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If (3.14) holds, then u ∈ L 1 (Q B T ) for any open ball B ⊂ B ⊂ B α (y), and for any ζ ∈ C ∞ c (B) there holds d dt B u(x, t)ζdx + 1 t B (u∆ζu q ζ) dxdτ = 0. (3.16) Consequently there exists ℓ(ζ) defined by ℓ(ζ) := lim t→0 B u(x, t)ζdx = B u(x, 1)ζdx + 1 0 B

(u∆ζu q ζ) dxdτ.

(3.17)

The mapping

If (3.32) holds let B as above and φ B be the first eigenfunction of -∆ in H 1 0 (B) with maximal value 1 and corresponding eigenfunction λ B . Then

where we have set B = B α (y) and q ′ = q q-1 . Since

for suitable δ > 0 and c > 0, we have that

Then

The set of points y such that (i) holds is clearly open and its union is called the regular set R. By a partition of unity there exists a unique nonnegative Radon measure µ on R such that for any ζ ∈ C ∞ c (R) there holds lim t→0 R N u(x, t)ζdx = R N ζdµ(x).

(3.20)

Introduction

If we consider a nonnegative C 2,1 function (x, t) → u(x, t) satisfying a diffusion equation

∂ t u -A(u, ∇u, D 2 u) + b(u, ∇u) = 0 (1.1)
in Q T := R N × (0, T ), a natural question is to understand what are the data on which the function depends, besides the structural assumptions on the functions A and B. One important approach is to associate to this function a general notion of initial value that we call the initial trace problem. The initial trace problem is two-fold:

1-Is it possible to define in a suitable way the limit value of u(., t) when t → 0 ? This limit, whenever it exists, is called the initial trace of u, noted tr (u). In most cases it is an outer regular nonnegative Borel measure in R N . 2-Given an outer regular nonnegative Borel measure ν in R N , is it possible to find a nonnegative solution u of (1.1) in Q T such that tr (u) = ν ? This step requires a sharp study of the possible initial traces.

3-Is the correspondence between the set of initial traces ν and the set of positive solutions of (1.1) in Q T one-to-one ? More simply, is a positive solution defined in a unique way by its initial trace.

In this formulation A is a real valued Caratheodory function defined in R × R N × M N (R) and B a real valued Caratheodry function defined in R N × R.

In this full generality the problem is hard to analyse except for the mere diffusion equation

∂ t u -A(u, ∇u, D 2 u) = 0, (1.2) 
where the two cases of the porous-media equation (with A(u, ∇u, D 2 u) = ∆u m ) and the p-Laplace diffusion equation (with A(u, ∇u, D 2 u) = div(|∇u| p-2 ∇u)) are fairly well understood. In these cases the initial trace is a nonnegative Radon measure with some growth at infinity. When the equation contains a reaction term, the situation is completely changed, even in the mere case where A(u, ∇u, D 2 u) = ∆u.

∂ t u -∆u + b(u, ∇u) = 0. (1.
3)

The sign of the reaction term plays an important role. Surprisingly the question of identifying the initial trace of a solution of (4.161) is much easier if b(u, ∇u) is nonpositive, e.g. b(u, ∇u) = -u q . In that case the function u is super-caloric and it always admits an initial trace in the class of nonnegative Radon measures in R N . The second question of reconstructing the solution from its initial trace is more involved, and the associated question of uniqueness is even deeper. In this paper we will concentrate on the case where the perturbation term is a nonlinear power term under the form b(u, ∇u) = ǫu q (1.4)

where ǫ = ±1. The first easy to prove results dealing with the the case ǫ = -1 and q > 0, or ǫ = 1 and 0 < q ≤ 1 is the following.

Theorem 1 Let ǫ = -1 and q > 0 or ǫ = 1 and 0 < q ≤ 1. If u is a nonnegative solution of (1.3) in Q T there exists a nonnegative Radon measure µ in R N such that

lim t→0 R N u(x, t)ζ(x)dx = R N ζdµ(x) for all ζ ∈ C ∞ c (R N ). (1.5)
The problems arising from the study of the model case

∂ t u -∆u + |u| q-1 u = 0 in Q T , (1.6) 
is now fairly well understood after the initial work of Marcus and Véron [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] who put into light that the initial trace has to be understood in the sense of Borel measures and the exhaustive study of the supercritical case by Marcus and Véron [START_REF] Marcus | Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion[END_REF] and Gkikas and Véron [START_REF] Gkikas | Initial value problems for diffusion equations with singular potential[END_REF], [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF]. Note that this study followed the very complete analysis of the boundary trace of positive solutions of -∆u + u q = 0 in Ω, (1.7) which was carried on by Marcus and Véron [START_REF] Marcus | Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion[END_REF], [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF] and concluded by Marcus in the remarkable paper [START_REF] Marcus | Complete classification of the positive solutions of -∆u + u q = 0[END_REF] to which the construction of Gkikas and Véron [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF] that we will developed thoroughly in the sequel is much indebted. Concerning (1.6), Marcus and Véron pointed out the key role of the critical exponent q c := 1 + 2 N and showed that the analysis is very different according to the position of q with respect to q c Their starting result concerning this equation is the following Theorem 2 Let q > 1 and u is a positive solution of (1.5) in Q T . Then there exist a closed set S ⊂ R N and a nonnegative Radon measure µ in R := R N \ S such that, (i) For any ζ ∈ C ∞ c (R) there holds

lim t→0 R N u(x, t)ζ(x)dx = R N ζdµ(x). (1.8) 
(ii) For any y ∈ S and any ǫ > 0, there holds lim t→0 Bǫ(y) u(x, t)dx = ∞.

(1.9)

The set S := Sing(u) (resp. µ := µ(u)) is called the singular (resp. regular) part of the initial trace of u. Conversely we have an existence and uniqueness result in the subcritical case.

Theorem 3 Let 1 < q < q c . Then for any couple (S, µ) where S is a closed subset of R N and µ a nonnegative Radon measure in R := R N \ S, there exists a unique positive solution u of (1.5) in Q ∞ := R N × (0, ∞) with initial trace (S, µ).

When q ≥ q c not every measure is admissible for being the measure part of the initial trace of a positive solution of (1.5), neither every closed set can be the singular part. To answer this question it is necessary to introduce the Riesz ( 2 q , q ′ )-capacity of a Borel set

E ⊂ R N . Ṙ 2 q ,q ′ (E) = inf R N ×R N |ζ(x) -ζ(y)| q ′ |x -y| N -2 q-1 dxdy : ζ ∈ C ∞ c (R N ), 0 ≤ ζ ≤ 1, ζ ≥ 1 E . (1.10)
This capacity plays a fundamental role since Baras and Pierre proved in [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF], [START_REF] Baras | Singularités éliminables pour des équations semilinéaires[END_REF] two fundamental results which assert that A Borel set S ⊂ R N is a removable singularity for any solution u of (1.5) in Q ∞ := R N × (0, ∞) which is continuous in Q ∞ \ (S × {0}) if and only if Ṙ 2 q ,q ′ (S) = 0.

(1.11)

Similarly there exists a solution u of (1.6) in Q ∞ such that u(., 0) = µ, where µ is a bounded measure in R N if and only if

If S ⊂ R N is a Borel set, Ṙ 2 q ,q ′ (S ) = 0 =⇒ |µ(S )| = 0 .

(1.12)

For the sake of completeness, we sketch a proof in Theorem 3.12. Note that the boundedness assumption on µ is not necessary. If R ⊂ R N is open, we denote by M q (R) the space of Radon measures µ in R satisfying

If S ⊂ R is a Borel set, Ṙ 2 q ,q ′ (S) = 0 =⇒ |µ(S)| = 0.

(1.13)

The positive cone of this space is denoted by M + q (R). If S ⊂ R N is closed and µ is a positive Radon measure in S c we define

∂ µ S := {y ∈ S : µ(B ǫ (y) ∩ S c ) = ∞, ∀ǫ > 0} , (1.14) 
which is the set of blowing points of the measure, and S * := y ∈ S : Ṙ 2 q ,q ′ (B ǫ (y) ∩ S) > 0, ∀ǫ > 0 , (1.15) which is the set of intrinsically non-removable points of S.

Theorem 4 Let q ≥ q c . A couple (S, µ) where S is a closed subset of R N and µ ∈ M + q (R) where R := R N \S, is the initial trace of a positive solution u of (1.5) in Q ∞ := R N ×(0, ∞) if and only if S = ∂ µ S ∪ S * .

A striking aspect of the super critical case, i.e. q ≥ q c , is that there exist infinitely many solutions when S is not empty and the solution constructed in Theorem 2 is actually the maximal solution with any initial trace (S, 0). This has resulted in a finer definition of the initial trace called the precise trace. The basic idea of this extension is to replace the Euclidean topology which served as a basic tool in the definition of the trace process by the thin T q -topology associated to the ( 2 q , q ′ )-capacity. Note that this process was developed by Marcus and Véron [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF] in a similar way for analysing the boundary trace of positive solutions of -∆u + |u| q-1 u = 0 in Ω ⊂ R N .

(1.16)

When q ≥ q c it is proved in [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF] that any nonnegative solution u of (1.5) in Q T admits a precise singular initial set S q (u) which is the set of ξ ∈ R N such that for any thin-neighbourhood U (for the T q -topology ) of ξ there holds

T 0 R N u q (H[1 U ]) 2q ′ dxdt = ∞ (1.17)
where H[1 U ] is the heat potential in Q ∞ of the characteristic function of U . The set R q (u) := S c q (u) is the fine regular set of the initial trace. It is the set of the ξ ∈ R N such that there exists a thin-neighbourhood U of ξ with the property that

T 0 R N u q (H[1 U ]) 2q ′ dxdt < ∞.
(1.18)

Essentially the precise regular set of the initial trace carries a nonnegative Radon measure µ Rq(u) , absolutely continuous with respect to the Riesz capacity Ṙ 2 q ,q ′ , and such that for any bounded test function η belonging to the Besov space B 2 q ,q ′ (R N ) with "support" in R q (u) (more precisely T q -support in a sense which will be defined in the text), there holds

lim t→0 R N u(x, t)η 2q ′ + dx = R N η 2q ′ + dµ Rq(u) . (1.19) 
This allows to define a solution v Rq(u) of (1.5) corresponding to this measure µ Rq(u) . It is called the regular component of u. For defining the singular component of u we first denote by U Sq(u) the maximal solution of (1.5) with an initial trace vanishing in S c q (u). The singular component is [u] Sq(u) which is the maximal solution of (1.5) bounded from above by u and with initial trace vanishing in S c q (u). The couple (µ Rq(u) , S q (u)) is called the precise initial trace.

The main results in the supercritical case (q ≥ q c ) are summarised by the following statement.

Theorem 5 1-If u is a nonnegative solution of (1.5) in Q T , then the function v Rq(u) ⊕ [u] Sq(u) , which is the largest solution dominated by the super-solution v Rq(u) + [u] Sq(u) admits for precise initial trace (µ Rq(u) , S q (u)). 2-The solution v Rq(u) ⊕ [u] Sq(u) is σ-moderate in the sense that it is the increasing limit of solutions u µn with initial data µ n which are nonnegative bounded measures belonging to B 2 q ,q ′ (R N ). It is the unique σ-moderate solution with such a trace. 3-Any positive solution u of (1.5) is σ-moderate.

As a consequence there exists a one to one correspondence between the set of nonnegative solutions u of (1.5) and the set of couples (µ Rq(u) , S q (u)).

These notes are based upon the articles [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], [START_REF] Marcus | Capacitary estimates of positive solutions of semilinear parabolic equations with absorbtion[END_REF], [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF] written jointly with M. Marcus and [31], [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF] written with K. Gkikas, in both cases in a very fruitful collaboration.

Equation with sublinear or reaction forcing term

In order to point out the differences between the absorption case which is the main object of this survey and the sublinear or forcing cases which are indeed much easier to treat, we we present some standard results in these later cases.

The heat equation

We first consider the basic approach of the trace problem for the heat equation. Let u ∈ C 2,1 (Q T ) be a positive solution of

∂ t u -∆u = 0 in Q T .
(2.1)

If G ⊂ R N is any bounded domain, we denote by λ G the first eigenvalue of -∆ in H 1 0 (G) and by φ G the corresponding first positive eigenfunction normalized by max φ G = 1. Then

d dt G u(x, t)φ 2 G (x)dx + 2λ G G u(x, t)φ 2 G (x)dx = 2 G u(x, t)|∇φ G | 2 (x)dx.
Therefore the function t → e 2λ G t G u(x, t)φ 2 G (x)dx is nondecreasing. It admits a finite nonnegative limit M u (G) when t → 0 and

e 2λ G τ G u(x, τ )φ 2 G (x)dx -M u (G) = Q G τ u(x, t)|∇φ G | 2 (x)dxdt < ∞,
where Q G T = G × (0, T ). This implies in particular that u ∈ L 1 (Q G τ ) for any τ < T . Then, if ζ ∈ C ∞ c (R N ) there exists ℓ(ζ) with the property that

ℓ(ζ) = lim t→0 R N u(x, t)ζ(x) = R N u(x, τ )ζ(x) - τ 0 R N u(x, s)∆ζ(x)dxds
The mapping ζ → ℓ(ζ) is a positive linear functional, hence it extends as a unique Radon measure in R N that we denote µ. The following characterisation of the measures µ is proved in [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF], [START_REF] Aronson | Widder's inversion theorem and the initial distribution problems[END_REF] Let u be a nonnegative solution of (2.1) in Q T and µ be the initial trace of u, then

R N e -a|x| 2 dµ(x) < ∞ for all a < 1 4T . (2.2) 
Conversely, if µ is a nonnegative Radon measure in R N satisfying (2.2) the function u defined in Q T by

u(t, x) = 1 (4πt) N 2 R N e -|x-y| 2 4t dµ(y) < ∞ (2.3)
is the unique positive solution of (2.1) with initial trace µ.

Definition 2.1 If µ is a Radon measure in R N , we denote by H[µ] the heat potential of µ, defined by

H[µ](x, t) = 1 (4πt) N 2 R N e -|x-y| 2 4t dµ(y) = R N
H(x, y, t)dµ(y), (2.4) provided this formula has a meaning, e.g. if µ is bounded. The function H(x, y, t) :=

1 (4πt) N 2 e -|x-y| 2 4t is called the heat kernel in Q ∞ .
This result is the extension to higher dimension of Widder representation theorem proved in 1-D in [START_REF] Widder | Positive temperature on an infinite rod[END_REF].

2.2 Equations with sublinear or forcing reaction. Proof of Theorem 1

2.2.1

The sublinear case

We assume that u ∈ C 2,1 (Q T ) is a positive solution of (1.3) where b is continuous in R × R N and satisfies 0 ≤ b(r, ξ) ≤ cr + d for all r ≥ 0 and ξ ∈ R N , (

for some c > 0 and d ≥ 0. As in the case of heat equation we call φ G the first normalised eigenfunction of a bounded smooth domain G ⊂ R N , with associated eigenfunction λ G . Then

d dt G u(x, t)φ 2 G (x)dx + (2λ G + c) G u(x, t)φ 2 G (x)dx + d G φ 2 G (x)dx ≥ 0.
This implies that the function

t → e (2λ G +c)t G u(x, t)φ 2 G (x)dx + d 2λ G + c G φ 2 G (x)dx
is increasing. Therefore it admits a finite limit (positive) when t → 0 and thus there exists

M u (G) := lim t→0 G u(x, t)φ 2 G (x)dx. (2.6)
Since for any 0

< τ < T τ 0 G b(u, ∇u)(x, t)φ 2 G (x)dxdt ≤ c τ 0 G u(x, t)φ 2 G (x)dxdt + d τ 0 G φ 2 G (x)dxdt < ∞,
and G is arbitrary, it follows that u + b(u, ∇u) ∈ L 1 (Q τ G ) where Q τ G := G × (0, τ ). As in the case of heat equation we obtain that there exists a Radon measure µ in R N such that for any ζ ∈ C ∞ c (R N ) there holds

lim t→0 R N u(x, t)ζ(x)dx = R N ζdµ(x), (2.7) 
and also for any t ∈ (0, T ),

R N u(x, t)ζ(x)- t 0 R N u(x, s)∆ζ(x)dxds+ t 0 R N b(u, ∇u)(x, t)ζ(x)dxds = R N ζdµ(x).
(2.8) This implies that u admits µ as an initial trace in the sense defined by (2.7), and it is a solution of ∂u ∂t

-∆u + b(u, ∇u) = 0 in Q T u(., 0) = µ in R N .
(2.9)

Finally, this problem can be solved for any nonnegative bounded measure µ, and more generally for any nonnegative Radon measure µ such that the heat potential H[µ] can be defined.

The forcing reaction case

We assume that b satisfies b(r, ξ) ≤ 0 for all r ≥ 0 and ξ ∈ R N .

(2.10)

As in the previous case the function

t → e 2λ G t G u(x, t)φ 2 G (x)dx
is increasing, thus (2.6) holds. From (1.3) we have for any 0 < t < τ < T ,

G u(x, τ )φ 2 G (x)dx + 2λ G τ t G u(x, s)φ 2 G (x)dxds = 2 τ t G u(x, s)|∇φ G | 2 (x)dxds + τ t G b(u, ∇u)(x, s)φ 2 G (x)dxds + G u(x, t)φ 2 G (x)dx.
Because (1.3) 

holds uφ 2 G ∈ L 1 (Q G τ )
, hence, by the monotone convergence theorem both b(u, ∇u)φ 2 G and u|∇φ

G | 2 are integrable in Q G τ . If ζ ∈ C ∞ c (R N
) we obtain that (2.8), (1.5) and (2.9) hold for some nonnegative Radon measure µ.

Remark. In the model case, the existence of solutions to

∂u ∂t -∆u -u q = 0 in Q T G u(., 0) = µ in R N , (2.11) 
with q > 1 depends on two factors: the total mass of the positive measure µ and its concentration. A necessary and sufficient condition is provided in [START_REF] Baras | Critère d'existence de solutions positives pour des équations semi-linéaires non monotones[END_REF]Théorème 3.2] under the form of a duality argument. In [55, Theorem 3] a sufficient condition for the existence of a global solution in Q ∞ is as follows, (q -1)

∞ 0 H[µ](s, .) q-1 L ∞ ds ≤ 1.
(2.12)

The rough trace

This section is devoted to the construction and the study of the properties of the rough initial trace of positive solution of

∂ t u -∆u + u q = 0 in Q ∞ , (3.13) 
when q > 1. The qualifier of rough will be justified later on in connection with surprising non-uniqueness results.

Proof of Theorem 2. Let u be a nonnegative solution of 3.13 in Q ∞ and y ∈ R N , then the following alternative holds: (i) either there exists α > 0 such that

Q Bα(y) 1 u q (x, t)dxdt < ∞, (3.14) 
(ii) or for any α > 0

Q Bα(y) 1 u q (x, t)dxdt = ∞. (3.15)
For any y ∈ S and any α > 0 we have (3.19), therefore we define a Borel measure ν such that for any Borel set

E ⊂ R N ν(E) =    E dµ(x) if E ⊂ R ∞ if E ∩ S = ∅, (3.21) 
and it is outer regular.

The a priori estimate

The function φ ∞ defined on (0, ∞) by

φ ∞ (t) = 1 t(q -1) 1 q-1 (3.22)
is the maximal solution of the differential equation u ′ + u q = 0 on (0, ∞). For any R > 0, let w R be unique solution of

-∆w + w q = 0 in B R lim |x|→R w(x) = ∞. (3.23) 
Existence follows from the universal Keller-Osserman upper construction and uniqueness from the fact that w R (x) = R -2 q-1 w 1 (x/R). (3.24) For any y ∈ R N , R > 0 and ǫ > 0 the function

u ǫ,R,y (x, t = φ ∞ (t -ǫ) + w R (x -y) (3.25)
is a super solution of (3.13) in B R (y) × (ǫ, ∞). Hence it dominates u therein. Letting ǫ → 0 and R → ∞, yields

u(x, t) ≤ φ ∞ (t) for all (x, t) ∈ R N × (0, ∞). (3.26) 
This a priori estimate admits a localised version.

Proposition 3.1 Let q > 1and R > 0. 1-There exists a unique nonnegative solution u := u ∞,R of (3.13) in Q ∞ such that lim t→0 u(x, t) = ∞ uniformly in B R , (3.27) 
and lim Furthermore

lim t→0 t 1 q-1 u ∞,R (x, t) = 1 q -1 1 q-1 locally uniformly in B R , (3.29) 
and for any α > 3-q q-1 there exists

C α > 0 such that u ∞,R (x, t) ≤ C α t -1 q-1 |x| -R √ t α e -(|x|-R) 2 4t for all (x, t) ∈ Q ∞ s.t. |x| -R ≥ √ t.
(3.30)

2-There exists a unique nonnegative solution u

:= u ∞,R c of (3.13) in Q ∞ such that lim t→0 u(x, t) = 0 uniformly in B R , (3.31) 
and lim

t→0 u(x, t)dx = ∞ locally uniformly in B c R . (3.32) Furthermore lim t→0 t 1 q-1 u ∞,R c (x, t) = 1 q -1 1 q-1 uniformly in B c R+ǫ (3.33)
for any ǫ > 0. Next, for any θ ∈ (0, 1) and α < 3-q q-1 , there exists

C α,θ > 0 such that u ∞,R c (x, t) ≤ C α,θ t -1 q-1 θR -|x| √ t α e -(θR-|x|) 2 4t for all (x, t) ∈ Q ∞ s.t. |x| ≤ θR - √ t. (3.34) 
Proof.

Step 1-1-There exists a unique C ∞ (0, ∞)) function W with positive value satisfying

∂ t W -∂ xx W + W q = 0 in (0, ∞) lim x→0 W (x, t) = ∞ for all t > 0 lim t→0 W (x, t) = 0 for all x > 0. (3.35)
This function is self-similar and endows the form

W (x, t) = t -1 q-1 W x √ t , (3.36) 
where W is the unique positive solution of

W ′′ + η 2 W ′ + 1 q-1 W -W q = 0 in (0, ∞) lim η→0 W (η) = ∞ lim η→∞ η 2 q-1 W (η) = 0. (3.37)
The construction is as follows. Let k > 1 and ζ = ζ k be the solution of

∂ t ζ -∂ xx ζ + ζ q = 0 in R ζ(., 0) = 1 [-k,0] on R. (3.38) The correspondence k → ζ k is increasing. Since ζ k is bounded from above by 1, ζ k converges to ζ ∞ which is the unique solution of ∂ t ζ -∂ xx ζ + ζ q = 0 in R × (0, ∞) ζ(., 0) = 1 (-∞,0] on R. (3.39)
For ℓ > 0 we denote by T ℓ the scaling transformation which leaves (3.13) equivariant,

T ℓ [φ](x, t)) = ℓ 2 q-1 φ ℓx, ℓ 2 t . (3.40) Then T ℓ [ζ ∞ ] := ζ ∞,ℓ is the solution of (3.13) in Q ∞ with initial data ℓ 2 q-1 1 (-∞,0] . Again ℓ → ζ ∞,ℓ is increasing. Since the function x → 2(q + 1) (q -1) 2 1 q-1 x -2 q-1 := C q x -2 q-1 for all x > 0, is a solution of ∂ t v -∂ xx v + v q = 0 in (0, ∞) × (0, ∞) v(0, t) = ∞ in (0, ∞), (3.41) 
we have

ζ ∞ (x, t) ≤ C q x -2 q-1 in (0, ∞) × (0, ∞),
which implies that, for all ℓ > 1,

ζ ∞ (x, t) ≤ ζ ∞,ℓ (x, t) ≤ φ ∞ (t)1 (-∞,0] (x) + min C q |x| -2 p-1 , φ ∞ (t) 1 (0,∞) (x). (3.42)
Thus ζ ∞,ℓ converges to some function W when ℓ → ∞, and W satisfies (3.13). Because there holds for any

φ ∈ C ∞ c ((0, ∞)), ∞ 0 R -ζ ∞,ℓ (∂ t φ + ∆φ) + ζ q ∞,ℓ φ dxdt = 0,
the function W satisfies the same upper bound (3.42) as ζ ∞,ℓ and it is a solution of

∂ t ζ -∂ xx ζ + ζ q = 0 in R ζ(., 0) = 0 on (0, ∞) lim t→0 ζ(x, t) = ∞ for all x ≤ 0. (3.43) Finally, for any k > 0, T k •T ℓ = T kℓ , hence T k [ζ ∞,ℓ ] = ζ ∞,kℓ , which implies that T k [W ] = W for all k > 0, hence W is self-similar. This implies that W (x, t) = t -1 q-1 W x √ t and W satisfies W ′′ + η 2 W ′ + 1 q -1 W -W q = 0 in (0, ∞) lim η→∞ η 2 q-1 W (η) = 0 lim η→0 W (η) = ∞. (3.44)
The behaviour of W can be obtained by matching asymptotic expansion, if we consider the function η → W α := η α e -η 2 4 which is a supersolution (resp. subsolution) when η → ∞ if α > 3-q q-1 (resp. α < 3-q q-1 ). Thus for any α > 3-q q-1 there exists C α > 0 such that

W (η) ≤ C α η α e -η 2 4 for all η in [1, ∞). (3.45) 
Inequality (3.34) follows from this estimate.

Step 1-2-We claim that there exists a unique positive function u ∞,R which satisfies (3.13)

lim t→0 u ∞,R (x, t) = ∞ locally uniformly in B R , (3.46) 
and

lim t→0 u ∞,R (x, t) = 0 uniformly in B c R+ǫ . (3.47)
for any ǫ > 0.

Since the equation and the initial conditions are invariant under the transformation T ℓ , we can assume that R = 1. If e is a unit vector we denote by v e the function defined by

v e (x, t) = W ( x -e, e , t) if ( x -e, e > 0, t > 0 ∞ if ( x -e, e ≤ 0, t > 0, (3.48) 
and by H + e (resp. H + e ) the half space {x : xe, e > 0} (resp. {x : xe, e ≤ 0}). Then v e satisfies (3.13) 

in Q ∞ with initial data v e (x, 0) = 0 if x ∈ H + e and v e (x, 0) = ∞ if x ∈ H - e . Then v 1 = inf {v e : |e| = 1} (3.49) is a supersolution of (3.13) in Q ∞ which satisfies v 1 (x, 0) = 0 if |x| > 1 and v 1 (x, 0) = ∞ if |x| ≤ 1. For k > 0 let u k be the solution of (3.13) in Q ∞ with initial data kI B 1 . Then u k ≤ v 1 . Since k → u k is increasing.
Hence there exists a nonnegative function u which is a solution of of (3.13) in

Q ∞ such that lim t→0 u(x, t) = 0 if |x| > 1 and lim t→0 u(x, t) = ∞ if |x| ≤ 1. (3.50)
By construction u is a minimal solution and by (3.45), and (3.30) holds. Let u be another nonnegative function solution of (3.13) in Q ∞ satisfying (3.50). For ℓ < 1 and R > ℓ -1 , there exists ǫ ℓ,R such that

u(x, t) ≤ w R (x) for all (x, t) ∈ Q ∞ s.t. ℓ -1 ≤ |x| < R and 0 < t ≤ ǫ ℓ,R ,
where w R is defined in (3.23). Therefore the supersolution (x, t)

→ T ℓ [ u](x, t-ǫ ℓ,R )+w R (x) defined in B R × (ǫ ℓ,R , ∞), is larger than u on ∂B R × (ǫ ℓ,R , ∞) and for t = ǫ ℓ,R . Hence u(x, t) ≤ T ℓ [ u](x, t -ǫ) + w R (x) for all (x, t) ∈ B R × (ǫ ℓ,R , ∞). When R → ∞, ǫ ℓ,R → 0 and w R (x) → 0. This implies u(x, t) ≤ T ℓ [ u](x, t) for all (x, t) ∈ Q ∞ .
Letting ℓ → 1 yields u ≤ u. Similarly u ≤ u.

Step 1-3-The function u ∞,R satisfies

lim t→0 t 1 q-1 u ∞,R (x, t) = 1 q -1 1 q-1
locally uniformly in B R .

(3.51)

In order to prove this claim, for any

R ′ < R we construct a function ψ ∈ C 2 c (R N ) such that 0 ≤ ψ ≤ 1, ψ = 1 in B R ′ , ψ = 0 in B c R and -∆ψ ≤ Cψ for some C = CR, R ′ ) > 0.
For any δ > 0, the function

(x, t) → X(x, t) := (1 -δ)ψ(x)φ ∞ (t) satisfies ∂ t X -∆X + X q ≤ (1 -δ)φ ∞ ψ φ ∞ (1 -δ) q-1 -1 - ∆ψ ψ .
Then there exists ǫ > 0 such that the above expression is negative for 0

< t ≤ ǫ. Therefore u ∞,R ≥ X in R N × (0, ǫ]. This implies lim inf t→0 t 1 q-1 inf {u ∞,R (x, t) : x ∈ B R ′ } ≥ (1 -δ) 1 q -1 1 q-1 . (3.52) 
Since δ is arbitrary, we obtained the claim from (3.26).

Step2-1-We claim that there exists a unique positive function u ∞,R c which satisfies (3.13),

lim t→0 u ∞,R c (x, t) = ∞ uniformly in B c R , (3.53) 
and lim

t→0 u ∞,R c (x, t) = 0 locally uniformly in B R . (3.54)
The proof uses the previous constructions. For any k > 0 we denote by v k the solution of

∂ t v -∆v + v q = 0 in Q ∞ v(., 0) = k1 B c R in R N .
(3.55)

The sequence {v k } is increasing and it satisfies

v k (x, t) ≤ φ ∞ (t)1 B c R (x) + inf{φ ∞ (t), w R (x)}1 B R (x). (3.56)
Then it converges to a positive solution of (3.13) in

Q ∞ that we denote u ∞,R c . Therefore u ∞,R c satisfies Q∞ (-∂ t ζ -∆ζ)u ∞,R c + ζu p ∞,R c dxdt = 0 (3.57) for all ζ ∈ C ∞ c (B R )
. Using (3.53) and (3.57 it implies that u ∞,R c vanishes on B R . Uniqueness of such a solution is obtained by the same scaling and shifting argument as in the Steps 1-2.

Step2-2-Improved estimates. As a subsolution of (3.13) in Q ∞ we take

v 2 (x, t) = sup {v -e (-x, t) : e ∈ ∂B 1 } . (3.58)
With the same notations as in Step 1-2, v 2 is a subsolution, and v 2 (t, x) → 0 when t → 0 if x ∈ B 1 and v 2 (t, x) → ∞ when t → 0 and x ∈ B c 1 . This implies that (3.33) holds. The construction of the supersolution is more subtle: for 0 < θ < 1 there exists an integer n θ such that

B θ ⊂ 1≤j≤n θ H j,θ ⊂ B 1 ,
where

H j,θ = x ∈ R N : x -θe j , e j < 0 with e j ∈ ∂B 1 .
Hence the function

v 2,θ (x, t) = 1≤j≤n θ W ( -x + θe j , e j , t), (3.59) is a supersolution of (3.13) in Q ∞ which dominates u ∞,R c . If x ∈ B θ , we have that dist (x, H c j,θ ) ≤ θ -|x|, therefore u(x, t) ≤ n θ t -1 q-1 W ( θ -|x| √ t ), (3.60) 
which implies thanks to (3.30),

u(x, t) ≤ n θ C α t -1 q-1 θ -|x| √ t α e -(θ-|x|) 2 4t for (x, t) ∈ Q ∞ s.t. |x| ≤ θ - √ t. (3.61) 
From this inequality estimate (3.34) follows by rescaling.

