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ABSTRACT 

 

The accuracy of rainforests classification is generally 

improved by the input of multisensory data since complex 

vegetation type identification benefits from complementary 

information. However, in some cases, multisource fusion can 

also deteriorate accuracy when irrelevant sources are added. 

Thus, we introduce a fusion method for classes “in 

difficulty”. Our method outperforms the classical global 

approach consisting in performing fusion for all classes. 

Moreover, the fusion processing time can significantly 

decrease when several classes are put aside. This operational 

method can be used effectively to enhance accuracy and 

processing speed when analyzing the wealth of information 

available from remote sensing products. 

 

Index Terms— Vegetation mapping, image 

classification, support vector machines, multisensory 

imagery, data fusion 

 

1. INTRODUCTION 

 

Today, an increasing number of sensors of greater diversity 

are available to the remote sensing community. Such a 

variety of spectral, spatial and temporal resolutions has very 

useful complementary properties and can therefore 

outperform conventional single-source approaches [1]-[9].  

A range of fusion algorithms and schemes have been 

proposed and compared over the past two decades which 

highlights that multisource fusion is a key research topic. To 

our knowledge, the first attempt is [1] where fusion of 

visible Landsat MSS bands with infrared Landsat MSS 

bands is performed to map 11 classes in an agricultural 

landscape of New South Wales (Australia) using a 

probabilistic scheme that employs a global membership 

function and the Dempster’s orthogonal sum combination 

rule. Optical Landsat MSS data and ancillary data 

(elevation, slope and aspect) are fused in [2] to map 10 

classes in a montane forest of Colorado (USA) using the 

minimum Euclidean distance, the maximum likelihood 

classifier (MLC) and the minimum Mahalanobis distance. 

The first comparative fusion of both optical and SAR data is 

probably [3] which used optical Daedalus 1268 ATM data 

with “PLC-band, fully polarimetric NASA/JPL SAR sensor” 

data to map 6 classes in an agricultural landscape of Feltwell 

(UK) using structured-Neural Networks (NN), fully 

connected-NN and the k-nearest neighbors. Then, [4] fused 

optical Landsat TM data with ERS-1 SAR data to map 12 

classes in an anthropogenic area of Lisbon (Portugal) using 

MLC, NN, the majority voting and the logarithmic opinion 

pool. In [5], optical Landsat TM data and ERS-1 SAR data 

are fused to map 16 classes in an agro-forest landscape of 

Gothenburg (Sweden) using MLC, NN and the sequential 

maximum a posteriori. Next, [6] fused optical Landsat TM 

data with ancillary data (elevation, slope and distance to 

water body) to map 14 classes in an agricultural landscape 

of Oklahoma (USA) using both C4.5 algorithm and support 

vector machines (SVM). Two optical IKONOS images are 

merged in [7] to map 6 urban units in Reykjavik (Iceland) 

using NN and a fuzzy decision rule. The ability of MLC, 

DT, “boosted-DT” and SVM to fuse optical Landsat-5 TM 

and SPOT-5 data with Envisat ASAR and ERS-2 data is 

compared in [8] over an agricultural landscape of Bonn 

(Germany) where 8 classes occur. More recently, [9] fused 

optical SPOT-2 data with ALOS/PALSAR data to map 6 

classes in an urban/peri-urban area of Hochiminh (Vietnam) 

using MLC and SVM. 

The previously mentioned fusion algorithms 

comparative studies mainly focus on simple anthropogenic 

structures. According to the results of these comparisons, the 

best contemporary fusion algorithm is arguably SVM. 

Although the classification scheme proposed by [8] is quite 

simple to implement and adapted to classification of 

different nature data, its main drawback is that fusion is 

performed for all classes globally. Indeed, for some classes, 

multisource fusion can also deteriorate accuracy found in 

monosource when a non-relevant source is used [1]. This 

paper aims to assess, over a structurally complex model, an 

extension of this method: the “fusion for classes in 

difficulty”. 

 

2. MATERIAL AND METHODS 

 
 

2.1. Study site and ground data collection 

 

This study focuses on tropical rainforests which is a subject 

of great interest to scientists around the world. In witness 



thereof, United Nations General Assembly declares 2011 as 

the International Year of Forests. Here, we argue that 

multisource image fusion is critical for classifying complex 

structures since each complementary source can contribute 

to the classification success. Optical, infrared, SAR, digital 

elevation model (DEM) and multitemporal data can 

therefore be useful for species identification according to 

their physico-chemical, anatomical, structural, ecological 

and phenological properties respectively. 

