information presensat
especially when natural surfaces are concernedselBe
CP configurations are simulated from AIRSAR data in
order to investigate their potential with respecEP for
land use classification. The classification method
retained is the SVM (Support Vector Machine)
algorithm due to its ability to handle linearly non
separable cases by using the kernel method.
particular, it is well suited for combining numesou
heterogeneous indicators such as intensity channels
polarimetric descriptors, or textural parameters.

The results show that for full polarimetric dataet
SVM classification performance when only the
elements of the polarimetric coherence matrix are
involved is comparable to the Wishart classificatio
one. The addition of polarimetric indices improves
significantly the classification. On the other hamlden
“714" mode is simulated, the overall classification
performance is decrease of 8% than those obserited w
full polarimetric data in reason of a higher codusfor
some forest classes (Pinus, Falcata and Guava).
However, the discrimination between forest, low
vegetation and no vegetation area is quite sinhlghe

FP mode. Moreover, tHe7#4” mode shows much better
performance for the present land use discriminétiam

In

the ASAR alternate polarization mode that are natly
able to discriminate the forest species.

1. INTRODUCTION

Radar data are of particular interest over troparels
such as the French Polynesian Islands because of
persistent cloudy weather. Fully polarimetric SARa
were acquired in L and P bands over the main
Polynesian islands. The overall goal of this stiglyo
assess the potential of such fully polarimetric Sdeéga

for land-use cartography and to compare in the same
way different partial polarimetric mode liké 774"
mode [1] or the Envisat alternate polarization mode
When dealing with classification methods appliedutb
polarimetric data, the Wishart classification [¥] [or
algorithm based on polarimetric decomposition sash
the H/Aln decomposition [3] are generally used. In
order to integrate heterogeneous polarimetric
descriptorsi(e. not only the coherence matrix used in
the Wishart classification, but also other polatirice
descriptors, such the H/é&/parameters), it is proposed
to use the SVM (Support Vector Machine) classifaat
method [4]. It is especially well suited to hantitearly

non separable case by using Kernel functions. & ha
been mostly applied to hyperspectral remote sedatzl
and few studies have also been conducted with SAR
data [5][6]. The study area and radar data arespted

in the second part of this paper. The third pataitethe
SVM algorithm and describes the polarimetric indice
used to define the different SV that are suitabledch
polarimetric modes involved. The results are preskn

in the last part of the paper.

2. STUDY AREA AND DATASET
2.1. Sudy area

French Polynesia islands are located at the migitilee
South Pacific Ocean. They are quickly evolving lie t
tourism industry, and from the economic and
geostrategic points of view. They are thus subject
strong environmental planning leading to landscape
changes as well as to the introduction of invasive



species. This study comes within the frameworkhef t
global cartography and inventory of the Polynesian
landscape. We focus on data acquired over the Tubua
Island, in the Australes Archipelago at the South o
French Polynesia. Tubuai is a 45 %island with a
population of about 6000 inhabitants. It is pafacky
relevant because of its great landscape diversityeral
types of forests, agricultural fields, and residdrdreas.
The objective is to estimate different land usesglan
particular by discriminating different forest types
containing four classegiibiscus tiliaceus(also called
Purau), Pinus Caribeae (also called Pinus),
Paraserianthes Falcatarigalso called Falcata). The 2
other classes are the one labelled "Low Vegetation"
including fern lands, swamps vegetation, and feapsr
and the "Other" class including bare fields, lovasy
fields. Several ground surveys has been carriedamat

a Quickbird image acquired in August 2004 is also
available to supply an accurate validation dataoset
the entire island.

The class are summarized in Table 1 with the nuraber
pixels of the radar image associated to training an
control classes.

Table 1: Training and testing samples number used f
the Tubuai Island classification

Class Training sample€ontrol samples
Pinus 5330 5330
Falcata 2696 2696
Purau 6202 6202
Guava 365 365
Low Vegetation 7897 7897
Other 4457 4457

2.2. Airsar data

An AIRSAR airborne mission took place in August
2000 over the main Polynesian islands. The AIRSAR
data were acquired over Tubuai along 2 passes in
reverse path, in Polsar mode. The data set uséusin
study consists in full polarimetric data in L £ 23 cm)
and P § = 67cm) bands with an additional C band
channel §=5.7cm) in VV polarization. Full polarimetric
data are delivered in MLC (Multi Look Complex)
format, corresponding to about 9 looks, with a
resolution of 5 meters. The relative phase of thgiral
data has been calibrated following [7] and an isitgn
bias has been corrected both in L and P bandsszalue

3. Methodology

3.1. Support Vector Machine

A brief description of SVM is made below and more
details can be found REF [4].

