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1. Introduction  

 

Oceanic islands are famous for their unique biota with high endemism but also their great 
vulnerability to anthropogenic disturbances including invasive alien species (Loope et al. 
1988; Caujapé-Castells et al. 2010). As a result, a huge number of endangered species is 
currently found in island ecosystems (IUCN, 2001). Rare insular species may also play a key 
role for ecosystem functioning (Lyons & Schwartz, 2001; Lyons et al., 2005). The detailed 
knowledge of their ecological range and geographic distribution is thus critical for 
biodiversity conservation and management (Ferrier, 2002; Rushton et al., 2004). 
Occurrence records are often scarce for rare species resulting in small training sample 
available for species distribution models (Stockwell & Peterson, 2002; Pearson et al., 2007, 
Wisz et al., 2008). A recent study of Williams et al. (2009) compared the ability of a range of 
models to predict distribution of six rare plants species (from 9 to 129 occurrences). These 
models included generalized linear models, artificial neural networks, the commonly used 
Maximum Entropy (Maxent) distribution and a Classification And Regression Tree (CART) 
model called Random Forests (RF) (Breiman, 2001), the latter outperforming the formers. 
Nonetheless, in the field of remotely sensed data classification, a machine learning 
algorithm is becoming a reference: the Support Vector Machines (SVM) (Vapnik, 1998). 
Algorithms used in remotely sensed data classification for classifying objects reflectance are 
substantially the same than those used in species distribution models for classifying 
environmental layers (Franklin, 1995). Thus, SVM was successfully used for common 
species distribution modelling in few recent studies (Guo et al., 2005; Drake et al., 2006; 
Pouteau et al., 2011a). 
SVM uses presence/absence training samples within a multidimensional feature space to fit 
an optimal separating hyperplane (in each dimension, vector component is an 
environmental layer). In this way, it tries to maximize the margin that is the distance 
between the closest training samples, or support vectors, and the hyperplane itself. Foody & 
Mathur (2006) stated that, as SVM decision boundary is only based on the few support 



vectors, it is particularly able to be trained on a small meaningful sample. Nevertheless, to 
our knowledge, it has never been used for rare species distribution modelling. 
The aim of this study is twofold: (i) to determine which model among RF and SVM is the 
most relevant to map rare species in a study case focusing on endangered native and 
endemic plants in Pacific Islands; and (ii) comparing their predicted potential habitat with 
their current observed range, to understand the causes of their rarity and/or endangerment. 

 
2. Material and methods 
 

2.1 Target rare and endangered species 
 

The present study was conducted on the oceanic tropical island of Moorea (Society 
archipelago, French Polynesia), located at 17°30’ South and 149°50’ West in the South Pacific 
Ocean. It is a small, ca. 140 km², high volcanic island with a rough topography and the 
highest summit reaching 1,207 m a.s.l. This work was part of the “Moorea Biocode Project”, 
an international research program seeking to collect DNA sequence, distribution, 
morphological and ecological data of all non-microbial terrestrial and marine life in an 
island ecosystem (http://www.mooreabiocode.org/). 
Three target species were selected based on their rarity and endangerment on Moorea 
according to their proposed IUCN status in the “Nadeaud botanical database” (Florence et 
al., 2007) and our personal observations from intensive field surveys during the past 4-5 
years. All of the target species are found in relatively pristine forest remnants, and only the 
first two are legally protected in French Polynesia. 
We compiled the available published and unpublished data on their location and 
abundance. The term “occurrence” used hereinafter refers to a 5 m x 5 m area where an 
isolated individual or a population of individuals is present. 

 
2.1.1 Lepinia taitensis 
 

Lepinia taitensis (Apocynaceae) is a small tree commonly 2-5 m that grows up to 10 m in 
height (Fig. 1). An endemic to the islands of Tahiti and Moorea (Society archipelago), it 
occurs in low- to mid-elevation wet valley forests. It is listed as a “critically endangered” 
(CR) by IUCN Red List (IUCN, 2001). We recorded a total of 28 occurrences on Moorea.  
 