The subcritical case

For a given q > 1 it not always possible to find a solution of (3.13) belonging to C(Q ∞ \{0}) vanishing on R N × {0} \ {0}. Indeed Brezis and Friedman [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] proved the following results

Theorem 3.2 Let q c = 1 + 2 N . (3.62)
If q ≥ q c any solution u of (3.13) belonging to C(Q ∞ \{0}) and vanishing on R N ×{0}\{0} is identically 0. If 1 < q < q c , for any c ∈ R there exists a unique solution u := u cδ 0 of

∂ t u -∆u + |u| q-1 u = 0 in Q ∞ u(., 0) = cδ 0 in D ′ (R N ) (3.63)
where δ 0 is the Dirac mass at 0. Furthermore if {ρ n } is a sequence of positive integrable functions which converges weakly to cδ 0 in the sense of distributions in R N , then the sequence of functions {u ρn } which satisfy

∂ t u -∆u + |u| q-1 u = 0 in Q ∞ u(., 0) = ρ n in D ′ (R N ) (3.64) converges to u cδ 0 locally uniformly in Q ∞ .
An important consequence of the previous result is the existence of very singular solutions which was first discovered by Brezis, Peletier and Terman in [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF]. We give below an alternative proof of its construction and uniqueness. Theorem 3.3 Suppose 1 < q < q c . Then there exists a unique positive C ∞ function f defined on [0, ∞) such that

f ′′ + N -1 η + η 2 f ′ + 1 q -1 f -f p = 0 on (0, ∞) f ′ (0) = 0 and lim η→∞ η 2 q-1 f (η) = 0. (3.65) Furthermore f (η) = Ae -η 2 4 η 2 q-1 -N 1 + 2q q -1 2 q -1 -N η -2 + o(η -2 ) as η → ∞. (3.66)
Proof. For any ǫ > 0, u c is bounded from above by the solution u ∞,ǫ of (3.13) with initial data u ∞,ǫ (x, 0) = ∞×1 Bǫ (x) which is defined in the proof of Proposition 3.1-Step 1. When c → ∞, u c increases and converges to some solution u ∞ wich is a positive solution of (3.13) and is bounded from above by u ∞,ǫ . Because of uniqueness there holds

T ℓ [u c ] = u c ℓ 2 q-1 -N
where T ℓ is defined in (3.40). Therefore

T ℓ [u ∞ ] = u ∞ for any ℓ > 0.
Hence u ∞ is self-similar and radial because of uniqueness as u c is, thus it endows the form

u ∞ (x, t) = t -2 q-1 f |x| √ t , (3.67) 
and f satisfies the ODE (3.66). Because u ∞ (x, t) → 0 for x = 0 when t → 0, it implies that lim η→∞ η 2 q-1 f (η) = 0. The function f is a positive radial and bounded solution of

-∆ η f - 1 2 η.∇f - 1 q -1 f + f p = 0 in R N \ {0}.
Hence the singularity at

η = 0 is removable. Thus f is C ∞ in R N and f ′ (0) = 0. Similarly T ℓ [u ∞,ǫ ] = u ∞,ℓ -1 ǫ
. Therefore u ∞,ǫ decreases and converges when ǫ → 0 to the function u ∞,0 which is a positive self-similar solution of (3.13), say

u ∞,0 (x, t) = t -2 q-1 f |x| √ t , (3.68) 
and f is a positive solution of (3.63). Since u ∞ ≤ u ∞,0 , one has f ≤ f . Actually, f (resp. f ) is the minimal (resp. maximal) solution of (3.65). Estimate (3.66) is obtained by the classical method of matching asymptotic expansion. For uniqueness, it follows from the fact that 0 < f (0) ≤ f (0) combined to the expansion (3.66) that there exists A > 1 such that

f (η) ≤ f (η) ≤ Af (η) for all η ≥ 0. (3.69)
Actually, only the truncated expansion

Ae -η 2 4 η 2 q-1 -N (1 + o(1)) as η → ∞,
which is easily obtained as in Proposition 3.1-step 2 is needed. If f = f , then f < f by the maximum principle. We set

W = f - 1 2A ( f -f ).
By convexity

1 + 1 2A f p ≤ 1 + 1 2A f - 1 2A f p + 1 2A f p .
Hence W satisfies

-∆ η W - 1 2 η.∇W - 1 q -1 W + W p ≥ 0 in R N . Since W = 1 2 + 1 2A f is smaller than W and satisfies -∆ η W - 1 2 η.∇W - 1 q -1 W + W p ≤ 0 in R N ,
there exists a positive and radial function f * satisfying

-∆ η f * - 1 2 η.∇f * - 1 q -1 f * + f * p = 0 in R N ,
and such that 0 < f * < f , which contradicts the minimality of f . .

The following result is fundamental in the study of the singlar points of the initial trace of a solution u of (3.13) in the subcritical case. Lemma 3.4 Suppose 1 < q < q c , u is a positive solution of (3.13) and y ∈ R N is such that lim sup t→0 Bǫ(y) u(x, t)dx = ∞ for all ǫ > 0.

(3.70)

Then u(x, t) ≥ t -2 q-1 f |x -y| √ t . (3.71)
Proof. For any ǫ > 0, there exists a sequence {t n } decreasing to 0 such that

Bǫ(y) u(x, t n )dx = M (ǫ, n) → ∞ as n → ∞.
Let c > 0, then for n ≥ n 0 = n 0 (ǫ, c), M (ǫ, n) > c, hence there exist ǫ n and k n > 0, both depending on c such that

Bǫ n (y) min{u(x, t n ), k n }dx = c.
Let u n be the solution of (3.13) with initial data u n (x, 0) = min{u(x, t n ), k n }1 Bǫ n (y) . By the maximum principle

u(x, t + t n ) ≥ u n (x, t) for (x, t) ∈ Q ∞ .
By Theorem 3.2 u n converges to u cδy when n → ∞. Hence

u(x, t) ≥ u cδy (x, t) for (x, t) ∈ Q ∞ .
Since c > 0 is arbitrary, the claim follows from the fact that lim c→∞ u cδy (x, t) → u ∞ (xy, t) by Theorem 3.3. Proposition 3.5 Suppose 1 < q < q c . Then for any closed set S ⊂ R N there exists a unique positive solution of (3.13) with initial trace (S, 0).

Proof.

Step 1-Construction of the minimal solution u S,0 . Let {a n } ⊂ S be a sequence of points dense in S and µ n = n n j=1 δ a j . Then the sequence u µn of solutions of (3.13) is increasing. By Lemma 3.4

u µn ≥ sup{u nδa j : 1 ≤ j ≤ n}. (3.72) 
Furthermore, by (3.16), for any y ∈ S c and R = dist (y, S) there holds

u µn (x, t) ≤ Ct -1 q-1 |x -y| √ t α e -(R-[x-y[) 2 4t
for all (x, t) ∈ B R (y) × (0, ∞), (3.73) where C = C(α, q) > 0 and α > 3-p p-1 , and classicaly, u µn (x, t) ≤ φ ∞ (t). Therefore the sequence {u µn } increases and converges to some function denoted by u S,0 which is a positive solution of (3.13) and satisfies the same estimate from above (3.73) as u µn . By 3.71) and 3.72) there holds

u S,0 (x, t) ≥ t -2 q-1 f |x -a n | √ t for all (x, t) ∈ B R (y) × (0, ∞) and n ∈ N. (3.74)
Because {a n } is dense in S, this last inequality implies that for any y ∈ S and ǫ > 0,

Bǫ(y) u S,0 (x, t)dx → ∞ as t → 0. (3.75)
Step 2-We claim that the function u S,0 is the minimal solution with initial trace (S, 0). Let u be such a solution. For n ∈ N * we consider a double sequence of real numbers {ǫ n,ℓ } such that ǫ n,ℓ ≤ min{|a ja i | : 1 ≤ i, j ≤ n, i = j} for all ℓ ∈ N * .

and since the set {a j } j∈N is dense in S, for any ℓ there holds lim n→∞ ǫ n,ℓ = 0.

We assume also lim ℓ→∞ ǫ n,ℓ = 0 for all n ∈ N * .

For any n ∈ N * , ℓ ∈ N * and j = 1, ..., n, there holds

Bǫ n,ℓ (a j ) u(x, t)dx → ∞ as t → 0.

Then for fixed n ∈ N * there exists t n,ℓ > 0 such that Bǫ n,ℓ (a j ) u(x, t n,ℓ )dx ≥ 2n for all j = 1, ..., n.

Since ǫ n,ℓ → 0 when ℓ → ∞, it follows that t n,ℓ → 0 under the same condition. Consequently there exist positive numbers m j,n,ℓ for j = 1, ..., n such that

Bǫ n,ℓ (a j ) min{u(x, t n,ℓ ), m j,n,ℓ }dx = n.
We set Step 3-Construction of the maximal solution u S,0 . For ǫ > 0 we set

ρ n,ℓ (x) = n j=1 min{u(x, t n,ℓ ), m j,n,ℓ }1 Bǫ n,ℓ (a j ) (x). ( 3 
S ǫ = {x ∈ R N : dist (x, S) ≤ ǫ}.
For R > 0 we also define S ǫ,R = S ǫ ∩ B R . Let u = u ǫ,R,n be the solution of (3.13) with initial data n1 S ǫ,R . The mapping (R, n) → u ǫ,R,n is increasing and bounded from above by φ ∞ , hence there exists

u ǫ := lim n → ∞ R → ∞ u ǫ,R,n .
The mapping R → u ǫ,R is increasing therefore there exists a limit u ǫ when R → ∞ which satisfies

lim t→0 t 1 q-1 u ǫ (x, t) = 1 q -1 1 q-1 , (3.78) 
uniformly on any ball B θ interior to S ǫ and

u ǫ (x, t) ≤ Ct -1 q-1 |x -y| √ t α e -(R-[x-y[) 2 4t for all (x, t) ∈ B R (y) × (0, ∞), (3.79) 
for all y ∈ S c ǫ where R = dist (y, S ǫ ). This implies that the initial trace of u ǫ is (S ǫ , 0). It is a consequence of the construction of u ǫ as the limit of u ǫ,R,n when (n, R) → (∞, ∞) that the mapping ǫ → u ǫ is decreasing with limit u S . Furthermore u S ≥ u S,0 . Using (3.79) applied with y ∈ S c and R = dist (y, S) we deduce that u S has initial trace (S, 0), and from now it is denoted u S,0 .

Step 4-We claim that the function u S,0 is the maximal solution with initial trace (S, 0). Assume u is any positive solution of (3.13) with initial trace (S, 0) and for R > 0 let w R be the solution of (3.23). For ǫ > 0 the function u ǫ + w R is a supersolution of the equation in B R × (0, ∞), thus for any δ > 0 the function

(1 + δ)(u ǫ + w R ) is also a supersolution of the equation in B R × (0, ∞). Since u(x, t) → 0 when t → 0 uniformly in B R \ S ǫ we obtain that u ≤ (1 + δ)(u ǫ + w R ) in B R × (0, ∞).
Letting successively δ → 0, R → ∞, here we use (3.24) and ǫ → 0, we infer that u ≤ u S,0 .

Step 5-We claim that there exists K > 1 such that u S,0 ≤ Ku S,0 . If y ∈ S there holds by (3.26) and (3.71) that

f (0)t -1 q-1 ≤ u S,0 (y, t) ≤ u S,0 (y, t) ≤ 1 q -1 1 q-1 t -1 q-1 .
(3.80)

Thus the claim follows with

K = 1 q-1 1 q-1 (f (0)) -1 .
If y ∈ S c let z ∈ S such that |z -y| = dist (y, S) := d y . Then by (3.71) and (3.32),

f dy √ t t -1 q-1 ≤ u S,0 (y, t) ≤ u S,0 (y, t) ≤ Ce - d 2 y 4t t -1 q-1 d y √ t α . (3.81) 
where α > 3-q q-1 . For σ > 0 we put

P σ = (y, t) : d y √ t ≤ σ .
If (y, t) ∈ P σ there exists K σ > 0 such that u S,0 (y, t) ≤ K σ u S,0 (y, t).

(3.82)

Next we prove that for any c > 1 there exists σ c such that for any σ ≥ σ c there holds

u S,0 (y, t) ≤ K σ u S,0 (y, Ct) for all (x, t) ∈ Q ∞ \ P σ . (3.83)
It follows from expansion (3.66) that we have

e - d 2 y 4t t - 1 q-1 dy √ t α ≤ f dy √ ct (ct) -1 q-1 , (3.84) 
which implies (3.83).

Next, for τ > 0, let u 1,τ and u 2,τ be the solutions of (3.13) with respective initial data

u 1,τ = K σ 1 Pσ (x, τ )u S,0 (x, τ ) u 2,τ = (1 -1 Pσ (x, τ ))u S,0 (x, Cτ ). (3.85)
It is known and easy to prove that the solutions of (3.13) are uniquely determined by their initial data ( [START_REF] Brezis | Nonlinear elliptic equation in R N without condition at infinity[END_REF]). The function u 1,τ + u 2,τ is a supersolution and

(u 1,τ + u 2,τ )(x, 0) = K σ 1 Pσ (x, τ )u S,0 (x, τ ) + (1 -1 Pσ (x, τ ))u S,0 (x, Cτ ) ≥ u S,0 (x, τ ).
Since K σ u S,0 (x, τ ) ≥ u 1,τ (x, 0) it follows that

K σ u S,0 (x, τ + t) ≥ u 1,τ (x, t) for all (x, t) ∈ Q ∞ .
Similarly u S,0 (x, Cτ ) ≥ u 2,τ (x, 0), therefore

u S,0 (x, Cτ + t) ≥ u 2,τ (x, t) for all (x, t) ∈ Q ∞ .
Combining these two inequalities we have that

u S,0 (x, t + τ ) ≤ u 2,τ (x, t) + u 1,τ (x, t) ≤ K σ u S,0 (x, τ + t) + u S,0 (x, Cτ + t). (3.86) Letting τ → 0 yields u S,0 (x, t) ≤ (1 + K σ )u S,0 (x, t) for all (x, t) ∈ Q ∞ . (3.87) 
Next we set K = 1 + K σ and

W = u S,0 - 1 2K u S,0 -u S,0 .
If u S,0 = u S,0 , then u S,0 > u S,0 and W is a supersolution of (3.13) by the same convexity argument used in the proof of Theorem 3.3. Note also that 1 2 + 1 2K u S,0 is a subsolution of (3.13) smaller than W . Hence there exists a solution u of (3.13) satisfying

1 2 + 1 2K u S,0 ≤ u ≤ W. (3.88)
This implies that the initial trace of u is also (S, 0). Since W < u S,0 , we have a contradiction with the minimality of u S,0 .

The next result shows that the initial trace provides a one to one correspondence between the set of nonnegative solutions of (3.13) and the set of couples (S, µ) where S is a closed subset of R N and µ a nonnegative Radon measure on R := R N \ S. Theorem 3.6 Suppose 1 < q < q c . Then for any closed set S ⊂ R N and any positive Radon measure µ on R := R N \ S there exists a unique positive solution of (3.13) with initial trace (S, µ).

Proof.

Step 1-Construction of the minimal solution. The principle is standard. We set S ǫ = {x ∈ R N : dist (x, S) ≤ ǫ}. For R > 0 we define

µ ǫ,R = 1 S c ǫ ∩B R µ.
and denote by u µn+µ ǫ,R the solution of (3.13) with initial data µ n + µ ǫ,R where µ n has been defined in the proof of Proposition 3.5-Step 1. Clearly (ǫ, R, n) → u µn+µ ǫ,R is increasing in n and R and decreasing with respect to ǫ and we have 

max{u µn , u µ ǫ,R } ≤ u µn+µ ǫ,R ≤ u µn + u µ ǫ,R . (3 
. Then u + w k is a supersolution of (3.13) in Q B k ∞ . Because B k = (B k ∩ S ǫ ) ∪ (B k ∩ S c ǫ ), there holds lim t→0 B k ∩Sǫ (u µn+µ ǫ,R -u) + dx = lim t→0 B k ∩Sǫ (u µn -u) + dx = 0,
and lim

t→0 B k ∩S c ǫ (u µn+µ ǫ,R -u) + dx = lim t→0 B k ∩S c ǫ (u µ ǫ,R -u) + dx = 0.
Therefore the subsolution (u µn+µ ǫ,Ruw k ) + has zero initial data and it vanishes on

∂ ℓ (Q B k ∞ ) := ∂B k × (0, ∞)
, thus it is identically zero. Therefore

u µn+µ ǫ,R ≤ u -w k in Q B k ∞ . (3.92) Letting k → ∞, ǫ → 0 and n → ∞ yields u S,µ ≤ u in Q ∞ . (3.93)
Step 2-Construction of the maximal solution. For n, ǫ > 0 we set µ ǫ = 1 S c ǫ µ and

µ n ǫ = 1 S c ǫ µ + n1 Sǫ dx. Let u n,ǫ = u ∅,µ n ǫ .
When n → ∞, the sequence {u n,ǫ } increases and converges to a solution with initial trace (S ǫ , µ ǫ ) denoted by u Sǫ,µǫ . Let k, θ > 0, then u θ,ǫ,k :

= (1 + θ)u Sǫ,µǫ + w k is a supersolution of (3.13) in Q ∞ . By (3.46), the function (u -u θ,ǫ,k ) + satisfies lim t→0 Sǫ∩B k (u -u θ,ǫ,k ) + (x, t)dx = 0. In the cylinder Q B k
∞ the function u θ,ǫ,k is a supersolution of (3.13) with initial data (1+ θ)µ and infinite boundary data. Hence it dominates u therein. Consequently

lim t→0 S c ǫ ∩B k (u -u θ,ǫ,k ) + (x, t)dx = 0. which yields lim t→0 B k (u -u θ,ǫ,k ) + (x, t)dx = 0. Because u θ,ǫ,k has infinite value on ∂ ℓ Q B k ∞ we deduce that u θ,ǫ,k ≥ u in Q B k ∞ . Letting successively k → ∞, δ → 0 and ǫ → 0 we obtain that u Sǫ,µǫ ≥ u in Q ∞ .
When ǫ → 0, u Sǫ,µǫ is decreasing and it converges to a solution u S,µ of (3.13) in Q ∞ with initial trace (S, µ) and is larger than any positive solution u with the same initial trace.

Step 3-End of the proof. With the notations of Steps 1 and 2, we set

Z ǫ,µǫ = u Sǫ,µǫ -u µn+µǫ and Z ǫ,0 = u Sǫ,0 -u µn . Then ∂ t (Z ǫ,µǫ -Z ǫ,0 ) -∆(Z ǫ,µǫ -Z ǫ,0 ) + u q Sǫ,µǫ -u q µn+µǫ -(u q Sǫ,0 -u q µn ) = 0. Now u q Sǫ,µǫ -u q µn+µǫ = u q Sǫ,µǫ -u q µn+µǫ u Sǫ,µǫ -u µn+µǫ Z ǫ,µǫ , and 
u q Sǫ,0 -u q µn = u q Sǫ,0 -u q µn u Sǫ,0 -u µn Z ǫ,0 .
Since u Sǫ,µǫ ≥ max {u µn+µǫ , u Sǫ,0 } and u µn ≤ min {u Sǫ,0 , u µn+µǫ } , the convexity of the function r → r q on R + implies that

u q Sǫ,µǫ -u q µn+µǫ u Sǫ,µǫ -u µn+µǫ ≥ u q Sǫ,0 -u q µn u Sǫ,0 -u µn ≥ 0. Therefore ∂ t (Z ǫ,µǫ -Z ǫ,0 ) -∆(Z ǫ,µǫ -Z ǫ,0 ) + u q Sǫ,0 -u q µn u Sǫ,0 -u µn (Z ǫ,µǫ -Z ǫ,0 ) ≤ 0. Since lim t→∞ R N (Z ǫ,µǫ -Z ǫ,0 ) + (x, t) = 0,
it follows by the maximum principle that Z ǫ,µǫ ≤ Z ǫ,0 . Letting n → ∞ and ǫ → 0 implies u S,µu S,µ ≤ u S,0u S,0 .

Uniqueness follows by Proposition 3.5.

Extensions and comments. The initial trace of positive solutions of (3.13) in the cylinder Q Ω ∞ can be defined similarly. If u is such a solution, it admits an initial trace in Ω which consists in a closed subset S ⊂ Ω and a Radon measure µ defined in Ω \ S.

Furthermore the value of u on the parabolic boundary ∂ ℓ Q Ω ∞ has to be taken into account in order to prove results of existence and uniqueness. This theory is developed in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] in the following framework:

(i) Ω ⊂ R N is a smooth domain. (ii) u⌊ ∂ ℓ Q Ω ∞ = f ∈ L 1 (∂ ℓ Q Ω ∞ ). (iii) µ is a positive Radon measure in Ω which is bounded in a neighbourhood of ∂Ω. (iv) 1 < q < 1 + 2
N . Under these conditions and the subcriticality assumption, the initial trace provides a one to one correspondence between the sets of positive solutions u of

∂ t u -∆u + u q = 0 in Q Ω ∞ u = f on ∂ ℓ Q Ω ∞ , (3.94) 
and the set of couples (S, µ) where S is a closed subset of Ω and µ a nonnegative Radon measure µ in R := Ω \ S which is bounded in a neighbourhood of ∂Ω.

The supercritical case

The next lemma shows that a very singular solution of (3.13) cannot exist if q ≥ q c . Lemma 3.7 Let q ≥ q c , then problem (3.65) admits no positive solution.

Proof. Let f be such a solution. Since f (η) = o(η

-2
q-1 ) as η → ∞, by matching asymptotic expansion we obtain that for any α > 2 q-1 -N there exists c α > 0 such that

f (η) ≤ c α η α e -η 2 4
for all η ≥ 1.

(3.95)

Then it follows from the equation that

f ′ (η) ≤ c ′ α η α+1 e -η 2 4
for all η ≥ 1.

(3.96)

Set φ 1 (η) = e -η 2 4 , then

η N -1 e η 2 4 φ ′ 1 (η) ′ = N 2 η N -1 e η 2
4 φ 1 (η).

We write 3.65) under the form

η N -1 e η 2 4 φ ′ 1 (η) ′ + η N -1 e η 2 4 1 q -1 f -f q = 0.
Multiplying by φ 1 and integrating on (0, ∞), which is justified by (3.95) and (3.96), we infer that

∞ 0 1 q -1 - N 2 f -f q η N -1 e η 2 4 φ 1 dη = 0.
This leads to a contradiction because 1 q-1 -N 2 ≤ 0. The following result proved by Brezis and Friedman [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] points out the role of the exponent q c the study of singularities of solutions of (3.13). Theorem 3.8 Let q ≥ q c , Ω ⊂ R N be a domain containing 0 and u ∈ C(Q Ω T \ {(0, 0)}) be a solution of (3.13) in Q Ω T vanishing at t = 0 except at x = 0. Then u can be extended as a continuous function in C(Q Ω T ).

Proof. We can assume that B R ⊂ Ω and we first assume that u + vanishes on ∂B R × (0, T ). Then for any ǫ > 0 the function u + is bounded from above by the function u ǫ,∞ which satisfies (3.13) in Q ∞ and has initial trace (B ǫ , 0). By scaling

T ℓ [u ǫ,∞ ] = u ℓ -1 ǫ,∞ for all ℓ > 0,
and since ǫ → u ǫ,∞ is increasing, there exists u 0,∞ = lim ǫ→0 u ǫ,∞ . Furthermore u 0,∞ is selfsimilar and u + ≤ u 0,∞ . By Lemma 3.7 u 0,∞ = 0, thus u + = 0.

In the general case we denote by φ the boundary value of u on ∂ ℓ Q B R T , and by ψ the solution of

∂ t ψ -∆ψ = 0 in Q B R T ψ = φ + on ∂ ℓ Q B R T ψ(., 0) = 0 in B R .
Then (uψ) + is a subsolution of (3.13) in Q B R T . By the previous argument, (uψ) + = 0. Hence u + is bounded from above. Similarly u -is bounded, this implies that u remains bounded in Q B R T . Standard regularity results imply that u vanishes on B R × {0} and the claim follows.

When q ≥ q c there exists no solution of (3.13) in Q ∞ with a Dirac measure as an initial data. This phenomenon is general and the next result proved in [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF] shows that if µ ∈ M(R N ) the problem with measure initial data

∂ t u -∆u + |u| q-1 u = 0 in Q ∞ u(., 0) = µ in R N , (3.97) 
can be solved only if the measure µ is not too concentrated.

Definition 3.9 Let µ ∈ M(R N ). A function u ∈ L q loc (Q ∞ ) ∩ C(Q ∞ ) is a weak solution of (3.97) if for all for all ζ ∈ C 2 c (Q ∞ ) there holds ∞ 0 R N -u (∂ t ζ + ∆ζ) + |u| q-1 uζ dxdt = R N ζ(x, 0)dµ(x). ( 3 

.98)

A measure µ for which (3.97) is solvable is called q-admissible.

For the sake of completeness we introduce the Bessel capacity cap 2 q ,q ′ (relative to R N ) defined by

cap 2 q ,q ′ (E) = inf R N ×R N |ζ(x) -ζ(y)| q ′ |x -y| N -2 q-1 dxdy + ζ q ′ L q ′ (R N ) : ζ ∈ C ∞ c (R N ), 0 ≤ ζ ≤ 1, ζ ≥ 1 E .
(3.99)

The properties of Bessel capacities cap s,p which are associated to the Besov space B s,p and the Bessel kernel G s are fully developed in [START_REF] Adams | Function spaces and potential theory[END_REF]. It is noticeable that when q > q c the zero-capacity Borel sets of the Riesz and the Bessel capacities coincide since there holds [1, 5.6.1]

Ṙ 2 q ,q ′ (E) ≤ cap 2 q ,q ′ (E) ≤ A Ṙ 2 q ,q ′ (E) + Ṙ 2 q ,q ′ (E) N N-2 q-1
.

(3.100)

Theorem 3.10 A measure µ ∈ M(R N ) is q-admissible if and only if cap 2 q ,q ′ (F ) = 0 =⇒ |µ|(F ) = 0, (3.101) 
for all Borel set F ⊂ R N .

Before proving this result we give an equivalence of norms estimate which will be used in the sequel.

Lemma 3.11 Assume q ≥ q c . Then for any T > 0 there exists c = c(n, q, T ) > 0 such that for any bounded measure µ ∈ B -2 q ,q (R N ) there holds

c -1 µ B -2 q ,q (R N ) ≤ H[µ] L q (Q T ) ≤ c µ B - 2 
q ,q (R N ) .

(3.102) Furthermore, if q > q c , there holds

c -1 µ B -2 q ,q (R N ) ≤ H[µ] L q (Q∞) ≤ c µ B -2 q ,q (R N ) + µ M(R N ) . (3.103) 
Proof. If µ ∈ B -2/q,q (R N ), there exists a unique ω ∈ B 2-2/q,q (R N ) such that µ = (I -∆)ω, and µ B -2/q,q ≈ ω B 2-2/q,q . Applying standard interpolation methods to the analytic semi-group e -t(I-∆) = e -t e t∆ (see e.g. [START_REF] Berens | Semigroups of Operators and Approximations[END_REF], [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF]) we obtain,

Q∞ t 1/q (I -∆)H[ω]
q dx e -qt dt t

1/q = Q∞ t 1/q H[µ]
q dx e -qt dt t

1/q ≈ ω B 2-2/q,q ≈ µ B -2/q,q . (3.104) Clearly e -qT Q T t 1/q H[µ] q dx dt t ≤ Q∞ t 1/q H[µ]
q dx e -qt dt t , and

Q∞ t 1/q H[µ] q dx e -qt dt t = ∞ n=0 Q T +n+1 \Q T +n t 1/q H[µ] q dx e -qt dt t = ∞ n=0 Q T |H[µ](s + n)| q e -q(s+n) ds ≤ ∞ n=0 e -qn Q T t 1/q H[µ] q dt t , and (3.102) follows. Notice that |H[µ](., t)| q L q ≤ ct -N (q-1)/2 µ q M , therefore H[µ] belongs to L q (Q ∞ ) if q > q c (but not if q = q c ). If q > q c (equivalently N (q -1)/2 > 1), Q∞ t 1/q H[µ] q dx dt t = ∞ n=0 Q T +n+1 \Q T +n t 1/q H[µ] q dx dt t = Q T t 1/q H[µ] q dx dt t + Q T ∞ n=1 |H[µ](s + n)| q dxds ≤ Q T t 1/q H[µ] q dx dt t + C ∞ n=1 n -N (q-1)/2 µ q M .
Thus we obtain (3.103).

Proof of Theorem 3.10 We present here an abridged proof slightly different from the original one due to Baras and Pierre [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF]. We first notice that if 1 < q < q c any function in B 2 q ,q ′ (R N ) coincides with a continuous function. Hence only the empty set has zero cap 2 q ,q ′ -capacity. Therefore any measure in R N is q-admissible. From now on we assume that q ≥ q c . Let F be a compact set with zero cap 2 q ,q ′ -capacity and {ζ n } a sequence as in the previous theorem. We take

φ n = φH[ζ n ] for test functions, where now φ ∈ C ∞ c (R N × [0, ∞)) is nonnegative, takes value in [0, 1] and is equal to 1 in a neighbourhood of F . Then (3.116) is replaced by ∞ 0 R N u q φ n -u ∂ t φ n + ∆ φ n dxdt = R N ( φH[ζ n ])(., 0)dµ(x) ≥ µ(F ). (3.105) Since ζ n → 0 and 0 ≤ ζ n ≤ 1, φ n → 0 a.e. and ∂ t φ n + ∆ φ n → 0 in L q ′ loc (R N × [0, ∞))
). Thus the left-hand side of 3.105) converges to 0, which implies µ(F ) = 0.

Conversely, if µ is a nonnegative measure which vanishes on Borel sets with zero cap 2 q ,q ′ -capacity, it can be proved by the Hahn-Banach theorem (see [START_REF] Feyel | Topologies fines et compactifications associées à certains espaces de Dirichlet[END_REF]) that there exists an increasing sequence {µ n } of nonnegative bounded measures belonging to B -2 q ,q (R N ) which converges to µ. We first prove that a nonnegative bounded measure µ belonging to B

-2 q ,q (R N ) is q-admissible. By the previous lemma, H[µ] belongs to L q loc (R N × [0, ∞)).
Next, for k > 0, we set g k (r) = sign(u) min{|u| p , k p } and we denote by u k the solution of

∂ t u -∆u + g k (u) = 0 in Q ∞ u(., 0 = µ in R N . (3.106) For 0 < k < ℓ one has 0 < u ℓ < u k < H[µ]
. We denote by u the limit of the u k . Since for

any ζ ∈ C ∞ c (R N × [0, ∞)) there holds ∞ 0 R N (g k (u k )ζ -(∂ t ζ + ∆ζ) u k ) dxdt = R N ζ(., 0)dµ, (3.107) and g k (u k ) ≤ (H[µ]) p ∈ L 1 loc (R N × [0, ∞))
we deduce by the Lebesgue dominated convergence theorem that

∞ 0 R N (u p ζ -(∂ t ζ + ∆ζ) u) dxdt = R N ζ(., 0)dµ. (3.108)
This prove that u is a nonnegative solution of (3.97) and µ is q-admissible. Finally if µ is a nonnegative measure satisfying (3.101), there exists an increasing sequence of q-admissible measures {µ n } converging to µ. For each n, let u n be the solution of (3.97) with initial data µ n . Then the sequence

{u n } is nondecreasing. For any nonnegative ζ ∈ C 2 c (Q ∞ ) there holds ∞ 0 R N (-u n (∂ t ζ + ∆ζ) + u q n ζ) dxdt = R N ζ(x, 0)dµ n (x).
(3.109)

Let u be the limit of the increasing sequence {u n }. By the Beppo-Levi convergence theorem one has (3.98). This implies in particular that u

∈ L q loc (Q ∞ ). If ζ is nolonger nonnegative then lim n→∞ ∞ 0 R N u q n ζdxdt, by the dominated convergence theorem. Since lim n→∞ ∞ 0 R N u n (∂ t ζ + ∆ζ) dxdt = ∞ 0 R N u (∂ t ζ + ∆ζ) dxdt
it follows that u is a weak solution of (3.97) and therefore µ is q-admissible.

For a general measure µ satisfying (3.101), we write the Jordan decomposition µ = µ + -µ - and the proof follows.

Baras and Pierre proved in [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF] a general removability result which involves the Bessel capacities of a set. Theorem 3.12 Let q > 1 and

F ⊂ R N a closed set. A function u ∈ C(Q ∞ \ F ) which is a solution of (3.13) in Q ∞ can be extended continuously to a function in C(Q ∞ ) if and only if cap 2 q ,q ′ (F ) = 0 where q ′ = q q-1 . (3.110)
Proof. We give an abridged proof in order to point out the duality method introduced in [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF]. We recall that the heat potential of a measure ω is

H[ω](x, t) = 1 (4πt) N 2 R N e -|x-y| 2 4t dω(y) = R N H(x, y, t)dω(y). (3.111)
Without loss of generality, we can assume that F is a compact subset of B R . Since cap 2 q ,q ′ (F ) = 0, there exists a sequence

{ζ n } ⊂ C ∞ c (R N ) such that ζ n = 1 on F , 0 < ζ n ≤ 1 and ζ n B
We can assume that the support of

ζ n is included into B R+1 . Let θ ∈ C ∞ c (R N ) such that 0 ≤ θ ≤ 1, θ = 1 in B R+1 and θ = 0 in B c R+2 . We set η n := θH[1 -ζ n ]
and take η α n for test function where α > 0.

