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†School of Electrical Engineering and Computer Science, University of Ottawa, Canada
Emails: {mahdi.sharara, sahar.hoteit, veronique.veque}@universite-paris-saclay.fr,

{turgay.pamuklu, melike.erolkantarci}@uottawa.ca

Abstract—Open Radio Access Network (O-RAN) is a novel
architecture aiming to disaggregate the network components to
reduce capital and operational costs and open the interfaces
to ensure interoperability. In this work, we consider the prob-
lem of allocating computing resources to process the data of
enhanced Mobile BroadBand (eMBB) users and Ultra-Reliable
Low-Latency (URLLC) Users. Supposing the processing of users’
frames from different base stations is done in a shared O-Cloud,
we model the computing resources allocation problem as an
Integer Linear Programming (ILP) problem that aims at fairly
allocating computing resources to eMBB and URLLC users and
optimizing the QoS of URLLC users without neglecting eMBB
users. Due to the high complexity of solving an ILP problem,
we model the problem using Reinforcement Learning (RL).
Our results demonstrate the ability of our RL-based solution
to perform close to the ILP solver while having much lower
computational complexity. For a different number of Open Radio
Units (O-RUs), the objective value of the RL agent does not
deviate from the ILP objective by more than 6%.

Index Terms—O-RAN, Integer Linear Programming, Rein-
forcement Learning, Computing Resources Allocation

I. INTRODUCTION

The demand for data is massively growing every year. In
2030, the global mobile traffic is expected to reach 5016
EB/month [1]. To respond to the growing demand, cellular
network architecture continues to evolve. Compared to previ-
ous technologies, cellular networks are increasingly moving
towards a virtualized, softwarized, and open architecture.
Recently, a novel paradigm, Open Radio Access Network (O-
RAN), has emerged [2].

O-RAN is a novel architecture that disaggregates the radio
access network; some functions are executed on Distributed
Units (DUs), while upper layers functions are executed on
Centralized Units (CUs). Both units could be softwarized and
could run as virtual machines. Through standardizing open
interfaces between different network components, O-RAN
paves the way for multi-vendor architecture where various
interoperable network components can belong to different
vendors [2]. This would encourage competition and make
operators less dependent on a limited number of telecom
vendors. Virtualization and multi-vendor architecture would
also help operators reduce their CAPEX and OPEX [3].

A main pillar of O-RAN is the incorporation and stan-
dardization of machine learning (ML) and data-driven algo-

rithm. With the availability of enormous amounts of data, it
is possible to dynamically adapt the network parameters to
meet the instant requirements. In other words, the network
could use ML, especially Reinforcement Learning (RL), to
autonomously learn optimal policies by interacting with the
environment and make decisions accordingly. Such decisions
could involve real-time decisions such as Resource Block
(RB) scheduling, power allocation, or non-real-time decisions.
Given the high dimensionality of the network, ML models
are low-complexity candidates that have the potential to solve
different problems in mobile networks. O-RAN defines RAN
Intelligent Controllers (RICs), allowing operators to deploy
custom control loops and use AI-enabled algorithms [2].

In 5G and beyond, different services are expected to coexist.
For example, enhanced Mobile BroadBand (eMBB) and Ultra
Reliable Low Latency (URLLC) services have different re-
quirements; the former aims at providing high data rates, while
the latter aims at transmitting data with minimal delay and
low packet loss rates. For example, URLLC services could be
needed to realize vehicular communications for autonomous
vehicles [4] or to realize factory automation [5]. URLLC and
eMBB services could be isolated logically while running on
the same physical radio and computational hardware. Such a
mechanism is known as Network Slicing (NS) [1].

Operators would try to provision slices with the enough
required resources; however, the provisioned resources could
become insufficient because of non-optimal provisioning or
under-provisioning to cut CAPEX and OPEX, network dynam-
icity, evolving demands, or network failures. During the tran-
sitory time before sufficient resources could be re-provisioned
to slices, the Quality of Service (QoS) could no more be
guaranteed. Still, it remains necessary for the operator to
optimize the performance (i.e., throughput, fairness) given the
resource shortage. We are considering the case where losing
URLLC services will not cause fatal incidents but would affect
the application’s performance; otherwise, it will be mandatory
for the operator to completely avoid having a shortage of
resources. On the other hand, the operator needs to balance the
allocation of resources to users of both eMBB and URLLC
services and can not neglect a service entirely.