® Linear case:
Let us consider a two class classification probieiti
N training samples. Each sample is described by a
Support Vector (SV)X; composed by the different
“bands” with n dimension. The label of a sampléis
For a two classes case we consider the label -théor
first class and +1 for the other.
The SVM modelw describes the optimal hyperplane
which separate the two classes (Figure 1). The
classification function f is consequently defines a

f(x) =sign(w, X) +b)

Optimal
Hyperplan

Optimal

i'I'|',1_I"f_"__I‘.'I

Figure 1. SVM Classifier-Linear case

The sign of f(x) gives the label of the sampleeTh
goal of the SVM is to maximize the margin betweles t
optimal hyperplane and the support vector. So we
o]

T) .To do this, it is more easier

to use the Lagrange multiplier. The problem conees t
solve:

search for themin(

f(3)=Sigr(>. ., (%) +b) ()

Whereaq; is the Lagrange multiplier.

Cptimal
o Hyvperplan
.
Wital
margin

Figure 2. SVM Classifier-Nonlinear case

Soft margin enables to get robust to noisy trairdatp
set.

®* Nonlinear case:
When classification problem is not linear (Figupett2e
training vectors are projected into a “feature gat of



higher dimension through the feature functioh

(©:0"+—H). In H, the data become linearly

separable. Actually, in SVM model, the functighis
replaced by its scalar product, the Kernel function

K(X %) :<¢(X)1¢(Xi )> Then  the
classification function is equal to:
Ns
f(x) =Sigr(}_ y;.a,.K(x,%) +b) (2)
i=1
Three kernels are commonly used:

new

The polynomial kernel
K(x,%)=(xx)+1°

The sigmoid kernel
K(x,x) =tanh(x,x)+1)
The RBF kernel

2
X=X
K(x,x)=ex |—

(x) =exp-— 3

The RBF kernel has been selected in this work tjinou
empirical considerations. A future work would be to
develop a new kernel accounting for the distributid
the data, such the one is due to the presenceeokigp

in SAR data.

Multiclass case :

The principle of SVM has been developed for a two
class problem but it has been easily extendedntalt-
class problem with several algorithms. Among them, .
there are:

the "One Against All" (OAA) and the "One Against
One" (OAO) algorithms.

If we consider a problem with K class:
The OAA algorithm consists in the construction of k

the Pauli basis as follows:

1 Sin + S . -
K, =—=| Sus —Sw [[T]=K, KT
V2 2.5y

Sw denotes the scattering matrix element correspgndin
to the w/x polarization for the receiving/transmitting
wave (v, x referring to horizontal, H, or vertical, V,
linear polarization)
On the other hand, a second support ve&®2 is built
with the addition of different polarimetric indiceBhese
are detailed hereafter and summarized in Table 2:
The intensities in the 2 co- and 1 cross- polarized
channel in linear and circular polarization:

L =[S (@)

wherew and x refer to H, V, left, L, and/or right, R,
circular polarization.
The Span:

SPAN = iy +2 lyy + Iy 5)
The texture is taken into account through the

7]
representing the standard deviation and mean of the
intensities in the linear and circular polarizat{@)
computed over a 5x5 neighbourhood.

The ratio between the following intensities:

coefficient of variatio& =, candy are

’ 1 ’

(6)

IHH IW IW ILR

Table 2: Support Vector configuration

hyperplane that separate respectively one clasgtend
(k-1) other classes.
The OAO algorithm consists in the construction of
k(k-1

( > ) hyperplane which separate each pair of classes.

In the two cases the final label is that mainly s
After several tests, the OAO algorithm has been
retained as well as the RBF kernel with0.5 and the
cost parameter equal to 1000 (soft margin).

The Libsvm library has been used [8].

3.2. Polarimetricindices

Several Support Vectors have been defined for full
polarimetric data to measure the impact of theedéfit

polarimetric indicators. On the one hand, for

comparison with Wishart classification, a suppatter
(referencedsV1hereafter) is made up by the 9 elements
only of the coherency matrix T. This latter is
constructed from the scattering vectqr éxpressed in

SVl | #¢f Sv2 # ef
T elements 9
IHH! IHV! IW! ILL! ILR! IRR 6
2 2 2
SPAN=[S, " + 25, +[S, [ | 1
Cv-tHy Cv-Hv Grvw 6
Cv-LLy Cv-RFy Cu-LRs
. Doy lu b Do .
9 L Ty Ty |
elements HH 'w fw TR
‘puH—vv 1 |PHV-w |» pHv—HH‘ 6
‘pLL—LRv PRR-LR|s pLL—RR‘
Pmin 1
Degmin 1
m and yEuler parameters : 2
H/A/a 3
Total 9 39




«  The modulus of the degree of coherence,

|PHH —W|7|pHV—W|7|pHV—HH |7 |pLL—LR|7 |pRR—LR|’ |pLL—RR|
computed as follow:

ol (SwS,)

("))
where w, X, Y, z, stands for H, V, L and R polatiza
«  The minimum power of the backscattered wave,
Pnin, for all the polarization configuration of the
emitted wave.
e The minimum of the degree of polarization of the

()

received WaV(aPmm for all the polarization
configurations of the emitted wave. The degree of
polarization is defined as

aP:JS§+§§+Sf @©

S S, S S being the 4 elements of the Stokes vector.