By a straightforward computation based on Hölder's inequality we get

1 0 R N u q η α n dxdt ≤ c α 1 0 R N η α-q ′ n |∂ t η n | q ′ + |∆η n | q ′ + |∇θ| q ′ |∇η n | q ′ +η α-2q ′ n |∇η n | 2q ′ dxdt + R N (uη α n )(. , 1)dx. 
(3.112)

We fix α = 2q ′ . Replacing η n by its value, we obtain,

η α-q ′ n |∂ t η n | q ′ ≤ θ q ′ |∂ t H[ζ n ]| q ′ ≤ |∂ t H[ζ n ]| q ′ .
At this point we use the interpolation results associated to the analytic semigroup in L q ′ (R N ) generated by -∆, see e.g. [54, Section 1.14.5]. We get

1 0 R N η α-q ′ n |∂ t H[ζ n ]| q ′ dt ≤ c η n q ′ B 2 q ,q ′ . (3.113) Similarly 1 0 R N η α-q ′ n |∆η n | q ′ dt ≤ c η n q ′ B 2 q ,q ′ . (3.114) 
For the last term, we use Triebel's result combined with Gagliardo-Nirenberg inequality

1 0 R N η α-2q ′ n |∇η n | 2q ′ dt ≤ c η n q ′ L ∞ η n q ′ B 2 q ,2q ′ ≤ c η n q ′ B 2 q ,q ′ . (3.115)
Letting n → ∞ and using the fact that η n → 0 in B 2 q ,q ′

, we infer that u ∈ L q (R N × (0, 1)). In order to prove that u is a solution, we take

φ n = φH[1 -ζ n ] for test function where φ ∈ C ∞ c (R N × [0, ∞)). Then R N (uφ n )(., 0)dx = ∞ 0 R N (u q φ n -u (∂ t φ n + ∆φ n )) dxdt. (3.116)
By computation,

(∂ t φ n + ∆φ n ) = H[1 -ζ n ]∂ t φ -φ∂ t H[ζ n ] + H[1 -ζ n ]∆φ -φ∆H[ζ n ] -2∇φ.∇H[ζ n ].
When n → ∞, we have that

H[1 -ζ n ] (∂ t φ + ∆φ) → ∂ t φ + ∆φ in L ∞ loc (R N × [0, ∞)), and 
φ∂ t H[ζ n ] + φ∆H[ζ n ] + 2∇φ.∇H[ζ n ] → 0 in L p (R N × [0, ∞)). Hence, we infer that R N (uφ)(., 0)dx = ∞ 0 R N (u q φ -u (∂ t φ + ∆φ)) dxdt (3.117) from (3.116).
The converse is a consequence of the fact that any compact set with positive cap 2 q ,q ′capacity is the support of a nonnegative measure (the capacitary measure) µ belonging to the space B -2 q ,q (R N ) see [START_REF] Adams | Function spaces and potential theory[END_REF]Theorem 2.2.7]. By Theorem 3.10 any nonnegative bounded measure belonging to B -2 q ,q (R N ) is q-admissible. The result follows.

In order to prove some analogue of Theorem 3.6 in the case q ≥ q c , there are conditions both on the measure µ which has to satisfy a non-concentration condition such as (3.101) and on the singular set S which cannot be locally removable. Furthermore the singular set S can locally be created because the measure µ may be locally unbounded. Definition 3.13 Assume q > 1. Let S ⊂ R N be a closed set and µ a nonnegative Radon measure on R := R N \ S satisfying (3.101) for all Borel sets F ⊂ S. We denote

∂ µ S = {x ∈ S : µ(B ǫ (x) ∩ S c ) = ∞ for all ǫ > 0} , (3.118) 
and

S * = x ∈ S : cap 2 q ,q ′ (B ǫ (x) ∩ S) > 0 for all ǫ > 0 . (3.119)
The next result is proved in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF].

Theorem 3.14 Let q ≥ q c . There exists a maximal positive solution u of (3.13) in Q ∞ with initial trace (S, µ) if and only if µ satisfies (3.101) or all Borel set F ⊂ S and

S = ∂ µ S ∪ S * . (3.120) Proof. Step 1: Construction of u µ . Let {K n } be an increasing sequence of compact subsets of R := R N \ S such that ∪ n K n = R, µ n = 1 Kn µ.
Since µ n ≤ µ, it follows from Theorem 3.10 that there exists a unique solution u n to (3.97) with initial data µ = µ n . The sequence {u n } is increasing and it converges to some nonnegative solution u µ of (3.13) in Q ∞ . By Proposition 3.1-2, u µ (., t) converges to 0 when t → 0 locally uniformly in the interior of S. For any y ∈ R and

R > 0 such that B R (y) ⊂ R, u µ is bounded from above in Q B R (y) ∞ by w R (y -.) + u 1 B R (y) µ where u 1 B R (y) µ is the solution of (3.13) in Q B R (y) ∞ with initial data 1 B R (y) µ and vanishing on ∂ ℓ Q B R (y) ∞
, and w R is defined in (3.23). Since

w R (y -.) + u 1 B R (y) µ is bounded in L q (Q B R ′ (y) T
) for any T > 0 and R ′ < R it follows that

u µ satisfies (3.98) for any ζ ∈ C ∞ c (Q B R (y) ∞ ). Step 2: Characterization of ∂ µ S. For any x ∈ ∂ µ S, ǫ > 0 and n ∈ N, u µ is bounded from below by the solution u n,ǫ of (3.13) in Q ∞ with initial data 1 Kn∩Bǫ(y) µ. Furthermore for any nonnegative ζ ∈ C ∞ c (B ǫ (y)), lim inf t→0 Bǫ(y) u(x, t)ζ(x)dx ≥ lim t→0 Bǫ(y) u n,ǫ (x, t)ζ(x)dx = Kn∩Bǫ(y) ζ(x)dµ(x). (3.121) We can take ζ such that ζ = 1 on B ǫ ′ (y) for some 0 < ǫ ′ < ǫ. When n → ∞, we have lim inf n→∞ Kn∩Bǫ(y) ζ(x)dµ(x) = Bǫ(y)∩S c ζ(x)dµ(x) = ∞,
hence y belongs the singular set of the initial trace of u µ that we denote by Sing(u µ ). Therefore

∂ µ S ⊂ Sing(u µ ). Conversely, if y / ∈ ∂ µ S there exists δ > 0 such that µ(B δ (y) ∩ S c ) = m δ,y < ∞. Then for any nonnegative ζ ∈ C ∞ c (B δ (y)), one has lim t→0 R N u µ (x, t)ζ(x)dx = R N ζ(x)dµ(x) < ∞.
This implies that y / ∈ Sing(u µ ). Thus

∂ µ S = Sing(u µ ). (3.122)
Step 3: Construction of u S . By thickening S into S ǫ = {x ∈ R N : dist (x, S) ≤ ǫ} we construct an increasing sequence of solutions {u Sǫ } with initial trace (S ǫ , 0). When ǫ ↓ 0, {u Sǫ } decreases and converges to some nonnegative solution u S of (3.13) in Q ∞ . Let y ∈ S * . Then for any ǫ > 0 the set B ǫ (y) ∩ R has positive cap 2 q ,q ′ -capacity. Hence there exists a positive measure µ ǫ,y in the dual space B

-2 q ,q (R N ) with support in B ǫ (y) ∩ R.
For n ∈ N * we denote by u nµǫ,y the solution of (3.13) 

in Q Bǫ(y) ∞
with initial data nµ ǫ,y and which vanishes on

∂ ℓ Q Bǫ(y) ∞ . Then u S ≥ u nµǫ,y in Q Bǫ(y) ∞ . Hence lim inf t→0 Bǫ(y) u S (x, t)dx ≥ n Bǫ(y)
dµ ǫ,y .

Since n is arbitrary this implies that lim t→0 Bǫ(y)

u S (x, t)dx = ∞, (3.123) 
hence y belongs the singular set of the initial trace of u S that we denote by Sing(u S ). Thus S * ⊂ Sing(u S ).

Conversely, if y ∈ S \ S * , there exists δ > 0 such that cap 2 q ,q ′ (B δ (y

) ∩ S) = 0. For 0 < ǫ < δ ′ < δ we denote by u 1,ǫ (resp. u 2,ǫ ) the solution of (3.13) in Q ∞ with initial trace S ǫ ∩ B δ ′ (y) (resp S ǫ ∩ B c δ ′ (y)). Then u Sǫ ≤ u 1,ǫ + u 2,ǫ . When ǫ → 0, u 1,ǫ ↓ u 1,0 (resp. u 2,ǫ ↓ u 2,0 ) where u 1,0 is a solution of (3.13) in Q ∞ with Sing(u 1,0 ) ⊂ S ∩ B δ ′ (y) (resp Sing(u 2,0 ) ⊂ S ∩ B c δ ′ (y)
) and with no regular part. By Theorem 3.8 u 1,0 = 0. Since

u S ≤ u 1,0 + u 2,0 = u 2,0 , we have for any 0 < δ ′′ < δ ′ , lim t→0 B δ ′′ (y) u S (x, t)dx ≤ lim t→0 B δ ′′ (y)
u 2,0 (x, t)dx = 0, hence y / ∈ Sing(u S ). We conclude that

S * = Sing(u S ). (3.124)
Step 4: Construction of a solution u with initial trace (S, µ). Since max{u S , u µ } is a subsolution of (3.13) and u S + u µ a supersolution, and since max{u S , u µ } ≤ u S + u µ , there exists a solution u such that

max{u S , u µ } ≤ u ≤ u S + u µ . (3.125) Then Sing(u) = Sing(u S ) ∪ Sing(u µ ) = S * ∪ ∂µS. (3.126)
Therefore Sing(u) = S if and only if (3.120) holds.

As in the proof of Theorem 3.6-Step 2, the fonction constructed above is the maximal solution of (3.13) with initial trace (S, µ).

We end this section with a non uniqueness result which asserts that in the supercritical case there could exist many positive solutions of (3.13) with the same initial trace with a non-empty singular set. This was proved first by Le Gall [START_REF] Gall | A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic partial differential equation[END_REF] in the framework of the Brownian Snake, with q = 2 and N ≥ 3. Theorem 3.15 If q ≥ q c , there exist infinitely many solutions with initial trace (R N , 0).

Proof. Let {a n } be a dense sequence in R N , {ǫ n } a sequence of positive numbers such that the series n ǫ n is convergent and {u n } the sequence of maximal solutions of (3.13) in Q ∞ with initial trace (B ǫn (a n ), 0). We have

u n (x, t) = u n (|x -a n |, t).
The function u n is radial and radially decreasing for fixed t. Furthermore t → u n (z, t) is decreasing if z ∈ B ǫn (a n ). We set

η n = sup{ u n (x, t) : (x, t) ∈ R N × [1, ∞)} = u n (0, 1). Since q ≥ q c , u n → 0 uniformly on R N × [ǫ, ∞) when n → ∞, for any ǫ > 0.
For any E > 0 we can choose the ǫ n such that the following inequality holds

n≥0 η n ≤ E. Since |u n (x, t)| q-1 ≤ 1 t(q-1)
, it follows by the parabolic Harnack inequality that the series n≥0 u n converges normally on any compact subset of R N × (0, ∞), and we denote by U its sum. Since (a + b) q ≥ a q + b q for any a, b ≥ 0, U is a supersolution of (3.13). We set

U = sup{u n : n ∈ N}.
Then U is a subsolution of (3.13) and it is smaller than U . Therefore there exists a positive solution U of (3.13) 

in Q ∞ such that U ≤ U ≤ U .
(3.127)

For any y ∈ R N and ǫ > 0 there exist infinitely many a n such that B ǫn (a n ) ⊂ B ǫ (y), for such an n lim t→0 Bǫ n (an)

u n (x, t)dx = ∞.
Hence y ∈ Sing(u). Since the sequence {ǫ n } can be chosen such that n≥0 η n ≤ E, we obtain 0 < U (0, 1) ≤ E.

(3.128)

This ends the proof.

This result can be improved in the following way, ([43, Proposition 4.14]).

Theorem 3.16 If q > q c , for any ǫ > 0 there exists a positive solution u of (3.13) in Q ∞ with initial trace (R N , 0) and a Borel set

F ⊂ R N shuch that R N 1 E dx < ǫ,
and

lim t→0 u(x, t) = 0 for all x ∈ R N \ E.
Starting from this result it appeared clear that the definition of the initial trace performed by an averaging of the function u(., t) in an Euclidean neighborhood of a point y is not suitable to distinguish between the different solutions of (3.13). The idea of using the fine topolgy associated to the cap 2 q ,q ′ -topology is due to S. Kuznetsov. It was first used in [START_REF] Dynkin | Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations[END_REF] in the framework of the study of the boundary trace of positive solutions of

-∆u + u q = 0 (3.129) in a domain Ω ⊂ R N .
In [START_REF] Marcus | Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion[END_REF][START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF], a sharper definition, suitable for all the supercritical exponents in the semilinear elliptic problem (1.16), was introduced and developed. This is this method, adapted to the parabolic case in [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF] that we present in the next section.

It will apply to all the exponents q ≥ q c .

The capacitary representation 4.1 σ-moderate solutions

We denote by M b + (R N ) the set of nonnegative bounded Radon measures in R N . If µ is a q-admissible measure, we denote by u µ the solution of (3.97).

Definition 4.1 A positive solution u of (3.13) in Q ∞ is called σ-moderate if there exists an increasing sequence {µ n } ⊂ B -2 q ,q ′ (R N )∩M b + (R N ) such that the corresponding solution u := u µn of (3.97) converges to u locally uniformly in Q ∞ . If F is a closed subset of R N we set u F = max{u µ : µ ∈ B -2 q ,q ′ (R N ) ∩ M b + (R N ), µ(F c ) = 0}. (4.1)

Besov and Bessel capacitary potentials

The main goal of this section is to prove that u F coincides with the maximal solution u F of (3.13) in Q ∞ with initial trace (F, 0). We introduce several tools linked to Bessel and Besov capacities relative to a domain

Ω ⊂ R N . If K is a compact subset of the domain Ω ⊂ R N , we set T Ω (K) = {η ∈ C ∞ c (Ω), 0 ≤ η ≤ 1, η = 1 on K}. (4.2) Definition 4.2 Let s ∈ (0, 1), p > 1 such that sp ≤ N and Ω ⊂ R N be a domain. The Besov capacity ṘΩ s,p of a compact set K ⊂ Ω is ṘΩ s,p (K) = inf φ p Ḃs,p : φ ∈ T Ω (K) , (4.3) 
where Ḃs,p is the Aronszajn-Slobodeckij norm defined by

φ Ḃs,p = Ω Ω |φ(x) -φ(y)| p |x -y| N +sp dxdy 1 p . ( 4 

.4)

If Ω = R N the Besov capacity coincides with the Riesz capacity defined in (1.10).

The Bessel capacity cap Ω s,p relative to Ω is defined by

cap Ω s,p (K) = inf φ p Bs,p : φ ∈ T Ω (K) , (4.5) 
and cap R N s,p = cap s,p .

In the sequel we will see that the capacity ṘΩ 2 q ,q ′ (K) is more suitable for the computations in our problem than the Bessel capacity cap 2 q ,q ′ .

Definition 4.3 Let q > 1. If F ⊂ R N is a closed set we denote for n ∈ N and (x, t) ∈ Q ∞ F n := F n (x, t) = {y ∈ F : d n ≤ |x -y| ≤ d n+1 } where d n = √ nt, Γ n = B d n+1 \ B dn = y ∈ R N : d n ≤ |y| ≤ d n+1 .
The Bessel-capacitary potential of F is the function W F defined by

W F (x, t) = 1 t N 2 ∞ n=0 d N -2 q-1 n+1 e -n 4 cap 2 q ,q ′ F n d n+1 for all (x, t) ∈ Q ∞ . (4.6)
Similarly, the Besov capacitary potential of F is W F defined by

W F (x, t) = 1 t N 2 ∞ n=0 d N -2 q-1 n+1 e -n 4 ṘΓn 2 q ,q ′ F n d n+1 for all (x, t) ∈ Q ∞ . (4.7)
The Besov capacitary potential of F is invariant by the scaling T ℓ in the sense that for any ℓ > 0,

ℓ 1 q-1 W F ( √ ℓx, ℓt) := T ℓ [ W F ](x, t) = W F √ ℓ (x, t) for all (x, t) ∈ Q ∞ . (4.8)
The Besov capacity is linked to the Bessel capacity through the following directional Poincaré inequality [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF].

Lemma 4.4 Let b > a > 0 and Ω be a domain in R N such that Ω ⊂ H a,b := {x = (x 1 , x ′ ) : a < x 1 < b}. If s ∈ (0, 1) and p > 1 verify sp ≤ N , there exists λ = λ(N, s, p, b a ) > 0 such that Ω×Ω |η(x) -η(y)| p |x -y| N +sp dxdy ≥ λ(b -a) -sp Ω |η(x)| p dx for all η ∈ C ∞ c (Ω). (4.9)
It is noticeable that the above domain Ω is not necessarily bounded, in which case the standard Poincaré inequality is easy to prove, but it is only contained in a strip of finite thickness. The Aronszajn-Slobodeckij norm in

C ∞ c (Ω) is smaller than the standard B s,p - norm associated to the Bessel potential G s := F[((1 + |ξ| 2 ) -S
2 ] (see [START_REF] Adams | Function spaces and potential theory[END_REF]) and defined by

φ B s,p = φ Ḃs,p + φ L p for all φ ∈ C ∞ c (Ω)
However, thanks to Lemma 4.4 there holds 

φ Ḃs,p ≤ φ B s,p ≤ (1 + C(b -a) s ) φ Ḃs,p for all η ∈ C ∞ c (Ω). (4.10)
The following properties of Bessel capacities cap Ω s,p relative to Ω and Besov capacities relative to R N are classical and easy to establish. Lemma 4.6 For any τ > 0 and any Borel set K ⊂ Ω there holds

ṘΩ s,p (K) = τ N -sp Ṙτ -1 Ω s,p (τ -1 K). (4.11) If b > a and Ω ⊂ B b \ B a there exists c = c(b -a, b a , N, s, p) > 0 such that 1 c cap Ω s,p (K) ≤ ṘΩ s,p (K) ≤ ccap Ω s,p (K). (4.12) Finally if K ⊂ Ω ′ ⊂ Ω ′ ⊂ Ω, there exists c = c(dist (Ω ′ , Ω c ), N, s, p) > 0 such that 1 c cap Ω s,p (K) ≤ cap Ω s,p (K) ≤ ccap s,p (K). (4.13)

Heat potential and Besov space

If Ω is a bounded domain in R N , p > 1 and s ∈ (0, 1), we extend any η ∈ C ∞ c (Ω) by zero in Ω c and set

η B s,p = Q∞ |t 1-s 2 ∂ t H[η]| p dx dt t 1 p . (4.14)
It is proved in [START_REF] Berens | Semigroups of Operators and Approximations[END_REF] that the following equivalence of norms holds for the Besov space B s,p (Ω),

C -1 η B s,p := C -1 η L p + η Ḃs,p ≤ η L p + η B s,p ≤ C η L p + η Ḃs,p (4.15) for all η ∈ C ∞ c (Ω) for some C = C(s, p, N ) > 0.
Actually it is easy to see by scaling that the two norms . Ḃs,p and . B s,p are universally equivalent in the sense that there exists C = C(s, p, N ) > 0 such that for any domain Ω and any

η ∈ C ∞ c (Ω), C -1 η Ḃs,p ≤ η B s,p ≤ C η Ḃs,p . (4.16)
If K is a compact subset of Ω and η ∈ T Ω (K) we set

R[η] = |∂ t H[η]| + |∇H[η]| 2 . (4.17)
Lemma 4.7 There exists C = C(N, q) > 0 such that for every η ∈ T Ω (K) there holds

η q ′ B 2 q ,q ′ ≤ R[η] q ′ L q ′ := Q∞ (R[η]) q ′ dxdt ≤ C η q ′ B 2 q ,q ′ . (4.18) 
Proof. Using the Gagliardo-Nirenberg inequality in R N , an elementary elliptic estimate and the fact that 0 ≤ H[η] ≤ 1,we see that

R N |∇H[η](., t)| 2q ′ dx ≤ C D 2 H[η](., t) q ′ L q ′ H[η](., t) q ′ L ∞ ≤ C ∆H[η](., t) q ′ L q ′ , for all t > 0. Since ∂ t H[η] = ∆H[η], (4.18) follows.

Estimate from above

The main result that we prove in this section is the following upper estimate Theorem 4.8 Let q ≥ q c . There exists a positive constant c = c(N, q) such that for any closed subset

F ⊂ R N any nonnegative function u ∈ C 2,1 (Q ∞ ) ∩ C(Q ∞ \ F × {0}) verifying ∂ t u -∆u + u p = 0 in Q ∞ lim t→0 u(x, t) = 0 locally uniformly in F c , (4.19) satisfies u(x, t) ≤ CW F (x, t) for all (x, t) ∈ Q ∞ , (4.20) 
where W F is the capacitary potential defined in (4.6).

We will first consider the case where F = K is a compact set.

Global L q estimates

Let K ⊂ B r ⊂ B r ⊂ B r+ρ where r, ρ > 0 be a compact set. We set

T r,ρ (K) = {η ∈ C ∞ c (B r+ρ ), 0 ≤ η ≤ 1, η = 1 on K}. If η ∈ T r,ρ (K we set η * = 1 -η and ζ = (H[η * ]) 2q ′ .
Lemma 4.9 If u is a positive function satisfying (4. [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF], there exists C = C(N, q) > 0 such that for every T > 0 and every compact set K ⊂ B r ,

Q T u q ζdx dt + R N (uζ)(x, T )dx ≤ C R[η] q ′ L q ′ ∀η ∈ T r,ρ (K). (4.21) Proof. By assumption η * vanishes in an open neighbourhood N 1 of K, for any open set N 2 such that K ⊂ N 2 ⊂ N 2 ⊂ N 1 there exists C N 2 , c N 2 > 0 such that H[η * ](x, t) ≤ C N 2 e - c N 2 t for all (x, t) ∈ Q N 2 ∞ . By Proposition 3.1-2, this implies lim t→0 R N (uζ)(x, t)dt = 0.
Taking ζ as a test function, we obtain

Q T u q ζdxdt + R N (uζ)(x, T )dx = Q T (∂ t ζ + ∆ζ) udxdt. (4.22) Since ∂ t ζ + ∆ζ = 2q ′ H[η * ] 2q ′ -1 (∂ t H[η] + ∆H[η]) + 2q ′ (2q ′ -1)H[η * ] 2q ′ -2 ∇H[η ] 2 ,
we deduce

Q T (∂ t ζ + ∆ζ) udxdt ≤ c(q) Q T u q ζdxdt 1 q Q T R[η] q ′ dxdt 1 q ′ ,
where R[η] is defined in (4.17). The proof follows from Lemma 4.7.

Proposition 4.10 Under the assumptions of Lemma 4.9, let r, ρ > 0, T ≥ (r + ρ) 2 ,

E r+ρ = {(x, t) ∈ Q ∞ : |x| 2 + t ≤ (r + ρ) 2 },
and

Q r+ρ,T = Q T \ E r+ρ . Then there exists C = C(N, q, T ) > 0 such that Q r+ρ,T u q dxdt + R N u(x, T )dx ≤ C R[η] q ′ L q ′ for all η ∈ T r,ρ . (4.23) 
Proof. In view of the previous lemma we have to show that under the above assumptions on T and η, there exists some C = C(N, q, T ) > 0 such that

ζ = H[η * ] 2q ′ ≥ C.
Since, by assumption K ⊂ B r , η * = 1 outside B r+ρ and 0 ≤ η * ≤ 1, we have

H[η * ](x, t) ≥ H[1 -1 B r+ρ ](x, t) = 1 (4πt) N 2 |y|>r+ρ e |x-y| 2 4t dy = 1 - 1 (4πt) N 2 |y|≤r+ρ e |x-y| 2 4t
dy.

If (x, t) ∈ Q r+ρ,T , we write x = (r + ρ)ξ, y = (r + ρ)υ and t = (r + ρ) 2 τ . Then (ξ, τ ) ∈ Q 1, T (r+ρ) 2 and 1 (4πt) N 2 |y|≤r+ρ e -|x-y| 2 4t dy = 1 (4πτ ) N 2 |υ|≤1 e -|ξ-υ| 2 4τ dυ.
It is therefore easy to verify that max 1

(4πτ ) N 2 |υ|≤1 e -|ξ-υ| 2 4τ dυ : (ξ, τ ) ∈ Q 1, T (r+ρ) 2 = ℓ, (4.24) 
and ℓ = ℓ(N, T (r+ρ) 2 ) ∈ (0, 1). Actually ℓ is independent of T (r+ρ) 2 Êif this quantity is larger than 1. Putting C = (1ℓ) -1 we deduce (4.23).

Pointwise upper estimates

In this section the assumptions of Lemma 4.9 are fulfilled. Lemma 4.11 There exists a constant C = C(N, q) > 0 such that, for any η ∈ T r,ρ (K)

u(x, (r + ρ) 2 ) ≤ C R[η] q ′ L q ′ (r(r + ρ)) N 2 for all x ∈ R N . (4.25)
Proof. Integrating the equation

T s R N u q dxdτ + R u(x, T )dx = R u(x, s) for all T s > 0, (4.26) 
and by Proposition 4.10 we have that 

R N u(x, s)dx ≤ C Q T (R[η]) q ′ dxdt for all T > s > (r + ρ) 2 . (4.27) Since u(x, s + τ ) ≤ H[u(s, .)](x, τ ) ≤ 1 (4πτ ) N 2 R N u(y,
= (r + 2ρ) 2 -(r + ρ) 2 ≈ r(r + ρ) if ρ = o(r).
In the next result we show an integral estimate of u on the lateral boundary of Q Br t . Lemma 4.12 Let γ ≥ r + 2ρ and c > 0, and either N = 1, 2 and 0 ≤ t ≤ cγ 2 , or N ≥ 3 and t > 0. Then, for any η ∈ T r,ρ (K), there holds

t 0 ∂Bγ u(x, τ )dSdτ ≤ C R[η] q ′ L q ′ , (4.28) 
where C > 0 depends on N , q and c if N = 1, 2 or N and q if N ≥ 3.

Proof. Assume first that N = 1, 2 and set

G γ := B c γ ×(-∞, 0) and ∂ ℓ G γ := ∂B c γ ×(-∞, 0). Let h γ be the function h γ (x) = 1 - γ |x| ,
and ψ γ the solution of

∂ t ψ γ + ∆ψ γ = 0 in G γ ψ γ = 0 in ∂ ℓ G γ ψ γ (., 0) = h γ in B c γ . (4.29)
Then the function ψ(x, τ ) = ψ γ (γx, γ 2 τ ) satisfies

∂ t ψ + ∆ ψ = 0 in G 1 ψ = 0 in ∂ ℓ G 1 ψ(., 0) = h 1 in B c 1 .
(4.30)

By the maximum principle ψ ≤ 1 and by Hopf lemma

- ∂ ψ ∂n ⌊ ∂B 1 ×[-c,0] ≥ θ > 0, (4.31) 
where θ = θ(N, c). Thus

- ∂ψ γ ∂n ⌊ ∂Bγ ×[-γ 2 ,0] ≥ θ γ . (4.32) 
Multiplying the equation by

ψ γ (x, τ -t) = ψ * γ (x, τ ) and integrating on B c γ × (0, t) implies t 0 B c γ u q ψ * r dxdτ + B c γ (uh γ )(x, t)dx - t 0 ∂Bγ ∂u ∂n ψ * γ dSdτ = - t 0 ∂Bγ ∂ψ * γ ∂n udσdτ. (4.33)
Since 0 ≤ ψ * γ ≤ 1, we derive (4.28) from (4.32) and Proposition 4.10 since B c γ × (0, t) ⊂ E c γ , first by taking t = T = γ 2 ≥ (r + 2ρ) 2 , and then for any t ≤ γ 2 t If N ≥ 3, we proceed as above except that we introduce a new function

h γ (x) = 1 - γ |x| N -2 .
This function is harmonic, thus the solution ψ γ of (4.29) coincides with h γ , and θ = N -2 is independent of the length of the time interval. This ends the proof.

The following estimates concerning solution of the heat equation are easy to obtain from the Gaussian integral representation and left to the reader.

Lemma 4.13 I-Let M, a > 0 and η ∈ L ∞ (R N ) such that 0 ≤ η(x) ≤ M e -a|x| 2 a.e. in R N . (4.34)
Then, for any t > 0,

0 ≤ H[η](x, t) ≤ M (4at + 1) N 2 e -a|x| 2 4at+1 for all x ∈ R N . (4.35) II-Let M, a, b > 0 and η ∈ L ∞ (R N ) such that 0 ≤ η(x) ≤ M e -a(|x|-b) 2 + a.e. in R N . (4.36)
Then, for any t > 0,

0 ≤ H[η](x, t) ≤ M e - a(|x|-b) 2 + 4at+1 (4at + 1) N 2 for all x ∈ R N . (4.37) 
Lemma 4.14 There exists a constant C = C(N, q) > 0 such that, for any η ∈ T r,ρ (K), there holds

u(x, (r + 2ρ) 2 ) ≤ C max r + ρ (|x| -r -2ρ) N +1 , |x| -r -2ρ (r + ρ) N +1 e - (|x|-(r+2ρ)) 2 4(r+2ρ) 2 R[η] q ′ L q ′ , (4.38) for any x ∈ R N \ B r+3ρ . Proof. The heat kernel in B c 1 × (0, ∞) with Dirichlet data on ∂B c 1 × (0, ∞) satisfies H B c 1 (x ′ , x ′ ; t ′ , s ′ ) ≤ C(t ′ -s ′ ) -N 2 -1 (|x| -1)e -|x ′ -y ′ | 2 4(t ′ -s ′ ) for t ′ > s ′ . (4.39) If we denote x = (r + 2ρ)x ′ and t = (r + 2ρ) 2 t ′ for (x, t) ∈ B c r+2ρ × (0, T ), then u(x, t) ≤ (|x| -r -2ρ) t 0 ∂B r+ρ e -|x-y| 2 4(t-s) (t -s) N 2 +1
dS(y)ds. We fix t = (r + 2ρ) 2 and |x| ≥ r + 3ρ. Since max Remark. Since there exists C > 0 such that

   e -(|x|-r-2ρ) 2 4s s 1+ N 2 : s ∈ (0, (r + 2ρ) 2 )    = (|x| -r -2ρ) -2-N max e -1 4σ σ N 2 +1 : 0 < σ < r + 2ρ (|x| -r -2ρ) 2 , a direct technical computation shows that max    e -(|x|-r-2ρ) 2 4s s 1+ N 2 : s ∈ (0, (r + 2ρ) 2 )    ≤ C(N )ρ -2-N e |x|-
(|x| -r -2ρ)e |x|-r-2ρ 2r+4ρ 2 ≤ C (r + ρ) 2 ρ e -|x|-r-3ρ 2r+4ρ 2 for all x ∈ B c r+3ρ , (4.43) 
the following variant of (4.38) holds for all x ∈ B c r+3ρ ,

u(x, (r + 2ρ) 2 ) ≤ C max (r + ρ) 3 ρ(|x| -r -2ρ) N +1 , 1 ρ(r + ρ) N +1 e -|x|-r-3ρ 2r+4ρ 2 R[η] q ′ L q ′ .
(4.44) Next, we give a sharp pointwise upper bound of u(x, t) when t is bounded from below. Lemma 4.15 There exists a constant C = C(N, q) > 0 such that for any η ∈ T r+ρ (K) the following estimate holds,

u(x, t) ≤ C M e - (|x|-r-3ρ) 2 + 4t t N 2 R[η] q ′ L q ′ for all (x, t) ∈ R N × [(r + ρ) 2 , ∞), (4.45) 
where

M = M (x, r, ρ) =            1 + r ρ N 2 if |x| < r + 3ρ (r+ρ) N+3 ρ(|x|-r-2ρ) N+2 if r + 3ρ ≤ |x| ≤ c * N (r + 2ρ) 1 + r ρ if |x| ≥ c * N (r + 2ρ), (4.46 
)

with c * N = 1 + √ 4 + 2N .
Proof. By the maximum principle

u(x, t) ≤ H[u(., (r + 2ρ) 2 ](x, t -(r + 2ρ) 2 ) for any t ≥ (r + 2ρ) 2 .
By Lemma 4.11 and (4.44),

u(x, (r + 2ρ) 2 ) ≤ C M e -(|x|-r-3ρ) 2 4(r+2ρ) 2 R[η] q ′ L q ′
, where

M † = M † (x, r, ρ) =          (r(r + ρ) -N 2 if |x| < r + 3ρ (r+ρ) N+3 ρ(|x|-r-2ρ) N+2 if r + 3ρ ≤ |x| ≤ c * N (r + 2ρ) 1 + r ρ if |x| ≥ c * N (r + 2ρ).
Applying Lemma 4.13 with a = (2r + 4ρ) -2 , b = r + 3ρ and t replaced by t

-(r + 2r) 2 implies u(x, t) ≤ C M † (r + 2ρ) N t N 2 e -(|x|-r-3ρ) 2 4t R[η] q ′ L q ′ (4.47)
for |x| ≥ r + 3ρ and t ≥ (r + 2r) 2 , which implies (4.45).