This paper considers the problem in which the eMBB
and URLLC services compete for limited and insufficient



computing resources. In such a scenario, it will not be possible
to process the frames of all users in the required amount of
time, and non-processed frames will be lost. The operator will
have to select frames for processing and neglect others due
to the lack of resources while maximizing fairness among
users from the different services. We model the problem as an
Integer Linear Programming (ILP) problem. However, given
the high complexity of solving the NP-Hard ILP problem,
we opt for using a policy gradient-based RL algorithm that
should perform as close as possible to the ILP solver. Hence,
we model the problem as a Markov Decision Process (MDP)
and present an RL algorithm to solve it. Then, we analyze
the performance of the ILP problem and the RL algorithm in
addition to two well-known low-complexity heuristics, Round-
Robin (RR) and Proportional Fairness (PF) [6].

The rest of the paper is organized as follows: Section II
presents the state-of-the-art. The context and problem formu-
lation is presented in section II. Then, the RL model and
algorithm are presented in III. The simulation environment
and results are shown in V, and finally, the work is concluded
in section VI.

II. RELATED WORK

O-RAN has received massive attention from both academia
and industry recently. The paper in [7] presents a compre-
hensive survey on O-RAN, its architecture, open interfaces,
and the research challenges facing O-RAN. In [2], the authors
demonstrate the feasibility of near-real-time radio access con-
trol using deep reinforcement learning. They test the RL-based
scheduling algorithms on a large-scale O-RAN-compliant soft-
warized cellular network called Colosseum. Using Colosseum,
the authors of [8] develop an orchestration model in O-
RAN, called OrchestRAN. The model is required to determine
the optimal set of data-driven algorithms, avoiding conflicts
between them. The model is general and has to select the ap-
propriate ML model for each task in the network. Additionally,
the model decides the optimal place of network components
(e.g., CU, DU, RIC), considering that multiple network nodes
could share models, but the Quality of Service should be
respected. For example, if a CU manages two DUs, and the
two DUs use a common ML model, it could be possible to
implement the model in the CU and transmit the decisions to
both DUs. However, it is possible that some delay constraints
would force OrchestRAN to implement the model on each of
the DUs; thus, extra computing resources would be used to
respect QoS requirements.

Various studies demonstrate the ability of RL-based solu-
tions to replace traditional network functions. In [9], an RL
model has been used aiming at satisfying the demands of
users from different slices/services. These demands include
communication and computational resources requests. In the
context of network slicing, [10] proposes two RL algorithms
to realize upper and lower control. In particular, a Deep Deter-
ministic Policy Gradient (DDPG) is used for the lower control:
Resource Blocks (RBs) allocation and power allocation. On
the upper level, a Double Deep Q-Network-based RL is used

to learn the optimal RAN slicing strategies. Authors of [11]
used Policy Gradient RL to learn the optimal functional split
to minimize the computational and routing cost. To satisfy
the latency requirements of URLLC users without hindering
the eMBB throughput, [12] proposes a Q-learning algorithm
responsible for resource and power allocation. The proposed
algorithm manages to improve latency and reliability with
respect to baseline algorithms.

In our previous works [13] [14], we have considered com-
puting resource allocation in Cloud-RAN architecture. Con-
sidering the problem of limited computing resources where
frames compete for processing resources, [13] introduces
Integer Linear Programming models that maximize throughput
and fairness allocation. The models permit coordinating be-
tween the radio and computing schedulers such that the radio
parameter Modulation and Coding Scheme (MCS) index can
be modified at the request of the computing scheduler. For
a given frame, the MCS index could be decreased and would
lead to reduced throughput, but the computing scheduler would
be able to allocate the required computing resources to process
this frame. Knowing that solving an ILP problem is NP-Hard,
[14] presents a Recurrent Neural Network Model that aims at
performing as close as possible to the ILP model presented in
[13] but with lower complexity.

In contrast with the state-of-the-art, our work in this paper
considers the computing resource allocation problem in a
multi-service (i.e., eMBB and URLLC) O-RAN environment.
We model the problem as an ILP problem aiming at maxi-
mizing the minimum transmission opportunities per user while
maximizing the number of processed frames. Then we propose
a policy-gradient-based RL algorithm to solve the problem
suboptimally.