The present study is conducted in French Polynesia 

(South Pacific) and more precisely on the island of Moorea 

(140 km² with a highest summit reaching 1,207 m) 

(Figure 1) where 17 vegetation types occur. 

Fifteen 125 m² circular regions of interest are selected 

and geolocalized with a handheld Trimble® GeoXHTM GPS 

for each vegetation type (ca. 1/2,000 of the island area is 

sampled in total). Half of this area is used for classification 

training and half for validation. Balance data sets are 

systematically used to avoid under- or over-representation 

problems [10]. 

 

2.1 Remotely sensed data 

 

The experiment is carried out on three data types, namely an 

optical source, a SAR source and a digital elevation model 

(DEM), projected in the WGS 84 – UTM 6 South 

coordinate system (Figure 2). 

 

2.2.1. Optical spectral data 

For the first image type, we selected a four-bands and 

0.60 m-resolution Quickbird scene from November 9, 2006. 

It is orthorectified using the cubic convolution 

approximation technique, more suitable than nearest 

neighbor and bilinear interpolation techniques [11]. The 

near infrared band is useful for vegetation studies [12] and 

very high spatial resolution is critical for plant species 

discrimination [13], [14] using texture metrics for example. 

2.2.2. Optical textural data 

Eight gray-level co-occurrence matrix (GLCM) texture 

metrics are extracted from these data: mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second 

moment and correlation [15]. They are calculated on the 4 

bands and in 3x3, 9x9 and 15x15 pixels window sizes. To 

prevent classification from the Hughes phenomenon, we 

select the most relevant band and window size by calculating 

the mean Jeffries-Matusita separability for each 

combination. Separability may be an adapted metric when 

using SVM since they do not aim to describe classes as 

conventional approaches but to separate them [16]. The 

winning combination is the texture calculated on the green 

band in a 15x15 pixels window. Since GLCM texture 

metrics have a strongly different nature from the spectral 

information, they are considered as a separated source as in 

[6]. 

 

2.2.3. SAR data 

For the second image type, two 2.75 m-resolution StripMap 

TerraSAR-X ©DLR (2010) acquisitions were programmed 

over Moorea on April 30, 2010 in VV-VH polarizations and 

on August 28, 2010 in HH-HV polarizations. The scenes are 

geometrically corrected using a 5 m-resolution DEM. 

Speckle noise is reduced by using the enhanced Frost filter 

in a 7x7 pixels window, showing the best mean Jeffries-

Matusita separability after several tests.  

 

2.2.4. DEM-extracted data 

The third data set is the DEM produced from a 

 
 

Figure 1. Presentation of the Moorea island and localization of the 

255 collecting points. 
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R: Red, G: Green, B: Blue  

 

TerraSAR-X ©DLR (2010) 

R: Xvv, G: Xhv, B: Xhh  

 

  
DEM 

R: WI, G: Slope, B: Elevation  

Fusion for classes in difficulty 

Colour correspondence in table 2 

 
Figure 2. Composite illustrations of the source images and 

classification with the “fusion for classes in difficulty” method on 

a subscene centred on the mont Tamarutoofa. 



photogrammetric restitution at a scale of 1/5000 based on 

aerial photography from 1997 at a scale of 1/15000. With a 

5 m-resolution, it enables extraction of topographical 

variables typically impacting plant distribution in montane 

ecosystems: elevation, slope, aspect, windwardness and a 

wetness index (WI) [17]. The latter was used as an index of 

water drainage with low WI values representing convex 

positions like mountain crests and with high WI values 

representing concave positions like coves or hillslope bases. 

It is a function of the slope angle β (in radians) and the 

specific catchment area (As) expressed as m² per unit width 

orthogonal to the flow direction (1). 
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2.3. Fusion of support vector machines 

 

Machine learning algorithms such as SVM have the 

advantage to be non-parametric and to be able to weight 

heterogeneous sources according to their relevance [2]. 

SVM is introduced by [18] and extensively described by 

[19]-[21]. It is arguably one of the most successful 

algorithms for multisource fusion [6], [8], [9]. SVM consists 

in projecting vectors into a high dimension feature space by 

means of a kernel function then fitting an optimal 

hyperplane that separates classes using an optimization 

function. 