Finally we obtain an upper bound of u(x, t) when t is not bounded from below.

Lemma 4.16 There exists a constant C = C(N, q) > 0 such that for any η ∈ T r+ρ (K) the following estimate holds when

0 < t ≤ (r + 2ρ) 2 , u(x, t) ≤ C(r + ρ) max 1 (|x| -r -2ρ) N +1 , 1 ρt N 2 e -(|x|-r-3ρ) 2 4t R[η] q ′ L q ′ , (4.48) 
for any (x, t) ∈ R N \ B r+3ρ × (0, (r + 2ρ) 2 ].

Proof. From Lemma 4.12 we deduce by a simple modification of (4.38) that for any |x| ≥ r + 2ρ, there holds

u(x, t) ≤ C(|x| -r -2ρ)(r + 2ρ) max    e -(|x|-r-2ρ) 2 4s s 1+ N 2 : 0 < s ≤ t    R[η] q ′ L q ′ . (4.49) Next, max    e -(|x|-r-2ρ) 2 4s s 1+ N 2 : 0 < s ≤ t    =        (2N + 4) 1+ N 2 (|x| -r -2ρ) -N -2 e -N+2 2 if 0 < |x| ≤ r + 2ρ + 2t(N + 2) e -(|x|-r-2ρ) 2 4t t 1+ N 2 if |x| > r + 2ρ + 2t(N + 2). When x ∈ B c r+3ρ , we have that (|x| -r -2ρ)e -(|x|-r-2ρ) 2 4t ≤ e -(|x|-r-3ρ) 2 4t      ρe -ρ 2 4t if 2t < ρ 2 2t ρ e -1+ ρ 2 4t if ρ 2 ≤ 2t ≤ 2(r + 2ρ) 2 .
However, since

ρ t e -ρ 2 4t ≤ 4 ρ , we derive (|x| -r -2ρ)e -(|x|-r-2ρ) 2 4t ≤ Ct ρ e -(|x|-r-3ρ) 2 4t
, and (4.48) follows.

The upper Wiener test estimate

Definition 4.17 We denote by δ 2 and δ ∞ the two parabolic distances

(i) δ 2 [(x, t), (y, s)] = (x -y) 2 + |t -s| (ii) δ ∞ [(x, t), (y, s)] = max{|x -y|, |t -s|}. (4.50) If K ⊂ R N and i = 2 or ∞, δ i [(x, t), K] = inf{δ i [(x, t), (y, 0)] : y ∈ ÊK} = dist 2 (x, K) + |t| if i = 2 max{dist (x, K), √ t} if i = ∞.
For β > 0 and i = 2 or ∞, we denote by B i β the parabolic ball with center m = (x, t) and radius β in the metric δ i .

If K ⊂ R N is any compact we denote by u K the maximal solution of (3.13) with initial trace (K, 0).

If m = (x, t) ∈ Q T we set d K = dist (x, K), D K = max{|x -y| : y ∈ K} and λ = d 2 K + t = δ 2 (m, K).
We define the slicing of K by setting

d n = d n (K, t) := √ nt n ∈ N * , d ± n = √ nt ± √ t √ n +
and

T * n = B d + n+1 (x) \ B d - n (x) , T n = B d n+1 (x) \ B dn (x) for all n ∈ N, thus T * 0 = B 2 √ t (x), T 0 = B √ t (x)
, and set

K n := K n (x, t) = K ∩ T n and Q n := Q n (x, t) = K ∩ T n .
The main result of this section is the following upper estimate Theorem 4.18 Assume q ≥ q c , then there exists a constant C = C(N, q, T ) > 0 such that

u K ≤ C t N 2 a j n=0 d N -2 q-1 n+1 cap 2 q ,q ′ K n d n+1 for all (x, t) ∈ Q T , (4.51) 
where a j is the largest integer such that K j = ∅.

We can assume that x = 0. Furthermore, in considering the scaling transformation T ℓ with ℓ > 0 we can assume t = 1. Thus the new compact singular set of the initial trace becomes

1 √ ℓ K that we still denote by K. For n ∈ N * set δ n = d n+1 -d n , then 1 2 √ n+1 ≤ δ n ≤ 1 2 √ n .
By convention δ 0 = 1. It is possible to exhibit a collection Θ n of points a n,j with center on the sphere

Σ n = {y ∈ R N : |y| = (d n+1 + d n )/2}, such that T n ⊂ a n,j ∈Θn B δn (a n,j ), |a n,j -a n,k | ≥ δ n and #Θ n ≤ Cn N -1 , for some constant C = C(N ). If K n,j = K n ∩ B δn (a n,j ), there holds K = 0≤n≤a K a n,j ∈Θn K n,j .
The first intermediate step is based on the quasi-additivity property of capacities developed in [START_REF] Aikawa | Quasiadditivity and measure property of capacity and the tangential boundary behavior of harmonic functions[END_REF]. Lemma 4.19 Let q ≥ q c . There exists a constant C = C(N, q) such that

a n,j ∈Θn ṘB 2δn (a n,j ) 2/q,q ′ (K n,j ) ≤ Cd N -2 q-1 n+1 cap 2 q ,q ′ K n d n+1 ∀n ∈ N * . (4.52) 
Proof. The following result is proved in [2, Th 3]: if the spheres B ρ θ j (b j ), θ = 1 -2 N (q-1) , are disjoint in R N and G is a Borel (more generally an analytic) subset of j B ρ j (b j ) where the ρ j are positive numbers smaller than some ρ * > 0, there holds

cap 2 q ,q ′ (G) ≤ j cap 2 q ,q ′ (G ∩ B ρ j (b j )) ≤ Acap 2 q ,q ′ (G), (4.53) 
for some A depending on N , q and ρ * . This property is called quasi-additivity. We define for n ∈ N * ,

T n = d n+1 T n , K n = d n+1 K n and Q n = d n+1 Q n .
Since K n,j ⊂ B δn (a n,j ), it follows that

K n,j := d n+1 K n,j ⊂ B d n+1 δn ( a n,j ).
Note that by Lemma 4.6

ṘB 2δn (a n,j ) 2/q,q ′ (K n,j ) = d 2 q-1 -N n+1 ṘB 2δnd n+1 (d n+1 a n,j ) 2/q,q ′ ( K n,j ) ≈ d 2 q-1 -N n+1 cap B 2δn d n+1 (d n+1 a n,j ) 2/q,q ′ ( K n,j ) ≈ d 2 q-1 -N n+1 cap 2 q ,q ′ ( K n,j ), (4.54) 
where K n,j = d n+1 K n,j . For a fixed n > 0 and each repartition Λ of points a n,j = d n+1 a n,j such that the balls B 2 θ ( a n,j ) are disjoint, the quasi-additivity property holds: if we set

K n,Λ = a n,j ∈Λ K n,j , K n,Λ = d n+1 K n,Λ = a n,j ∈Λ K n,j and K n = d n+1 K n , then a n,j ∈Λ cap 2 q ,q ′ ( K n,j ) ≈ cap 2 q ,q ′ ( K n,Λ ). (4.55)
The maximal cardinal of any such repartition Λ is of the order of Cn N -1 for some positive constant C = C(N ), therefore the number of repartitions needed for a full covering of the set T n is of finite order depending only on the dimension. Because K n is the union of the

K n,Λ , a n,j ∈Θn cap 2 q ,q ′ ( K n,j ) = Λ a n,j ∈Λ cap 2 q ,q ′ ( K n,j ) ≈ cap 2 q ,q ′ ( K n ). (4.56)
By Lemma 4.6,

cap 2 q ,q ′ ( K n ) ≤ cap B 2d n+1 2/q,q ′ ( K n ) ≈ d N -1 q-1 n+1 cap B 2 2/q,q ′ K n d n+1 ≈ d N -1 q-1 n+1 cap 2 q ,q ′ K n d n+1 ,
we obtain (4.52) by combining this last inequality with (4.54) and (4.56).

Proof of Theorem 4.18.

Step 1. We first notice that

u K ≤ 0≤n≤a K a n,j ∈Θn u K n,j . (4.57) 
Actually, since K = n a n,j K n,j , there holds K ǫ ′ ⊂ n a n,j K n,j ǫ for any 0 < ǫ ′ < ǫ.

Because a finite sum of positive solutions of (3.13) is a super solution,

u K ǫ ′ ≤ 0≤n≤a K a n,j ∈Θn u K n,j ǫ . (4.58) 
Letting successively ǫ ′ and ǫ go to 0 implies (4.57).

Step 2. Let n ∈ N. Since K n,j ⊂ B δn (a n,j ) and |xa n,j | = (d n + d n+1 )/2, we can apply the previous lemmas with r = δ n and ρ = r. For n ≥ n N , there holds t = 1 ≥ (r + 2ρ) 2 = 9/(n + 1) and |x -

a n,j | = ( √ n + 1 - √ n)/2 ≥ (2 + C N )(3/ √ n + 1) (notice that n N ≥ 8). Thus u K n,j (0, 1) ≤ Ce ( √ n-3/ √ n+1) 2 /4 R B 2δn (a n,j ) 2/q,q ′ (K n,j ) ≤ Ce 3/2 e -n 4 R B 2δn (a n,j ) 2/q,q ′ (K n,j ). (4.59)
Using Lemma 4.19 we obtain, with

d n = d n (1) = √ n + 1 , a K n=n N a n,j ∈Θn u K n,j (0, 1) ≤ C a K n=n N d N -2 q-1 n+1 e -n 4 cap 2 q ,q ′ K n d n+1 . (4.60)
Finally, we apply Lemma 4.11 if 1 ≤ n < n N and get

n N -1 1 a n,j ∈Θn u K n,j (0, 1) ≤ C n N -1 1 cap 2 q ,q ′ K n d n+1 ≤ C ′ n N -1 1 d N -2 q-1 n+1 e -n 4 cap 2 q ,q ′ K n d n+1 .
(4.61)

For n = 0, we proceed similarly, in splitting K 1 in a finite number of sets K 1,i , depending only on the dimension, such that diam K 1,i < 1/3. Combining (4.60) and (4.61), we derive

u K (0, 1) ≤ C a K n=0 d N -2 q-1 n+1 e -n 4 cap 2 q ,q ′ K n d n+1 . (4.62)
In order to derive the same result for any t > 0, we notice that

u K (y, t) = t -1 q-1 u K/ √ t (y/ √ t, 1).
Going back to the definition of

d n = d n (K, t) = √ nt = d n (K √ t, 1 
), we derive from (4.62) and the fact that a

K,t = a K √ t,1 u K (0, t) ≤ Ct -N 2 a K n=0 d N -2 q-1 n+1 e -n 4 cap 2 q ,q ′ K n d n+1 , (4.63) 
with d n = d n (t) = t(n + 1) . This is (4.51) with x = 0, and a space translation leads to the final result.

Proof of Theorem 4.8. Let m > 0 and F m = F ∩ B m . We denote by U B c m the maximal solution of (3.13) in Q ∞ the initial trace of which vanishes on B m . It is straightforward by scaling to verify that such a solution is actually the unique positive solution of (3.13) which satisfies lim

t→0 u(x, t) = ∞ uniformly on B c m ′ , for any m ′ > m. Furthermore lim m→∞ U B c m (y, t) = lim m→∞ m -2 q-1 U B c 1 (y/m, t/m 2 ) = 0, uniformly on any compact subset of Q ∞ . Since u Fm + U B c m is a super-solution, it is larger that u F and therefore u Fm ↑ u F . Because W Fm (x, t) ≤ W F (x, t) and u Fm ≤ C 1 W Fm (x, t), the result follows.
Remark. It is clear that Theorem 4.8 still holds if u is a positive subsolution of (3.13) satisfying the initial trace condition (4. [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF]).

The Bessel capacitary potential admits an integral form. The next result is a variant of Theorem 4.8. Theorem 4.20 Assume q ≥ q c . Then there exists a positive constant C * 1 = C * 1 (N, q, T ) such for any closed subset F ⊂ R N there holds for all (x, t) ∈ Q T ,

u F (x, t) ≤ C * 1 t 1+ N 2 √ t(at+2 √ t e -s 2 4t s N -2 q-1 cap 2 q ,q ′ 1 s B ∩ B 1 (x) sds, (4.64) 
where

a t = min n ∈ N : F ⊂ B √ (n+1)t (x) .
Proof. We use the inequality

cap 2 q ,q ′ F n d n+1 ≤ cap 2 q ,q ′ F d n+1 ∩ B 1 ,
and we set

φ(s) = cap 2 q ,q ′ F s ∩ B 1
for all s > 0. (4.65)

Step 1. By [START_REF] Adams | Function spaces and potential theory[END_REF], [START_REF] Marcus | Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion[END_REF], there exists c = c(N, q) > 0 such that 1 c φ(αs) ≤ φ(s) ≤ cφ(βs) for all s > 0 and

1 2 ≤ α ≤ 1 ≤ β ≤ 2. (4.66) Actually, if β ∈ [1, 2], φ(βs) = cap 2 q ,q ′ 1 β 1 s F ∩ B β (x) ≈ cap 2 q ,q ′ 1 s F ∩ B β (x) ≥ 1 c φ(s),
and if α ∈ [ 1 2 , 1], φ(αs) = cap 2 q ,q ′ 1 α 1 s F ∩ B α (x) ≈ cap 2 q ,q ′ 1 s F ∩ B α (x) ≤ cφ(s).
Step 2. By (4.66)

cap 2 q ,q ′ F d n+1 ∩ B 1 (x) ≤ ccap 2 q ,q ′ F s ∩ B 1 (x) for all s ∈ [d n+1 , d n+2 ],
and n ≤ a t . Then

c d n+2 d n+1 s N -2 q-1 e -s 2 4t cap 2 q ,q ′ F s ∩ B 1 (x) sds ≥ cap 2 q ,q ′ F d n+1 ∩ B 1 (x) d n+2 d n+1 s N -2 q-1 e -s 2 4t sds.
Because N -2 q-1 ≥ 0 as q ≥ q c , we obtain

d n+2 d n+1 s N -2 q-1 e -s 2 4t sds ≥ e -n+2 4 d N -2 q-1 n+1 (d n+2 -d n+1 ) ≥ td N -2 q-1 n+1 e -n 2 4e 2 , ( 4.67) 
which implies (4.64).

Estimate from below

If µ is a bounded nonnegative q-admissible measure, we recall that u µ is the solution of (3.97). The maximal σ-moderate solution of (3.13) with an initial trace vanishing outside a closed set F ⊂ R N is denoted by u F and defined by

u F = sup{u µ : µ ∈ M b + , and q -admissible s.t. µ(F c ) = 0}. (4.68)
The main result of this section is Theorem 4.21 Let q ≥ q c and T > 0. Then there exists a positive constant C = C(N, q, T ) such that for any closed set

F ⊂ R N , u F (x, t) ≥ CW F (x, t) for all (x, t) ∈ Q ∞ . (4.69)
We first assume that F is compact and we denote it by K. If µ is q-admissible and nonnegative, then

u µ ≤ H[µ]. Since u µ = H[µ] -G[u q ],
where G is the Green parabolic heat potential, defined by

G[f ](x, t) = t 0 H[f (., s)](x, t -s)ds = t 0 R N 1 (4π(t -s)) N 2 e -|x-y| 2 4(t-s) f (y, s)dyds (4.70)
for all (x, t) ∈ Q ∞ , there holds

u µ (x, t) ≥ H[µ](x, t) -G[(H[µ]) q ](x, t) ≥ 1 4πt N 2 R N e -|x-y| 2 4t
dµ(y)

- t 0 R N 1 (4π(t -s)) N 2 e -|x-y| 2 4(t-s) 1 (4πs) N 2 R N e -|y-z| 2 4s dµ(z) q dyds (4.71) for all (x, t) ∈ Q ∞ .
The main idea of the proof is as follows: for any (x, t) ∈ Q T we construct a q -admissible bounded measure µ = µ x,t such that

H[µ x,t ](x, t) ≥ CW K (x, t), (4.72) 
and

G[(H[µ x,t ]) q ] ≤ CH[µ x,t ] in Q ∞ , (4.73) 
with constants C depending only on N , q and T. From this first estimate we replace µ x,t by ǫµ x,t with ǫ = (2C) -1 q-1 in order to obtain

u ǫµx,t (x, t) ≥ 1 2 H[ǫµ x,t ](x, t) ≥ C 2 W K (x, t).
If such an estimate holds for any (x, t) ∈ Q ∞ , it will follow by the definition of u K that

u K ≥ C 2 W K . ( 4 
.74)

Estimate from below of the solution of the heat equation

The slicing of R N used in the previous section is the intersection with R N × {0} of an extended slicing of Q T that we construct as follows: if K is a compact subset of R N , m = (x, t), we define d K , λ, d n as in Definition 4.17 and a t as in Theorem 4.20.

Let α ∈ (0, 1) to be fixed later on. For n ∈ Z we set

T n = B 2 √ t(n+1) (m) \ B 2 √ tn (m) if n ≥ 1 B 2 α -n √ t (m) \ B 2 α 1-n √ t (m) if n ≤ 0,
and

T * n = T n ∩ Q t if n ∈ Z. For any n ∈ N * and m = (x, t) ∈ Q T , we recall that Q n = K ∩ B 2 √ t(n+1) (m) = K ∩ B d n+1 (x),
and

K n = K ∩ T n+1 = K ∩ B d n+1 (x) \ B dn (x) . Let ν n ∈ M b + (R N ) ∩ B -2 q ,q ′ (R N ) be the capacitary measure of the set d -1 n+1 K n (see [1, Section 2.2]). Then ν n vanishes outside d -1
n+1 K n and satisfies

ν n (d -1 n+1 K n ) = cap 2 q ,q ′ (d -1 n+1 K n ) and ν n B -2 q ,q ′ (R N ) = cap 2 q ,q ′ (d -1 n+1 K n ) 1 q . (4.75)
Let µ n be defined on any Borel set A ⊂ K n by

µ n (A) = d N -2 q-1 n+1 ν n (d -1 n+1 A). (4.76)
We set

µ t,K = at n=0 µ n , and 
H[µ t,K ] = at n=0 H[µ n ].
Proposition 4.22 Let q ≥ q c , then there holds

µ t,K ≥ 1 (4πt) N 2 at n=0 e -n+1 4 d N -2 q-1 n+1 cap 2 q ,q ′ d n+1 K n for all (x, t) ∈ Q T . (4.77) Proof. We have H[µ n ](x, t) = 1 (4πt) N 2 Kn e -|x-y| 2 4t
dµ n (y).

Furthermore 

Kn e -|x-y| 2 4t dµ n (y) ≤ max{e -|x-y| 2 4t : y ∈ K n } µ n (K n ) ≤ max{e -|x-y| 2 4t : y ∈ K n } d N -2 q-1 n+1 cap 2 q ,q ′ (d -1 n+1 K n ),
dµ n (y) ≤ e -n+1 4 d N -2 q-1 n+1 cap 2 q ,q ′ (d -1 n+1 K n ),
by the definition of K n and d n , and (4.77) follows by the definition of µ t,K .

Estimate from above of the nonlinear term

We write (4.71) under the form

u µ (x, t) ≥ n∈Z H[µ n ](x, t) - t 0 R N H(x, y, t -s)   n∈A K H[µ n ](y, s)   q dyds = I 1 -I 2 . (4.78) 
We recall that

µ n = 0 if n / ∈ A K = N ∩ [1, a t ]. Then I 2 = 1 (4π) N 2 t 0 R N (t -s) N 2 e - |x-y| 2 4(t-s)   n∈A K H[µ n ](y, s)   q dyds ≤ 2 q-1 (4π) N 2 (J ℓ + J ′ ℓ ), (4.79) 
where

J ℓ = p∈Z T * p (t -s) N 2 e - |x-y| 2 4(t-s)   n≤p+ℓ H[µ n ](y, s)   q dyds, and 
J ′ ℓ = p∈Z T * p (t -s) N 2 e -|x-y| 2 4(t-s)   n>p+ℓ H[µ n ](y, s)   q dyds.
In these expressions ℓ ∈ N will be fixed later on.

Lemma 4.23 Let 0 < a < b and t > 0, then

max σ -N 2 e -ρ 2 4σ : 0 ≤ σ ≤ t, at ≤ ρ 2 + σ ≤ bt =      t -N 2 e-a 4 if a 2N > 1 2N at N 2 e -N 2 if a 2N ≤ 1. (4.80) Proof. Set J (ρ, σ) = σ -N 2 e -ρ 2 4σ ,
and

K a,b,t = {(ρ, σ) ∈ [0, ∞) × (0t] : at ≤ ρ 2 + σ ≤ bt}.
We notice that, for fixed σ, the maximum of J (., σ) is achieved when ρ is minimal. If σ ∈ [at, bt], the minimal value of ρ is zero, while if σ ∈ (0, at), the minimal value is √ ats.

-Assume first a ≥ 1, then J (atσ, σ) = e

1 4 σ -N 4 e -at 4σ . Thus if 1 ≤ a 2N , the minimal value of J ( √ at -σ, σ) is e 1-2N 4 
2N at N 2 , while if a 2N < 1, this minimum is e 1 4 t -N 2 e -a 4 . -Assume now a < 1, then max {J (ρ, σ) : (ρ, σ) ∈ K a,b,t } = max max σ∈(at,t J (0, σ), max σ∈(0,at J ( √ at -σ, σ) = max (at) -N 2 , e -1-2N 4 2N at N 2 = e -1-2N 4 2N at N 2 .
From these two estimates, (4.80) follows.

Remark. The following variant of Lemma 4.23 will be useful in the sequel: For any θ > 1 2N , there holds

max {J (ρ, σ) : (ρ, σ) ∈ K a,b,t } ≤ e 1 4

2N θ t

N 2 e a 4

if θa ≥ 1. (4.81) Lemma 4.24 There exists a positive constant C = C(N, q, ℓ, T ) such that

J ℓ ≤ Ct -N 2 at n=1 d N -2 q-1 n+1 e -1+(n-ℓ) + 4 cap 2 q ,q ′ K n d n+1 . (4.82)
Proof. The set of the indices p for the summation in J ℓ is reduced to Z ∩ [-ℓ + 2, ∞), thus there holds J ℓ = J 1,ℓ + J 2,ℓ where 

J 1,ℓ = 0 p=2-ℓ T * p (t -s) -N 2 e -|x-y| 2 4(t-s)   n<p+ℓ H[µ n ](y, s)   q dyds and J 2,ℓ = ∞ p=1 T * p (t -s) -N 2 e - |x-
H[µ n ](y, s) q ≤ C p-ℓ-1 n=1 (H[µ n ]) q (y, s), (4.85) 
where C = C(q, ℓ) > 0, therefore

J 1,ℓ ≤ Ct -N 2 0 p=2-ℓ e -α 2-p 4 p-ℓ-1 n=1 H[µ n ] q L q (Q T ) ≤ Ct -N 2 ℓ-1 n=1 H[µ n ] q L q (Q T ) 0 p=n-ℓ+1 e -α 2-p 4 ≤ Ct -N 2 e -α 2ℓ -2 4 ℓ-1 n=1 H[µ n ] q L q (Q T ) .
(4.86)

When the set of indices p is not upper bounded, we introduce some extra parameter to be made precise later on. Then

p-ℓ-1 n=1 H[µ n ](y, s) q ≤ p-ℓ-1 n=1 e q ′ δn 4 q q ′ p-ℓ-1 n=1 e -qδn 4 (H[µ n ]) q (y, s). ( 4 

.87)

Remembering thet µ n = 0 if n ≥ a t , we obtain that there exists C > 0 depending also on δ such that

J 2,ℓ ≤ Ct -N 2 ∞ p=1 e δ(p+ℓ-1)q-p 4 p-ℓ-1 n=1 e -qδn 4 H[µ n ] q L q (Q T ) ≤ Ct -N 2 ∞ n=1 e -qδn 4 H[µ n ] q L q (Q T ) ∞ p=n-ℓ+1∨1 e δ(p+ℓ-1)q-p 4 ≤ Ct -N 2 ∞ n=1 e -1+(n-ℓ) + 4 H[µ n ] q L q (Q T ) .
(4.88)

We chose δ such that δℓq < 1. Combining (4.86) and (4.88) and using Lemma 3.11 and (4.75) and (4.76) we obtain (4.82).

The set of indices p such that the term µ n is not zero in the summation

J ′ ℓ is Z ∩ (-∞, a t -ℓ]. We write J ′ ℓ = J ′ 1,ℓ + J ′ 2,ℓ with J ′ 1,ℓ = p=0 -∞ T * p (t -s) -N 2 e - |x-y| 2 4(t-s)   ∞ n=1∨p+ℓ H[µ n ](y, s)   q and J ′ 2,ℓ = at-ℓ p=1 T * p (t -s) -N 2 e -|x-y| 2 4(t-s)   ∞ n=p+ℓ H[µ n ](y, s)   q .
Lemma 4.25 There exists a positive constant C = C(N, q, ℓ) such that

J ′ 1,ℓ ≤ Ct 1-N q 2 at n=0 e -(1+β 0 )(n-h) + 4 d N q-2q ′ n+1 cap q 2q,q ′ K n d n+1 , (4.89) 
where β 0 = q-1 4 and h = 2q(q+1) (q-1) 2 .

Proof. Since (y, s) ∈ T * p and (z, 0)

∈ K n =⇒ |y -z| ≥ ( √ n -α -p ) √ t, (4.90) 
there holds by Lemma 4.23,

H[µ n ](y, s) ≤ 1 (4πs) N 2 e -( √ n-α -p ) 2 t 4s µ n (K n ) ≤ Ct -N 2 e -( √ n-α -p ) 2 4 µ n (K n ).
Let {ǫ n } be a sequence of positive numbers such that

A ǫ := ∞ n=0 ǫ n < ∞, then J ′ 1,ℓ ≤ CA q ′ q ǫ t -Nq 2 0 p=-∞ T * p (t -s) -N 2 e - |x-y| 2 4(t-s) ∞ n=1∨p+ℓ ǫ -q n e -q( √ n-α -p ) 2 4 (µ n (K n )) q dyds ≤ CA q ′ q ǫ t -Nq 2 ∞ n=1 ǫ -q n (µ n (K n )) q 0∧n-ℓ p=-∞ e -q( √ n-α -p ) 2 4 T * p (t -s) -N 2 e - |x-y| 2 4(t-s) dyds ≤ CA q ′ q ǫ t -Nq 2 ∞ n=1 ǫ -q n (µ n (K n )) q e -q( √ n-1) 2 4 ∪ p≤0 T * p (t -s) -N 2 e - |x-y| 2 4(t-s) dyds ≤ CA q ′ q ǫ t 1-Nq 2 ∞ n=1 ǫ -q n e -q( √ n-1) 2 4 (µ n (K n )) q . (4.91) Set h = 2q(q+1) (q-1) 2 and Q = q+1 2 , then q( √ n -1) 2 ≥ Q(n -h) + for n ≥ 1. Then ǫ n = e (q-1)(n-h) + 16q =⇒ ǫ -q n e -q( √ n-1) 2 4 ≤ e -(q+3)(n-h) + 16 . Therefore J ′ 1,ℓ ≤ Ct 1-N 2 ∞ n=1 e -(1+β 0 )(n-h) + 4 (µ n (K n )) q .
This implies (4.89) from the properties of µ n .

The estimate of the term J ′ 2,ℓ is more involved. In order to help the reader to follow the idea, we first give a proof in dimension 1.

Lemma 4.26 Assume N = 1, q ≥ 3 and ℓ is an integer larger than 1. Then there exists a positive constant C = C(q, ℓ) such that 

J ′ 2,ℓ ≤ Ct -1 2 at n=ℓ e -n 4 d q-3 q-1 n+1 cap 2 q ,q ′ K n d n+1 . ( 4 
-z| ≥ √ t √ n - √ p + 1 . Therefore J ′ 2,ℓ ≤ C √ t at-ℓ p=1 1 √ p t 0 e -pt 4(t-s)   at n=p+ℓ 1 √ s e -( √ n-√ p+1) 2 t 4s µ n (K n )   q ds.
Let ǫ ∈ (0, q) be some parameter to be made more precise later on, then

  at n=p+ℓ 1 √ s e -( √ n-√ p+1) 2 t 4s µ n (K n )   q ≤   at n=p+ℓ e -ǫq ′ ( √ n-√ p+1) 2 t 4s   q ′ q at n=p+ℓ s -q 2 e -(q-ǫ) ( √ n-√ p+1) 2 t 4s (µ n (K n )) q .
By comparison between series and integrals we have

at n=p+ℓ e -ǫq ′ ( √ n-√ p+1) 2 t 4s ≤ ∞ p+ℓ e -ǫq ′ ( √ x-√ p+1) 2 t 4s dx ≤ 2 ∞ √ p+ℓ- √ p+1 e -ǫq ′ x 2 t 4s (x + p + 1)dx ≤ 4s ǫq ′ t e -ǫq ′ ( √ p+ℓ-√ p+1) 2 t 4s + 2 √ p + 1 ∞ √ p+ℓ- √ p+1 e -ǫq ′ x 2 t 4s dx ≤ C (p+1)s t e -ǫq ′ ( √ p+ℓ-√ p+1) 2 t 2s ≤ C (p+1)s t .
Set q ǫ = qǫ, then

J ′ 2,ℓ ≤ Cǫ -q ′ q t 1-q 2 ∞ n=ℓ+1 (µ n (K n )) q n-ℓ p=1 t 0 s(t -s)e --pt 4(t-s) e -qǫ ( √ n-√ p+1) 2 t 4s ds,
where C = C(ǫ, q) > 0. Since

t 0 s(t -s)e --pt 4(t-s) e -qǫ ( √ n-√ p+1) 2 t 4s ds = 1 0 s(1 -s)e --p 4(t-s) e -qǫ ( √ n-√ p+1) 2 4s ds,
we can apply Lemma 4.34 with

a = 1 2 , b = 1 2 , A = √ p, B = √ q ǫ ( √ n - √ p + 1). For such a choice, B ≥ √ q ǫ ( p + ℓ -p + 1) ≥ (ℓ -1) √ q ǫ √ p =⇒ κ = (ℓ -1) √ q ǫ , and 
A A + B B A + B ≤ 4 √ p √ n - √ p √ n . Therefore t 0 e -pt 4(t-s) e-q ( √ n- √ p+1) 2 t 4t s q (t -s) ds ≤ C 4 √ p √ n - √ p √ n e -( √ p+ √ qǫ( √ n-√ p+1)) 2 4 .
This implies

J ′ 2,ℓ ≤ Ct 1-q 2 at n=ℓ+1 (µ n (K n )) q √ n n-ℓ p=1 p 2q-3 4 √ n - √ p e -( √ p+ √ qǫ( √ n-√ p+1)) 2 4 , (4.93) 
where C = C(ǫ, q, ℓ) > 0. Then, by Lemma 4.35,

J ′ 2,ℓ ≤ Ct 1-q 2 at n=ℓ+1 n q-3 4 e -n 4 (µ n (K n )) q . (4.94) Replacing µ n (K n ) by its value d q-3 q-1 n+1 cap 2 q q ′ Kn d n+1
, the expression when N = 1, and since diam Kn d n+1 ≤ 1 n , we obtain

(µ n (K n )) q ≤ C t n q-3 2 µ n (K n ) = C t n q-3 2 d q-3 q-1 n+1 cap 2 q q ′ K n d n+1 , (4.95) 
and the proof follows.

Next we give the proof for N ≥ 2. For this task we will use again the quasi-additivity property.

Lemma 4.27 Assume N ≥ 2 and ℓ is an integer larger than 1. There exists a positive constant C 1 = C 1 (N, q, ℓ) such that (a n,j , which means

J ′ 2,ℓ ≤ C 1 t -N 2 at n=ℓ e -n 4 d N -2 q-1 n+1 cap 2 q ,q ′ K n d n+1 . ( 4 
ν n,j (K n,j ) = cap B n,j 2 
q ,q ′ (K n,j and ν n,j B -2

q ,q (B n,j ) = cap B n,j 2 
q ,q ′ (K n,j

1 q . (4.97) Thus J ′ 2,ℓ = at-ℓ p=1 T * p (-s) -N 2 e - |x-y| 2 4(t-s)    ∞ n=p+ℓ J h=1 j∈Gth h t,n H[µ n,j (y, s)]    q dyds. (4.98)
We denote

J ′h 2,ℓ = at-ℓ p=1 T * p (-s) -N 2 e -|x-y| 2 4(t-s)    ∞ n=p+ℓ j∈Gth h t,n H[µ n,j (y, s)]    q dyds.
Since J depends only on N and q,

J ′ 2,ℓ ≤ C J h=1 J ′h 2,ℓ .
If n and p are such that n ≥ ℓ + 1, we set

λ n,j,y = inf |y -z| : z ∈ B √ tn+1 (a n,j = |y -a n,j | - √ tn + 1. Then at n=p+ℓ Kn e -|y-z| 2 4t dµ h n (z) = at n=p+ℓ j∈Gth h t,n H[µ n,j (z)] ≤    at n=p+ℓ j∈Gth h t,n e -ǫq ′ λ 2 n,j,y 4s    1 q ′ ×    at n=p+ℓ j∈Gth h t,n e -qλ 2 n,j,y 1-ǫ 4s (µ n,j (K n,j )) q    1 q
where ǫ > 0 will be made precise later on.