III. CONTEXT AND PROBLEM FORMULATION

A. O-RAN Context

This paper addresses an O-RAN multi-vendor-based slicing
scenario [15]. Figure 1 illustrates the details of that scenario.
In this network, vendor A supplies the O-RUs to the operator.
The radio resources are shared with a predetermined ratio by
two slices providing eMBB and URLLC services, respectively.
The services have different delay requirements; URLLC has a
tighter deadline and a smaller frame size in comparison with
eMBB.

O-RAN follows CU/ DU split F1 between the vO-CU and
vO-DU, while it follows functional split Option-7.2 between
O-RU and O-DU [16]. We assume that a single dedicated O-
DU manages each slice of an O-RU. The O-DU and O-CU
are software-based components. Hence, they are virtual O-DU
(vO-DU) and virtual O-CU (vO-CU). Furthermore, vO-DUs
and vO-CUs of the URLLC slice are administered in the same
edge O-Cloud due to the strict delay requirements of these
services. On the other hand, the vO-CU of the eMBB service
is deployed in a regional O-Cloud, which has a lower leasing
cost, while its vO-DU is deployed in the Edge Cloud. Different
vendors provide the virtual network components of each slice;
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Fig. 1: Multi-vendor-based slicing scenario. Vendor A pro-
vides the O-RUs of the considered network. Vendors B and
C provides the components of eMBB and URLLC slices,
respectively.

the eMBB slice is supplied by vendor B, and the URLLC slice
is supplied by vendor C.

O-RAN relies on near-RT-RIC and non-real-RT-RIC to train
and execute AI and ML algorithms. Each of these RIC support
control loops with a time scale larger than 10ms. To respect
smaller time scale requirements (i.e., computing scheduling is
done every 1ms), we propose an independent decision maker
that improves the quality of service, has control over the CUs
and DUs, and runs in the edge O-Cloud [17]. Knowing that the
high physical layer functions such as decoding are executed in
the vO-DUs, we suppose that all these vO-DUs share the same
computing resources and that this intelligent decision maker
controls the allocation of computing resources to these vO-
DUs. The idea of implementing and standardizing intelligence
for real-time decision-making that runs on the CU or the DU
is still in the research phase, and it is not yet standardized [18].

Considering the uplink direction in which the resource
heavy-decoding function is executed, the traffic may unpre-
dictably surge on some occasions, making it impossible to
provide the O-DUs with the required resources immediately.
Hence these O-DUs could fail to execute the decoding func-
tions for all users. Given that there is a deadline for execution
equal to 2 ms due to HARQ [13], some of the O-DUs will fail
to process some of their users’ frames, and this would trigger
the HARQ mechanism; the frames will be retransmitted, and
radio resources will be reserved for the future retransmission.
We aim to use RL to learn which users should be admitted and
which should halt their transmission. This would allow users
whose data will not be processed to save their transmission
power.

We consider a set of O-RUs R. For each O-RU r, there
exists a set of eMBB users UE

r and a set of URLLC users

UU
r . The combined sets of eMBB and URLLC users is Ur. The

total number of users from all O-RUs is N. Fairness allocation
of resources among users should be optimized over multiple
Transmission Time Intervals (TTIs). Hence, we suppose each
set of users persists in the network for T consecutive TTIs, and
our goal is to apply the optimization problem over a set T of
TTIs, where T = |T |. The deadline to process eMBB users is
dE , and it is dU for URLLC users. The set of CPUs available
to process users’ frames arriving in the same TTI is C. We
suppose that each user maintains the same number of RBs and
the MCS index during all the TTIs. Hence the throughput of a
user for a given MCS and number of RBs at TTI t is br,u and
it takes er,ut amount of time to process a user frame at the O-
Cloud. Both the throughput and processing time depend on the
MCS and the number of RBs. We recall that the Modulation
and Coding Scheme index (MCS) defines the modulation
and the code rate used to transmit a frame. The number of
RBs and the MCS index together determine the Transport
Block Size (TBS), which is the number of bits transmitted
in one Transmission Time Interval (TTI) [19]. Additionally,
the processing time depends on these two parameters [20]. As
our goal is to ensure a fair allocation of computing resources
among users, we evaluate the fairness using Jain’s Fairness
index [21] defined as follows:

