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Comparing machine learning algorithms to map rare and endangered native and endemic plants in Pacific Islands forests

Introduction

Oceanic islands are famous for their unique biota with high endemism but also their great vulnerability to anthropogenic disturbances including invasive alien species [START_REF] Loope | Comparative conservation biology of oceanic archipelagoes[END_REF][START_REF] Caujapé-Castells | Conservation of oceanic island floras: present and future global challenges[END_REF]). As a result, a huge number of endangered species is currently found in island ecosystems (IUCN, 2001). Rare insular species may also play a key role for ecosystem functioning [START_REF] Lyons | Rare species loss alters ecosystem functioninvasion resistance[END_REF][START_REF] Lyons | Rare species and ecosystem functioning[END_REF]. The detailed knowledge of their ecological range and geographic distribution is thus critical for biodiversity conservation and management [START_REF] Ferrier | Mapping spatial pattern in biodiversity for regional conservation planning: where to from here[END_REF][START_REF] Rushton | New paradigm for modeling species distribution[END_REF]. Occurrence records are often scarce for rare species resulting in small training sample available for species distribution models [START_REF] Stockwell | Effect of sample size on accuracy of species distribution models[END_REF][START_REF] Pearson | Predicting species distributions from small numbers of occurrence records: a case using cryptic geckos in Madagascar[END_REF][START_REF] Wisz | Effects of sample size on the performance of species distribution models[END_REF]. A recent study of [START_REF] Williams | Using species distribution models to predict new occurrences for rare plants[END_REF] compared the ability of a range of models to predict distribution of six rare plants species (from 9 to 129 occurrences). These models included generalized linear models, artificial neural networks, the commonly used Maximum Entropy (Maxent) distribution and a Classification And Regression Tree (CART) model called Random Forests (RF) [START_REF] Breiman | Random forests[END_REF], the latter outperforming the formers. Nonetheless, in the field of remotely sensed data classification, a machine learning algorithm is becoming a reference: the Support Vector Machines (SVM) [START_REF] Vapnik | Statistical learning theory[END_REF]. Algorithms used in remotely sensed data classification for classifying objects reflectance are substantially the same than those used in species distribution models for classifying environmental layers [START_REF] Franklin | Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients[END_REF]. Thus, SVM was successfully used for common species distribution modelling in few recent studies [START_REF] Guo | Support vector machines for predicting distribution of Sudden Oak Death in California[END_REF][START_REF] Drake | Modelling ecological niches with support vector machines[END_REF]Pouteau et al., 2011a). SVM uses presence/absence training samples within a multidimensional feature space to fit an optimal separating hyperplane (in each dimension, vector component is an environmental layer). In this way, it tries to maximize the margin that is the distance between the closest training samples, or support vectors, and the hyperplane itself. [START_REF] Foody | The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM[END_REF] stated that, as SVM decision boundary is only based on the few support vectors, it is particularly able to be trained on a small meaningful sample. Nevertheless, to our knowledge, it has never been used for rare species distribution modelling. The aim of this study is twofold: (i) to determine which model among RF and SVM is the most relevant to map rare species in a study case focusing on endangered native and endemic plants in Pacific Islands; and (ii) comparing their predicted potential habitat with their current observed range, to understand the causes of their rarity and/or endangerment.

Material and methods

Target rare and endangered species

The present study was conducted on the oceanic tropical island of Moorea (Society archipelago, French Polynesia), located at 17°30' South and 149°50' West in the South Pacific Ocean. It is a small, ca. 140 km², high volcanic island with a rough topography and the highest summit reaching 1,207 m a.s.l. This work was part of the "Moorea Biocode Project", an international research program seeking to collect DNA sequence, distribution, morphological and ecological data of all non-microbial terrestrial and marine life in an island ecosystem (http://www.mooreabiocode.org/). Three target species were selected based on their rarity and endangerment on Moorea according to their proposed IUCN status in the "Nadeaud botanical database" [START_REF] Florence | Base de données botaniques Nadeaud de l'Herbier de la Polynésie française[END_REF] and our personal observations from intensive field surveys during the past 4-5 years. All of the target species are found in relatively pristine forest remnants, and only the first two are legally protected in French Polynesia. We compiled the available published and unpublished data on their location and abundance. The term "occurrence" used hereinafter refers to a 5 m x 5 m area where an isolated individual or a population of individuals is present.