Step 1. We claim that

at n=p+ℓ j∈Gth h t,n e -ǫq ′ λ 2 n,j,y 4s ≤ C ps t , (4.99) 
where

C = C(ǫ, q, N ) > 0. If y ∈ T p , let z y ∈ T n such that |y -z| = dist (y, T n ) hence √ t( √ n -p + 1) ≤ |y -z| ≤ √ t( √ n -p + 1). Let Y = √ t(p+1) |y| y, e = Y |Y | and, for integers k ∈ [-n, n], b k = k √ t √ n e.
We denote by H n,k the domain in R N limited by the hyperplanes orthogonal to e going through the points (k+1) √ t

√ n e and (k-1) √ t

√ n e, and by G n,k the spherical shell obtained by intersecting the spherical shell T n with H n,k . The number of points a n,j belonging to G n,k is smaller than C(n + 1 -|k|) N -2 where C = C(N ) > 0. Let Λ n,k be the set of indices j ∈ Θ t,n such that a n,j ∈ G n,k . Note that in a n,j ∈ G n,k , it is a consequence of Pythagora's theorem that λ 2 n,j,y is larger than t(n + p + 1 -2k p+1 n ). Therefore Case N = 2. Summing a geometric series and using the inequality e u e u -1 ≤ 1 + 1 u on (0, ∞), we obtain 

n k=-n e ǫq ′ k √ p+1t 2s √ n ≤ e ǫq ′ √ p+1t 2s e ǫq ′ √ p+1t 2s √ n e ǫq ′ √ p+1t 2s √ n -1 ≤ e ǫq ′ √ p+1t 2s 1 + 2s √ n ǫq ′ t √ p + 1 . ( 4 
≤ C at n=p+ℓ 1 + s √ n t √ p e -ǫq ′ ( √ n-√ p+1) 2 t 4s ≤ C ∞ p+1 e -ǫq ′ ( √ x-√ p+1) 2 t 4s dx + Cs t √ n ∞ p+1 √ xe -ǫq ′ ( √ x-√ p+1) 2 t 4s dx. (4.102) Next ∞ p+1 e -ǫq ′ ( √ x-√ p+1) 2 t 4s dx = 2 ∞ √ p+1 e -ǫq ′ (y-√ p+1) 2 t 4s ydy = 2 ∞ 0 e -ǫq ′ y 2 t 4s ydy + 2 p + 1 ∞ 0 e -ǫq ′ y 2 t 4s dy = 2s t ∞ 0 e -ǫq ′ y 2 4 zdz + (p + 1)s t ∞ 0 e -ǫq ′ z 2 4 dz, (4.103) 
and 

∞ p+1 e -ǫq ′ ( √ x-√ p+1) 2 t 4s √ xdx = 2 ∞ √ p+1 e -ǫq ′ (y-√ p+1) 2 t 4s y 2 dy = 2 ∞ 0 e -ǫq ′
(n + 1 -k) d e kα .
Since e kα = e (k+1)αe kα e α -1 , we use the Abel's transform and obtain

I d = 1 e α -1 e (n+1)α -(n + 1) d + n k=1 (n + 2 -k) d -(n + 1 -k)d e kα ≤ 1 e α -1 (1 -d)e (n+1)α -(n + 1) d + de α n k=1 (n + 1 -k) ) e kα .
Therefore the following induction relation holds

I d ≤ de α e α -1 I d-1 . (4.107)
We use again the fact that de α e α -1

≤ C 1 + s √ n t √ p
as in (4.101), and

I d ≤ C 1 + C s √ n t √ p d+1 I 0 . Therefore (4.102) is replaced by at n=p+ℓ j∈Gth h t,n e -ǫq ′ λ 2 n,j,y 4s ≤ C at n=p+ℓ 1 + s √ n t √ p d+1 e -ǫq ′ ( √ n-√ p+1) 2 t 4s ≤ C ∞ p+1 e -ǫq ′ ( √ x-√ p+1) 2 t 4s dx + Cs t √ p d+1 ∞ p+1 x d+1 2 e -ǫq ′ ( √ x-√ p+1) 2 t 4s dx. (4.108)
Using the estimate of the first integral of the right-hand side of (4.108) that we have obtained in (4.103), we can concentrate on the second integral,

∞ p+1 x d+1 2 e -ǫq ′ ( √ x-√ p+1) 2 t 4s dx = ∞ 0 (y + p + 1) d+2 e -ǫq ′ y 2 t 4s dy ≤ C ∞ 0 y d+2 e -ǫq ′ y 2 t 4s dy + Cp 1+ d 2 ∞ 0 e -ǫq ′ y 2 t 4s dy ≤ C s t 2+ d 2 ∞ 0 e -ǫq ′ z 2 4 dz + C s t 3 2 p 1+ d 2 ∞ 0 e -ǫq ′ z 2 4 dz. (4.109)
We obtain (4.99) from (4.104), (4.108) and (4.109).

Step 2. Since T * p ⊂ Γ p × [0, t], where we recall it Γ p = B d+1 (x) \ B dn (x), the fact that (y, s) ∈ T * p implies |x -y| 2 ≥ (p -1)t. Therefore J ′h 2,ℓ satisfies

J ′h 2,ℓ ≤ Ct 1-q 2 ∞ p=1 p q-1 2 t 0 Γp (t -s) -N 2 s -q(N-1)+1 2 e -4 |x-y| 2 4(t-s × at n=p+ℓ j∈Θ h t,n e - q(1-ǫ)λ 2 n,j,y 4s (µ n,j (K n,j )) q dyds ≤ Ct 1-q 2 at n=p+ℓ j∈Θ h t,n (µ n,j (K n,j )) q × n-ℓ p=1 t 0 Γp (t -s) -N 2 s -q(N-1)+1 2 e -4
|x-y| 2 4(t-s e - q(1-ǫ)λ 2 n,j,y 4s dyds, (4.110) where C = C(N, q, ǫ) > 0. Next we set q ǫ = (1ǫ)q. If we write Since the value of the spherical integral is invariant by rotations in R N , we can assume that a n,jx = (0, 0, 0, ..., |a n,j -x|. We then use the spherical coordinates in R N with center x and the representation of 

|y -a n,j | 2 = |x -y| 2 + |x -a n,j | 2 -2 y -x, a n,j -x ≥ pt + |x -a n,j | 2 -2 y -x, a n,j -x ,
S N -1 = {(sin φ.σ, φ) : σ ∈ S N -2 , φ ∈ [0, π]}.
(t -s) -N 2 s -q(N-1)+1 2 e -|x-y| 2 4(t-s) e -qǫ λ 2 n,j,y 4s dyds ≤ C √ tp N-3 4 n N-1 4 t 0 (t -s) -N 2 s -q(N-1)+1 2 e -p 4(t-s) e -qǫ ( √ tn- √ (p+1)t) 2 4t ds ≤ C t 1-q(N-2) 2 n N-1 4 1 0 (1 -τ ) -N 2 τ -q(N-1)+1 2 e -p 4(1-τ ) e -qǫ ( √ n-√ p+1) 2 4τ
dτ.

(4.113)

We apply Lemma 4.34 with

A = √ p, B = √ q ǫ ( √ n - √ p + 1), b = (q-1)(N -1)+1 2 , a = N 2 and κ = √ qǫ(ℓ-1) 8 
, as in the case N = 1. For these specific values

A 1-a B 1-b (A + B) a+b-2 = p 2-N 4 √ q ǫ √ n -p + 1 1-(q-1)(N-1) 2 × √ p + √ q ǫ √ n -p + 1 (q-1)(N-1)+N-3 2 ≤ C n p N 4 -1 2 √ n - √ p √ n 1-(q-1)(N-1) 2 
, where C = C(N, q, κ) > 0. Hence

t 0 Γp (t -s) -N 2 s -N 2 e -qǫ|x-y| 2 4s dyds ≤ C t 1-q(N-1) 2 p N-3 4 n N-1 4 n p N-2 4 √ n - √ p √ n 1-(q-1)(N-1) 2 e -( √ p+ √ qǫ( √ n-√ p+1)) 2 4 ≤ Ct 1-q(N-1) 2 p -1 4 n (q-1)(N-1)-2 4 √ n - √ p 1-(q-1(N-1)) 2 e -( √ p+ √ qǫ( √ n-√ p+1)) 2 4
.

(4.114)

Then we deduce from (4.110), (4.114)

J ′h 2,ℓ ≤ Ct 1-Nq 2 at n=ℓ+1 j∈Θ h t,n n (q-1)(N-1)-2 4 (µ n,j (K n,j )) q × n-ℓ p=1 p 2q-3 4 √ n - √ p 1-(q-1)(N-1) 2 e -( √ p+ √ qǫ( √ n-√ p+1)) 2 4 . (4.115) By Lemma 4.35 with α = 2q-3 4 , β = 1-(q-1(N -1)

2

, δ = 1 4 and γ = q ǫ , we obtain

n-ℓ p=1 p 2q-3 4 √ n - √ p 1-(q-1)(N-1) 2 e -( √ p+ √ qǫ( √ n-√ p+1)) 2 4 ≤ Cn N(q-1)+q-3 4 e -n 4 , (4.116) 
thus

J ′h 2,ℓ ≤ Ct 1-Nq 2 at n=ℓ+1 n N(q-1) 2 -1 e -n 4 j∈Θ h t,n (µ n,j (K n,j )) q . (4.117) Because µ n,j (K n,j ) = cap B n,j 2 
q ,q ′ (K n,j ), we use the rescaling procedure of Lemma 4.19 except that the scaling factor is (N + 1)t instead of √ N + 1, so that the sets T n , K n , K n,j and Q n remain unchanged. Using the quasi-additivity and the fact that

J ′ 2,ℓ = J h=1
J ′h 2,ℓ , we deduce

J ′ 2,ℓ ≤ Ct -N 2 n=ℓ+1 a t d N -2 q-1 n+1 cap 2 q ,q ′ K n d n+1 , (4.118) 
which implies (4.96).

The proof of Theorem 4.21 follows from the previous estimates on J 1 and J 2 .

In the same way as for Theorem 4.8, the estimate in Theorem 4.21 admits an integral form. Fortunately it yields the same form as for Theorem 4.20 Theorem 4.28 Assume q ≥ q c . Then there exists a positive constant C * 2 = C * 2 (N, q, T such for any closed subset F ⊂ R N there holds for all (x, t) ∈ Q T ,

u F (x, t) ≥ C * 2 t 1+ N 2 √ t(at+2 √ t e -s 2 4t s N -2 q-1 cap 2 q ,q ′ 1 s B ∩ B 1 (x) sds, (4.119)
where a t is the smallest integer j such that F ⊂ B √ jt (x).

Proof. We distinguish according q = q c , or q > q c , and for simplicity we denote B r = B r (x) for the various values of r. Case 1:

q = q c ⇐⇒ N -2 q-1 = 0. Because F n = F ∩ (B d n+1 \ B dn ) there holds cap 2 q ,q ′ F n d n+1 ≥ cap 2 q ,q ′ F d n+1 ∩ B 1 -cap 2 q ,q ′ F ∩ B dn d n+1 , Furthermore, since d n+1 ≥ d n , cap 2 q ,q ′ F ∩ B dn d n+1 = cap 2 q ,q ′ d n d n+1 F ∩ B dn d n ≤ cap 2 q ,q ′ F d n ∩ B 1 , thus cap 2 q ,q ′ F n d n+1 ≥ cap 2 q ,q ′ F d n+1 ∩ B 1 -cap 2 q ,q ′ F d n ∩ B 1 , it follows at n=1 e -n 4 cap 2 q ,q ′ F n d n+1 ≥ at n=1 e -n 4 cap 2 q ,q ′ F d n+1 ∩ B 1 - at n=1 e -n 4 cap 2 q ,q ′ F d n ∩ B 1 ≥ at n=1 e -n 4 cap 2 q ,q ′ F d n+1 ∩ B 1 -e -1 4 a t -1 n=0 e -n 4 cap 2 q ,q ′ F d n+1 ∩ B 1 ≥ (1 -e -1 4 ) a t -1 n=1 e -n 4 cap 2 q ,q ′ F d n+1 ∩ B 1 -e -1 4 cap 2 q ,q ′ F √ t ∩ B 1 .
Since, by (4.66),

cap 2 q ,q ′ F s ′ ∩ B 1 ≥ cap 2 q ,q ′ F d n+1 ∩ B 1 ≥ cap 2 q ,q ′ F s ∩ B 1 , for any s ′ ∈ [d n+1 , d n+2 ] and s ∈ [d n , d n+1 ], there holds te -n 4 cap 2 q ,q ′ F d n+1 ∩ B 1 ≥ cap 2 q ,q ′ F d n+1 ∩ B 1 d n+1 dn e -s 2 /4t s ds ≥ d n+1 dn e -s 2 /4t cap 2 q ,q ′ F s ∩ B 1 s ds.
This implies

W F (x, t) ≥ (1 -e -1 4 )t -(1+ N 2 ) √ tat 0 e -s 2 /4t cap 2 q ,q ′ F s ∩ B 1 s ds.
Case 2: q > q c ⇐⇒ N -2 q-1 > 0. In that case it follows from Lemma 4.6 that

cap 2 q ,q ′ F n d n+1 ≈ d 2 q-1 -N n+1 cap 2 q ,q ′ (F n ) . Thus W F (x, t) ≈ t -1-N 2 at n=0 e -n 4 cap 2 q ,q ′ (F n ) . Since cap 2 q ,q ′ (F n ) ≥ cap 2 q ,q ′ F ∩ B d n+1 -cap 2 q ,q ′ (F ∩ B dn )
, we obtain, using again Abel's transform,

t -N 2 at n=0 e -n 4 cap 2 q ,q ′ (F n ) ≥ (1 -e -1 4 )t -N 2 a t -1 n=0 e -n 4 cap 2 q ,q ′ F ∩ B d n+1 ≥ (1 -e -1 4 )t -(1+ N 2 ) √ tat 0 e -s 2 4t cap 2 q ,q ′ (F ∩ B s ) s ds. Because cap 2 q ,q ′ (F ∩ B s ) ≈ s N -2 q-1 cap 2 q ,q ′ s -1 F ∩ B 1 , (4.119) follows.

Applications

The main result of this section is the following, Theorem 4.29 Let N ≥ 1, q > 1 and F be a closed subset of R N . Then u F = u F .

Proof. When 1 < q < q c this is proved in Proposition 3.5. The principle of the proof uses convexity and the integral forms of Theorem 4.8 and Theorem 4.21. The technique is an adaptation that we recall for the sake of completeness of the proof in the subcritical case. By Theorem 4.20 and Theorem 4.28 there exists a positive constant C, depending on N , q and T such that

u F ≤ u F ≤ Cu F in Q T . (4.120)
Let us assume that u F = u F . By the strong maximum principle u F > u F . By convexity

u = u F -1 2C (u F -u F
) is a super-solution, which is smaller than u F . If we set θ := 1 2 + 1 2C , then 0 < θ < 1 and θu F is a subsolution smaller than u F . There exists a solution u * of (3.13) which satisfies

θu F ≤ u * ≤ u < u F in Q T .
Hence u * is a solution of (4.28). If µ is an admissible measure vanishing outside F , then u θµ is the smallest solution above the subsolution θu µ . Thus u θµ ≤ u * < u F . Since µ is arbitrary, we deduce u F ≤ u * < u F , which is a contradiction.

Another consequence of the uniqueness result is the following equivalence of the discrete and integral capacitary potentials. Proposition 4.30 Assume q ≥ q c . Then there exist two positive constants C † 1 , C † 2 , depending only on N , q and T such that

C † 2 t -(1+ N 2 ) √ tat 0 s N -2 q-1 e -s 2 4t cap 2 q ,q ′ F s ∩ B 1 (x) s ds ≤ W F (x, t) ≤ C † 1 t -(1+ N 2 ) √ t(at+2) √ t s N -2 q-1 e -s 2 4t cap 2 q ,q ′ F s ∩ B 1 (x) s ds (4.121) for any (x, t) ∈ Q T . Definition 4.31 If F is a closed subset of R N , we define the ( 2 q , q ′ )-integral parabolic capacitary potential W F by W F (x, t) = t -1-N 2 D F (x) 0 s N -2 q-1 e -s 2 4t cap 2 q ,q ′ F s ∩ B 1 (x) s ds ∀(x, t) ∈ Q ∞ , (4.122)
where D F (x) = max{|x -y| : y ∈ F }.

By an easy computation we obtain that

0 ≤ W F (x, t) -t -(1+ N 2 ) √ tat 0 s N -2 q-1 e -s 2 4t cap 2 q ,q ′ F s ∩ B 1 (x) s ds ≤ C t (q-3)/2(q-1) D F (x) e -D 2 F (x) 4t , (4.123) 
and

0 ≤ t -(1+ N 2 ) √ t(at+2) 0 s N -2 q-1 e -s 2 4t cap 2 q ,q ′ F s ∩ B 1 (x) s ds -W F (x, t) ≤ C t (q-3)/2(q-1) D F (x) e -D 2 F (x) 4t , (4.124) 
for some C = C(N, q) > 0. Furthermore

W F (x, t) = t -1 q-1 D F (x)/ √ t 0 s N -2 q-1 e -s 2 4t cap 2 q ,q ′ F s √ t ∩ B 1 (x) s ds. (4.125)
The following result gives a sufficient condition in order that u F has a strong blow-up (i.e. of the maximal order t -1/(q-1) ) at a point x.

Proposition 4.32 Assume q ≥ q c and F is a closed subset of R N . If there exists γ ∈ [0, ∞) such that lim τ →0 cap 2 q ,q ′ F τ ∩ B 1 (x) = γ, (4.126) then lim t→0 t 1 q-1 u F (x, t) = Cγ, (4.127) 
for some C = C(N, q) > 0.

Proof. Clearly, condition (4.126) implies

lim t→0 cap 2 q ,q ′ F √ t ∩ B 1 (x) = γ
for any s > 0. Then (4.127) follows by Lebesgue's theorem. Notice also that the set of γ is bounded from above by a constant depending on N and q.

In the next result we give a condition in order that the solution remains bounded at a point x. The proof is similar to the previous one.

Proposition 4.33 Assume q ≥ q c and F is a closed subset of R N . If lim sup τ →0 τ -2 q-1 cap 2 q ,q ′ F τ ∩ B 1 (x) < ∞, (4.128)
then u F (x, t) remains bounded when t → 0.

Remark. If we assume that f is a convex function on R + satisfying

c 2 r q ≤ f (r) ≤ c 1 r q ∀r ≥ 0, (4.129)
for some 0 < c 2 ≤ c 1 we can construct in the same way as for (3.13) the solutions u F and u F for equation 

∂ t u -∆u + f (u) = 0 in Q T . ( 4 

Appendix

We present here some highly technical computations which are not of particularly interest for the trace theory but are usefull in the proof of the results.

Generalized beta integrals

Lemma 4.34 Let a and b be two real numbers, a > 0 and κ > 0. Then there exists a constant C = C(a, b, κ) > 0 such that for any A > 0, B > κ/A there holds

1 0 (1 -x) -a x -b e -A 2 /4(1-x) e -B 2 /4x dx ≤ Ce -(A+B) 2 /4 A 1-a B 1-b (A + B) a+b-2 . (4.131)
Proof. We first notice that max e -A 2 /4(1-x) e -B 2 /4x : 0

≤ x ≤ 1 = e -(A+B) 2 /4 , (4.132)
and it is achieved for

x 0 = B/(A + B). Set φ(x) = (1 -x) -a x -b e -A 2 /4(1-x) e -B 2 /4x , thus 1 0 φ(x)dx = x 0 0 φ(x)dx + 1 x 0 φ(x)dx = I a,b + J a,b . Put u = A 2 4(1 -x) + B 2 4x , (4.133) then 4ux 2 -(4u + B 2 -A 2 )x + B 2 = 0. (4.134)
If 0 < x < x 0 this equation admits the solution

x = x(u) = 1 8u 4u + B 2 -A 2 -16u 2 -8u(A 2 + B 2 ) + (A 2 -B 2 ) 2 x 0 0 (1 -x) -a x -b e -A 2 /4(1-x)-B 2 /4x dx = - ∞ (A+B) 2 /4 (1 -x(u)) -a x(u) -b e -u x ′ (u)du Putting x ′ = x ′ (u) and differentiating (4.134), 4x 2 + 8uxx ′ -(4u + B 2 -A 2 )x ′ -4x = 0 =⇒ -x ′ = 4x(1 -x) 4u + B 2 -A 2 -8ux
.

Thus x 0 0 φ(x)dx = 4 ∞ (A+B) 2 /4 (1 -x(u)) -a+1 x(u) -b+1 e -u du 4u + B 2 -A 2 -8ux(u) . (4.135)
Using the explicit value of the root x(u), we finally get

x 0 0 φ(x)dx = 4 ∞ (A+B) 2 /4 (1 -x(u)) -a+1 x(u) -b+1 e -u du 16u 2 -8u(A 2 + B 2 ) + (A 2 -B 2 ) 2 , ( 4.136) 
and the factorization below holds

16u 2 -8u(A 2 + B 2 ) + (A 2 -B 2 ) 2 = 16(u -(A + B) 2 /4)(u -(A -B) 2 /4).
We set u = υ + (A + B) 2 /4 and obtain

x(u) = v + (AB + B 2 )/2 -v(v + AB) 2 (v + (A + B) 2 /4) , and 
1 -x(u) = v + (A 2 + AB)/2 + v(v + AB) 2 (v + (A + B) 2 /4) .
We introduce the relation ≈ linking two positive quantities depending on A and B. It means that the two sided-inequalities up to multiplicative constants independent of A and B. Therefore

x 0 0 φ(x)dx = 2 a-b-4 e -(A+B) 2 /4 ∞ 0 φ(v)dv where φ(v) = v + (AB + B 2 )/2 -v(v + AB) 1-b v + (A 2 + AB)/2 + v(v + AB) 1-a e v (v + (A + B) 2 /4) 2-a-b v(v + AB) . (4.137) Case 1: a ≥ 1, b ≥ 1. First v + (A + B) 2 /4 a+b-2 v(v + AB) ≤ v + (A + B) 2 /4 a+b-2 v(v + κ) ≈ v + (A + B) 2 a+b-2 v(v + κ) (4.138) since a + b -2 ≥ 0 and AB ≥ κ. Next v + (A 2 + AB)/2 + v(v + AB) 1-a ≈ (v + A(A + B)) 1-a . (4.139) Furthermore v + (AB + B 2 )/2 -v(v + AB) = B 2 v + (A + B) 2 /4 v + B(A + B)/2 + v(v + AB) ≈ B 2 v + (A + B) 2 v + B(A + B) . (4.140) Then v + (AB + B 2 )/2 -v(v + AB) 1-b ≈ B 2-2b v + B(A + B) v + (A + B) 2 b-1 . (4.141) It follows φ(v) ≤ CB 2-2b v + (A + B) 2 v + A(A + B) a-1 (v + B(A + B)) b-1 v(v + κ) ≤ CB 2-2b v + (A + B) 2 v + A(A + B) a-1 v b-1 + (B 2 + AB) b-1 v(v + κ) , (4.142) 
where C depends on a, b and κ. The function v

→ (v + (A + B) 2 )/(v + A(A + B)) is decreasing on (0, ∞). If we set C 1 = ∞ 0 v b-1 e -v dv v(v + κ) and C 2 = ∞ 0 e -v dv v(v + κ) , then C 1 ≤ K(B 2 + AB) b-1 C 2 with K = C 1 κ 1-b /C 2 . Therefore x 0 0 φ(x)dx ≤ Ce -(A+B) 2 /4 B 1-b A 1-a (A + B) a+b-2 . (4.143)
The estimate of J a,b is obtained by exchanging (A, a) with (B, b) and replacing x by 1x. Mutadis mutandis, this leads directely to the same expression as in 4.143 and finally 

1 0 φ(x)dx ≤ Ce -(A+B) 2 /4 A 1-a B 1-b (A + B) a+b-2 . ( 4 
φ(v) ≤ CB 2-2b v + (A + B) 2 v + A(A + B) a-1 AB + B 2 b-1 v(v + κ) . (4.145)
This implies (4.143) directly. The estimate of J a,b is performed by the change of variable

x → 1 -x. If x 1 = 1 -x 0 , there holds J a,b = x 1 0 x -a (1 -x) -b e -A 2 /4x e -B 2 /4(1-x) dx = x 1 0 Ψ(x)dx.
Then 

x 1 0 Ψ(x)dx = 2 b-a-4 e -(A+B) 2 /4 x 1 0 Ψ(v)dv where Ψ(v) = v + (AB + A 2 )/2 -v(v + AB) 1-a v + (B 2 + AB)/2 + v(v + AB) 1-b e v (v + (A + B) 2 /4) 2-a-b v(v + AB) . (4.146) Equivalence (4.138) is unchanged; (4.139) is replaced by v + (B 2 + AB)/2 + v(v + AB) 1-b ≈ (v + B(A + B)) 1-b , (4.147) (4.140) by v + (AB + A 2 )/2 -v(v + AB) ≈ A 2 v + (A + B) 2 v + A(A + B) , ( 4 
v + (AB + A 2 )/2 -v(v + AB) 1-a ≈ A 2-2a v + A(A + B) v + (A + B) 2 a-1 . (4.149) Because a > 1, (4.142) turns into Ψ(v) ≤ CA 2-2b (v + (A + B) 2 ) b-1 (v + A 2 + AB) a-1 (v + B 2 + AB) 1-b v(v + κ) ≤ Ce -(A+B) 2 /4 A 2-2b (A + B) 2b-2 × v a-b + (A 2 + AB) a-1 v 1-b + (B 2 + AB) 1-b v a-1 + A a-1 B 1-b (A + B) a-b v(v + κ) .
(4.150) Because AB ≥ κ, there exists a positive constant C, depending on κ, such that Combining (4.150) and (4.151) leads to

∞ 0 v a-b + (A 2 + AB) a-1 v 1-b + (B 2 + AB) 1-b v a-1 v(v + κ) e -v dv ≤ CA a-1 B 1-b (A + B) a-b ∞ 0 e -v dv v(v + κ) .
x 1 0 Ψ(x)dx ≤ Ce -(A+B) 2 /4 A 1-a B 1-b (A + B) a+b-2 . (4.152)
This, again, implies that (4.131) holds.

Case 3: max{a, b} < 1. Inequalities (4.137)-(4.141) hold, but (4.142) has to be replaced by

φ(v) ≤ CB 2-2b v + (A + B) 2 v + A(A + B) a-1 v + B 2 + AB b-1 v(v + κ) ≤ CB 1-b (A + B) 2a+b-3 v 1-a + A 2 + AB 1-a v(v + κ) (4.153) Noticing that ∞ 0 v 1-a e -v dv v(v + κ) ≤ C A 2 + AB 1-a ∞ 0 e -v dv v(v + κ) ,
it follows that (4.143) holds. Finally (4.144) holds by exchanging (A, a) and (B, b).

Discrete generalized beta series

Lemma 4.35 . Let α, β, γ, δ be real numbers and ℓ an integer. We assume γ > 1, δ > 0 and ℓ ≥ 2. Then there exists a positive constant C such that, for any integer n > ℓ

n-ℓ p=1 p α ( √ n - √ p ) β e -δ( √ p+ √ γ( √ n- √ p+1)) 2 ≤ Cn α-β/2 e -δn . (4.154) Proof. The function x → ( √ x + √ γ( √ n - √ x + 1
)) 2 is decreasing on [(γ -1) -1 , ∞). Furthermore there exists C > 0 depending on ℓ, α and β such that

p α ( √ n - √ p ) β ≤ Cx α ( √ n - √ x + 1 ) β for x ∈ [p, p + 1].
If we denote by p 0 the smallest integer larger than (γ -1) -1 , we derive

S = n-ℓ p=1 p α ( √ n - √ p ) β e -( √ p+ √ γ( √ n- √ p+1)) 2 /4 = p 0 -1 p=1 + n-ℓ p 0 p α ( √ n - √ p ) β e -δ( √ p+ √ γ( √ n- √ p+1)) 2 ≤ p 0 -1 p=1 p α ( √ n - √ p ) β e -δ( √ p+ √ γ( √ n- √ p+1)) 2 + C n+1-ℓ p 0 x α ( √ n - √ x ) β e -δ( √ x+ √ γ( √ n- √ x+1)) 2 dx, (notice that √ n - √ x ≈ √ n - √ x + 1 for x ≤ n -ℓ). Clearly p 0 -1 p=1 p α ( √ n - √ p ) β e -δ( √ p+ √ γ( √ n- √ p+1)) 2 ≤ C 0 n α ( √ n - √ n -ℓ ) β e -δn , (4.155) 
for some C 0 independent of n. We set y = y(x

) = √ x + 1 - √ x/ √ γ. Obviously y ′ (x) = 1 2 1 √ x + 1 -( √ n - √ x ) β ≈ √ n + 1 - √ n/ √ γ -y β .
This implies

n+1-ℓ p 0 x α ( √ n - √ x ) β e -δ( √ x+γ( √ n- √ x+1)) 2 dx ≤ C y(n+1-ℓ) y(p 0 ) y 2α+1 √ n + 1 - √ n/ √ γ -y β e -γδ( √ n-y) 2 dy ≤ Cn α+β/2+1 1-y(p 0 )/ √ n 1-y(n+1-ℓ)/ √ n (1 -z) 2α+1 (z + 1 + 1/n -1 -1/ √ γ) β e -γδnz 2 dz. (4.156) Moreover √ γ (ℓ -2) -ℓ + 1 2n + √ γ (ℓ -2) 2 -(ℓ -1) 2 8n 2 + O(n -3 ). (4.157)
Let θ fixed such that 1 -

y(n -ℓ + 1) √ n < θ < 1 - y(p 0 ) √ n for any n > p 0 . Then 1-y(p 0 )/ √ n θ (1 -z) 2α+1 (z + 1 + 1/n -1 -1/ √ γ) β e -γδnz 2 dz ≤ C θ 1-y(p 0 )/ √ n θ (1 -z) 2α+1 e -γδnz 2 dz ≤ C θ e -γδnθ 2 1-y(p 0 )/ √ n θ (1 -z) 2α+1 dz ≤ C e -γδnθ 2 max{1, n -α-1/2 }.
Because γθ 2 > 1 we derive

1-y(p 0 )/ √ n θ (1 -z) 2α+1 (z + 1 + 1/n -1 -1/ √ γ) β e -γδnz 2 dz ≤ Cn -β e -δn , (4.158) 
for some constant C > 0. On the other hand

θ 1-y(n+1-ℓ)/ √ n (1 -z) 2α+1 (z + 1 + 1/n -1 -1/ √ γ) β e -γδnz 2 dz ≤ C ′ θ θ 1-y(n+1-ℓ)/ √ n (z + 1 + 1/n -1 -1/ √ γ) β e -γδnz 2 dz. The minimum of z → (z + 1 + 1/n -1 -1/ √ γ) β is achieved at 1 -y(n + 1 -ℓ) with value √ γ(ℓ + 1) + 1 -ℓ 2n √ γ + O(n -2 ),
and the maximum of the exponential term is achieved at the same point with value

e -nδ+((ℓ-2) √ γ+1-ℓ)/2 (1 + •(1)) = C γ e -nδ (1 + •(1)).
We denote

z γ,n = 1 + 1/ √ γ -1 + 1/n and I β = θ 1-y(n+1-ℓ)/ √ n (z -z γ,n ) β e -γδnz 2 dz. Since 1 -y(n + 1 -ℓ) ≥ 1/ √ 2γ for n large enough, I β ≤ √ 2γ θ 1-y(n+1-ℓ)/ √ n (z -z γ,n ) β ze -γδnz 2 dz ≤ - √ 2γ 2nγδ (z -z γ,n ) β e -γδnz 2 θ 1-y(n+1-ℓ)/ √ n + β √ 2γ 2nγδ θ 1-y(n+1-ℓ)/ √ n (z -z γ,n ) β-1 ze -γδnz 2 dz. But 1 -y(n + 1 -ℓ)/ √ n -z γ,n = (ℓ -1)(1 -1/ √ γ)/2n, therefore I β ≤ C 1 n -β-1 e -δn + βC ′ 1 n -1 I β-1 . (4.159) 
If β ≤ 0 , we derive

I β ≤ C 1 n -β-1 e -δn ,
which inequality, combined with (4.156) and (4.158), yields to (4.154). If β > 0, we iterate and get

I β ≤ C 1 n -β-1 e -δn + C ′ 1 n -1 (C 1 n -β e -δn + (β -1)C ′ 1 n -1 I β-2 ). If β -1 ≤ 0 we derive I β ≤ C 1 n -β-1 e -δn + C 1 C ′ 1 n -1-β e -δn = C 2 n -β-1 e -δn ,
which again yields to (4.154). If β -1 > 0, we continue up we find a positive integer k such that βk ≤ 0, which again leads to

I β ≤ C k n -β-1 e -δn ,
and finally to (4.154). 