2.1.2 Pouteria tahitensis 
 

Pouteria (syn. Planchonella) tahitensis (Sapotaceae) is a large tree, often between 10-20 m in 
height on Moorea (Fig. 2). It was previously described as an endemic to the Society (Florence 
et al., 2007), but is probably native to South Pacific islands (Swenson, U., pers. comm. 2011). 
It is mainly found on slopes in mid-elevation mesic to wet forests. It is considered as CR in 
Tahiti and Moorea (IUCN, 2001). Only 20 occurrences were recorded on Moorea. 

 
2.1.3 Santalum insulare 
 

Santalum insulare var. raiateense (Santalaceae) is a shrub up to 3 m tall, endemic to the islands 
of Moorea and Raiatea (Society archipelago) where it occurs on low- to mid-elevation dry 



and mesic ridges and slopes (Fig. 3). It is considered “near threatened” (NR) on Moorea and 
CR on Raiatea (IUCN, 2001). A total of 81 occurrences was recorded on the former. 
 

 
Fig. 1. Habit of Lepinia taitensis in the understory of native lowland wet forest at 250 m 
elevation (R. Pouteau) 
 

 

Fig. 2. A large population (20-30 individuals) of Pouteria tahitensis at 300 m elevation (R. 
Taputuarai) 



 

Fig. 3. Santalum insulare on a dry and open ridge at 400 m elevation (J.-Y. Meyer) 

 
2.2 Biophysical descriptors 
 
Biophysical descriptors that can be used in species distribution models are thoroughly 
presented in Wilson & Gallant (2000). In the context of Pacific high volcanic islands and our 
target species, the descriptors that appears to us as the most contributing factors are of 
abiotic and biotic nature. 

 
2.2.1 Abiotic 
 

Abiotic descriptors we used include: 
- elevation affecting air temperature. Considering an environmental lapse rate of 

0.0058°C/m as observed in Hawaii (Baruch & Glodstein, 1999), there is a shift of 
7°C between sea-level and the highest summit of Moorea (Mt Tohiea, 1,207 m). Air 
temperature is one of the most important factors controlling vegetation zonation 
and key processes such as evapotranspiration, carbon fixation and decomposition, 
plant productivity and mortality in mountain ecosystems (Chen et al., 1999; Nagy 
et al., 2003; Richardson et al., 2004); 

- slope steepness (called “Slope” hereinafter) can be considered as a proxy of 
overland and subsurface flow velocity and runoff rate, effect of micro-topography 
on precipitation, geomorphology, soil water content (Wilson & Gallant, 2000), 
mechanical effect on plant rooting and seed dispersion; 

- slope exposure (called “Aspect” hereinafter) as a proxy of solar insolation and 
evapotranspiration (Wilson & Gallant, 2000);  

- windwardness expressing exposure to trade wind; 



- a compound topographic index (CTI), quantifying fluid drainage by micro-
topography and explaining geomorphology (Moore et al., 1993; Gessler et al., 2000), 
with low CTI values representing convex positions like mountain crests and with 
high CTI values representing concave positions like coves or hillslope bases. It is 
considered as a secondary physiographic descriptor since it is computed from 
primary physiographic descriptors (elevation and slope) (Moore et al., 1991). 
Indeed, CTI is a function of the slope angle β (in radians) and the specific 
catchment area (As) expressed as m² per unit width orthogonal to the flow 
direction (1); 

 
CTI=log(As/tan β) (1) 

 
Abiotic descriptors were extracted from a 5 m-resolution digital elevation model (DEM). 