JI =

(∑
r∈R

∑
u∈Ur

∑
t∈T

xr,u
t,c

T

)2

(N ×
∑

r∈R
∑

u∈Ur

∑
t∈T

(
xr,u
t,c

T

)2

)

where
∑

t∈T
xr,u
t,c

T defines the ratio of the allocation over the
demand for user u ∈ Ur. We note that Jain’s fairness index is
maximal (equal to 1) when all users have the same ratio of
allocation over the demand.

B. ILP Model

The Integer Linear Programming (ILP) model we propose
for computing resources allocation to eMBB and URLLC
users is defined as follows:

maximize λ(aE +
∑
r∈R

∑
u∈UE

r

∑
t∈T

∑
c∈C

xr,u
t,c

T ×N
)+

(1− λ)(aU +
∑
r∈R

∑
u∈UU

r

∑
t∈T

∑
c∈C

xr,u
t,c

T ×N
) (1)

subject to xr,u
t,c ∈ {0, 1}, ∀r ∈ R, u ∈ Ur, t ∈ T , c ∈ C (2)∑

c∈C
xr,u
t,c ≤ 1, ∀r ∈ R, u ∈ Ur, t ∈ T (3)∑

r∈R

∑
t∈T

(
∑

u∈UE
r

xr,u
t,c e

r,u
t +

∑
u∈UU

r

xr,u
t,c e

r,u
t ) ≤ dE ,

∀c ∈ C (4)∑
r∈R

∑
t∈T

∑
u∈UU

r

xr,u
t,c e

r,u
t ≤ dU ,∀c ∈ C (5)

∑
t∈T

∑
c∈C x

r,u
t,c

T
≥ aE ,∀r ∈ R, u ∈ UE

r (6)



∑
t∈T

∑
c∈C x

r,u
t,c

T
≥ aU ,∀r ∈ R, u ∈ UU

r (7)

The objective function (1) aims to maximize the minimum
number of transmissions a user makes. aE andaU are auxiliary
decision variables that set the minimum ratio of granted
throughput to demanded throughput for eMBB users and
URLLC users, respectively. As it is more rational to use all
the available resources than to keep the CPU idle, even if
some users will get more chances than others, the objective
function includes the average number of transmissions that
users have made. So a minimum number of transmissions for
all users will be guaranteed, and then the remaining resources
will be given to some users. Moreover, the objective separates
the URLLC users from eMBB users, allowing the operator to
control the prioritization level using the parameter λ. It is a
value between 0 and 1, and it is up to the operator to select
its priorities. The constraint in (2) defines xr,u

t,c as a binary
integer variable. This variable is equal to 1 if and only if a
user u ∈ Ur transmits at TTI t and is processed at CPU core
c. Constraint (3) ensures that a user’s unique transmission is
not processed more than once. Constraint (4) ensures that the
eMBB deadline is respected. Constraint (5) guarantees that the
processing deadline of admitted URLLC users is respected.
Finally, constraint (6) and (7) set the minimum of number
of transmissions that eMBB and URLLC users get using the
auxiliary variables aE and aU .

According to [22], solving an ILP problem is an NP-hard;
hence we try to solve the problem using RL.

IV. REINFORCEMENT LEARNING MODEL

Consider an episodic RL model. Each TTI is an episode that
consists of multiple steps, where at each step, a user is selected
for transmission and processing. The Markov Decision Process
(MDP) is:

A. State

At TTI t during an step i, one user will be selected. Let
br,u be the throughput of user u ∈ Ur that uses MCS mr,u

t

over nr,u
t number of RBs. Let er,ut be the required execution

time of the user’s frame. Let µi
t be the available computing

resources at step i at TTI t, servicer,u indicates the service
type: eMBB or URLLC, and hr,u

t is the total number of a
user’s previous transmissions before TTI t. Then:

δi,tr,u = {er,ut , br,ut , hr,u
t , servicer,u}

The state at step i of TTI t is defined as

sit =

{
δi,tr,u : ∀r ∈ R, u ∈ Ur, a

j
t ̸= u,∀j < i,

er,ut ≤ µi
t

}
The state space S at the initial step i is of dimensions:∏

r∈R
∏

u∈Ur
R2×N×2. The state space dimensions decrease

after making each selection. After each step, a selected user

should not be reselected; it should be removed from the action
space. Suppose that user u ∈ Ur has been selected. Given our
adopted Neural Network architecture, as shown in the next
part, removing δi,tr,u from the state representation is necessary
to ensure this user is no more re-selected.