Lepinia taitensis

Lepinia taitensis (Apocynaceae) is a small tree commonly 2-5 m that grows up to 10 m in height (Fig. 1). An endemic to the islands of Tahiti and Moorea (Society archipelago), it occurs in low-to mid-elevation wet valley forests. It is listed as a "critically endangered" (CR) by IUCN Red List (IUCN, 2001). We recorded a total of 28 occurrences on Moorea.

Pouteria tahitensis

Pouteria (syn. Planchonella) tahitensis (Sapotaceae) is a large tree, often between 10-20 m in height on Moorea (Fig. 2). It was previously described as an endemic to the Society [START_REF] Florence | Base de données botaniques Nadeaud de l'Herbier de la Polynésie française[END_REF], but is probably native to South Pacific islands (Swenson, U., pers. comm. 2011). It is mainly found on slopes in mid-elevation mesic to wet forests. It is considered as CR in Tahiti and Moorea (IUCN, 2001). Only 20 occurrences were recorded on Moorea.

Santalum insulare

Santalum insulare var. raiateense (Santalaceae) is a shrub up to 3 m tall, endemic to the islands of Moorea and Raiatea (Society archipelago) where it occurs on low-to mid-elevation dry and mesic ridges and slopes (Fig. 3). It is considered "near threatened" (NR) on Moorea and CR on Raiatea (IUCN, 2001). A total of 81 occurrences was recorded on the former. 

Biophysical descriptors

Biophysical descriptors that can be used in species distribution models are thoroughly presented in [START_REF] Wilson | Terrain analysis: principles and applications[END_REF]. In the context of Pacific high volcanic islands and our target species, the descriptors that appears to us as the most contributing factors are of abiotic and biotic nature.

Abiotic

Abiotic descriptors we used include:

elevation affecting air temperature. Considering an environmental lapse rate of 0.0058°C/m as observed in Hawaii (Baruch & Glodstein, 1999), there is a shift of 7°C between sea-level and the highest summit of Moorea (Mt Tohiea, 1,207 m). Air temperature is one of the most important factors controlling vegetation zonation and key processes such as evapotranspiration, carbon fixation and decomposition, plant productivity and mortality in mountain ecosystems [START_REF] Chen | Microclimate in forest ecosystem and landscape ecology[END_REF]Nagy et al., 2003;[START_REF] Richardson | Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States[END_REF]; -slope steepness (called "Slope" hereinafter) can be considered as a proxy of overland and subsurface flow velocity and runoff rate, effect of micro-topography on precipitation, geomorphology, soil water content [START_REF] Wilson | Terrain analysis: principles and applications[END_REF], mechanical effect on plant rooting and seed dispersion; -slope exposure (called "Aspect" hereinafter) as a proxy of solar insolation and evapotranspiration [START_REF] Wilson | Terrain analysis: principles and applications[END_REF]; -windwardness expressing exposure to trade wind; -a compound topographic index (CTI), quantifying fluid drainage by microtopography and explaining geomorphology (Moore et al., 1993;[START_REF] Gessler | Modeling soil-landscape and ecosystem properties using terrain attributes[END_REF], with low CTI values representing convex positions like mountain crests and with high CTI values representing concave positions like coves or hillslope bases. It is considered as a secondary physiographic descriptor since it is computed from primary physiographic descriptors (elevation and slope) [START_REF] Moore | Digital terrain modelling: a review of hydrological, geomorphological and biological applications[END_REF]. Indeed, CTI is a function of the slope angle β (in radians) and the specific catchment area (As) expressed as m² per unit width orthogonal to the flow direction (1);

CTI=log(As/tan β) (1)
Abiotic descriptors were extracted from a 5 m-resolution digital elevation model (DEM).