 
2.2.2 Biotic 
 
We used a vegetation map as the biotic descriptor. Indeed forest overstory can affect 
temperature and resources (e.g. light, water, nutrients) availability by competition (Riegel et 
al., 1992). 
Vegetation map was obtained by classifying satellite imagery. The use of both 
physiographic and remotely sensed data in classifications is commonly found in the 
litterature (e.g. Strahler, 1981; Hutchinson, 1982; Linderman et al., 2004; Joshi et al., 2006). 
Here, satellite data is a mosaic of five 0.60 m-resolution Quickbird scenes. Very high 
resolution imagery such as the one from the Quickbird satellite is useful for tree species 
identification (Turner et al., 2003; Gillepsie et al., 2008; Xie et al., 2008). As suggested by 
Song et al. (2005), spectral and textural information was considered separately. 
Spectral information was the native blue (430-545 nm), green (466-620 nm), red (590-710 nm) 
and near infrared (715-918 nm) channels. 
Texture is generally referred to as the detailed spatial pattern of variability of the image 
average tone. Here, textural information includes eight gray-level co-occurrence matrix 
(GLCM) metrics introduced by Haralick (1973), namely mean, variance, homogeneity, 
contrast, dissimilarity, entropy, second moment and correlation. This kind of texture metrics 
is the most used (Gong et al. 1992; Franklin & Peddle, 1989; Marceau et al., 1990; Aujusteijn 
et al., 1995; Franklin et al., 2000; Nyoungi et al., 2002; Podest & Saatchi, 2002) and output 
good results (Paulhac, 2009). Franklin et al. (1996) and Chen et al. (2004) showed that the 
accuracy of classification on texture metrics can be improved by using multiple extraction 
window sizes. Here, texture was extracted in windows of 3x3 pixels, 9x9 pixels and 15x15 
pixels visually identified as representing intra-tree micro-texture (small branches structure), 
intra-tree macro-texture (large branches structure) and inter-tree texture (trunks, individuals 
structure) respectively. 
Numerous algorithms have been proposed to classify two sources such as native bands and 
textural information. In the comparative studies found in the literature, “wining” algorithms 
include the Dempster orthogonal sum combination rule (Lee et al., 1987), artificial neural 
networks (Benediktsson et al., 1990; Serpico & Roli, 1995), the logarithmic opinion pool 
(Benediktsson & Kanellopoulos), the sequential maximum a posteriori (Michelson et al., 
2000), the majority voting (Fauvel et al., 2006) and SVM (Song et al., 2005; Waske & 



Benediktsson, 2007; Chu & Ge, 2010). The latter was used in the most recent studies and has 
never been “beaten” in the previously mentioned comparative studies. The classification 
scheme we used is the one introduced by Waske & Benediktsson (2007): (i) native bands and 
textural information are classified by means of a single SVM applied on each source 
separately. The output of the classifier is an image containing the distance of each vector to 
the decision boundary (also called “rule image”); and (ii) an additional SVM is applied on 
the set of rule images. 
Input pixels were assigned following numerous ground truth missions between 22 July 2009 
and 6 February 2011. Sampled surface represents 0.2 ha for each of the 17 classes identified 
on Moorea, namely a total of 3.4 ha i.e. 0.25‰ of the island (distribution of the sample points 
is shown in Fig. 4). A first half of this area was used for SVM training and the other half was 
put aside for classification assessment. 
 

 
Fig. 4. Distribution of the GPS points sampled for vegetation and rare species mapping on 
Moorea. Locations of the three target species occurrences are deliberately shown without a 
precise position as they are legally protected 
 
The resulting 0.60 m-resolution vegetation map was upscaled to a 5 m-resolution (to make 
easier the correspondence with abiotic descriptors) using the nearest neighbour method, 
more reliable than other classic methods (e.g. bilinear interpolation and cubic convolution) 
to resample categorical data (Baboo & Devi, 2010). 

 



2.3 Machine learning algorithms 
 

The ability of RF and SVM to integrate the aforementioned biophysical descriptors was 
compared. We used the implementations found in the open source machine learning 
software from the University of Waikato (New Zealand) called Weka 
(http://www.cs.waikato.ac.nz/ml/weka/). Rare species classifications were trained on 66% 
of occurrences and validated on the remaining 33%. “Absence” class is actually made of 
pseudo-absence pixels i.e. pixels randomly sampled within the unoccupied space. The same 
number of pixels was used for the “presence” class than for the “absence” class in order to 
avoid under- or over-estimation problems due to unbalanced training sets (Japkowicz & 
Stephen, 2002; Eitrich & Lang, 2005; Eitrich & Lang, 2006). 