B. Action

The action ait at an step i at TTI t is to select a user u ∈
Ur, r ∈ R: ait = u The action space is

A =

{
u : ∀r ∈ R, u ∈ Ur, a

j
t ̸= u,∀j < i,

er,ut ≤ µi
t

}
Similar to the above, the action space dimensions decrease
after each selection because when a user is selected in the
previous action, it should not be allocated twice.

C. Reward

The goal is to optimize fairness. Let mvaluer,ut be
the minimum of the set that consists of the number of
transmissions each user of servicer,u has made. Then the
reward for performing an action ait = u at step i of TTI t
when the agent is in state sit is:

rit =

{
tanh(

hr,u
t +1
T ) hr,u

t = mvaluer,ut

tanh(
mvaluer,ut −hr,u

t −1
T ) hr,u

t −mvaluer,ut − 1 ≥ 1

The reward is finally multiplied by λ if the user is an eMBB
user and by (1− λ) if the user is a URLLC user.

D. RL Architecture

We propose to use a neural network that takes as input
each δi,tr,u and outputs a value for each input. Hence, the
same neural network is reused. The outputs of these inputs
are fed into a softmax function. The softmax will produce
a probability distribution for selecting an action; one user

UE 1

UE 2

UE 3

UE N

Softmax

Fig. 2: Neural Network Architecture



will be chosen according to this distribution in each step.
In the state representation, only users who can find sufficient
computing resources are included. Once the remaining com-
puting resources are insufficient to process any user, the RL
agent arrives at the terminal state, and the episode terminates.
Fig.2 shows the used architecture. The size of the state is
dynamic and depends on the number of users. In case a
static architecture is used, a maximum number of users should
be defined, and when the number of users is less than the
maximum, the remaining neurons will be zero-padded. The
latter will require bulking the size of the neural network.
The proposed architecture minimizes the neural network’s
size, reducing the computational requirements. This flexible
architecture was also used in [23]. While their RL agent takes
just one action per TTI, ours takes one action in a step, and
each episode is the collection of decisions made at each step
(the selection of a user at each step) in one TTI. The RL model
is a policy-gradient model using the algorithm REINFORCE
with a Baseline [24]. In Algorithm.1, vit is the normalized
discounted reward after subtracting the mean of the rewards
of an episode and then dividing by the standard deviation.
Using the normalization as a baseline would help stabilize the
learning process.

V. SIMULATION AND RESULTS

A. Simulation Environment

To study the performance of the RL Algorithm and compare
its performance with respect to the ILP problem, we simulate
the environment in MATLAB and use CPLEX for MATLAB
to solve the ILP problem. We also use the MATLAB Deep
Learning toolbox to model and train the RL agent. We have
considered that all O-RUs use 100 RBs, where 90 RBs are
used for eMBB users and 10 RBs for URLLC users. The
number of RBs per eMBB user follows a uniform random
distribution ranging from 20 to 40 RBs, and the range is 1 to
5 for URLLC users. The deadline for eMBB traffic is 2ms as
in [13], and the deadline for URLLC is 0.25ms. The number
of TTI over which we aim to optimize fairness transmissions

Algorithm 1: RL algorithm
1) initialize users u ∈ Ur from all O-RUs r ∈ R : their