We compare the following two fusion schemes based on 

SVM (Figure 2): 

- method in [8]: a single SVM is trained on each source 

separately and a rule image is generated for each class from 

each source. Then an additional SVM is trained on all rule 

images to perform the fusion; 

- “fusion for classes in difficulty”: this fusion method 

starts from the observation that, for some classes, 

multisource fusion can also deteriorate accuracy found in 

monosource when a non-relevant source is added [1]. Thus, 

the general principle is the same but fusion is performed 

only when no single source is able to classify satisfactorily a 

class or a set of classes, i.e. when the condition (2) is 

fulfilled: 

min(PAsource i;UAsource i) < min(PAfusion;UAfusion) (2) 

 
 

wherein i Є [1,4], PA is the producer accuracies and UA the 

user accuracies. Should the opposite occurs, the class is not 

considered as “in difficulty”, the spatial distribution of the 

considered class is the one found in the most accurate single-

source classification (the source having the best 

min(PA;UA)) and the class is expelled from fusion. If a 

pixel belongs to several classes with this process, the class 

with the best min(PA;UA) wins. 

 

3. RESULTS 

 

Regarding fusion methods, accuracies are improved when 

multiple sources are used for classification (Table 1). The 

experimental results clearly show the positive impact of 

complementary multisensory imagery for forest 

classification, especially with “fusion for classes in 

difficulty”. With the latter, 7 classes are considered as “in 

difficulty” and the 10 other classes are classified from a 

single adapted source (Table 2). For example, DEM-

extracted data are adapted to classify the coastal and high-

Table 1. Accuracies (%) achieved by SVM using different sources 

(OA refers to the overall accuracy based on the mean of accuracy 

of each class). 

 

Sources OA Kappa 

1. Optical spectral data 62.7 60.5 

2. Optical textural data 50.3 47.3 

3. SAR data 36.7 32.7 

4. DEM-extracted data 64.2 62.0 

All with method in [8] 67.0 64.9 

All with “fusion for classes in difficulty” 78.2 76.9 

 

 

 

Table 2. Vegetation types occurring on Moorea and source from 

which the classification is based (F refers to “fusion for classes 

in difficulty”; source # refers to table 1). 

 

Classes (colour in figure 2) Source PA UA 

Plantations 

Pinus caribaea 1 72.1 67.1 

Falcataria moluccana (coral) 1 79.0 46.1 

Cocos nucifera F 90.4 90.4 

Coastal vegetation 

Typha domingensis 4 100 100 

Low- to mid-elevation mesic to moist vegetation 

Metrosideros collina (dark green) F 83.1 86.3 

Casuarina equisetifolia 1 90.1 91.0 

Dicranopteris linearis 1 98.2 93.0 

Leucaena leucocephala F 80.3 79.2 

Syzygium cumini F 73.9 60.7 

Miscanthus floridulus 1 86.0 88.4 

Low- to mid-elevation moist to wet vegetation 

Neonauclea forsteri (magenta) F 61.7 41.3 

Aleurites moluccana (white) 2 92.5 86.5 

Inocarpus fagifer F 50.0 39.4 

High-elevation vegetation 

Montane cloud forest (cyan) 4 95.3 96.4 

Summit shrubland 4 98.9 94.8 

Ubiquitous 

Hibiscus tiliaceus (green) 3 24.6 47.3 

Spathodea campanulata F 55.2 70.0 

 



elevation vegetation whereas fusion performs worse. Indeed 

the addition of non-relevant sources acts as a bias in the 

classification process. “Fusion for classes in difficulty” main 

advantage is to not be too global and to select classes which 

can benefit from multiple information sources. 

The fusion processing time has a quadratic relation with 

the number of classes considered for SVM fusion. As a 

result, by limiting the number of classes in the fusion, 

processing time can be significantly reduced. For example, 

with Q=7 (for the “fusion for classes in difficulty”), fusion 

processing time is ca. a sixth of the computational time with 

Q=17 (for the method in [8]). 

 

4. CONCLUSION 

 

Two fusion schemes based on SVM were compared for 

classification of optical, SAR and ancillary data on a 

structurally complex tropical rainforest. We introduced an 

operational method consisting in fusing these data only for 

classes being “in difficulty”. Our method outperformed the 

classical global approach in term of accuracy and reduced by 

a factor 6 the fusion processing time in our study case. 
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