Biotic

We used a vegetation map as the biotic descriptor. Indeed forest overstory can affect temperature and resources (e.g. light, water, nutrients) availability by competition [START_REF] Riegel | Competition for resources between understory vegetation and overstory Pinus ponderosa in Northeastern Oregon[END_REF]. Vegetation map was obtained by classifying satellite imagery. The use of both physiographic and remotely sensed data in classifications is commonly found in the litterature (e.g. [START_REF] Strahler | Stratification of natural vegetation for forest and rangeland inventory using Landsat digital imagery and collateral data[END_REF][START_REF] Hutchinson | Techniques for combining Landsat and ancillary data for digital classification improvement[END_REF][START_REF] Linderman | Using artificial neural networks to map the spatial distribution of understory bamboo from remotely sensed data[END_REF][START_REF] Joshi | Indirect remote sensing of a cryptic forest understorey invasive species[END_REF].

Here, satellite data is a mosaic of five 0.60 m-resolution Quickbird scenes. Very high resolution imagery such as the one from the Quickbird satellite is useful for tree species identification [START_REF] Turner | Remote sensing for biodiversity science and conservation[END_REF][START_REF] Gillepsie | Measuring and modeling biodiversity from space[END_REF][START_REF] Xie | Remote sensing imagery in vegetation mapping: a review[END_REF]. As suggested by [START_REF] Song | Automatic CRP mapping using nonparametric machine learning approaches[END_REF], spectral and textural information was considered separately. Spectral information was the native blue (430-545 nm), green (466-620 nm), red (590-710 nm) and near infrared (715-918 nm) channels.

Texture is generally referred to as the detailed spatial pattern of variability of the image average tone. Here, textural information includes eight gray-level co-occurrence matrix (GLCM) metrics introduced by [START_REF] Haralick | Textural features for image classification[END_REF], namely mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation. This kind of texture metrics is the most used [START_REF] Gong | A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[END_REF][START_REF] Franklin | Spectral texture for improved class discrimination in complex terrain[END_REF][START_REF] Marceau | Evaluation of the greylevel co-occurrence matrix method for land-cover classification using SPOT imagery[END_REF]Aujusteijn et al., 1995;[START_REF] Franklin | Incorporating texture into classification of forest species composition from airborne multispectral images[END_REF]Nyoungi et al., 2002;[START_REF] Podest | Application of multiscale texture in classifying JERS-1 radar data over tropical vegetation[END_REF] and output good results [START_REF] Paulhac | Outils et méthodes d'analyse d'images 3D texturées : application à la segmentation des images echographiques[END_REF]. [START_REF] Franklin | Automated derivation of geographic window sizes for remote sensing digital image texture analysis[END_REF] and [START_REF] Chen | Examining the effect of spatial resolution and texture window size on classification accuracy: an urban environment case[END_REF] showed that the accuracy of classification on texture metrics can be improved by using multiple extraction window sizes. Here, texture was extracted in windows of 3x3 pixels, 9x9 pixels and 15x15 pixels visually identified as representing intra-tree micro-texture (small branches structure), intra-tree macro-texture (large branches structure) and inter-tree texture (trunks, individuals structure) respectively. Numerous algorithms have been proposed to classify two sources such as native bands and textural information. In the comparative studies found in the literature, "wining" algorithms include the Dempster orthogonal sum combination rule [START_REF] Lee | Probabilistic and evidential approaches for multisource data analysis[END_REF], artificial neural networks [START_REF] Benediktsson | Neural network approaches versus statistical methods in classification of multisource remote sensing data[END_REF][START_REF] Serpico | Classification of multisensor remote-sensing images by structured neural networks[END_REF], the logarithmic opinion pool (Benediktsson & Kanellopoulos), the sequential maximum a posteriori [START_REF] Michelson | Comparison of algorithms for classifying Swedish landcover using Landsat TM and ERS-1 SAR data[END_REF], the majority voting [START_REF] Fauvel | A combined support vector machines classification based on decision fusion[END_REF] and SVM [START_REF] Song | Automatic CRP mapping using nonparametric machine learning approaches[END_REF][START_REF] Waske | Fusion of support vector machines for classification of multisensor data[END_REF][START_REF] Chu | Synergistic use of multi-temporal ALOS/PALSAR with SPOT multispectral satellite imagery for land cover mapping in the Ho Chi Minh city area, Vietnam[END_REF]. The latter was used in the most recent studies and has never been "beaten" in the previously mentioned comparative studies. The classification scheme we used is the one introduced by Waske & Benediktsson ( 2007): (i) native bands and textural information are classified by means of a single SVM applied on each source separately. The output of the classifier is an image containing the distance of each vector to the decision boundary (also called "rule image"); and (ii) an additional SVM is applied on the set of rule images. Input pixels were assigned following numerous ground truth missions between 22 July 2009 and 6 February 2011. Sampled surface represents 0.2 ha for each of the 17 classes identified on Moorea, namely a total of 3.4 ha i.e. 0.25‰ of the island (distribution of the sample points is shown in Fig. 4). A first half of this area was used for SVM training and the other half was put aside for classification assessment. The resulting 0.60 m-resolution vegetation map was upscaled to a 5 m-resolution (to make easier the correspondence with abiotic descriptors) using the nearest neighbour method, more reliable than other classic methods (e.g. bilinear interpolation and cubic convolution) to resample categorical data [START_REF] Baboo | An analysis of different resampling methods in Coimbatore, District[END_REF].