MCS, RB, throughput, processing time
2) Initialize weights θ of NN
while training do

for t ∈ T do
Initialize i = 1
Initialize δi,tr,u then sit;
while sit is not a terminal state do

execute ai
t, get rit, and si+1

t

i=i+1
end
{sit,ai

t,rit,s
i+1
t ,ai+1

t , ...,send
t } ∼ πt

calculate vit
Apply the updates at the end of the episode:
θ ←− θ + αvit∇logπt(s

i
t, a

i
t))

end
end

Fig. 3: The average cumulative reward as a function of the
number of TTIs

among users is 10. So every 10 TTI, users are regenerated in
the system, with different MCS and number of RBs. The MCS
index is sampled from the real traffic distribution as in [13].
To calculate the throughput, we use the 3GPP specifications
to get the Transport Block Size (TBS), and then the value is
divided by the TTI duration to determine the throughput [19].
The required processing time is provided in [20] as a function
of the MCS, the number of RBs, and the CPU frequency. We
set the CPU frequency to 2.6 GHz. Moreover, the prioritization
factor λ is set to 0.5. To train the RL, we use a neural network
consisting of an input layer with 5 neurons (i.e., the service
type is represented using two neurons) and 1 hidden layer
consisting of 100 neurons and having the hyperbolic tangent
function tanh as an activation function. Using tanh helped our
model move faster towards convergence in comparison with
sigmoid function. This function is centralized on zero, so it
could help speed up the convergence. The learning rate is 0.01,
and the discount factor for the rewards is 0.9.

B. RL-Agent Training

To train the RL agent, we suppose that the number of O-
RUs that are jointly managed in the O-Cloud follows a random
uniform distribution ranging from 5 to 10 O-RUs, where
every 10 TTI, this number changes. Increasing the number
of O-RUs modifies the total number of users, increasing
the computing resources requirements. As Fig.3 shows, the
average cumulative reward converges after 25000 TTI.

C. Algorithms Testing

After training the RL-Agent, we test its performance as
a function of the number of O-RUs. The performance is
compared to the ILP model presentes in Section III-B, Round-
Robin (RR), and Proportional Fairness (PF).

The Round-Robin solution tries to allocate users one after
the other; if it fails to give resources to a user, it moves to the



Fig. 4: Objective function value as a function of the number
of O-RUs

Fig. 5: Fairness among eMBB users as a function of the
number of O-RUs

next one, and it stops if the resources become insufficient to
admit any user. At the next TTI, it resumes from where it did
the last allocation and repeats.

On the other hand, the Proportional Fairness solution cal-
culates the ratio of achievable throughput if resources are
allocated, divided by the historical throughput for each user.
Then it picks the user with the highest ratio.

We note that the simulation is repeated for 50 TTIs, and the
95% confidence intervals are computed.

Fig. 4 shows the value of the objective function (i.e., Eq. (1))
for all the four algorithms. Given our goal is to approximate
the performance of the ILP solver using RL, the RL agent
performs close to the ILP for different numbers of O-RUs,
and it is better than PF and much better than RR. In the
worst case, the RL will not deviate from the ILP by more
than 6%. This shows that the RL agent yields results close to
the optimal results of the ILP. On the other hand, we notice
that the objective value decreases as the number of O-RUs

Fig. 6: Fairness among URLLC users as a function of the
number of O-RUs

Fig. 7: Percentage of admitted URLLC frames as a function
of the number of O-RUs

increases. This can be interpreted by the fact that when the
number of O-RUs increase, the number of users increase. This
leads to an increase of the demand for computing resources.
However, more users in the system means fewer chances of
transmission per user. Hence, the objective value decreases as
the number of O-RUs increases.

Given that one of our goals is to optimize fairness allocation
of resources among eMBB and URLLC users, we plot the
curves of Jain’s fairness index among eMBB users and among
URLLC users in figures 5 and 6 as a function of the number
of O-RUs. Fig. 5 shows that the RL algorithm is fairer than
the ILP, while RR is the least fair. Recall that the objective
is to maximize each user’s minimum ratio of transmissions
and to try to allocate all the remaining computing resources.
Entirely allocating the computing resources will give some
users more chances to transmit. However, the fairness metric
would decrease as a result. Given that the ILP is the best at



