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ABSTRACT

Mapping vegetal species in natural ecosystems reedsse

of several complementary - structural as functional
information sources to be as accurate as possiiMd
fusion is an adapted tool for multi-source clasatfion.
Most of the contemporaneous studies on land us
classification concern cultivated fields. This stushows
that, with the increasing development of adaptedissical Elvation (m) } @ 1

0 1227

tools and various remotely sensed data, it is nossiple to :
map natural ecosystems, a key stage for eco-emuental

management Figure t The study site: the Nuku Hiva Iskr{left) and its Bai

du Contrdéleur Domain (right), an ecologically ditted area. Eax

. . . circle in the right map represents a sampling area.
Index Terms— Data fusion, multi-source imagery, g prep ping

support vector machines (SVM), optical data, sytithe

aperture radar (SAR) data, topography and multi-source cases [6]. They are frequentlyd uséh
three kinds of nonlinear kernels: the polynomidhe t
1. INTRODUCTION Gaussian radial basis function and the sigmoidceSthese

kernels have rarely been studied in a multi-soussgaote

Several researches state that the combined useultf m sensing problem, we compare their outputted acgurac
source remote sensing data improves accuracy dfdaver Remote sensing is a useful tool for ecosystem magppi
classification, using different methods [1]-[5]. Btoof them  for three main reasons. First, in mountainous aseas as
are compared in [6], namely maximum likelihood, idiem  Pacific volcanic islands, access is often limitedd a
trees and support vector machines (SVM), showiraf th resources are difficult to evaluate in situ. Sedpnd
SVM gives the best accuracy. vegetation structural complexity needs an integeati

Multi-source SVM fusion is certainly a key researchapproach (as pixels) to be understood. Finallyecaifig
subject in remote sensing sciences for the fupuientially  ecological parameters such as luminosity, nitrogen
allowing to downscale class sets and to handlentbst availability or water resources, the above vegetasitratum
complex structures. The aim of this work is to explthe structures the underlying ones; remote sensingifdfistms
contribution of multi-source SVM fusion for mappimmd  synoptically about the above vegetation stratumusTh

monitoring the Marquesas islands landscapes. remotely sensed data and ground truth can be esffigi
linked emphasizing main remotely sensible vegetatio
2. MATERIAL AND METHODS characteristics.

A first ground truth campaign is carried out tokdor a
Nuku Hiva island is a good study model for the Measps representative class set. Vegetal community is conhyn
archipelago in term of alien species invasion whish divided by phyto-sociologists into 3 strata: hedimes
arguably one of the major threat to native ecosyst§/].  (<1m), shrubs (1-5m) and trees (>5m) [12]. To cbimmze
There is a particular need for better quality andren vegetation composing the study area, 143 invergdnighe
information on the distribution and impact of inw@s commonly used surfaces - 100m? for herbaceous plant
species in order to improve policy, legislation andcommunity and 450m2 for shrub and tree ones - amgpked
implementation procedures against these aliens. systematically in a mesh network from an initiahdam
SVM [8] are chosen because they perform morgoint (figure 1). Distance between two samplingaaie
accurately than other classifier in mono-sourcg, []-[11], 300m. For each inventoried species in each stratm,



One or more dominant species (Al23)? — Yes
No

One or more dominant species (Al23)? — Yes
No

Tree stratum (>5m)

Shrub stratum (1-5m)

Table T The 11 natural land cover composing the siteystartl
some characteristics; T=Tree, S=Shrub , H=Herbaeou
Inv.=Invasive, PI=Polynesian introduction and Inddigenous.

Herbaceous stratum (<1m) One or more dominantsueci;z(Alz:s‘)? — Yes Species Stratum Status
No dominance Acacia farnesiandA) S Inv.
) ) q h the domi high ) Casuarina equisetifolisubspequisetifolia(Ca) T Ind.
Visbie on the remotely sensed scones: Alabundamix. - Dranopters Inears0) H__ind.
Falcataria moluccangFa) T Inv.
abundance index (from 0 to 5) is inputted. Then, we_Ficus prolixavarprolixa (Fi) T Ind.
compute the process presented in figure 2 aimingetect Hibiscus tiliaceusubsptiliaceus(H) T Ind.
the dominant highest vegetation stratum only fatheglant Inocarpus fagifex(l) T Pl
community i.e. emergent species in the remotelys@#n  pandanus tectoriusar tectorius(Pa) T Ind.
images (Table 1). . . Psidium guajavdPs) S Inv.