« The 2 Euler parametersn and y representing
respectively the magnitude and the polarisability o
the resolution cell. Details about their calculatio
from the Stokes parameters are given in [9].

« The 3 parametersi/A/a representing the entropy,
the scattering mechanism, and the anisotropy [3])

At the exception of the coefficient of variation,,CGall
the other polarimetric indices have been estimafest
the application of a polarimetric filter [10] to igmal
data.

3.3. Compact Polarimetry: the“ 7#4” Mode

The “ 7#4” mode consists in a transmitter polarization
either circular or oriented at 45°, and in recesvérat
are in horizontal and vertical polarizations witgspect
to the line of sight.

Due to some symmetry properties (reflection, rotati
azimuthal) for natural media, some hypothesis cdad
made to reconstruct the full polarimetric infornoati
More details are given in [1]. In particular, it $hown
that this mode is similar to FP modes when (8) is
verified.

(S-S} =(Sv- S} =0 ®)

This property is generally observed over distribdute
target, such as vegetated areas.

Consequently, some polarimetric parameters losi the
signification or become redundant with other. For
example, the circular intensitiég andlgg are equal. In
the same way, the degree of coherengehas no more
interest, as well as the degree of coherence im@lthe
cross linear polarisation HV that is equal to zéfbe
primitives defining the Support Vector SV3, adapted
from SV2 to the 774" mode is summarized in Table 3.

Table 3: Support Vector configuration of tha4”

mode
sv3 # ef
T elements 7

lrs Tavs vy I, IR
SPAN=|S, [*+2S, [ +S0]” | 1
Cv-HHy Cv-hvi Gvw 5

‘puH—vv PLL-LR
IDmin
Degmin
m and yEuler parameters :
H/A/a
Total number of primitives

WNNEFLPEFE DN

31

3.4. Alternate polarizationM ode

The Alternate Polarization mode (AP) provided by
ASAR sensor consists in the emission of one linear
polarisation with the reception in two linear
polarizations. Consequently, the result is a cougfle
intensities HH and HV, VV and HV or HH and VV. The
associated primitives defining the SV SV4 are
summarized in Table 4.

Table 4: Support Vector configuration of the AP mod
(w, x referring to horizontal, H, or vertical, V, linear
polarization).

Sv4 # ef
Lo hwx 2
SPAN=IS,,|* +[S,|° 1
Cy-wx Cv-wx 2
|WX
m 1
Total number of primitiveg 6

4. Resultsand discussion
4.1.1. Full Polarimetric data

In order to assess the suitability of the SVM aildyon

to polarimetric SAR data, the SVM with the SV1
support vector has been compared to the Wishart
classification [2] over an extract.

The overall performance of the classification igegi by
the Kappa coefficientk, while the Producer Accuracy
is used to estimate the performance for the differe
classes [12].

The SVM algorithm shows similar results as Wislfiart
the L band £=72% andx =67% respectively) and the
P band kK =63% andk =66% respectively). It can be



noticed that a high confusion is observed betwdwen t
different forest types for both bands that is mattrly
marked for the Wishart algorithm.

In a second step, the SV2 Support Vector has bsed u
in order to assess the contribution of the polatiime
indices. Results are presented in Table 5.

Table 5: SVM classification results with SV2: the
Producer Accuracy (%) is given for the
different classes, and the overall performance

is given byk
L | P[P L+P+Cy
Pinus 87| 87 96 99
Falcata 84| 74| 86 89
Purau 88 89| 94 97
Guava 90| 76| 83 83
Low Vegetationf 99 [ 99 99 99
Other 98| 97 98 98
K (%) 91| 87| 93 94
The addition of polarimetric indices improves

significantly the SVM classification results, with
k=91% andk=87% for L and P band. These values
have to be compared with those obtained with SV1
Support Vector k= 72% andx=63% for L and P band
respectively). Both bands present as a whole theesa
performance with still significant confusion betwethe
different forest types especially for the P band.