exploiting the computing resources to maximize the objective,
it can admit more users, including more eMBB users, which
would lower the fairness compared to RL. Additionally, after
the ILP maximizes the minimum number of transmissions per
user, it aims to maximize the average number of transmissions.
This makes the ILP solver free to give some users more
chances than others, allowing for more frames to be trans-
mitted. This will likely benefit users with lower processing
time requirements, especially URLLC users. Regarding RR, it
would give some users more chances than others because of
how it allocates users, as explained earlier. Hence the fairness
is worsened. Considering the fairness among URLLC users
in Fig. 6, the same trend exists as before. However, the RL
is almost entirely fair. Due to the existence of eMBB users
and the nature of the reward function, the RL agent would
prefer to select an eMBB user instead of URLLC when there
are little remaining resources. This helps keep the fairness
level close to 1. For the same reason explained earlier, the
RL outperforms the ILP regarding fairness among URLLC
users. On the other hand, the RR does not detect the difference
in deadline requirements for URLLC, so it fails to allocate
them fairly. As mentioned earlier, the decrease in fairness
when the number of O-RUs increases is due to having more
users in the system, and this will make some users have more
transmissions and degrade fairness. As figures 5 and 6 show,
PF is very close to RL; it is better for eMBB but slightly lower
for URLLC. The reason is that the PF algorithm is oblivious
to the stricter deadline requirements of URLLC users. This
would lead to having more resources given to eMBB users.

While the fairness among URLLC users is very close for
the RL and the PF algorithms, the number of URLLC frames
that the RL algorithm admits is higher than the PF does by
about 20%, as Fig. 7 shows. This means that while each
algorithm has similar transmission opportunities for URLLC
users leading to similar fairness scores, the RL algorithm can
elevate the number of transmissions for URLLC users. This
makes the RL suitable when the goal is to allow more URLLC
frames to be transmitted without entirely sacrificing eMBB
users.

Fig. 8 shows the cumulative distribution of the number
of transmissions that eMBB and URLLC users get when
the number of O-RUs is 10. We recall that we suppose
that each user persists in the system for 10 TTIs so that a
user may transmit at a maximum of 10 frames. As Figures
8a and 8b show, RL and PF curves have close trends. For
instance, for eMBB users, the 80th percentile is equal to 5
transmissions in both RL and PF algorithms while for URLLC
it is 4 transmissions for PF and 6 transmissions for RL; this
justifies why they have similar fairness scores, given that
the majority of users will get the same transmissions, which
would elevate fairness, as explained in previous sections. On
the other hand, the ILP is more flexible; once it allocates
a minimum for all users, it gives users varied chances. As
described earlier, RR fails to admit a lot of URLLC users, and
eMBB users have varying transmission chances. This justifies
why it is the worst concerning the fairness metric. We recall

(a) Cumulative distribution function of the number of transmissions for
eMBB users

(b) Cumulative distribution function of the number of transmissions for
URLLC users

Fig. 8: Cumulative Probability Distribution for the number of
transmissions that users get when the number of O-RUs is 10

that fairness is maximized when all users get an equal number
of transmissions.

To summarize, the RL and PF algorithms are the fairest for
both eMBB and URLLC users. However, RL is more suitable
when the operator prefers to give more chances to URLLC
users. Again, we recall that URLLC users should be able to
achieve very low latency and have high reliability; however,
we are considering the case where the available resources
suddenly become insufficient, and at the same time, the loss of
some URLLC frames is non-fatal. Hence the operator can try
to optimize the allocation of computing resources to URLLC
users and, at the same time, not neglect eMBB users.



VI. CONCLUSION

O-RAN opens the path for deploying Reinforcement Learn-
ing based algorithms to execute different tasks. In this paper,
we have considered the problem of allocating computing
resources to eMBB and URLLC users from multiple O-RUs.
We have formulated an ILP-based optimization problem that
aims to optimize fairness allocation among eMBB and URLLC
users and improve the QoS guarantees for URLLC users
without neglecting eMBB users. Due to the NP-hardness of
solving the ILP problem, we propose an RL-based algorithm.
Simulation results show the ability of an RL agent to perform
close to the optimal ILP solver, optimizing the performance
of URLLC users without neglecting eMBB users. Our results
demonstrate that the objective value does not deviate from
the ILP objective by more than 6%. Additionally, it provides
high fairness for eMBB and URLLC users while admitting
more URLLC users in comparison to the known Proportional
Fairness algorithm. For future work, we aim to study the
benefits of using Federated Learning for our RL problem.
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Radio and Computing Schedulers in Cloud-RAN,” in 2021 IFIP/IEEE
International Symposium on Integrated Network Management (IM).

[14] M. Sharara, S. Hoteit, and V. Vèque, “A Recurrent Neural Network
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