Machine learning algorithms

The ability of RF and SVM to integrate the aforementioned biophysical descriptors was compared. We used the implementations found in the open source machine learning software from the University of Waikato (New Zealand) called Weka (http://www.cs.waikato.ac.nz/ml/weka/). Rare species classifications were trained on 66% of occurrences and validated on the remaining 33%. "Absence" class is actually made of pseudo-absence pixels i.e. pixels randomly sampled within the unoccupied space. The same number of pixels was used for the "presence" class than for the "absence" class in order to avoid under-or over-estimation problems due to unbalanced training sets [START_REF] Japkowicz | The class imbalance problem: a systematic study[END_REF][START_REF] Eitrich | Parallel tuning of support vector machine learning parameters for large and unbalanced data sets[END_REF][START_REF] Eitrich | Efficient optimization of support vector machine learning parameters for unbalanced datasets[END_REF].

Random Forest

RF, introduced by [START_REF] Breiman | Random forests[END_REF], is an ensemble of individual tree predictors. Each input vector is put down into each of the trees in the forest. Each tree gives a classification, and we say the tree "votes" for that class. The forest chooses the classification having the most votes over all the trees in the forest. We populated our forests with the number of trees yielding the best accuracy metrics by cross-validation. RF has been recently and successfully used for species distribution modelling [START_REF] Prasad | Newer classification and regression tree techniques: bagging and random forests for ecological prediction[END_REF][START_REF] Cutler | Random forests for classification in ecology[END_REF][START_REF] Benito Garzon | Effects of climate change on the distribution of Iberian tree species[END_REF][START_REF] Williams | Using species distribution models to predict new occurrences for rare plants[END_REF].

Support Vector Machines

Fig. 5 presents the SVM, originally introduced as a binary classifier [START_REF] Vapnik | Statistical learning theory[END_REF] and extensively described by [START_REF] Burges | A tutorial on support vector machines for pattern recognition[END_REF], [START_REF] Schölkopf | Learning with kernels[END_REF] and [START_REF] Hsu | A practical guide to support vector classification[END_REF]. Subsequently we just give a brief description of the algorithm. SVM uses two classes (e.g. presence/absence) of training samples within a multidimensional feature space to fit an optimal separating hyperplane (in each dimension, vector component is image gray-level).