 
2.3.1 Random Forest 
 

RF, introduced by Breiman (2001), is an ensemble of individual tree predictors. Each input 
vector is put down into each of the trees in the forest. Each tree gives a classification, and we 
say the tree "votes" for that class. The forest chooses the classification having the most votes 
over all the trees in the forest. We populated our forests with the number of trees yielding 
the best accuracy metrics by cross-validation. RF has been recently and successfully used for 
species distribution modelling (Prasad et al., 2006; Cutler et al., 2007; Benito Garzon et al., 
2008; Williams et al., 2009). 

 
2.3.2 Support Vector Machines 
 

Fig. 5 presents the SVM, originally introduced as a binary classifier (Vapnik, 1998) and 
extensively described by Burges (1998), Schölkopf & Smola (2002) and Hsu et al. (2009). 
Subsequently we just give a brief description of the algorithm. SVM uses two classes (e.g. 
presence/absence) of training samples within a multidimensional feature space to fit an 
optimal separating hyperplane (in each dimension, vector component is image gray-level). 
In this way, SVM tries to maximize the margin that is the distance between the closest 
training samples, or support vectors, and the hyperplane itself. 
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Fig. 5. Concept of a SVM. The cross circles refer to support vectors. The optimal separating 
hyperplane lies on them 
 



SVM consists in projecting vectors into a high dimensional feature space by means of a 
kernel trick then fitting the optimal hyperplane that separates classes using an optimization 
function. For a generic pattern x, the corresponding estimated label ŷ is given by (2). 
 

ŷ=sign[f(x)]=sign[sum(i from 1 to N)yi.αi.K(xi,x) + b] (2) 

 
Wherein N is the number of training points, the label of the ith sample is yi, b is a bias 
parameter, K(xi,x) is the chosen kernel and αi denotes the Lagrangian multipliers. 
Several kernels are used in the literature. According to Hsu et al. (2009) and supported by 
many other authors, the Gaussian Radial Basis Function (RBF) has both advantages (i) to be 
very successful since it works in an infinite dimensional feature space; and (ii) contrary to 
the other well working kernels (e.g. polynomial), RBF has a single parameter γ>0. The 
equation is (3). 
 

K(xi, x)=exp[-γ║xi-x║²] (3) 

 
Noise in the data can be accounted for by defining a distance tolerating the data scattering, 
thus relaxing the decision constraint. This regularization parameter C as well as γ is found 
by cross-validation (Hsu et al., 2009). 
Only αi belonging to support vectors si have not a null value so the classification function is 
actually (4). 
 

ŷ=sign[f(x)]=sign[sum(i from 1 to Ps)yi.αi.K(si,x) + b] (4) 

 
Wherein Ps is the number of support vectors. Thus, the decision boundary is solely based on 
few meaningful pixels. This is why SVM may be very appropriated for predicting 
distribution of species with scarce occurrence records. 

 
3. Results 
 

3.1 Vegetation map 
 

In Congalton & Green (2009), several methods for assessing classification accuracy are 
introduced. In our study case, we used the same two metrics as in Williams et al. (2009).  
They are defined as follow: 

- on the one hand, AUC score refers to the area under the ROC (Receiver Operating 
Characteristic) curve: ROC metric is often represented by a curve corresponding to 
corrected assigned pixels rate according to the misclassification rate. The best 
possible prediction method would yield a point in the upper left corner or 
coordinate (0,1) of the ROC space, representing 100% correctly assigned pixels; 

- on the other hand, Cohen’s Kappa expresses whether correctly assigned pixels may 
have been assigned by chance or not based on the classification decision rule. A 
value of 1 indicates perfect agreement and 0.5 indicates a pattern arising by chance. 

The SVM classification of the Quickbird imagery (illustrated by Fig. 6) gives fairly good 
results with a Kappa of 0.842 and an AUC of 0.965. Texture is arguably the most 



contributing information since the classification based on the single textural information 
gives a Kappa of 0.821 and an AUC of 0.955 (data not shown). 