Generalised Wallis integrals

I ′′ 2 (m) = π 0 e m cos θ cos 2 θ dθ = I 2 (m) - π 0 e m cos θ sin 2 θ dθ = I 2 (m) - 1 m π 0 e m cos θ cos θ dθ = I 2 (m) - 1 m I ′ 2 (m).
Thus I 2 satisfies a Bessel equation of order 0. Since I 2 (0) = π and I ′ 2 (0) = 0, π -1 I 2 is the modified Bessel function of index 0 (usually denoted by I 0 ) the asymptotic behaviour of which is well known, thus (4.160) holds. If N = 3

I 3 (m) = π 0 e m cos θ sin θ dθ = -e m cos θ m π 0 = 2 sinh m m .
For N > 3 arbitrary Differentiating cos θ sin N -5 θ and using (4.161), we obtain

I N (m) =
I 5 (m) = 4 sinh m m 2 - 4 sinh m m 3 , while I N (m) = (N -3)(N -5) m 2 (I N -4 (m) -I N -2 (m)) , (4.162) 
for N ≥ 6. Since the estimate (4.160) for I 2 , I 3 , I 4 and I 5 has already been obtained, a straigthforward induction implies the general result.

Remark. Although it does not has any importance for our use, it must be noticed that I N can be expressed either with hyperbolic functions if N is odd, or with Bessel functions if N is even.

The precise trace

In the supercritical case q ≥ q c , Theorem 3.15 has pointed out the necessity to introduce a finer definition of the initial trace which could distinguish among solutions of (3.13) which have the same initial trace in the sense defined previously.

5.1 Lattice structure of the set of positive solutions of (3.13)

The idea of analysing the algebraic structure of the set of positive solutions of the semilinear elliptic equation (1.16) is due to Dynkin [START_REF] Dynkin | Superdiffusions and positive solutions of nonlinear partial differential equations[END_REF]. It was intensively used by Marcus and Véron [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF] in the construction of the precise boundary trace for such equations.

Definition 5.1 We denote by U + (Q T ) the set of nonnegative solutions of (3.13). All the elements of

U + (Q T ) belong to C 2,1 (Q T ).
By a subsolution (resp. supersolution) of (3.13) in

Q T we mean a function u ∈ L q loc satisfying Q T -(∂ t ζ + ∆ζ)u + |u| q-1 uζ dxdt ≤ 0 (resp. ≥ 0) for all ζ ∈ C ∞ c (Q T ) , ζ ≥ 0. (5.1) 
ǫ n → 0. As for u n it converges to u a.e. and in L p loc (R N × (ǫ, T )) for any p < ∞. Furthermore v ǫ (x, t) ≥ u(x, t) for all (x, t) ∈ R N × (ǫ, T ).

By letting ǫ → 0 using again the local compactness of {v ǫ } in C 2,1 (Q T ), we obtain that up to a subsequence, v ǫ converges locally to a nonnegative solution v of (3.13) in Q T which dominates u therein. By construction v is smaller than any element of U + (Q T ) which dominates u.

(ii) For ǫ, R > 0 we denote by w := w ǫ,R the solution of

∂ t w -∆w -w q = 0 in B R × (ǫ, T ) w = u on ∂B R × (ǫ, T ) w(., ǫ) = u(., ǫ) in B R .
(5.4) Note that the boundary values of w are well defined since u is continuous. By the com-

parison principle 0 ≤ w ǫ,R ≤ u in B R × (ǫ, T ). Furthermore w ǫ,R dominates in B R × (ǫ, T ) any nonnegative solution U smaller than u. Since u is continuous in Q T , it is locally bounded therein. As in (i) the set of functions {w ǫ,R } is eventually locally compact in C 2,1 (R N × (0, T ))
. We conclude as in (i).

The following result has already been proved but we mention it for the sake of completeness. 

(i) (u ∨ v) ∨ w = u ∨ (v ∨ w) = [max{u, v, w}] † , (ii) (u ∧ v) ∧ w = u ∧ (v ∧ w) = [min{u, v, w}] † .
Proposition 5.6 (i) Let {u k } be a sequence of positive, continuous subsolutions of (3.13). Then U := sup u k is a subsolution. The statement remains valid if subsolution is replaced by supersolution and sup by inf.

(ii) Let T be a family of positive solutions of (3.13). Suppose that, for every u 1 and u 2 belonging to T there exists v ∈ T such that

max{u 1 , u 2 } ≤ v (resp. min{u 1 , u 2 } ≥ v).
Then there exists a monotone sequence {u n } ⊂ T such that

u n ↑ sup T u, (resp. u n ↓ inf T u). Therefore sup T u (resp. inf T u ) is a solution. Proof. (i) We set v j = max{u 1 , u 2 , ...u j }.
By induction on j it is clear that v j is a subsolution and the sequence {v j } is nondecreasing. Because of the universal upper bound (3.26) v j converges to some function v when j → ∞, and v is a subsolution which coincides with U . The proof for the min assertion is similar.

(ii) is already proved in [START_REF] Dynkin | Superdiffusions and Partial Differential Equations[END_REF] and we recall the construction. For every

x ∈ Q T , we set ℓ(x, t) = sup{u(x, t) : u ∈ T }. Let A = {(x n , t n )} be a countable dense subset of Q T . For every n there exists a sequence {u m,n } ⊂ T such that sup m {u m,n (x n , t n )} = lim m→∞ u m,n (x n , t n ) = ℓ(x n , t n ).
We set u m,1 = u m 1 . Since T is closed with respect to the relation ∨, u m 2 := u m,1 ∨ u m,2 belongs to T and the sequence {u m 2 } is increasing and it satisfies lim m j →∞ u m j (x j , t j ) = ℓ(x j , t j ) for j = 1, 2.

By induction we construct an increasing subsequence {u mn } of T such that

lim mn→∞ u mn (x n , t n ) = ℓ(x n , t n ) for all n ∈ N * .
Let us denote by T 0 the countable subset of T of functions {u mn } and set v = sup T 0 . Then v(x n , t n ) = ℓ(x n , t n ). Using estimate (2.1) and regularity results for parabolic equations we infer that the set T 0 is relatively compact in the C 2,1 loc (Q T )-topology. Hence, there exists a subsequence sequence of T 0 still denoted by {u mn, } which converges in this topology to a function w which is a nonnegative solution of (3.13) and such that

u mn (x n , t n ) → w(x n , t n ) as m n → ∞. hence w(x n , t n ) = ℓ(x n , t n ). We claim now that w = sup T u. Indeed, if u ∈ T , w(x n , t n ) ≥ ℓ(x n , t n ) ≥ u(x n , t n ).
By continuity, w(x, t) ≥ u(x, t) for all (x, t) ∈ Q T . Thus w is an upper bound of T . It is clearly the least upper bound because any other upper bound u ∈ U + (Q T ) is larger than u mn on A, hence larger than w on A, and thus larger than w by density and continuity.

The proof concerning the existence of the greatest lower bound is similar if T is stable under ∧.

The set U + (Q T ) is partially ordered for the relation ≤. Since for any u, v ∈ U + (Q T ), u ∧ v and u ∨ v belong to U + (Q T ), it is a lattice. Since, by Proposition 3.4, any nonempty subset T of U + (Q T ) admits both a least upper bound (the supremum) and a greatest lower bound (the infimum), it is a complete lattice. In the case of semilinear elliptic equations, the similar result is to be found in [START_REF] Dynkin | Superdiffusions and Partial Differential Equations[END_REF]Theorem 5.1].

Corollary 5.7 The set U + (Q T ) is a complete lattice stable for the laws ⊕ and ⊖.

Fine topology and Besov spaces

The T q -fine topology

It is classical in potential theory that there exists a topology which is naturaly adapted to the study of subharmonic functions. This topology was initially introduced by Henri Cartan and its definition is expressed in terms of the Newtonian capacity cap 1,2 . In the study of the initial trace the fine topology is the one associated to the cap 2 q ,q ′ capacity. In this section we assume q ≥ q c and we note q ′ = q q-1 .

Definition 5.8 A set F ⊂ R N is ( 2 q , q ′ )-thin at a ∈ R N if 1 0 cap 2 q ,q ′ (F ∩ B s (a)) s N -2 q-1 q-1 ds s < ∞. (5.5) 
If the above integral is infinite, the set F is ( 2 q , q ′ )-thick at a. A set F is a ( 2 q , q ′ )-fine neighbourhood of one of its points a if F c is thin at a.

A set F is ( 2 q , q ′ )-finely open, if F c is thin at any point a ∈ F . It is ( 2 q , q ′ )-finely closed if its complement F c is ( 2 q , q ′ )
-finely open. Notations and vocabulary For simplicity we will denote by T q the cap 2 q ,q ′ -fine topology associated to these notions (see [START_REF] Adams | Function spaces and potential theory[END_REF]Chapter 6] for a detailled study of these notions).

Let A, B ⊂ R N a) A is T q -essentially contained in B, denoted by A ⊂ q B, if cap 2 q ,q ′ (A ∩ B c ) = 0. b) The sets A and B are T q -equivalent, denoted by A ∼ q B if cap 2 q ,q ′ (A∆B) where A∆B := (A ∩ B c ) ∪ (B ∩ A c ). c)
The closure of a set A in the T q -topology is called the T q -closure and denoted by A. The T q -interior of A is denoted by A ♦ . d) If ǫ > 0, we denote by A ǫ the ǫ-neighbourhood of A in the standard Euclidean topology associated to the distance function. e) The set of all T q -thick points of A is denoted by b q (A). It is the set of points a of A such that A is ( 2 q , q ′ )-thick at a. The set of all T q -thin points of A, is denoted by e q (A). The next result is essentially due to Kellog ([1, Corollary 6. 3.17]).

(ii) If F is T q -quasi closed set, then E ∼ q E. (iii) A set F is T q -quasi closed if and only if there exists a sequence of closed sets {F n } such that cap 2 q ,q ′ (F ∩ F c n ) → 0. (iv) There exists a positive constant C such that for every set F ,

cap 2 q ,q ′ ( F ) ≤ Ccap 2 q ,q ′ (F ). (v) If E is T q -quasi closed and F ∼ q E, then F is T q -quasi closed. vi) If {E n } is an increasing sequence of Borel sets of R N , then cap 2 q ,q ′ n E n = lim n→∞ cap 2 q ,q ′ (E n ). (vii) If {K n } is a decreasing sequence of compacts sets of R N , then cap 2 q ,q ′ n K n = lim n→∞ cap 2 q ,q ′ (K n ).
(viii) For every Borel set F ⊂ R N (and more generaly for every Suslin set), there holds

cap 2 q ,q ′ (F ) = inf cap 2 q ,q ′ (G), F ⊂ G, G open = sup cap 2 q ,q ′ (K), K ⊂ F, K compact .
As a consequence of (iii) there holds:

Corollary 5.14 A set F is T q -quasi closed if and only if there exists a sequence {F n } of T q -quasi closed subsets of F such that cap 2 q ,q ′ (F ∩ F c n ) → 0 as n → ∞.

Definition 5.15 Let F be a T q -quasi closed set. (i) An increasing sequence

{F n } of closed subsets of F is called a T q -stratification of F if cap 2 q ,q ′ (F ∩ F c n ) → 0 as n → ∞. (ii) A T q -stratification {F n } is called a proper T q -stratification if cap 2 q ,q ′ (F ∩ F c n ) ≤ 2 -n-1 . The sets F n can be chosen to be compact. (iii) A T q -open set V verifying cap 2 q ,q ′ (F ∩ V c ) = 0 is called a T q -quasi neighbourhood of F .
The next separation result is valid in any locally compact Hausdorff space. Proposition 5.16 Let X be a locally compact Hausdorff space, K ⊂ X be a compact set contained in an open set A. Then there exists an open set G such that

K ⊂ G ⊂ G ⊂ A.
Although the fine topology is not locally compact (even if it is Hausdorff) it admits some separation results which are the counterpart of Proposition 5.16.

Lemma 5.17 Let F ⊂ R N be T q -closed. Then:

(i) If D is an open set such that cap 2 q ,q ′ (F ∩ D c ) = 0, then there exists an open set O such that F ⊂ q O ⊂ O ⊂ q D. (5.7) 
(ii) If D is a T q -open set that verifies F ⊂ q D, there exists a T q -open set O such that (5.7) holds.

Proof. Since F ∩D ∼ q F , F ∩D is T q -quasi closed and there exists a proper T q -stratification

{F n } of F ∩ D by compact sets such that F ∼ q F ′ := ∪ ∞ n=1 F n . If E ′ is
closed, the result follows by Proposition 5.16. If it is not the case, we can assume that F n+1 \ F n = ∅ for all integer n. We apply Proposition 5.16 with

K = F n and G = F ′ n is the open set containing F n such that its closure F ′ n is contained in D: because cap 2 q ,q ′ (F n \ F n-1 ) ≤ cap 2 q ,q ′ ((E ∩ D) \ F n ) ≤ 2 -n-1 ,
there exists an open set

D n containing F n \ F n-1 such that cap 2 q ,q ′ (D n ) < 2 -n . We have also, D n ∩ F n ⊂ D n ∩ F n ⊂ D n ⊂ D for all n ∈ N. Since F ′ = F 1 ∪ ∞ n=2 (F n \ F n-1 )
we have that

F ′ = ∞ n=1 D n ∩ F ′ n ⊂ ∞ n=1 D n ∩ F ′ n ⊂ D.
It is therefore sufficient to prove that ∞ n=1 D n ∩ F ′ n is T q -closed. Actually, for any n ∈ N we have

cap 2 q ,q ′ ∞ n=1 D n ∩ F ′ n \ m n=1 D n ∩ F ′ n ≤ cap 2 q ,q ′ ∞ n=m+1 D n ∩ F ′ n ≤ ∞ n=m+1 cap 2 q ,q ′ D n ≤ c ∞ n=m+1 cap 2 q ,q ′ (D n ) ≤ c ∞ n=m+1 2 -m = c2 -m . Because m n=1 D n ∩ F ′ n is T q -quasi
closed the result follows by Corollary 5.14.

Lemma 5.18 I-Let F be a T q closed set and {F n } a proper T q -stratification of F . Then there exists a decreasing sequence of open sets {Q j } such that ∪F n := F ′ ⊂ Q j for every j ∈ N and (i)

∩ j Q j = F ′ , Q j+1 ⊂ Q j , (ii) lim j→∞ cap 2 q ,q ′ (Q j ) = cap 2 q ,q ′ (E). II-If A is a T q open set, there exists a decreasing sequence of open sets {A n } such that A ⊂ n A n := A ′ , cap 2 q ,q ′ (A n \ A ′ ) → 0 as n → ∞ , A ∼ q A ′ .
Furthermore there exists an increasing sequence of closed sets {E j } such that E j ⊂ A ′ and (i)

∪ j E j = A ′ , E j ⊂ q E ♦ j+1 , (ii) cap 2
q ,q ′ (E j ) → cap 2 q ,q ′ (A ′ ) when j → ∞. Proof. Let {D j } be a decreasing sequence of open sets containing F such that lim j→∞ cap 2 q ,q ′ (D j ) = cap 2 q ,q ′ (F ′ ) = cap 2 q ,q ′ (F ). Case 1: F is closed. We can assume that F n = F for all n and we set K n = B n (x) ∩ F for some x ∈ F . By Proposition 5.16 there exists a decreasing sequence {ǫ 1,n } converging to 0 such that

F ⊂ Q 1 := ∞ n=1 K ǫ 1,n 2 n ⊂ Q 1 ⊂ D 1 ,
where K n = B n (x) ∩ F and, we recall it, K

ǫ 1,n 2 n := {y ∈ R N : dist (y, K n ) ≤ ǫ 1,n
2 }. By Proposition 5.16 there exists a decreasing sequence {ǫ 2,n } converging to 0, such that ǫ 2,n ≤ ǫ 1,n for all n and

F ⊂ Q 2 := ∞ n=1 K ǫ 1,n 4 n ⊂ Q 2 ⊂ D 2 .
Note that

Q 2 ⊂ ∞ n=1 K ǫ 1,n 4 n ⊂ ∞ n=1 K ǫ 1,n 2 n . Since K ǫ 1,n 4 n is closed, we have Q 2 ⊂ Q 2 ⊂ Q 1 .
By induction we construct a double sequence {ǫ j,n } decreasing in n and converging to 0, non-increasing in j for any fixed n such that

F ⊂ Q j := ∞ n=1 K ǫ j,n 2 n ⊂ Q j ⊂ D j , and 
Q j+1 ⊂ Q j+1 ⊂ Q j for all j ≥ 1.
Noting that F ⊂ Q j ⊂ F 2-j we deduce that F = ∩ j Q j . Finally,

cap 2 q ,q ′ (F ) ≤ lim j→∞ cap 2 q ,q ′ (Q j ) ≤ lim j→∞ cap 2 
q ,q ′ (D j ) = cap 2 q ,q ′ (F ). This yields the result in that case. Case 2: F is only T q closed. There exists a proper T q stratification {F n } of F such that F ∼ q F ′ := ∪ ∞ n=1 F n . We can also assume that F n+1 ∩ F c n = ∅ for all integer n. As in Case 1, for each n we construct the sets Q n j relative to F n that were denoted Q j and were related to F . Because cap 2 q ,q ′ ( F n \ F n-1 ) ≤ ccap 2 q ,q ′ (F n \ F n-1 ), we can choose an open set D 1 n such that cap 2 q ,q ′ (D 1 n ) ≤ c2 -n . In view of Lemma 5.17 the set

Q 1 := ∞ n=1 (D 1 n ∩ Q 1 n )
is open and

F ′ ⊂ Q 1 ⊂ Q 1 ⊂ D 1 .
Furthermore the set

∞ n=1 D 1 n ∩ Q n 1 is T q -quasi
open. By Lemma 5.17 there exists an open set D 2 n such that

D 2 n ⊂ D 2 n ⊂ D 1 n ,
and by induction we construct a sequence of open sets D j n such tht

D j+1 n ⊂ D j+1 n ⊂ D j n and cap 2 q ,q ′ (D j n ) ≤ c2 -n .
By Lemma 5.17 the set

Q j := n = 1 ∞ D j n ∩ Q n j is open and the set n = 1 ∞ D j n ∩ Q n j
is T q -quasi closed. For any n ∈ N * we have

D j n ∩ Q n j ⊂ D j n ∩ Q n j ⊂ D j n ∩ Q n j ⊂ D j-1 n ∩ Q n j-1 .
Therefore

Q j ⊂ Q j ⊂ ∞ n=1 D j n ∩ Q n j ⊂ ∞ n=1 D j-1 n ∩ Q n j-1 ⊂ D j .
Since the set

∞ n=1 D j n ∩ Q n j is T q -quasi closed, we have Q j ⊂ Q j ⊂ Q j-1 .
Finally,

F ′ ⊂ Q j ⊂ F ′2 -j =⇒ F ′ = ∞ n=1 Q j .
Because we have

cap 2 q ,q ′ (F ) ≤ lim j→∞ cap 2 q ,q ′ (Q j ) ≤ lim j→∞ cap 2 q ,q ′ (D j ) = cap 2 q ,q ′ (F ),
the assertion follows.

The next results are classical in the framework of the T q -topology.

and we set

u k,j = uψ k m(k) i=1 w k,j,i m(k) j,i=1 w k,j,i . Then u k,j ∈ L ∞ (R N ) ∩ B 2 q ,q ′ (R N ) and T q -supp u k,j ⊂ K G c k i B k,j,i ⊂ U j .
which ends the proof.

Remark. The construction can be made also in the case 1 < q < 2, but the proof of (5.11) is still pending.

Regular sets

The regular initial set

In order to define the precise trace we recall that for any Borel set U ⊂ R N , 1 U denotes the characteristic function of U and

H[1 U ](x, t) = 1 (4πt) N 2 R N e -|x-y| 2 4t
1 U (y)dy.

If u ∈ U + (Q T ) (i.e. a positive solution of (3.13) in Q T ), the following dichotomy occurs for any ξ ∈ R N : (i) either there exists a bounded T q -open neighbourhood U = U ξ of ξ such the

T 0 R N u q (H[1 U ]) 2q ′ dxdt < ∞, (5.12) 
(ii) or for any T q -open neighbourhood U of ξ there holds

T 0 R N u q (H[1 U ]) 2q ′ dxdt = ∞.
(5.13) Definition 5.24 Let u ∈ U + (Q T ). The set of ξ ∈ R N such that (i) occurs is T q -open and denoted by R q (u). It is called the q-regular set of u. The set S q (u) := R N \ R q (u) is T q -closed and called the q-singular set of u.

Proposition 5.25 Let η ∈ B 2 q ,q ′ (R N ) ∩ L ∞ (R N ) with T q -supp(η) in a bounded T q -open set U , and let u ∈ U + (Q T ) satisfy M U = T 0 R N u q (H[1 U ]) 2q ′ dxdt < ∞. (5.14)
Then there exists the following limit

ℓ(η) = lim t→0 T 0 R N u q (H[η] + ) 2q ′ (x, t)dxdt.
(5.15)

Furthermore there exists C = C(M U , q, N ) > 0 such that

|ℓ(η)| ≤ C η 2q ′ B 2 q ,q ′ + η 2q ′ L ∞ .
(5.16)

Proof. Set h = H[η] and φ(r) = r 2q ′ + . Since |η| ≤ η L ∞ 1 U ], there holds T 0 R N u q φ(h)dxdt ≤ η 2q ′ L ∞ T 0 R N u q (H[1 U ]) 2q ′ dxdt = η 2q ′ L ∞ M U < ∞.
(5.17)

Note that for 0 < s < t < T ,

t s R N (-u (∂ t φ(h) + ∆φ(h)) + u q φ(h)) dxdτ = R N uφ(h)(., s)dx - R N uφ(h)(., t)dx. (5.18) But ∂ t φ(h) + ∆φ(h) = 2q ′ φ(h)h -2 + 2h + ∂ t h + (2q ′ -1)|∇h| 2 . By Hölder's inequality, t s R N u (∂ t φ(h) + ∆φ(h)) dxdτ Ê ≤ t s R N u q φ(h)dxdτ 1 q t s R N (φ(h)) -q ′ q |∂ t φ(h) + ∆φ(h)| q ′ dxdτ 1 q ′ Ê ≤ 4q ′ t s R N u q φ(h)dxdτ 1 q t s R N h + |∂ t h| + |∇h| 2 q ′ dxdτ 1 q ′ . Since t s R N |∂ t h| q ′ dxdτ ≤ T 0 R N |∂ t h| q ′ dxdτ ≤ c η q ′ B 2 q ,q ′ and t s R N |∇h| 2q ′ dxdτ ≤ T 0 R N |∇h| 2q ′ dxdτ ≤ C η q ′ L ∞ ∆η q ′ L q ′ = C η q ′ L ∞ ∂η q ′ L q ′
by Gagliardo-Nirenberg's inequality and the maximum principle, we obtain

t s R N u (∂ t φ(h) + ∆φ(h)) dxdτ ≤ C t s R N u q φ(h)dxdτ 1 q η L ∞ η B 2 q ,q ′ . (5.19)
As a consequence of (5.18) and (5.19), we infer the two following inequalities

t s R N u q φ(h)dxdτ + C t s R N u q φ(h)dxdτ 1 q η L ∞ η B 2 q ,q ′ ≥ R N uφ(h)(., s)dx - R N uφ(h)(., t)dx , (5.20) 
and

t s R N u q φ(h)dxdτ -C t s R N u q φ(h)dxdτ 1 q η L ∞ η B 2 q ,q ′ ≤ R N uφ(h)(., s)dx - R N
uφ(h)(., t)dx.

(5.21)

Under the assumption (5.14) the left-hand side of (5.20) tends to zero when s, t → 0, therefore, we deduce from (5.18) that the function

t → R N
uφ(h)(., t)dx admits a limit that is denoted by ℓ(η) when t → 0. Using again (5.18) we get

T 0 R N (-u (∂ t φ(h) + ∆φ(h)) + u q φ(h)) dxdτ + R N uφ(h)(., T )dx = ℓ(η). (5.22) 
Since

R N uφ(h)(., T )dx ≤ C(T ) η 2q ′ L ∞ , (5.23) 
we infer from (5. [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF])

ℓ(η) ≤ C 1 η 2q ′ L ∞ + C 2 η q ′ L ∞ η q ′ B 2 q ,q ′ ≤ C η L ∞ + η B 2 q ,q ′ 2q ′ . ( 5.24) 
This estimate can be improve in order to show that the initial trace holds in the usual sense.

Proposition 5.26 Let the assumptions of Proposition 5.25 be satisfied, then

lim t→0 R N u(x, t)η 2q ′ (x)dx = ℓ(η).
(5.25)

Proof. Using (5.18) wit t = T and replacing h(x) by h s (x, t) = H[η](x, ts) we have

T s R N (-u (∂ t φ(h s ) + ∆φ(h s )) + u q φ(h s )) dxdτ + R N uφ(h s )(., T )dx = R N uφ(h s )(., s)dx.
(5.26)

When s → 0, one has by the Lebesgue dominated convergence theorem 

R N uφ(h s )(., T )dx → R N uφ(h)(., T )dx and T s R N u q φ(h s )dxdτ → T s R N u q φ(h)dxdτ. Furthermore T -s 0 R N (u(x, t + s) -u(x, t)) (∂ t φ(h) + ∆φ(h)) dxdτ ≤ C T -s 0 R N |u(x, t + s) -u(x, t)| q h 2q ′ + 1 q η q ′ L ∞ η q ′ B 2 q ,q ′ .

By

lim s→0 R N u(x, s)η 2q ′ (x)dx = ∞, (5.28 
)

for some nonnegative η ∈ L ∞ (R N ) ∩ B 2 q ,q ′ (R N ) with T q -supp(η) ⊂ U . Then T 0 R N u q (H[η]) 2q ′ dxdt = ∞.
(5.29)

The next result shows that the q-singular set of u inherits the main properties of the singular set S(u) of the rough trace of u Proposition 5.28 Let ξ ∈ S q (u). Then for any T q -open set G containing ξ, there holds

lim t→0 G u(x, t)dx = ∞, (5.30) 
Proof. If ξ ∈ S q (u) and if G is a T q -open set containing ξ, then by Lemma 5.21 there

exists η ∈ L ∞ (R N ) ∩ B 2 q ,q ′ (R N ) such that 0 ≤ η ≤ 1, and a T q -open set D ⊂ G such that η = 1 on D and η = 0 in G c . Therefore lim s→0 T s R N u q (H[η]) 2q ′ dxdt ≥ lim s→0 T s R N u q (H[1 D ]) 2q ′ dxdt = ∞.
This implies that the left-hand side of (5.21) tends to ∞ when s → 0. Using again (5.23) we obtain

lim s→0 R N u (H[η]) 2q ′ (x, s)dx = ∞, which implies lim s→0 R N uη 2q ′ (x, s)dx = ∞.
Since η = 1 on D the result follows.

Moderate solutions

We recall that a solution u of (3.13) in Q T is called moderate if u ∈ L q (K) for any compact set K ⊂ R N × [0, T ). Then there exists a Radon measure µ on R N such that

lim t→0 R N u(x, t)ζ(x)dx = R N ζdµ(x) for all ζ ∈ C c (R N ). (5.31) 
Equivalently, for any φ ∈ C 1,2 c (R N × [0, T )), there holds

T 0 R N -u (∂ t φ + ∆φ) + |u| q-1 uφ dxdt = R N
φ(x, 0)dµ(x).

(5.32)

It is proved in [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF] that the measure µ vanishes on Borel subsets of R N with cap 2 q ,q ′ -capacity zero.

Lemma 5.29 Let u be a nonnegative moderate solution of u of (3.13) in Q T with initial trace µ ∈ M + (R N ). Then for any T q -open bounded set O one has

T 0 R N u q (x, t) (H[1 O ]) 2q ′ dxdt < ∞.
(5.33)

Proof. Let η ∈ C ∞ c (R N
) be a nonnegative function with value 1 on O. We put h(x, t) = H[η](x, t) and for 0 ≤ s ≤ t ≤ 1, h s (x, t) = H[η](x, ts). We also set φ(r) = |r| 2q ′ . Using again the identities in Proposition 5.25 we have that

T 0 R N u q φ(h s )dxdτ + R N (uφ(h s ))(., T )dx ≤ C R N u(x, s)φ(η)dx + η q ′ L ∞ η q ′ B 2 q ,q ′ .
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Because for any Borel set E, one has lim sup s→0 E u(x, s)dx < ∞, we obtain (5.33) by Fatou's lemma.

Definition 5.30 A Radon measure µ in R N is regular with respect to the T q -topology if for any Borel set E one has

µ(E) = inf {µ(D) : D ⊃ E, D T q -open} = sup {µ(K) : K ⊂ E, K compact} .
(5.34)

Theorem 5.31 Let u be a nonnegative solution of (3.13) in Q T with initial data µ. Then (i) The measure µ is a regular measure with respect to the T q -topology.

(ii) For any quasi continuous function φ ∈ L ∞ (R N ) with bounded T q -support in R N , we have

lim t→0 R N u(x, t)φ(x)dx = R N φdµ(x).
Proof. (i) We recall that a Radon measure is regular with respect to the standard topology. Moreover, if E ⊂ R N is a Borel set and D is open and contains D, then D is open for the T q -topology, hence

µ(E) ≤ inf {µ(D) : D ⊃ E, D T q -open} ≤ inf {µ(D) : D ⊃ E, D open} = µ(E).
The assertion on compact sets is unchanged and the statement (i) follows.

(ii) The measure µ t := u(t, .)dx converges to µ in the weak- * topology. Hence we have lim sup

t→0 µ t (E) ≤ µ(E) for any compact set E ⊂ R N lim inf t→0 µ t (A) ≥ µ(A) for any open set A ⊂ R N . (5.35)
If E is a T q -closed set, there exists an increasing sequence of closed sets {K m } such that cap 2 q ,q ′ (E ∩ K c m ) → 0 when m → ∞. Then, for any open O containing E, one has lim sup

t→0 µ t (E) ≤ lim sup t→0 µ t (K m ) + lim sup t→0 µ t (E ∩ K c m ) ≤ µ t (O) + lim sup t→0 µ t (E ∩ K c m ).
We will prove by contradiction that lim m→∞ lim sup

t→0 µ t (E ∩ K c m ) = 0.
(5.36)

Assume that (5.36) does not hold and let ǫ > 0 be the value of the above limit. For fixed m ∈ N, let {t n,m } be a decreasing sequence converging to 0 such that lim tn,m→0

µ tn,m (K m ) = lim sup t→0 µ t (K m ) = ǫ m .
The sequence {ǫ m } is decreasing with limit ǫ when m → ∞. Let u n,m be the sequence of solutions of (3.13) in Q ∞ such that u n,m (., 0) = 1 E∩K c m µ tn,m . Clearly u n,m (x, t) ≤ u(x, t + t n,m ) for all (x, t) ∈ Q T , and

u n,m (x, t) ≤ V E∩K c m for all (x, t) ∈ Q T ,
where V E∩K c m is the maximal σ-moderate solution of (3.13) in Q ∞ with initial data ν where ν ∈ M + (R N ) vanishes in E ∩ K c m and is q-admissible (this notion is developped in the next section). Because

cap 2 q ,q ′ ( E ∩ K c m ) ≤ Ccap 2 q ,q ′ (E ∩ K c m ) → 0 as m → ∞,
it follows from Proposition 5.39 that

V E∩K c m → 0 as m → ∞.
This is a contradiction. Hence (5.36) holds. Thus the proof is complete if

E is a T q -closed. If E is T q -open, then µ(E) = µ( E),
since µ is q-admissible and the proof follows.

Let φ be a quasi continuous function. Without loss of generality, we can suppose that it is nonnegative since φ = φ +φ -and bounded above by 1. If k ∈ N and m = 2 k -1, 2 k -2, ..., 0, we denote by a m,k a real number in the interval (m2 -k , (m + 1)2 -k such that µ φ -1 ({a m,k }) = 0.

Set

A m,k = φ -1 ((a m,k , a m+1,k ]) for m = 1, 2, ..., 2 k -1 and A 0,k = φ -1 ((a 0,k , a 1,k ]) .