In this way, SVM tries to maximize the margin that is the distance between the closest training samples, or support vectors, and the hyperplane itself. SVM consists in projecting vectors into a high dimensional feature space by means of a kernel trick then fitting the optimal hyperplane that separates classes using an optimization function. For a generic pattern x, the corresponding estimated label ŷ is given by (2).

ŷ=sign[f(x)]=sign[sum(i from 1 to N)yi.αi.K(xi,x) + b]

(2)

Wherein N is the number of training points, the label of the ith sample is yi, b is a bias parameter, K(xi,x) is the chosen kernel and αi denotes the Lagrangian multipliers.

Several kernels are used in the literature. According to [START_REF] Hsu | A practical guide to support vector classification[END_REF] and supported by many other authors, the Gaussian Radial Basis Function (RBF) has both advantages (i) to be very successful since it works in an infinite dimensional feature space; and (ii) contrary to the other well working kernels (e.g. polynomial), RBF has a single parameter γ>0. The equation is (3).

K(xi, x)=exp[-γ║xi-x║²]

(3)

Noise in the data can be accounted for by defining a distance tolerating the data scattering, thus relaxing the decision constraint. This regularization parameter C as well as γ is found by cross-validation [START_REF] Hsu | A practical guide to support vector classification[END_REF].

Only αi belonging to support vectors si have not a null value so the classification function is actually (4).

ŷ=sign[f(x)]=sign[sum(i from 1 to Ps)yi.αi.K(si,x) + b] (4)
Wherein Ps is the number of support vectors. Thus, the decision boundary is solely based on few meaningful pixels. This is why SVM may be very appropriated for predicting distribution of species with scarce occurrence records.

Results

Vegetation map

In [START_REF] Congalton | Assessing the Accuracy of Remotely Sensed Data: Principles and Practices[END_REF], several methods for assessing classification accuracy are introduced. In our study case, we used the same two metrics as in [START_REF] Williams | Using species distribution models to predict new occurrences for rare plants[END_REF]. They are defined as follow:

on the one hand, AUC score refers to the area under the ROC (Receiver Operating Characteristic) curve: ROC metric is often represented by a curve corresponding to corrected assigned pixels rate according to the misclassification rate. The best possible prediction method would yield a point in the upper left corner or coordinate (0,1) of the ROC space, representing 100% correctly assigned pixels; -on the other hand, Cohen's Kappa expresses whether correctly assigned pixels may have been assigned by chance or not based on the classification decision rule. A value of 1 indicates perfect agreement and 0.5 indicates a pattern arising by chance. The SVM classification of the Quickbird imagery (illustrated by Fig. 6) gives fairly good results with a Kappa of 0.842 and an AUC of 0.965. Texture is arguably the most contributing information since the classification based on the single textural information gives a Kappa of 0.821 and an AUC of 0.955 (data not shown). Fig. 6. Vegetation map of Moorea using a SVM classification of a Quickbird mosaic

Contribution of biophysical descriptors

Fig. 7. Relative contribution in the SVM classification of each descriptor based on the differences of accuracy yielded with all descriptors and without the regarded descriptor Regarding Fig. 7, descriptors relative contribution is always positive (which confirms their adaptation to the context of Pacific high volcanic islands and to our target species) but varies according to the concerned species. Although AUC and Cohen's Kappa scores are not very correlated, the three most contributing descriptors are arguably (by order of contribution): elevation, CTI and slope. Nevertheless, overstory vegetation is conspicuously contributing to the spatial distribution of Lepinia taitensis which seems coherent as the species is found in the understory of dense rainforest with a probable strong dependence of incident light. Aspect is substantially influencing spatial distribution of Santalum insulare, which essentially occurs on dry ridges and slopes facing north.