 
Fig. 6. Vegetation map of Moorea using a SVM classification of a Quickbird mosaic 

 
3.2 Contribution of biophysical descriptors 
 

 

 

 
Fig. 7. Relative contribution in the SVM classification of each descriptor based on the 
differences of accuracy yielded with all descriptors and without the regarded descriptor 



Regarding Fig. 7, descriptors relative contribution is always positive (which confirms their 
adaptation to the context of Pacific high volcanic islands and to our target species) but varies 
according to the concerned species. Although AUC and Cohen’s Kappa scores are not very 
correlated, the three most contributing descriptors are arguably (by order of contribution): 
elevation, CTI and slope. Nevertheless, overstory vegetation is conspicuously contributing 
to the spatial distribution of Lepinia taitensis which seems coherent as the species is found in 
the understory of dense rainforest with a probable strong dependence of incident light. 
Aspect is substantially influencing spatial distribution of Santalum insulare, which essentially 
occurs on dry ridges and slopes facing north. 

 
3.3 Machine learning algorithms comparison 
 

Both machine learning algorithms yield very good numerical results but, as shown by 
accuracy metrics presented in Table 1, SVM slightly and stably outperforms RF for the three 
target species. 
 

 RF(%) SVM (%) 
(a) AUC scores   
Lepinia taitensis 97.4 97.9 
Pouteria tahitensis 87.4 89.0 
Santalum insulare var raiateense 97.2 97.2 
(b) Cohen’s Kappa   
Lepinia taitensis 85.4 85.4 
Pouteria tahitensis 70.0 78.0 
Santalum insulare var raiateense 84.5 87.0 

 
Table 1. Comparison of RF and SVM to predict occurrences for rare plant species 
 
An “ecological niche” refers to an n-dimensional hypervolume where each dimension 
corresponds to the environmental range in which a species can persist (Hutchinson, 1957).  
SVM appears more able to fit the observed ecological niches of the three target species than 
RF (Fig. 8). This fact is particularly true for species with the fewest recorded occurrences: 
Lepinia taitensis (28 occurrences) and Pouteria tahitensis (20 occurrences). On the contrary, 
ecological niche of Santalum insulare (81 occurrences) modelled by both machine learning 
algorithms SVM and RF matches the observed ecological niches in a comparable way. 

 
4. Discussion 
 

4.1 Random Forest vs. Support Vector Machines 
 

RF and SVM were compared on their ability to predict rare and endangered species 
distribution. RF was found to be optimal for predicting rare species occurrences among a 
wide panel of algorithms in Williams et al. (2009). SVM has never been used for predicting 
rare species distribution, and yet it outperforms RF in our study case. The main reason is 
most likely the result of the paradigm of SVM based on a small pixels sample (i.e. support 
vectors) (Foody & Mathur, 2006). Consequently, SVM is particularly able to be trained with 



few meaningful pixels and to fit limited information. Reciprocally, SVM may not be very 
impacted by insignificant pixels. Now, noisy pixels are more frequent in high resolution 
imagery than in coarse resolution imagery thanks to information aggregation in large pixels 
(Hatton et al., 1997; Turner et al., 2003). SVM is thus probably more adapted than CART 
approaches such as RF, typically showing difficulties at a fine scale (Thuiller et al., 2003). 
Moreover, RF classification process occurs in a six dimensions space (one dimension per 
biophysical descriptor). By using the RBF kernel which works in an infinite dimensional 
feature space, it is easier for SVM to separate potential habitat from inappropriate habitat. 
 

 
Fig. 8. Ecological niche of Lepinia taitensis (green), Pouteria tahitensis (blue) and Santalum 
insulare (red) based on the extrema of the three most contributing biophysical descriptors 
where the species occur. 

 
4.2 Potential habitat vs. current habitat 
 

According to SVM, the potential distribution ranges of Lepinia taitensis, Pouteria tahitensis 
and Santalum insulare are 15 ha, 38 ha and 32 ha respectively (Fig. 9), suggesting that the 
target species have no very narrow and specialized habitats. 
 