In a second ground truth campaign, 36 trainingspbdt i )

450m2 (~1%o of the site study), three per class,satected Sapindus saponari¢sa) I Ir::.

and geolocalised with a GeoXH Trimble GPS. Such-Schizostachyum glaucifoliu(Bc)

balanced datasets are used to avoid class ovennader-
representation problems [13]. For classificatioseasment,
36 validation plots are sampled.

3. MULTISOURCE CLASSIFICATION

Three complementary multi-sensor structural andtfanal
information sources are used for the analyses:

- Optical data such as IKONOS satellite scenes fror

2005 inform about vegetation texture and passigeigition
spectra. The 1 m-merged data set (3 bands multisfiec
spectral resolution isA=0.45-0.72 um, i.e. the visible
spectrum. The high spatial resolution of IKONOS gewry
gives useful details for species discriminationcbynputing

some gray level co-occurrence matrix (GLCM) texture

metrics [14]. Four GLCM texture metrics among vace,

contrast, dissimilarity and angular second momerdg a
computed by using three window sizes of 3x3, 9x@ an

15x15 pixels which potentially correspond to intree
micro-texture, intra-tree macro-texture and inteettexture
respectively. A 50 x 50 pixels image is extracted éach
class and a r2 matrix is built in each window diae each
band to detect a possible redundancy. If the rificant

Table 2 r2 matrix of GLCM attributes for 3x3, 9x9 and 1%
pixels window size; each value represents a meath&€3 bands
and its standard deviation. Values in bold are iclemed as
significantly correlated; ASM=angular second moment

3x3 window Variance Contrast Dissimilarity
Contrast 602 - -
Dissimilarity 58 +3 93+ 1 -
ASM 5+2 5+2 9+2
9x9 window Variance Contrast Dissimilarity
Contrast 85+1 - -
Dissimilarity 81+2 96+1 -
ASM 18 +16 20+ 16 31+20
15x15 window _ Variance Contrast Dissimilarity
Contrast 88+1 - -
Dissimilarity 83+1 96+1 -
ASM 16+ 14 18+ 16 28 +21

for Polynesian vegetation classification are exgdcActive

between two attributes is upper than 80, couples aradar backscatters are dependant of vegetatiomctustey

considered as a single variable (Table 2).

Unfortunately, in tropical areas, remotely sensedges
suffer from cloudy conditions and optical spectmasponse
does not contain enough information for
discrimination.

- The NASA PACRIM II AirSAR mission of 2000
over-flied Marquesas archipelago, providing 5 nohason
SAR data in 3 bands: TopSAR CVW (5.7 cm), and
PoISAR L ¢ =23 cm) and PA( =67 cm) bands in full
polarimetry. This dataset allows extracting polatiric
indices to reach land cover structural propertirelying on
the work of [15], the ten most relevant polarimeiridices

humidity or incidence angle and add thus evident
supplementary information. Digital speckle is fitid with a
Frost filter (damping factor=1; window size=5x5 e@lg)

specieshowing good results in preserving edge informafibs].

Unlike the optical data, SAR data is insensitivectoud
cover but we can find relief shadows due to théaire
sensor flying over high volcanic Marquesas Islands.

- Oro-topography is a third information source
concerning vegetation spatial distribution. Clirnafactor
such as moisture and temperature are typicallyakbiin
mountainous areas, affecting vegetation distriloutioy
controlling key ecological processes [17]. We useirrf



Table 3 Overall accuracy and Kappa coefficient as a fioncof

used non“near kernel ﬂ\i”c.;uo sl m [ w] ¢ [re]ms]sa]so] oo b A"c.;‘lo Fa| & | e tHFaHPs 52| 5o || oo | BL
2" S
Accuracy RBF POl()érl%T'al Sigmoid T_T!\ ?__\!j |
OA (%) 70 66 22 . -
~ |l , ||
Kappa 0.67 0.63 0.15 = L —
Sz |i‘ Sz
= EEEENE
Table 4 Overall accuracy and Kappa coefficient as a foncof [~ | NENE
the considered sources. = [ W [
s | alcalalea]m] e [re]os]sa] s cofer o+ A"C.;HD el a] ¢ [eelrs| ool 5o [eo[ac
im- . 5m-IKONOS
Accuracy DEM AIrSAR : A HaEn|
IKONOS +DEM+AIrSAR = ig!h_
OA (%) 54 30 20 70 ° °
= - B
Kappa 0.50 0.25 0.13 0.67 |
' , -
. . id = o |
indices well known to affect - directly or not -tmans of |~ i -
climate zonation: elevation (m.a.s.l.), slope stesg (°), - -  EE
eastness (dimensionless) i.e. exposition to thdetrainds |- w Ol
and compound topographic index (CTI, dimensionles:* s HN |
quantifying fluid drainage [18]-[19]. e 7 ] ]
The chosen multi-source decision scheme is the mc 0 [ron] wo o [om [ oo feom [ rom faoen [ o |

relevant one in [6] All SVM are trained on eachiindual - 3 Confusi trix of the RBFE-SVM classification e (a-) 1
. _ s igure onftusion matrix o e - classification a- m-
data. Their outputs are then used for a SVM-baseisithn IKONOS, (b-) DEM, (c-) AIrSAR and (d-) three clasations (5m-

fusion to predict the final class membership ofhesample. | KoNOS+AIrSAR+DEM) merged in an additive RESYM classification
ROIs were merged in accordance with the speciatustr