Machine learning algorithms comparison

Both machine learning algorithms yield very good numerical results but, as shown by accuracy metrics presented in An "ecological niche" refers to an n-dimensional hypervolume where each dimension corresponds to the environmental range in which a species can persist [START_REF] Hutchinson | Concluding remarks[END_REF]). SVM appears more able to fit the observed ecological niches of the three target species than RF (Fig. 8). This fact is particularly true for species with the fewest recorded occurrences: Lepinia taitensis (28 occurrences) and Pouteria tahitensis (20 occurrences). On the contrary, ecological niche of Santalum insulare (81 occurrences) modelled by both machine learning algorithms SVM and RF matches the observed ecological niches in a comparable way.

Discussion

Random Forest vs. Support Vector Machines

RF and SVM were compared on their ability to predict rare and endangered species distribution. RF was found to be optimal for predicting rare species occurrences among a wide panel of algorithms in [START_REF] Williams | Using species distribution models to predict new occurrences for rare plants[END_REF]. SVM has never been used for predicting rare species distribution, and yet it outperforms RF in our study case. The main reason is most likely the result of the paradigm of SVM based on a small pixels sample (i.e. support vectors) [START_REF] Foody | The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM[END_REF]. Consequently, SVM is particularly able to be trained with few meaningful pixels and to fit limited information. Reciprocally, SVM may not be very impacted by insignificant pixels. Now, noisy pixels are more frequent in high resolution imagery than in coarse resolution imagery thanks to information aggregation in large pixels [START_REF] Hatton | Eagleson's optimality theory of an ecohydrological equilibrium: quo vadis?[END_REF][START_REF] Turner | Remote sensing for biodiversity science and conservation[END_REF]. SVM is thus probably more adapted than CART approaches such as RF, typically showing difficulties at a fine scale [START_REF] Thuiller | Generalized models vs. Classification tree analysis: predicting spatial distributions of plant species at different scales[END_REF]. Moreover, RF classification process occurs in a six dimensions space (one dimension per biophysical descriptor). By using the RBF kernel which works in an infinite dimensional feature space, it is easier for SVM to separate potential habitat from inappropriate habitat. 

Potential habitat vs. current habitat

According to SVM, the potential distribution ranges of Lepinia taitensis, Pouteria tahitensis and Santalum insulare are 15 ha, 38 ha and 32 ha respectively (Fig. 9), suggesting that the target species have no very narrow and specialized habitats.

Lepinia taitensis Pouteria tahitensis

Santalum insulare Fig. 9. Rare species distribution maps produced by SVM classification. Blue colour refers to area where the species is absent and red to its potential habitat Current habitat based on observed occurrences are 700 m² (4.7‰ of the modelled potential habitat), 500 m² (1.3‰) and 2025 m² (6.3‰) respectively. We assume that this low density is not related to an overestimation of the potential habitats made by the model as SVM gives fairly good analytical results as shown previously. Moreover, the assumption that the native and endemic flora of Moorea is currently poorly known is to be excluded as the island was surveyed by naturalists and botanists in the past [START_REF] Grant | Partial flora of the Society Islands: Ericaceae to Apocynaceae[END_REF][START_REF] Florence | Base de données botaniques Nadeaud de l'Herbier de la Polynésie française[END_REF] and by us in an extensive way for the last 4-5 years. We hypothesize that the discrepancy between potential and current habitats are of anthropogenic causes:

habitat loss and fragmentation caused by deforestation, over-grazing by feral ungulates and intentional and accidental fires at low and mid-elevation since the pre-European period and in the modern times; -invasions by alien plant species, especially in low-to mid-elevation forests [START_REF] Kueffer | A global comparison of plant invasions on oceanic islands[END_REF]. More than 180 alien species are currently naturalized on Moorea (Fourdrigniez, M., pers. comm. 2011). As an illustration, Lepinia taitensis and, to a lesser extent, Pouteria tahitensis are critically threatened by the small tree Miconia calvescens which overtops rainforests native flora [START_REF] Meyer | Threat of invasive alien plants to native flora and forest vegetation of Eastern Polynesia[END_REF] and covers 25% of the island (Pouteau et al., 2011b [START_REF] Spotswood | Interactions between plants and avian frugivores in the Society Archipelago, French Polynesia[END_REF]. Moreover, the three target species can be considered as K-strategists, characterized by a large individual size, slow life cycle and the production of a few number of large fruits [START_REF] Macarthur | The theory of island biogeography[END_REF]. Their life history traits made them more vulnerable to rapid environmental changes.