When the L and P bands are combined, leading to a
Support vector of 78 components, there is an aeerag
increase of 4% for the value that reaches 93%. The
forest classes are much better discriminated péatily

for the Pinus (PA = 96 %) and th@urau (PA = 94 %).
But the Falcata and the Guava shows still high
confusion. Finally, the addition of the C band-VV
polarisation intensity data (leading to a 79 congis
Support Vector) improve lightly the overall resultgth

Kk = 94%. However, it increases significantly tRerau
and the Pinus discrimination, while there is still
persistent confusion concerning Beava

4.1.2. ¢4 configuration

Results obtained in different wavelength configiomat
for the “ 774" mode with the SV3 Support Vector (cf.
Table 3) are given in Table 6. The result showllaofa
8% and 7% of the global accuracy for L and P band
respectively. It's mainly due to the forest speersept
the Purau, contrary to theLow vegetationand Other
classes However, when the different bands are
combined, and more especially with the additiorihaf

C band-VV polarisation intensity, the results amilgr

to the FP mode.

Table 6: SVM classification results with SV3: the
Producer Accuracy (%) is given for the
different classes, and the overall performance
is given by « (%).The indices give the
difference between FP and74” mode.

L P | L*P | L+P+Gy

Pinus 73 .14| 789 | 90 99,
Falcata 7044 | 6143|797 87,
Purau 854 86, | 913 96 1
Guava 80.40]| 679 | 794 803
Low Vegetation 98, | 97, | 99, 99,
Other 96 ., 9451974 97,

K (%) 83 -8 80 -7 89 4 93 1

4.1.3. Alternate polarizations modes

Results obtained for the different ASAR Alternate
Polarization modes, with the SV4 Support Vector
configuration (see Table 4) are presented in Takier

L and P band and in Table 8 for the different
combination of the wavelength. Results are given fo
the 3 different couples of polarization and their
combination (this later corresponding for exampbe t
different acquisition dates).

Table 7: SVM classification results with DP and AP
modes for L band: the Producer Accuracy (%)
is given for the different classes, and the
overall performance is given lxy(%).

Hemy | vy | eevwy | HHEVVY
Band L P L P L P L P
Pinus |56| 77| 58| 75| 56 74 56 79
Falcata 28 3] 3| 5] 29 4] 32 10
Purau | 79| 85| 79| 85 74 8¢ 8d sf
Guava | 21| 7| 15| 16] 2d 14 26 24
Low 1 95| 92| 96| od o o3 o1 o
Vegetation
Other |89 83| 85| 81 od 8} 89 s
k(%) |60]| 57| 55/ 58] 60 51 62 6]

For L as well as P bands, when only 2 polarizations
channels are concerned, results show that onlyethre
different landscape can be discriminated: foréstw
vegetationandOther classeslndeed the different forest
classes reveal some confusion. This is particularly
obvious forFalcata and Guavaspecies, with Producer
Accuracy values lower than 32% in all configuration
When the 3 linearly polarized channels are combined
(Table 7, last 2 columns), accuracies are increased
confusion for the Falcata and the Guava is still
observed.



For each configuration, when the L and P band are
combined (see Table 8), the results show less sarfu
between the forest classes, particularly Rinus and
Purau The addition of the Cvv band increases this
phenomena.

Table 8: SVM classification results with ASAR AP
modes: the Producer Accuracy (%) is given for

the different classes, and the overall
performance is given by (%).
HHHY | wWHY | HHwW HH HV
\AY,
L+P L+P L+P L+P
Band L+P L+P L+P L+P
Cwv Cw Cw Cw
Pinus 78 | 98| 79| 97| 78| 98 78 94
Falcata 42 | 76 | 23| 64| 43| 73| 49 74
Purau 84 | 93| 85| 93| 84| 94 85 93
Guava 54 | 63| 46| 54| 49| 61| 57| 67
Low . 97 | 98 | 96| 98| 95| 97| 98 99
Vegetation
Other 91 | 93| 90| 92| 92| 92| 94/ 94
K (%) 74 | 86| 69| 82| 73| 85 76 87

5. Conclusion

This study shows that the SVM classification algori

is well suited for full polarimetric data with sitar
accuracy as Wishart classification. The possibitity
add different polarimetric or textural indices makée
SVM algorithm make it especially interesting as the
overall performance giving by the value increases of
about 20% with respect to classification involviogly

the elements of the matrix of coherence. Moreotres,
simulation of compact architecture like thef4” mode
shows comparable results to full polarimetric SVM
classification except for specific forest speci@s the
other hand, when only one band is concerned, gesult
obtained with ENVISAT Alternate Polarization
simulations (HH/VV, HH/HV, HH/HV/VV) shows a
quite good discrimination betweerForest Low
vegetation and Other classesarea while significant
confusion is observed between the different forest
species. Results obtained for the74” mode show
significant improvements. In particular it allowsatter
discrimination between the different forest species
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