Since φ has compact support, all the above sets are bounded and

lim t→0 µ t (A m,k ) = µ(A m,k ).
(5.37)

If we denote by φ k the step function

φ k = 2 k -1 m=0 m2 -k 1 A m,k .
Then φ k ↑ φ uniformly, and by (5.37),

lim t→0 R N u(x, t)φ k (x) = R N φ k dµ.
This implies that (ii) holds.

increasing. Set F n = A c n . Then u ≤ U F c n and by (iii) U F c n ↓ U F , thus u ≤ U F . Equivalently u ≈ A 0. In the general case, we use the quasi-Lindelöf property which is satisfied by the T q -topology. From the covering of A by the family of T q -open subsets of A indexed by the σ ∈ A, we can extract a countable subcovering A σn such that cap 2 q ,q ′ (A \ ∪ n A σn ) = 0. Since u ≈ ∪nAσ n 0, the claim follows. Proposition 5.42 (i) Let E be a T q -closed set. Then

U E = inf {U D : E ⊂ D, D open } = sup {U K : K ⊂ E, K closed } (5.45)
(ii) Let E, F be Borel sets.

Then

U E = U F ∩E ⊕ U F ∩E c .
(iii) Let E, {F n } be a countable family of Borel sets. Assume either cap 2 q ,q ′ (E∆F

n ) → 0, or F n ↓ E. Then U Fn → U E as n → ∞.
Proof. (i) Let {D j } be the decreasing sequence of open sets containing E already used in Lemma 5.18 and satisfying

∩ j D j = ∩ j D j = E ′ ∼ q E.
Then, by Proposition 5.41, there holds U D j → U E , which implies the first equality in (i).

For the second equality, let {F n } be a nondecreasing sequence of compact subsets of E such that cap 2 q ,q ′ (E \ F n ) → 0. If {D j } is the decreasing sequence used above, then

cap 2 q ,q ′ (D j \ E) → 0. Because E ⊂ F n ∪ (D n ∩ F c n ) we have U Fn ≤ U E ≤ U Fn + U Dn\Fn . But cap 2 q ,q ′ (D n \ F n ) ≤ cap 2 q ,q ′ (E \ F n ) + cap 2 q ,q ′ (D n \ E) → 0 as n → ∞
. By Proposition 5.39 U Dn\Fn → 0. This implies the claim. (ii) Using (5.45) we have

U E ≤ U E∩F + U E∩F c hence U E ≤ U E∩F ⊕ U E∩F c . Since U E∩F and U E∩F c vanish outside E, it follows that U E∩F ⊕ U E∩F c vanishes outside E, hence U E = U E ≥ U E∩F ⊕ U E∩F c .
which is the claim. (iii) Using (ii) we have

U E ≤ U E∩F c n + U E∩Fn and U Fn ≤ U Fn∩E c + U Fn∩E . If cap 2 q ,q ′ (E∆F n ) → 0, then U E∆Fn → 0 by Proposition 5.39. If F n ↓ E, the result follows by (iii). v 3 j (., 1 j ) = v(., 1 j )1 (D∪D ′ ) c . Since v vanishes outside E, it vanishes in (D∪D ′ ) c , consequently v(., 1 j )1 (D∪D ′ ) c → 0 when j → ∞, which implies v 3 j when j → ∞. Therefore v ≤ lim inf j→∞ (v 1 j + v 2 j ) ≤ [u] D + [u] D ′ . Since E ∩ F ⊂ D and E ∩ F c ⊂ D ′ , it follows from (5.47) v ≤ [u] E∩F + [u] E∩F c = [u] E∩F + [u] E∩F c .
This implies (5.48).

For proving (5.49), we just have to notice that

[[u] E ] F = [u] E ∨ U F = (u ∨ U E ) ∨ U F = [max{u, U E , U F }] † = [[u] F ] E .
(iii) By (5.48) there holds Definition 5.48 Let µ be a nonnegative Radon measure which is absolutely continuous with respect to the cap 2 q ,q ′ -capacity. (i) The T q -support of µ, denoted by T q -supp(µ) is the intersection of all the T q -closed sets F such that µ(F c ) = 0. (ii) We say that µ is concentrated on a Borel set E if µ(E c ) = 0. Proposition 5.49 Let µ be a Radon measure as in Definition 5.48. Then T q -supp (µ) ∼ q T q -supp (u µ ).

[u] E ≤ [u] Fn∩E + [u] E∩F c n and [u] Fn ≤ [u] Fn∩E + [u] Fn∩E c . if cap 2 q ,q ′ (E∆F n ) → 0, then by Proposition 5.39 U E∆Fn → 0. Since max{[u] E∩F c n , [u] Fn∩E c } ≤ U E∆Fn , we have that U E∆Fn → 0 when n → ∞. If F n ↓ E,
Proof. Set F = T q -supp(u µ ). By Proposition 5.41-(iv), u µ vanishes on F c , and by Lemma 5.46 there exists an increasing sequence of positive solutions {u n } vanishing outside a closed subset F n and converging to u. Set S n := T q -supp (u n ). Then S n ⊂ F n and S n ⊂ S n+1 . Thus {S n } is an increasing sequence of closed subsets of F . If we set µ n = 1 Sn µ, we have that u n ≤ u µn ≤ u µ . Hence the increasing sequence {u µn } converges to u µ as n → ∞. Consequently

µ n ↑ µ and T q -supp (µ) ⊂ q ∞ n=1 S n ⊂ F.
If D is open and µ(D) = 0, then u µ vanishes in D. Therefore u µn vanishes outside S n and consequently it vanishes outside T q -supp (µ). Hence u µ vanishes outside T q -supp (µ). This means F ⊂ q T q -supp (µ). Definition 5.50 Let u ∈ U + (Q T ) and A be a Borel set. Then

[u] A := sup {[u] F : F ⊂ q A, F T q -closed} . Remark. Note that since [u] E = [u] E , if A is T q -closed, we have [u] A = [u] A . In the general case, we have only [u] A ≤ [u] A . Definition 5.51 Let β > 0 and u ∈ C(Q T ), u ≥ 0. For any Borel set A ⊂ R N , we denote by u A β the solution of ∂ t v -∆v + |v| q-1 v = 0 in R N × (β, ∞) v(., β) = 1 A u(., β) in R N . Proposition 5.52 Let u ∈ U + (Q T ) and E be T q -supp (u). (i) If D is a T q -open set such that E ⊂ q D, then [u] D = lim β→0 u D β = [u] D = u. (5.51) (ii) If A is a T q -open set, then u ≈ A 0 ⇐⇒ u Q = lim β→0 u Q β = 0 for all T q -open set s.t. Q ⊂ q A. (5.52) (iii) Finally, u ≈ A 0 ⇐⇒ [u] A = 0. (5.53) Proof. Case 1: Assume first that E is closed. Since u vanishes on E c and is continuous in Q T ∪ E c × {0}, we have that u = 0 on E c hence u ∈ C(Q T ∪ E c × {0}. If D is an open neighbourhood of E, then for all φ ∈ C c (E c ) there holds lim t→0 E c u(x, t)φ(x)dx = 0. Therefore lim β→0 u E c β = 0. But u D β (x, t) ≤ u(x, t) ≤ u D β (x, t) + u D c β (x, t) for all (x, t)) ∈ R N × [β, T ). From this relation we deduce that u = lim β→0 u D β .
(5.54)

If we assume now that D is T q -open and E ⊂ q D, then for avery ǫ > 0 there exists an open set

O ǫ such that D ⊂ O ǫ , E ⊂ O ǫ and cap 2 q ,q ′ (O ǫ ∩ D c ) < ǫ. Therefore u Oǫ β (x, t) -u D β (x, t) ≤ U O ′ ǫ (x, t -β) for all t ≥ β,
where

O ′ ǫ = O ǫ ∩ D c . We observe that lim ǫ→0 U O ′ ǫ (x, t -β) = 0 uniformly w.r. to β. Since lim β→0 u Oǫ β (x, t) = u(x, t) for all (x, t) ∈ Q T , it follows that lim β→0 u D β (x, t) = u(x, t). The same argument shows that lim β→0 u D c β (x, t) = 0 for all (x, t) ∈ Q T .
Combining all these results we obtain lim

β→0 u D β ≤ [u] D ≤ u, hence [u] D = u. By Proposition 5.19 there exists a T q -open set Q such that E ⊂ q ⊂ Q ⊂ Q ⊂ D, therefore u = [u] Q ≤ [u] D , hence u = [u] D .
In addition there holds E ⊂ q A c ⊂ q Q c . If we replace D by Q c in the above argument, we have that u ≈ A 0 which implies u Q = lim β→0 u Q β = 0. For the opposite implication in equivalence (5.52) we use the fact that for any ξ ∈ A there exists a T q -open neighbourhood O ξ of ξ such that O ξ ⊂ q A. By (i) we have that lim 

2: Assume next that E is T q -closed. Let {E n } be a T q -stratification of E such that cap 2 q ,q ′ (E ∩ E c n ) → 0 as n → ∞. If D is a T q -open set such that E ⊂ q D, then by Case 1, lim β→0 ([u] En ) D β = [u] En . ( 5 
u] E = u, u D β = ([u] E ) D β ≤ ([u] E∩En ) D β + ([u] E∩E c n ) D β = ([u] En ) D β + ([u] E∩E c n ) D β . (5.56) 
Let {β k } be a sequence decreasing to 0 such that there exists w := lim

β k →0 u D β k and w n := lim β k →0 ([u] E∩E c n ) D β k for n = 1, 2, ...
Then, using the two previous inequalities

[u] En ≤ w ≤ [u] En + w n ≤ [u] En + U E∩E c n .
Using (5.46) and the fact that U E∩E c n → 0 and U En → U E , we deduce that w = u. This implies (i).

In order to prove (ii), we apply (5.56) with D replaced by Q and get

([u] E ) Q β ≤ ([u] En ) Q β + ([u] E∩E c n ) Q β .
From Case 1 we have already proved that lim β→0

([u] En ) Q β = 0.
There exists a decreasing sequence

{β k } such that {u Q β k } and {([u] E∩E c n ) Q β k } admit a limit when β k → 0, for any n = 1, 2, .... Therefore lim β k →0 u Q β k ≤ lim β k →0 ([u] E∩E c n ) Q β k ≤ U E∩En .
Since U E∩En → 0 as n → ∞, this implies the implication =⇒ in (5.52). The implication ⇐= in (5.52) is proved as in Case 1.

Proof of (iii). We assume first that u ≈ A 0. If F is a T q -closed set such that F ⊂ q A, then, by Lemma 5.17 there exists a T q -open set Q such that F ⊂ q Q ⊂ Q ⊂ q A. Applying (5.51) to v := [u] F and using (5.52) we obtain

v = lim β→0 v Q β ≤ lim β→0 u Q β = 0.

It is thus a consequence of the definition of [u]

A that [u] A = 0. If [u] A = 0, then for any T q -open set Q ⊂ Q ⊂ q A, there holds [u] Q = 0. Because T q -supp(u Q β ) ⊂ q Q,
there exists a subsequence β k decreasing to 0 such that lim

β k →0 u Q β k ≤ [u] Q = 0.
Therefore u ≈ Q 0 by (5.52). Applying again Lemma 5.17 and Proposition 5.41-(iv), we infer that u ≈ A 0.

Definition 5.53 Let u, v ∈ U + (Q T ) and A be a T q -open set. We say that u = v on A if both u ⊖ v and v ⊖ u vanish on A. This relation is denoted by u ≈ A v. Proposition 5.54 Let u, v ∈ U + (Q T ) and A be a T q -open set. Then, (i) u ≈ A v ⇐⇒ lim β→0 |u -v| Q β = 0, (5.57 
)

for every T q -open set Q such that Q ⊂ q A. (ii) u ≈ A v ⇐⇒ [u] F = [v] F , (5.58) 
for every T q -closed set F such that F ⊂ q A.

Proof. The idea of the proof is the adaptation to the parabolic framework of the construction in the elliptic case performed in [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF]. If u ≈ A v, then u ⊖ v ≈ A 0 and v ⊖ u ≈ A 0. Hence, by (5.52), we have that w

β := (u ⊖ v) Q β → 0 as β → 0. We set f β = ((u -v) + ) Q β and consider the truncated problem in B j × (β, ∞) for j = 1, 2, ..., ∂ t w -∆w + |w| q-1 w = 0 in B j × (β, ∞) w = 0 on ∂B j × (β, ∞) w(., β) = φ in B j ,
and denote by w j and f j respectively the solutions with initial data 1 Q (u ⊖ v)(., β) and 1 Q (uv) + (., β). By the maximum principle, the sequences {w j } and {f j } are increasing. Since u ⊖ v is the smallest solution which dominates the subsolution (uv) + , we have

w j ≥ f j for all j ∈ N * . When j → ∞, w i → w β and f i → f β . Then w β ≥ f β . This implies ((u -v) + ) Q β as β → 0. Similarly ((v -u) + ) Q β as β → 0.
This yields the implication =⇒ in (5.57).

For the reverse implication we introduce the problem

∂ t w -∆w + |w| q-1 w = 0 in B j × (β, ∞) w = h on ∂B j × (β, ∞) w(., β) = φ in B j .
Let Q ⊂ Q ⊂ q A be a T q -open. Denote by w j the solution of the above problem with h = 1 Q |u -v|⌊ ∂B j ×(β,∞) and φ = 1 Q |u -v|, and f j the solution with h

= 1 Q c |u -v|⌊ ∂B j ×(β,∞) and φ = 1 Q c |u -v|. Then |u -v| ≤ w j + f j .
Up to some subsequence, w j and f j converge respectively to w and f which are solutions of (3.13) Let {β k } be a subsequence decreasing to 0 such that there exists lim

β k →0 |u -v| Q c β . Then |u -v| ≤ lim β k →0 |u -v| Q c β k . But |u -v| Q c β k ≈ Q 0, hence lim β k →0 |u -v| Q c β k ≈ Q 0. Since u ⊖ v is the smallest solution which dominates the subsolution (u -v) + there holds max{u ⊖ v, v ⊖ u} ≤ lim β k →0 |u -v| Q c β k . Therefore [u ⊖ v] F ≤ u ⊖ v ≤ [u] Q c . Hence T q -supp([u ⊖ v] F ) ⊂ q F and [u ⊖ v] F ≈ Q0. This in turn implies that [u ⊖ v] F = 0. Using (5.53) in Proposition 5.52 we obtain u ⊖ v ≈ A 0. Similarly v ⊖ u ≈ A 0.
As an immediate consequence of (5.57), we have

Corollary 5.55 If A ⊂ R N is a T q -open set, the relation ≈ A is an equivalence relation in U + (Q T ).
5.5 The regular initial trace 

∈ B 2 q ,q ′ (R N ) ∩ L ∞ (R N ) with T q -support in Q c , we have T 0 R N (u ∧ U Q ) q (H[η] + ) 2q ′ (t, x)dxdt < ∞. (5.61) 
Proof. By Proposition 5.33, there holds

lim t→0 Q (u ∧ U Q ) (x, t)η + (x)dx = 0,
and the result follows by estimate (5.39) in Lemma 5.35.

Proposition 5.57 Let u ∈ U + (Q T ) and Q be a T q -open set such that u∧U Q is a moderate solution with initial data µ. Then for any ξ ∈ Q there exists a

T q -open set O ξ ⊂ Q such that T 0 R N u q H[1 Q ξ ] 2q ′ (x, t)dxdt < ∞. (5.62) Furthermore, for any η ∈ B 2 q ,q ′ (R N ) ∩ L ∞ (R N ) with T q -support in Q, we have lim t→0 Q u(x, t)η 2q ′ + dx = Q η 2q ′ dµ. ( 5 

.63)

Proof. If η is as above, the function η 2q ′ + is quasi-continuous and there holds by Theorem 5.31,

lim t→0 Q u ∧ U Q (x, t)η 2q ′ + (x)dx = Q η 2q ′ + dµ,
and, by the properties of

U Q c , lim t→0 Q u ∧ U Q c (x, t)η 2q ′ + (x)dx = 0. is a moderate solution. Actually, let R > 0 such that Q ⊂ Q ⊂ B R and let η ∈ C ∞ c (B 2R ) with value 1 on B R and 0 ≤ η ≤ 1. Then the function ζ = (1 -ψ)η belongs to B 2 q ,q ′ (R N ) ∩ L ∞ (R N ) and has compact support in B 2R ∩ V c . Therefore T 0 R N v q z (H[1 B R ]) 2q ′ (x, t)dxdt ≤ T 0 R N v q z (H[ψ]) 2q ′ (x, t)dxdt + T 0 R N v q z (H[1 -ψ]) 2q ′ (x, t)dxdt ≤ T 0 R N v q z (H[ψ]) 2q ′ (x, t)dxdt + T 0 R N v q z (H[ζ]) 2q ′ (x, t)dxdt < ∞,
because the first integral in the last inequality is finite by assumption and the second integral is finite by Lemma 5.56. As R is arbitrary, u ∧ U Oz is a moderate solution.

By the quasi-Lindelöf property there exists a non decreasing sequence of T q -open sets {O n } such that ∪ n O n ∼ q Q and, using the construction above, the solution u ∧ U On is moderate for any n ∈ N * . By Proposition 5.42-(II), for any n there exists a sequence

{A n,j } of T q -open sets such that A n,j ⊂ q A n,j+1 ⊂ q E n and ∪ ∞ j=1 A n,j ∼ q E n . Put Q n = k+j=n A k,j . Then Q n ⊂ k+j=n A k,j ⊂ q k+j=n A k,j+1 = Q n+1 . Therefore Q 0 := n Q n ∼ q Q. Next we prove that v n = u ∧ U Qn → u ∧ U Q . By Proposition 5.42-(ii), v n = u ∧ U Qn ≤ u ∧ U Q ≤ u ∧ U Qn + u ∧ U Q∩Q c n . Since Q ∩ Q c n ↓ F and cap 2 q ,q ′ (F ) = 0, we infer from Proposition 5.42-(iii) u ∧ U Q∩Q c n → 0 as n → ∞. Hence v n ↑ u ∧ U Q . Again, by Proposition 5.42-(ii), v n = [v n+k ] Qn . Therefore, with µ n = 1 Qn µ Q , µ n (Q n ) = µ n+k (Q n ) = µ Q (Q n ) < ∞ =⇒ tr (v n ) → µ Q . (5.69) (iii) We assume at first that the function η ∈ B 2 q ,q ′ (Q) ∩ L ∞ (Q)
is nonnegative (which is not a restriction) and has compact support in Q. By Lemma 5.23 there exists a function

η k with T q support included in Q k such that 0 ≤ η k ≤ η, η k+1 ≤ η k , η -η k B 2 q ,q ′ ≤ 1 k , (5.70) 
and, for k large enough,

T 0 R N u q (H[η -η k ]) 2q ′ (x, t)dxdt ≤ 1 k 2q ′ . Since lim t→0 Q u(x, t)η k dx = Q η 2q ′ k dµ Q and lim k→∞ Q η 2q ′ k dµ Q = Q η 2q ′ dµ Q , by a standard limit theorem lim inf t→0 lim k→∞ Q u(x, t)η 2q ′ k dx = lim inf t→0 Q u(x, t)η 2q ′ dx ≥ lim k→∞ lim t→0 Q u(x, t)η 2q ′ k dx = Q η 2q ′ dµ Q (5.71)
By (5.69) and Proposition 5.57 and Hölder's inequality In the general case, by Netrusov's approximation theorem [1, Theorem 10.1.1] there exists a function η k with compact support in Q such that 0 ≤ η k ≤ η and (5.70) holds. The end of the proof is as above.

Q u(x, t)η 2q ′ dx 1 2q ′ ≤ Q u(x, t)(η -η k ) 2q ′ dx 1 2q ′ + Q u(x, t)η 2q ′ k dx 1 2q ′ ≤ Q u(x, t)η 2q ′ k dx 1 2q ′ + C η -η k B 2 q ,q ′ η -η k L ∞ + C T 0 R N u q (x, t) (H[η -η k ]) 2q ′ 1 2q ′ ≤ Q u(x, t)η 2q ′ k dx 1 2q ′ + C ′ k . (5.72) Hence lim sup t→0 Q u(x, t)η 2q ′ dx 1 2q ′ ≤ Q η 2q ′ k dµ Q 1 2q ′ + C ′ k , which implies, by letting k → ∞, lim sup t→0 Q u(x, t)η 2q ′ dx 1 2q ′ ≤ Q η 2q ′ dµ Q 1 2q ′ . ( 5 
The Proposition 5.59 admits the following easy extension to the case where the set Q is non-necessarily bounded. An overview of the proof is given in Proposition 5.64. containing F ∩ Q c ǫ and such that cap 2 q ,q ′ (O ǫ ) < 2ǫ. We define a T q -closed set F ǫ included in Q ǫ by

F ǫ = F ∩ O ǫ , (5.98) 
and F ǫ ⊂ F with cap 2 q ,q ′ (F ∩ F c ǫ ) < 2ǫ. Claim 1: Let E be a T q -closed set, D a T q -open set such that [u] D is moderate and E ⊂ q D. There exists a decreasing sequence of T q -open sets {G n } such that Next we assume that F is a non-necessarily bounded T q -closed set. If x ∈ F we set B n = B n (x) ∩ F , n ∈ N * and

E ⊂ q G n+1 ⊂ G n+1 ⊂ q G n ⊂ q D, ( 5 
E n = n m=1 (F ∩ B n ) 2 -m ,
where (F ∩ B n ) 2 -m is the set defined in (5.98) with F replaced by F ∩ B n and ǫ replaced by 2 -m . We can also assume that the sequence {E n } is increasing. We set Q n m -1 = (F ∩ B n ) m -1 and

Q n = n m=1 Q n m -1 ,
and as for {F n } we can assume that the sequence {Q n } is increasing. Therefore, we have that E n ⊂ E, Q n is T q -open, [u] Qn is moderate and E n ⊂ q Q n . Furthermore ∪ n E n = E ′ ∼ q F since for any n ∈ N * there holds

cap 2 q ,q ′   F \ ∞ j=1 E j   ≤ n k=1 cap 2 q ,q ′   (F ∩ B k ) \ ∞ j=1 E j   + ∞ k=n+1 cap 2 q ,q ′ ((F ∩ B k ) \ E k ) ≤ 1 2 n + ∞ k=n+1 1 2 k = 1 2 n-1 .
Thus, by Assertion 1, we can choose a sequence of T q -open sets {V n } such that E n ⊂ q V n ⊂ V n ⊂ q Q n and [u] Vn -[u] En L q (Bn(0)×(0,T )) ≤ 2 -n .

(5.101)

Notice that since E n and Q n are bounded sets, the functions [u] Vn and [u] En which are moderate belong to L q (R N × (0, T )). Because [u] F is moderate, there exists a Radon measure µ F = tr ([u] F ) and [u] F = [u] E ′ since F ∼ q E ′ . At end, using (5.49) and the fact that E n ⊂ q F , we have

[u] En = [u] F ∩En = [[u] En ] F .
Proof. (i) Since the µ n are Radon measures absolutely continuous with respect to cap 2 q ,q ′ , µ 0 which is the limit of the µ n shares this property. By Proposition 5.63, µ is T q -perfect.

Let {Q n } be the family of T q -open sets of Proposition 5.64-(i). Set Q ′ n = R q (u) \ Q n . Since ∪ n Q n = lim n→∞Qn ∼ q R q (u), then Q ′ n ↓ E and cap 2 q ,q ′ (E) = 0. Consequently, for any n ∈ N, we have lim

m→∞ u 1 Q ′ m µn = 0.
Therefore, there exists a subsequence still denoted by {Q ′ n } such that

T 0 R N u q 1 Q ′ m µn dxdt 1 q ≤ 1 2 n . Since 1 Rq(u) µ n = 1 Qn µ n + 1 Q c n µ n ,
it follows that lim By relation (5.60) in Proposition 5.54, using the fact that D n ⊂ q D n+1 ⊂ D n+1 ⊂ q R q (u), we have that cap 2 q ,q ′ D n+1 ∩ S q (u) = 0 and (5.116)

Next we show that the q-singular set S q (u) is singular for the sequences of measures {µ n } in the sense that if ξ ∈ S q (u), then for every T q -open neighbourhood Q of ξ, µ n ( Q) → ∞ when n → ∞. Indeed, we can assume that Q is bounded and we consider a nonnegative function η ∈ B

The initial value problem

We introduce below some definitions and notations which will be useful in the sequel.

Definition 5.70 I-M + (R N ) is the space of positive outer regular Borel measure in R N . II-C q (R N ) is the space of couples (τ, F ) such that F is a T q -closed subset of R N , τ ∈ M + (R N ) with T q -supp (τ ) ⊂ F c and 1 F c τ is T q -locally finite. III-T denotes the mapping from C q (R N ) into M + (R N ) defined by ν = T (τ, F ) where ν is defined as in (5.111) with R q (u) and S q (u) replaced respectively by F c and F . In this setting ν is the measure representation of the couple (τ, F ).

IV-If (τ, F ) ∈ C q (R N ), the set

F τ = {ξ ∈ R N : τ (Q \ F ) = ∞ for all T q -open neighbourhood of ξ}, (5.126) 
is called the set of explosion points of τ .

Remark. Since 1 F c τ is locally finite, F τ ⊂ F . If F τ is not included in F c , there would exist a T q -open neighbourhood Q of ξ with an empty intersection with F c , hence included in F , thus Q \ F = ∅ and τ (Q \ F ) = 0, contradiction. Therefore F τ ⊂ F c and consequently

F τ ⊂ F c ∩ F = F c b q (F c ) ∩ F = b q (F c ) ∩ F. (5.127) 
This result has to be compared with Theorem 3.14 which deals with a necessary and sufficient conditions for the existence of a maximal solution u of (3.13) with a rough initial trace (S, µ).

The next result points out the crucial role of the set M q (R N ) defined in Definition 5.62 for describing the link between U + (Q T ) and C q (R N ). Proposition 5.71 Let ν be a positive Borel measure in R N . (i) The initial value problem

∂ t u -∆u + |u| q-1 u = 0 in Q ∞ u ≥ 0 in Q ∞ tr(u) = ν (5.128)
possesses a solution if and only if ν ∈ M q (R N ). (ii) Let (τ, F ) ∈ C q (R N ) and set ν := T(τ, F ). Then ν ∈ M q (R N ) if and only if τ ∈ M q (R N ) and F = b q (F ) F τ .

(5.129) (iii) Let ν ∈ M q (R N ) and set we infer that w is a weak solution of problem (5.146). Therefore the function w = uw is nonnegative and satisfies

∂ t w -∆ w ≤ 0 in Q T w ≥ 0 in Q T w(., 0) = 0 in R N .
(5.151)

Moreover w belongs to L 1 loc (Q T ). We extend it by 0 in R N × (-T, 0) and the resulting function w * is a nonnegative sub-caloric function in R N × (-T, T ) that we can suppose to be C ∞ by replacing it by J ǫ * w * where J ǫ is a sequence of mollifiers in R N +1 . By the maximum principle J ǫ * w * = 0. Hence w * = 0 which yields u = w.

The next result is the extension of the initial trace theorem for nonnegative caloric functions to nonnegative solutions of (5.142).

Lemma 5.75 Let V satisfy (5.143) and u ∈ C 2;1 (Q T ) be a nonnegative function satisfying (5.142). Assume that for any x ∈ R N there exists a bounded open set U ⊂ R N such that T 0 U u(y, t)V (y, t)dydt < ∞.

Then u ∈ L 1 ( × (0, T )) and there exists a nonnegative Radon measure µ in R N such that

lim t→0 R N u(x, t)ζ(x)dx = R N ζdµ for all ζ ∈ C ∞ c (R N ).
Proof. Without loss of generality we can assume that ∂U is smooth and since V u ∈ L 1 (U × (0, T )) it is classical that there exists a solution v to the problem

∂ t v -∆v = V u in Q U T v = 0 in ∂ ℓ Q U T v(., 0) = 0 in U.
The function v is nonnegative and w = u + v is a positive solution of the heat equation. Hence w admits an initial trace on U which is a nonnegative Radon measure. This implies that u admits the same initial trace on U . We end the proof by using a partition of unity.

Now we can prove our fundamental Representation Theorem.

We assume that V satisfies (5.143) and let u ∈ C 2;1 (Q T ) be a nonnegative solution of (5.142). If ψ ∈ C 2;1 (Q T ) we define v ∈ C 2;1 (Q T ) by v(x, t) = e -ψ(x,t) u(x, t). then

∂ t v -∆v -2∇v.∇ψ -|∇ψ| 2 v -2v∆ψ + (∂ t ψ + ∆ψ + V )v = 0 in Q T .
(5.152)

We choose ψ to be the solution of (5.157) Using Aronson's estimates [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF] with A ij = δ ij , A i = 2ψ x i , B i = 0, C = |∇ψ| 2 and p = ∞ with the notations of this article, then the condition H therein is satisfied. Therefore there exists a kernel Γ(x, t; y, s) defined in and by w A β the one of ∂ t w -∆w + w q = 0 in R N × (β, T ) v(., β) = 1 A u(., β) in R N .

-∂ t ψ -∆ψ = V in Q T ψ(., T ) = 0 in R N . ( 5 
Q T × Q T satisfying C 1 (T,
(5.172) Since u q-1 ≤ V , there holds 0 ≤ w A β ≤ v A β ≤ u. For any sequence {β k } decreasing to 0 one can extract a subsequence still denoted by {β k } such that {v A β k } and {w A β k } converges locally uniformly to v A and w A respectively. Clearly w A ∈ U + (Q T ) while v A is a solution of (5.168). Since the T q -support of w A β (., β) is included into Q for any open set Q which contains A, we have v A ≤ w A ≤ [u] Q .

(5.173)

Next we set v k = e -ψ v A β k , then v k satisfies

∂ t v -∆v -2∇v.∇ψ -|∇ψ| 2 v -2v∆ψ + (∂ t ψ + ∆ψ + V )v = 0 in Q T v(., β k ) = 1 A R N
Γ(., β k , y, 0)dµ(y) in R N .

(5.174) Using Duhamel's formula (see [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF] in a similar case), we have This implies v A ≤ (u) Q .

(5.175)

Then we can proceed in the same way with A c . Extracting a subsequence from the previous subsequence (and denoting it still by {k}) we obtain limits v A c and w A c and they satisfy

v A c ≤ w A c ≤ [u] Q ′c for all open sets Q ′ ⊃ A c . Since v A β k + v A c
β k satisfies (3.13) in (β k , T ) × R N with initial data u(., β k ), we have

v A + v A c = u , v A ≤ (u) Q , v A c ≤ (u) Q ′c from what we derive v A = u -v A c ≥ (u) Q ′c .
(5.176)

This implies that S q (u) = S q (u). Now, by construction we have

v n = [u] Qn ≤ [u] Qn .
then, letting n → ∞ we obtain by Proposition 5.64

u Rq(u) ≤ u Rq(u) =⇒ u Rq(u) = u Rq(u) , therefore tr(u) = tr(u). But since u ≤ u, it follows by Proposition 5.71 and the uniqueness of σ-moderate solutions that u = u.

5.9

Further studies and open problems

Lateral boundary trace

Let Ω be either a C 2 open subset or R N + . The problem is to analyse the trace on the lateral boundary of Ω×(0, T ) of any positive solution of (3.13). It is proved in [START_REF] Marcus | Trace au bord lat éral des solutions positives d'équations paraboliques non-linéaires[END_REF] that there exists a lateral trace in the class of outer regular Borel measures in ∂ ℓ Ω × (0, T ) := ∂Ω × (0, T ). The critical value for q is qc = N +3 N +1 above this value the boundary isolated singularities are removable. The geometry of the cylindrical domain makes much more difficult the study of the supercritical case. A similar study was performed by Kuznetsov [START_REF] Kuznetsov | On removable lateral singularities for quasilinear parabolic PDE[END_REF], [START_REF] Kuznetsov | Polar boundary sets for superdiffusions and removable lateral singularities for non-linear parabolic PDE's[END_REF] in the framework of superprocesses and with the restriction that 1 < q < 2.

Full trace problem

It is an extension of the initial trace problem treated in this survey and the lateral boundary trace. In the paper [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] the initial trace is considered for solutions in a cylinder Q Ω T and the existence and uniqueness theorem in the subcritical case is proved provided the lateral boundary value is integrable in ∂Ω × (0, T ) and the initial measure has compact support in Ω, or at least is bounded near ∂Ω. This is due to the fact that for general measure µ in M + (Ω), the behaviour of µ near ∂Ω is fundamental. A general study of the trace of positive solutions of (3.13) on ∂Q Ω T := (Ω × {0}) (∂Ω × [0, T )) would be a great interest. In this direction we can mention the work [START_REF] Hisa | Initial traces and solvability for a semilinear heat equation on a half space of R N[END_REF] dealing with the lateral boundary trace of positive solutions of ∂u ∂t -∆uu q = 0 in R N + × (0, T ).

(5.183)

Extension to general domain are expected.

Equations of general absorption-convection

∂ t u -∆u + u p |∇u| q = 0.