Conclusion

The first goal of this study was to compare two species ecological niche models, Random Forest (RF) with Support Vector Machines (SVM), in order to predict the distribution of rare species in natural ecosystems. We focused on three endangered native and endemic plants with small occurrence records ranging from 20 to 81 on the tropical oceanic island of Moorea (French Polynesia). Our analysis was based on six fine scale environmental layers, namely elevation, slope steepness, slope aspect, windwardness, a Compound Topographic Index (CTI) quantifying fluid drainage, and a vegetation map obtained by classifying a set of Quickbird satellite scenes. Results revealed that SVM outperforms RF especially when the number of observed occurrences is scarce. By producing more accurate maps of rare and endangered species, SVM is thus a tool of great practical value for conservation macroecologists and resource managers, and should be more considered in their future researches.

The relative high accuracy of distribution maps provided by SVM also allowed us to better understand the causes of the rarity and/or endangerment of some island native and endemic species by comparing their predicted potential habitat with their current observed range. Our data show that our three target species have a wide geographic distribution but small population size probably caused by strong anthropogenic disturbances (e.g. habitat loss and fragmentation, invasions by alien plant species and predatory animals, and possibly extirpation or extinction of natural dispersal agents) aggravated by their "outmoded" life history traits (i.e. not adapted to rapidly changing ecosystems). In the contrary, other rare and threatened species found on the island of Moorea in relatively wellpreserved habitats (e.g. the subalpine vegetation or montane cloud forests) have a narrower geographic distribution but relatively large population size. We assume that the rare species found at low-and mid-elevation in the Pacific Islands are much more prone to extinction and should be of high conservation priority.
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 1 Fig. 1. Habit of Lepinia taitensis in the understory of native lowland wet forest at 250 m elevation (R. Pouteau)

Fig. 4 .

 4 Fig. 4. Distribution of the GPS points sampled for vegetation and rare species mapping on Moorea. Locations of the three target species occurrences are deliberately shown without a precise position as they are legally protected

Fig. 5 .

 5 Fig. 5. Concept of a SVM. The cross circles refer to support vectors. The optimal separating hyperplane lies on them

Fig. 8 .

 8 Fig. 8. Ecological niche of Lepinia taitensis (green), Pouteria tahitensis (blue) and Santalum insulare (red) based on the extrema of the three most contributing biophysical descriptors where the species occur.

  

Table 1 ,

 1 SVM slightly and stably outperforms RF for the three target species.

	RF(%) SVM (%)

Table 1 .

 1 Comparison of RF and SVM to predict occurrences for rare plant species

  ). Other invasive plants on Moorea include the shrubs and trees Falcataria moluccana, Lantana camara, Psidium spp., Tecoma stans, Spathodea campanulata, Rubus rosifolius and Syzygium cumini and the vines and grasses Melinis minutiflora, Merremia peltata, Mikania micrantha and Miscanthus floridulus ; -proliferation of introduced predatory animals. The three target species are severely depredated by rats (Rattus spp.) feeding on their seeds (Lhuillier et al., 2006; Meyer & Butaud, 2009); -extirpation or extinction of endemic avian frugivores by over-hunting, predation (rats, cats, Swamp Harrier Circus approximans) and competition with alien birds (Red-vented Bulbul Pycnonotus cafer, Common Myna Acridotheres tristis) which lead to a lack of seed dispersal
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