4. FUSED-SVM RESULTS

[l e le]
As shown before by [19] in mono-source case, RB& an g!!EE
polynomial kernels produce similar results with a H B
perceptible superiority for the RBF one (Tablel3kewise, wf 1]

[20] denote that the RBF kernel has less numerice

difficulties than others. Our results corroborateese Figure 4 Confusion matrix of the RBBVM classification of th
observations in a multi-source case. AIrSAR data. ROIs were merged in accordance with ghecie

stratum. Then, a further stratified random sampligg compute:
With an OA=70% (Table 4), fusion results are fagyod  T=Tree, S=Shrub , H=Herbaceous ; greyscale is #mestha
for such a complex problem, the site study landsdsging a figure 3.
complex system of numerous intrusive plant comnesit
synergic effect between each complementary montesou stryctural class sets such as vegetation strataréfi4).
successful classifications whereas the secondsopased on ) o
fruitless classification: SVM decision fusion isl@tio use Results on the DEM and summarized in figure 3 prove

mono-source classification confusion pattern asrination. that some species are ecologically generalists emser
For example, th€alcataria moluccanalass is strongly and Certain species are specialists. Four species dalear oro-
partially confused with Casuarina equisetifoliasubsp ~toPOgraphical determinismCasuarina equisetifoliasubsp
equisetifolia on the 1m-IKONOS and the AirSAR-based equ|set|follaandD|cranopterls Im_earlso_llstrlbuted on r_ocky_
classification respectively and witbicranopteris linearis ©ufcrops and ridges respectively i.e. areas witgh hi
on the DEM-based classification. With a producesuagcy ~ €lévation (500 + 13 m in average and 470 + 120 m
of 91% and a user accuracy of 95% for falcataria  'espectively) and low CTI (2.0 + 1.0 and 2.0 + 1.2)

moluccanaclass, fused-SVM uses this confusion pattern ailocarpus fagiferliving in riparian sites, where CTl is high
information to class efficiently these speciesu(fig3). (3.8 + 2.4) whileSapindus saponarits a typical component
of semi-xerophilous forests with low CTI (2.4 + p.&nd

Due to its spatial and spectral resolutions, AirSdéRa is  located on the strongest slopes with a mean of 3&%
not adapted to the detailed species-based clasgesased



5. MAPPING RESULTS

In the Marquesas archipelago, multi-source SVM dusi
allows classifying fine scale class set as domirspecies.
Alien invasive species are dominant in 14% of tbtalt
study site (234 ha). As illustrated in figure 5 ihvasion is
generally spread but often concentrated near lzardsl|as
areas disturbed by landslides or road constructidien

[4] G. Chust, D. Ducrot, and J. L. Pretus, “Landven
discrimination potential of radar multitemporal issrand optical
multispectral images in a Mediterranean culturaticape,’Int. J.
Remote Sensvol.25, no.17, pp. 540-552, 1990.

[5] X. Blaes, L. Vanhalle, and P. Defourny, “Effiticy of crop
identification based on optical and SAR image tiseries,”
Remote Sens. Envirgivol.96, no. 3/4, pp. 352-365, 2005.

[6] B. Waske and J. A. Benediktsson, “Fusion of [gup Vector
Machines for Classification of Multisensor DatdPEE Trans.

invasive species seem to take advantage of humageosci. Remote Sengol. 45, pp. 3858-3866, 2007.

perturbations and landscape fragmentation, fatigaflux

[7] J. Florence and D. Lorence, “Introduction tcetfiora and

of their propagules. Some alien invasive species arvegetation of the Marquesas Island&llertonia, vol. 7, pp. 226-
elsewhere well known to modify ecological conditias
aggravating the soil erosion hazard. Bare landsrasion
prone areas, are already covering 24 ha i.e. 1#4¥edotal
study site!

Figure 5 Map of alien invasive species; red=alien invasare

dominant, green=native dominant; black: bare lanaisd
communication infrastructures.
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