   
Lepinia taitensis Pouteria tahitensis Santalum insulare 

Fig. 9. Rare species distribution maps produced by SVM classification. Blue colour refers to 
area where the species is absent and red to its potential habitat 
 
Current habitat based on observed occurrences are 700 m² (4.7‰ of the modelled potential 
habitat), 500 m² (1.3‰) and 2025 m² (6.3‰) respectively. We assume that this low density is 



not related to an overestimation of the potential habitats made by the model as SVM gives 
fairly good analytical results as shown previously. 
Moreover, the assumption that the native and endemic flora of Moorea is currently poorly 
known is to be excluded as the island was surveyed by naturalists and botanists in the past 
(Grant et al. 1974; Florence et al., 2007) and by us in an extensive way for the last 4-5 years. 
We hypothesize that the discrepancy between potential and current habitats are of 
anthropogenic causes:  

- habitat loss and fragmentation caused by deforestation, over-grazing by feral 
ungulates and intentional and accidental fires at low and mid-elevation since the 
pre-European period and in the modern times; 

- invasions by alien plant species, especially in low- to mid-elevation forests (Kueffer 
et al., 2010). More than 180 alien species are currently naturalized on Moorea 
(Fourdrigniez, M., pers. comm. 2011). As an illustration, Lepinia taitensis and, to a 
lesser extent, Pouteria tahitensis are critically threatened by the small tree Miconia 
calvescens which overtops rainforests native flora (Meyer, 2004) and covers 25% of 
the island (Pouteau et al., 2011b). Other invasive plants on Moorea include the 
shrubs and trees Falcataria moluccana, Lantana camara, Psidium spp., Tecoma stans, 
Spathodea campanulata, Rubus rosifolius and Syzygium cumini and the vines and 
grasses Melinis minutiflora, Merremia peltata, Mikania micrantha and Miscanthus 
floridulus ; 

- proliferation of introduced predatory animals. The three target species are severely 
depredated by rats (Rattus spp.) feeding on their seeds (Lhuillier et al., 2006; Meyer 
& Butaud, 2009); 

- extirpation or extinction of endemic avian frugivores by over-hunting, predation 
(rats, cats, Swamp Harrier Circus approximans) and competition with alien birds 
(Red-vented Bulbul Pycnonotus cafer, Common Myna Acridotheres tristis) which lead 
to a lack of seed dispersal (Spotswood & Meyer, 2009). 

Moreover, the three target species can be considered as K-strategists, characterized by a 
large individual size, slow life cycle and the production of a few number of large fruits 
(MacArthur & Wilson, 1967). Their life history traits made them more vulnerable to rapid 
environmental changes. 

 
5. Conclusion 
 

The first goal of this study was to compare two species ecological niche models, Random 
Forest (RF) with Support Vector Machines (SVM), in order to predict the distribution of rare 
species in natural ecosystems. We focused on three endangered native and endemic plants 
with small occurrence records ranging from 20 to 81 on the tropical oceanic island of 
Moorea (French Polynesia). Our analysis was based on six fine scale environmental layers, 
namely elevation, slope steepness, slope aspect, windwardness, a Compound Topographic 
Index (CTI) quantifying fluid drainage, and a vegetation map obtained by classifying a set of 
Quickbird satellite scenes. Results revealed that SVM outperforms RF especially when the 
number of observed occurrences is scarce. By producing more accurate maps of rare and 
endangered species, SVM is thus a tool of great practical value for conservation 
macroecologists and resource managers, and should be more considered in their future 
researches. 



The relative high accuracy of distribution maps provided by SVM also allowed us to better 
understand the causes of the rarity and/or endangerment of some island native and 
endemic species by comparing their predicted potential habitat with their current observed 
range. Our data show that our three target species have a wide geographic distribution but 
small population size probably caused by strong anthropogenic disturbances (e.g. habitat 
loss and fragmentation, invasions by alien plant species and predatory animals, and 
possibly extirpation or extinction of natural dispersal agents) aggravated by their 
“outmoded” life history traits  (i.e. not adapted to rapidly changing ecosystems). In the 
contrary, other rare and threatened species found on the island of Moorea in relatively well-
preserved habitats (e.g. the subalpine vegetation or montane cloud forests) have a narrower 
geographic distribution but relatively large population size. We assume that the rare species 
found at low- and mid-elevation in the Pacific Islands are much more prone to extinction 
and should be of high conservation priority. 
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