(5.184)

Since this is an equation with absorption the construction of an initial trace should be tractable. To our knowledge the study of the self-similar solutions and isolated singularities

has not yet been done. This study needs a preliminary analysis of the problem ∂ t u -∆u + u p |∇u| q = 0 in Q T u(., 0) = µ in D ′ (R N ), (5.185) where µ is a nonnegative Radon measure.

Equations of Hamilton Jacobi type

∂ t u -∆u + m|∇u| q = 0 in Q T .

(5.186)

The subcritical case has been treated by Bidaut-Véron-Dao [START_REF] Bidaut-Véron | Initial trace of solutions of Hamilton-Jacobi parabolic equation with absorption[END_REF]. They prove the existence of a critical exponent q * = N +2 N +1 . When 1 < q < q * they obtain the existence of solutions u with a Dirac mass as initial data and the existence and uniqueness of a positive very singular solution. When q ≥ q * they prove that isolated singularities at t = 0 are removable. The detailed analysis of the initial trace in the supercritical case seems open.

Equations of mixed absorption-reaction-convection

∂ t u -∆u + u p -m|∇u| q = 0, (5.187) or ∂ t u -∆u + m|∇u| qu p = 0.

(5.188)

For these two types of equations the existence of an initial trace seems open except in some specific cases. The study has to be put in parallel with the ones dealing with the boundary value problem and the boundary trace for the elliptic equations -∆u + u p -m|∇u| q = 0 in Ω, (5.189) obtained in [START_REF] Bidaut-Véron | Boundary singular solutions of a class of equations with mixed absorption-reaction[END_REF] or -∆u + m|∇u| qu p = 0 in Ω, (5.190) obtained in [START_REF] Bidaut-Véron | Trace and boundary singularities of solutions of a class of quasilinear equations[END_REF]. In these two papers, it is developed a method which associates some specific supersolutions and subsolutions namely -∆u -m|∇u| q = 0 in Ω and -∆u + u p = 0 in Ω (5.191) for (5.189) in [START_REF] Bidaut-Véron | Boundary singular solutions of a class of equations with mixed absorption-reaction[END_REF] and -∆uu p = 0 in Ω and -∆u + m|∇u| q = 0 in Ω (5.192) for (5.190) in [START_REF] Bidaut-Véron | Trace and boundary singularities of solutions of a class of quasilinear equations[END_REF]. It appears that this could be adapted to the study of (5.187) and (5.188). We also refer to the book of Quittner and Souplet [START_REF] Quittner | Superlinear parabolic problems. Blow-up, global existence and steady states[END_REF] which contains an impressive quantity of results concerning semilinear heat equations with reaction terms of the type -u p or -|∇u| q .

Lemma 4 . 5

 45 Let b > a > 0 and Ω be a domain in R N such that Ω ⊂ Γ a,b = B b \ B a . If s ∈ (0, 1) and p > 1 verify sp ≤ N , there exists λ = λ(N, s, p, b a ) > 0 such that

(4. 40 )

 40 The right-hand side term in(4.40) is bounded from above by max C(|x|r -2ρ) (ts) 1+ N 2 e -(|x|-r-2ρ) 2 4(t-s) : s ∈ (0, t) t 0 ∂B r+2ρ u(y, s)dσ(y)ds. (4.41)

  ,a n,j -x 2s dS r (y)dr.

  With this representation yx, a n,jx = |y -x||a n,j -x| cos φ. This yields ∂Br(x) e y-x,a n,j -x 2s dS r (y) = r N -1 |S N -2 π 0 e qǫ |a n,j -x|r cos φ 2s sin N -2 φdφ. By Lemma 4.36 ∂Br(x) e -qǫ y-x,a n,j -x 2s dS r (y) ≤ C r N -1 e qǫr r|a n,j -x| 2s

  .130) The bilateral estimate estimate (4.120) is still valid (up to change of the C i ). Since only convexity of f is used in the proof of Theorem 4.29, there still holds u F = u F . Similar extensions of Proposition 4.32 and Proposition 4.33 are also clear.

Lemma 4 . 36

 436 For any integer N ≥ 2 there exists a constant c N > 0 such that π 0 e m cos θ sin N -2 θ dθ ≤ c N e m (1 + m) (N -1)/2 ∀m > 0. (4.160) Proof. Put I N (m) = π 0 e m cos θ sin N -2 θ dθ. Then I ′ 2 (m) = π 0 e m cos θ cos θ dθ and

-3 m π 0 eI 4 (m) = 1 m π 0 e 5 Iθ π 0 + N -3 m 2 π 0 e

 0405020 cos θ ) sin N -3 θ dθ = N m cos θ cos θ sin N -4 θ dθ. (4.161) m cos θ cos θ dθ = I ′ 2 (m), and, again (4.160) holds since I ′ 0 (m) has the same behaviour as I 0 (m) at infinity. For N ≥ N (m) = 3 -N m 2 e m cos θ cos θ sin N -5 m cos θ d dθ cos θ sin N -5 θ dθ.

Proposition 5 . 4 Proposition 5 . 5

 5455 Let u and v be nonnegative, locally bounded functions in Q T . (i) If u and v are subsolutions (resp. supersolutions) then max{u, v} (resp. min{u, v}) is a subsolution (resp. a supersolution). (ii) If u and v are supersolutions then u + v is a supersolution. (iii) If u is a subsolution and v is a supersolution then (uv) + is a subsolution. The following notations have been introduced by Dynkin [26]. Notations Let u and v be nonnegative, locally bounded functions in Q T . (i) If u is a subsolution, [u] † denotes the smallest solution dominating u. (ii) If u is a continuous supersolution, [u] † denotes the largest solution dominated by u. (iii) If u and v are subsolutions then u ∨ v := [max{u, v}] † . (iv) If u and v are continuous supersolutions, then u∧v := [min{u, v}] † and u⊕v = [u+v] † . (v) If u is a subsolution and v is a supersolution then u ⊖ v := [uv] † . The following properties hold

  Proposition 5.25, the right-hand side of the above inequality tends to 0 when s → 0s) (φ(h)(x, s)φ(η)) dx = 0, (5.27) which ends the proof. Combining Proposition 5.25 and Proposition 5.26 one obtain Corollary 5.27 Assume U ⊂ R N is a bounded T q -open set such that

  ξ 0 for all β > 0, we deduce that u ≈ O ξ 0 by Proposition 5.39. Using Proposition 5.41 (iv) we deduce (5.52) in the case where E is closed. Case

. 55 )

 55 By Proposition 5.47-(ii), using the definition of u D β and the fact that [

  in R N × (β, ∞) with respective initial data w(., β) = 1 Q |u -v|(., β) and f (., β) = 1 Q c |u -v|(., β).because of uniqueness and the definition Definition 5.51 , w = |u -v| Q β and f = |u -v| Q c β . When β → 0 we have by assumption lim β→0 |u -v| Q β = 0.

5. 5 . 1

 51 The local test Lemma 5.56 Let u ∈ U + (Q T ) and Q be a T q -open set. Then for any η

  .73) Combining (5.71) and (5.73) we obtain (5.67).

  .99)and [u] Gǫ → [u] E in L q (K) for every compact set K ⊂ Q T . (5.100) By Lemma 5.18 and Proposition 5.25-(iii), there exists a decreasing sequence of T q -open sets {G n } satisfying (5.99) and such that [u] Gn ↓ [u] E locally uniformly in Q T . Since [u] Gn ≤ [u] D which is a moderate solution, we deduce (5.100).

n→∞ |u 1 1 1

 111 Rq (u) µnu 1 Qn µn | = lim n→∞ u 1 Q c n µn = 0.Since we have alsou n = u µn ≤ u 1 Rq (u) µn + u 1 Sq (u) µn ≤ u 1 Rq (u) µn + [u] Sq(u) ,we infer 0 ≤ u -[u] Sq(u) ≤ w := lim n→∞ u Rq (u) µn = lim n→∞ u Dn µn ≤ u reg . This implies u ⊖ [u] Sq(u) ≤ u reg and u ≤ u reg ⊕ [u] Sq(u) . For the opposite inequality, we have by Proposition 5.64-(iv) [u] Dn ↑ u reg .

1 1

 11 [u] Dn ≤ [[u] Sq(u) ] D n+1 + [u ⊖ [u] Sq(u) ] D n+1 = [u ⊖ [u] Sq(u) ] D n+1 ≤ u ⊖ [u] Sq(u) . Letting n → ∞, we derive u reg ≤ u ⊖ [u] Sq(u) .Therefore lim n→∞ u Dn µn = u reg . Therefore the sequence u 1 Dn µn satisfies condition (5.89) and by Proposition 5.64-(iv) and Definition 5.66 we obtain lim n→∞ Dn µ n = µ Rq(u) and tr Rq(u) (u) = µ Rq(u) .

E

  ν := {E : E T q -closed sets s.t. ν(E ∩ K) < ∞ for all compact K ⊂ R N } D ν := {D : D T q -open sets s.t. D ∼ q E for some E ∈ E ν }.(5.130) Lemma 5.74 Let the assumptions on µ, V and u of Lemma 5.73 be satisfied and denote by v R := v B R the solution of (5.147) with Ω = B R . Thenv R ↑ u as R → ∞.Furthermore this convergence is uniform on compact subsets of Q T .Proof. Since the mapping R → v R is increasing and v R is dominated by u, there exists a functionw such that v R ↑ w ≤ u as R → ∞,and this convergence is locally uniformly in Q Ω T . Because for any ζ ∈ C c (Q T ), lim R→∞ B R ζ(., 0)dµ(x) = R N ζ(., 0)dµ(x),

2 V

 2 (y, s)dyds.(5.154) Because of (5.143) the following estimates hold:(i) 0 ≤ ψ(x, t) ≤ C 0 (T ) ln T t (ii) |∇ψ(x, t)| ≤ C 1 (T ) + C 2 (T ) ln T t .(5.155)With this choice of ψ, equation (5.152) becomes∂ t v -∆v -2 n i=1 (vψ x i ) x i -|∇ψ| 2 v = 0 in Q T .(5.156)Because ln t ∈ L p (0, 1) for all p ∈ [1, ∞), it follows that for any p ∈ [1, ∞) there existsM j := M j (p) > 0, j = 1, , t)| p dt ≤ M 1 t)| p dt ≤ M 2 .

1 AN R N 1 A 1 Q

 111 v k (x, t) = R N (x)Γ(x, tβ k ; y, 0) R N Γ(x, β k ; y, 0)dµ(y) dx = R (x)Γ(x, tβ k ; y, 0)Γ(x, β k ; y, 0)dx dµ(y) (x)Γ(x, tβ k ; y, 0)Γ(x, β k ; y, 0)dx dµ(y).Using the estimates on Γ (see(5.158)) the continuity and the property (5.160) we can let k → ∞ and obtain by the dominated convergence theorem lim k→∞ v k (x, t) ≤ R N Γ(x, t k ; y, 0)dµ Q (y).

  -dimensional balls B 2 ( a n,j ) where a n,j = n+1 t a n,j , |a n,j | = 1 2 (d n + d n+1 ) and |a n,j -a n,k | ≥

				.96)
	Proof. As in the prof Theorem 4.18 there exists a finite number J depending only on the
	dimension N of separated sub-partitions {Θ h t,n } J h=1 of the rescaled sets T n =	n+1 t T n
	by the N 4t n+1 . Furthermore #Θ h t,n ≤ Cn N -1 . We denote K n,j = K n ∩B t n+1	(a n,j ).
	J	J	
	We can write µ n =	µ h n and accordingly J ′ 2,ℓ	µ h n J ′h 2,ℓ where µ h n =
	h=1	h=1	j∈Θ h t,n

µ n,j and the µ n,j are the capacitary measures of K n,j relative to B n,j := B 6t 5

  .144) Case 2: a ≥ 1, b < 1. Estimates (4.137), (4.138), (4.139), (4.140) and (4.141) are valid. Because v → (v + B(A + B)) b-1 is decreasing, (4.142) has to be replaced by

  N, M 2 ) e

	-a 1 (4π(s -t)) |x-y| 2 4(s-t)	N 2	≤ Γ(x, t; y, s) ≤ C 2 (T, N, M 2 )	e -a 2 (4π(s -t)) |x-y| 2 4(s-t)	2 N	,	(5.158)

q ,q ′ → 0 as n → ∞.

q ,q ′ (R N ) ∩ L ∞ (R N ) with T q -support included in Q. We put h = Hη]

Lemma 5.2 Let u be a subsolution of (3.13) in Q T , then |u(x, t)| ≤ 1 t(q -1)

for almost all (x, t) ∈ Q T .

(5.2)

Proof. Because of Kato's inequality, the function |u| is a subsolution of (3.13). Hence we can assume that u is nonnegative. Let {ρ ǫn } (ǫ n > 0) be a sequence of C ∞ c (R N +1 ) nonnegative functions with support in B ǫn and total mass equal to 1. We assume that ǫ n → 0, hence ρ ǫn → δ 0 is the sense of distributrions. Such a sequence is called a sequence of mollifiers. If ǫ n < ǫ the distribution u n := u * ρ ǫn is well defined and is C ∞ in R N ×(ǫ, T ) where, by convexity, it satisfies

As in the proof of (3.22), for any y ∈ R N , the function (x, t) → φ ∞ (tǫ) + w R (xy) where w R is defined in (3.23) is a supersolution of (3.13) in R N × (e, T ) which dominates u n at t = ǫ and for |x -y| → R. Hence it is larger than u n in this domain. Letting R → ∞ and ǫ → 0 yields u n (x, t) ≤ φ ∞ (t) for all (x, t) ∈ Q T .

When ǫ n → 0, u n converges to u a.e. in Q T and in L q loc (Q T ). This implies (5.2). Proposition 5.3 Let T > 0 and u ∈ L q loc (Q T ) be nonnegative. (i) If u is a subsolution of (3.13) there exists a minimal solution v above u, that if U is any solution larger than u, then u ≤ v ≤ U . (ii) If u is a continuous supersolution of (3.13) there exists a maximal solution w dominated by u, that is if U is any solution smaller than u, then U ≤ w ≤ u. All the above inequalities hold both almost everywhere and in the sense of distributions.

Proof. (i) We use again the subsolutions u n := u * ρ ǫn , and for ǫ, R > 0 we denote by v n := v ǫn,ǫ,R be the solution of

(5.3) Then v n ≥ u n by the comparison principle. Furthermore v n satisfies

where w R is the large solution in B R defined in (3.23). Hence it is locally bounded in B R × (ǫ, T ) for any ǫ > 0 and R > 0. Therefore, up to a subsequence {R j } such that R j → ∞, the sequence {v ǫn,ǫ,R j } converges locally in C 2,1 (R N × (ǫ, T )) to a nonnegative solution v = v ǫn,ǫ of (3.13) in R N × (ǫ, T ). Furthermore v ǫn,ǫ (x, t) ≥ u n (x, t) for all (x, t) ∈ R N × (ǫ, T ).

Since v ǫn,ǫ satisfies the uniform parabolic a priori estimates and the associated compactness properties, we infer that, up to a subsequence v ǫn,ǫ → v ǫ locally in C 2,1 (R N × (ǫ, T )) when Proposition 5.9 There holds A is T q -open ⇐⇒ A ⊂ e q (A c ) , B is T q -closed ⇐⇒ b q (B) ⊂ B.

Therefore

A = A ∪ b q (A) A ♦ = A ∩ e q (A c ).

Furthermore the capacity cap 2 q ,q ′ possesses the Kellog property cap 2 q ,q ′ (A ∩ e q (A)) = cap 2 q ,q ′ (A \ b c q (A)) = 0.

(5.6)

, then b q (F ) is the smallest T q -closed set which is equivalent to F .

It is often easier to use the related notions of quasi open or quasi closed sets although these notions are not equivalent. All details to be found in [START_REF] Adams | Function spaces and potential theory[END_REF]Chapter 6].

)-quasi open. A property P holds T q -quasi everywhere in an open set Ω ⊂ R N if it holds in Ω except on a set with zero cap 2 q ,q ′ -capacity. Abridged notation: T q -q.e. A function f defined T q -q.e. in an open set Ω ⊂ R N is T q -quasi continuous if for every ǫ > 0 there exists an open set G ⊂ Ω such that cap 2 q ,q ′ (G) = 0 with the property that f ⌊ G c is continuous in G c for the induced topology. Proposition 5.12 Any function f in B 2 q ,q ′ (Ω) is T q -quasi continuous. Thus every element of B 2 q ,q ′ (Ω) admits a T q -quasi continuous representative. Let f 1 and f 2 be two T q -quasi continuous functions which coincide a.e. in Ω, then they coincide T q -q.e.

Remark. The notion of ( 2q , q ′ )-quasi openedness defines a quasi-topology. It is not a topology because an arbitrary union of quasi open sets may not be quasi open. However a countable union of quasi open sets is quasi open.

The next result is proved in [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF]Proposition 2.1]. We list below a series of results concerning the T q -topology and T q -quasi topology which are used throughout this section. Their proofs can be found in [START_REF] Adams | Function spaces and potential theory[END_REF]Proposition 6.4.13] for assertion (i), in [START_REF] Adams | Function spaces and potential theory[END_REF]Proposition 6.4.12] for assertion (ii), in [START_REF] Adams | Function spaces and potential theory[END_REF]Proposition 6.4.9] for assertion (iii) and in [START_REF] Adams | Function spaces and potential theory[END_REF]Proposition 6.4.11] for assertion (iv). Assertions (v)-(viii) are classical in the theory of capacities as exposed in the same book. Proposition 5.13 Assume q ≥ q c . (i) Every T q -closed set is T q -quasi closed.

Proposition 5.19 I-Any family D of T q -open sets contains a countable subfamily D ′ whose union differs from the union of the sets of the whole family D by a set with zero cap 2 q ,q ′ -capacity. II-Let F be a bounded T q -open set and let D be a covering of F consisting of T q -open sets. Then, for every ǫ > 0 there exists an open subset O ǫ of F such that cap 2 q ,q ′ (O ǫ ) < ǫ and F ∩ O c ǫ is covered by a finite subfamily of D. III-Let F be a T q -open set. Then for any ξ ∈ F there exists a T q -open set Q ξ such that

Proof. Assertion I is the quasi-Lindelöf property, see [1, 6.5.11]. The second assertion is a consequence of the quasi-Lindelöf property and is proved in [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF]Lemma 2.5] and the last assertion is a consequence of the fact that any point in F is a T q -thin point of F c and is proved in [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF]Lemma 2.7] using the definition.

Approximations in Besov spaces

Lemma 5.20 Let U ⊂ R N be a T q -open set and z ∈ U . Then there exists a function f in B 2 q ,q ′ (R N ) with support in U such that f (z) > 0. In particular, there exists a bounded T q -open set V such that V ⊂ U .

Proof. The result is clear if z is an interior point of U with respect to the Euclidean topology. Thus we assume that it is not the case. Since U is T q -open, U c is thin at z. By the assumption we have that z ∈ U c \ • U . By [1, p. 174] there exists an open set W such that z ∈ W ∩ W c and W is thin at z. We recall (see [1, Theorems 2.2.7, 2.5.6]) that for a Borel set E with positive cap 2 q ,q ′ -capacity, we define the Besov nonlinear potential of the capacitary measure µ E by

where G 1 q is the Bessel kernel in R N . By [1, Theorem 6.3.9] there holds

if we take for E the set B r (z) ∩ W for r > 0 small enough. By [1, Theorem 6.3.9] we have V µ E ≥ 1-T q -q.e. on B r (z) ∩ W , and by [1, Theorem 2.6.7]

This implies that for r > 0 small enough there holds

Now let H be a smooth nondecreasing function defined on R, such that H(t) = 0 for t ≤ 0 and

satisfies the requirements of the Lemma.

Lemma 5.21 Let U be a T q -open set and z ∈ U . Then there exists a T q -open set V , such that z ∈ V ⊂ U , and a function ψ ∈ B 2 q ,q (R N ) such that 0 ≤ ψ ≤ 1, ψ = 1 q-a.e. on V and ψ = 0 in U c . Proof. We keep the notations of Lemma 5.20 and assume that z is not interior to U . Let µ be the capacitary measure of B r (z) ∩ U with (up to changing r),

By [1, Proposition 6.3.10] V µ is quasi continuous, hence there exists a T q -open set W which contains z such that

Lemma 5.23 Assume q ≥ 2. Let K be a compact set and U a T q -open set containing K. Let {U j } be a sequence of T q -open subsets of U covering U up to a set of zero Z of zero cap 2 q ,q -capacity.

(5.9)

2-If u is a signed function, and since q ≥ 2, u ± belongs to B 2 q ,q ′ (R N ). The existence of the {u k,j } is replaced by existence of {u k,j,± }. Estimate (5.8) is replaced by

(5.10) estimate (5.9) remains valid with u k,j replaced by u k,j,+u k,j,-.

Proof. We can assume that U and U j are bounded. For any j, k there exists an open set

, and for j ≥ 1, the sets

Theorems 2.5.6, 2.6.7] and there holds

for some C = C(N, q) > 0. Let H be a smooth nondecreasing defined on R + function such that H(t) = 1 for t ≥ 1 and

(5.11)

For k ∈ N * fixed, there exist open balls B k,j,i such that

B k,j,i . 

Now we consider functions w

We write u ≈ G 0. We denote by U G (Q T ) the subset of u ∈ U + (Q T ) which vanish in the previous sense on G.

The following result is obvious.

If G is an open subset, this notion coincides with the usual definition of vanishing, since we can take a test function

(5.39)

Proof. Let u and η be as in the statement of the lemma, h = H[η] and φ(r) :

Inequality (5.39) is a consequence of (5.19).

Lemma 5.36 Let G ⊂ R N be a T q -open set. Then there exists a nondecreasing sequence

Proof. We recall that by definition, u = sup{v :

If u 1 and u 2 belong to U G (Q T ), then u 1 + u 2 is a supersolution of (3.13) which vanishes on G. Hence u 1 ∨ u 2 is a solution smaller than u 1 + u 2 , hence u 1 ∨ u 2 ∈ U G (Q T ). By Proposition 5.6, there exists an increasing sequence {u n } ⊂ U G (Q T ) which converges to u.

As in (5.21) {u q n φ(h)} and {u n (x, T )φ(h)} are uniformly bounded in L 1 (Q T ) and L 1 (R N ) respectively, and by Fatou's theorem u q n φ(h 

and the right-hand side tends to 0 as |E| → 0 since u q n φ(h) ≤ u q φ(h) ∈ L 1 (Q T ). By Vitali's convergence theorem, we infer that

Definition 5.37 (i) Let u ∈ U + (Q T ) and let A denote the union of all T q -open sets on which u vanishes. Then u ∈ U A (Q T ) and A c is called the precise initial support of u, denoted by T q -supp(u).

(ii) Let F ⊂ R N be a Borel set, we denote by U F the maximal element of U F c (Q T ).

Note that by definition U F = U F .

(5.43)

Maximal solutions

If µ is a q-admissible measure, i.e. µ is absolutely continuous with respect to cap 2 q ,q ′ , u µ denote the solution of (3.13) in Q ∞ with initial data µ.

Definition 5.38 If E is a Borel set with positive cap 2 q ,q ′ -capacity, we set

We recall that we have proved in Section 3 the following result due to Marcus and Véron [START_REF] Marcus | Capacitary estimates of positive solutions of semilinear parabolic equations with absorbtion[END_REF].

By the Kellogg's result in Proposition 5.9,

and the result follows.

Proposition 5.41 Let E and F be Borel sets.

(5.44)

(iv) Let A be a T q -closed subset of R N and u ∈ U + (Q T ). Assume that for any σ ∈ A there exists a T q -open subset A σ of R N containing σ and contained in A such that u ≈ Aσ 0.

Then u vanishes on A. In particular any u ∈ U + (Q T ) vanishes on the complement of the T q support of u.

Proof.

(iv) First we assume that A = ∪ n A n where A n is T q -open and u ≈ An 0 for every n. Then, for every k ∈ N * , u vanishes on ∪ k n=0 A k , and we can assume that the sequence {A k } is Theorem 5.43 If E is a T q -closed set, then V E and U E satisfy the same capacitary estimates as if E were a closed set. Hence V E = U E and therefore U E is σ-moderate.

Proof. The proof follows [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF]Theorem 3.10] If {E k } is a proper q-stratification of E and µ is a bounded nonnegative measure belonging to B -2 q ,q (R N )} and satisfying µ(E c ) = 0, then

Therefore V E = sup n V En . By Marcus-Véron's theorem (Section 3),

Note also that if W E k is the capacitary potential defined by (4.6) with F replaced by E k . Hence

Then by the Lebesgue convergence theorem (applied to series) W En (x, t) → W F (x, t).

Hence if E is just T q -closed set U E satisfies the same capacitary quasi-representation as if it were closed and given in Theorem 4.8 and Theorem 4.21.

The local restrictions

The local restrictions are key processes compatible with the supercritical range. They roughly consist in truncating a solution u of (3.13) outside a Borel set A c . More precisely, Definition 5.44 Let A be a Borel subset of R N . We denote by [u] A the supremum of the v ∈ U + (Q T ) which are smaller than u and vanish on A c . Equivalently [u] A = u ∧ U A , that is the largest solution smaller than the subsolution inf{u, U A }.

The following result is an immediate consequence of the fact that

Proof. Set A = G c and {A n } be a nondecreasing sequence of closed subsets of A such that cap 2 q ,q ′ (A ∩ A c n ) → 0 as n → ∞. By Proposition 5.42, there holds

By Proposition 5.39, U A∩A c n → 0 as n → ∞. Therefore u ∧ U A∩A c n converges also to 0, and

which implies the claim.

In the next result we analyse the regularity of the correspondence

(5.47)

and

(5.49)

Proof. Mutatis mutandis the arguments we use are very similar to the ones in [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF], but we keep them for the sake of completeness.

(i) Let D = {D} be the family of all open sets containing E as in (5.47). Using the first equality of (5.45), we have

(5.50)

The reverse inequality is clear.

For the second equality, let {F n } be a nondecreasing sequence of compact subsets of

We also denote by v 2 j and v 3 j the solution of (3.13

The proof follows from Lemma 5.46 and Proposition 5.41-(i).

(ii) Let us assume that u ≈ A v, then

This can be proved as follows: we first have (5.53) and (5.60), we deduce that

By Lemma 5.18-I, there exists a decreasing sequence {Q j } of open sets such that ∩ j Q j ∼ q F . Then by Proposition 5.42-(iii) there holds

To prove the reverse implication, we assume that

By Proposition 5.25 and Proposition 5.26,

.21, we can assume that the above function η has its values in [0, 1], with T q -support in Q and value 1 on a

(5.65)

(5.66) (i) There exists an increasing sequence of

) such that ψ = 1 q.a.e. on V , ψ = 0 outside Q and 0 ≤ ψ ≤ 1. By Lemma 5.17 there exists a

We claim that the function

Corollary 5.60 Let Q be T q -open set and u ∈ U + (Q T ) satisfying (5.66) for any T q -open and bounded subset of Q.

(i) There exists an increasing sequence of

(5.75)

O is a moderate solution, we have

(5.76)

Proof. (i) Let u * denote the right-hand side of (5.75). By Proposition 5.6 there exists a nonndecreasing sequence {[u] Fn } such that F n is T q -closed and [u] Fn ↑ u * . By Proposition 5.47 we have

(5.77)

(5.80) By (5.77) and (5.79), if F is a T q -closed subset of R q (u), and [u] F is moderate

and (5.76) follows.

Since

Let {w n } be an increasing sequence of moderate solutions with F n := T q -supp (w) ⊂ q Q and w n ↑ u Q . We claim that if ν n := tr(w n ), then

(5.82)

Clearly ν ≤ µ Q . To prove the reverse inequality, let D be a T q -open set such that [u] D is moderate and K ⊂ D a compact set such that cap 2 q ,q ′ (K) > 0. Then

D has an initial trace tr (w n ] D ) := 1 D ν n which increases and converges to 1 D ν. Hence, 1 D ν is a Radon measure which vanishes on sets with zero cap 2 q ,q ′ -capacity. Hence

where u 1 D ν is the moderate solution with initial trace 1 D ν. Therefore

Notice that the left-hand side of the above inequality is a subsolution while the right-hand side is a supersolution. This implies

then, using the fact that

we obtain

Applying this series of inequalities to the sets Q m , Q m+1 , ..., we infer

Letting m → ∞ we deduce that µ Q = ν.

5.5.2 T q -perfect measures Definition 5.62 Let µ be a positive Borel measure on R N . (i) We say that µ is essentially absolutely continuous with respect to the cap 2 q ,q ′ -capacity if the following condition holds: If Q is a T q -open set and A a Borel subset such that cap 2 q ,q ′ (A) = 0, then

This relation is denoted by µ ≺ ≺ cap 2 q ,q ′ . (ii) We say that µ is regular with respect to the T q -topology if, for every Borel set E, there holds

and µ is outer regular with respect to the T q -topology if there only holds

(5.85) (iii) A positive Borel measure is called T q -perfect if it is essentially absolutely continuous with respect to the cap 2 q ,q ′ and outer regular with respect to the T q -topology. The space of T q -perfect Borel measures is denoted by M q (R N ).

If µ 0 is an essentially absolutely continuous positive measure in R N and Q is a T q -open set such that µ 0 (Q) < ∞, then µ 0 ⌊ Q is absolutely continuous with respect to the cap 2 q ,q ′capacity in the strong sense, that is for any sequence of Borel subsets

If µ 0 is an essentially absolutely continuous positive Borel measure on R N and if for every Borel subset of R N we denote

then µ is a Borel measure and

(5.88)

Proof. The first assertion follows from the definition of M q (R N ). Next, if µ 0 is essentially absolutely continuous and µ 0 (Q) < ∞ where Q is T q -open, then 1 Q µ 0 is a bounded Borel measure which vanishes on Borel sets with zero cap 2 q ,q ′ -capacity. If {A n } is a sequence of Borel sets that we can assume to be decreasing, such that cap 2 q ,q ′ (A n ) → 0 when n → ∞, and µ n = 1 Q∩An µ 0 , then by [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF]Lemma 2.8] there exists a unique moderate solution u µn with initial trace µ n . There holds u µn ≤ U Q∩An . Since cap 2 q ,q ′ (Q ∩ A n ) → 0, U Q∩An converges to 0 when n → ∞, and so does u µn . Then µ n → 0 in the weak topology of Radon measures, which implies that u µn → 0 locally uniformly in Q T . Therefore µ(Q ∩ A n ) → 0 which implies that µ 0 ⌊ Q is absolutely continuous with respect to the cap 2 q ,q ′ -capacity in the usual sense. At end, if A is a Borel set such that cap 2 q ,q ′ (A) = 0, then

Hence µ is essentially absolutely continuous. Using (5.88)-(i) and the definition of µ we infer that µ is outer regular with respect to the capacity cap 2 q ,q ′ . Hence µ ∈ M q (R N ).

The initial trace on the regular set

In the next propositions we study the initial trace of a positive solution u of (3.13) on the regular initial set R q (u) given in Definition 5.58 and we study the properties of the measure µ Rq(u) constructed by Proposition 5.59, Corollary 5.60 and Proposition 5.61.

Proposition 5.64 Let u ∈ U + (Q T ).

(i) There exists an increasing sequence of T q -open sets {Q n } with the following properties:

.89)

(ii) There holds

(5.90)

(5.91)

Finally µ Rq(u) is T q -locally finite on R q (u) and σ-finite on R q,0 (u).

(v) If {w n } is a sequence of moderate solutions such that w n ↑ u Rq(u) , then

(5.92)

(vi) The regularised measure μRq(u) defined for Borel sets

(viii) For every T q -closed set F ⊂ q R q (u),

[u] F = v Rq(u) F .

(5.94)

(5.95) (ix) If F is a T q -closed set with positive cap 2 q ,q ′ -capacity, whe have

With the previous notations and the construction of the sequence {Q n } in Proposition 5.59, we recall that

(5.97)

(ii) The proof has already been made in Proposition 5.61.

(iii) We assume firstly that F is bounded. Using the definition and (i), every point in R q (u) possesses a T q -open neighbourhood A such that [u] A is moderate. By Proposition 5.19-(II), for any ǫ > 0 there exists a

Let {V n k } be a subsequence such that

F is moderate and K is arbitrary it follows from the above inequality that [u] W is moderate, therefore W ⊂ R q (u) by Proposition 5.57.

(iv) Let Q be a T q -open set such that [u] Q is a moderate solution, and

In particular, if Q and Q ′ are regular sets in the sense of Definition 5.24, then

Using the notations of (i), we have

Let F be a T q -closed regular subset of R q (u). Since [u] F is moderate we have by (5.104) [

(5.105)

Furthermore, since we have

and v Rq(u) ≤ u, we infer

(5.106) It follows from (5.103) and (5.105) that if F is a T q -closed subset of R q (u) and [u] F is moderate that

which yields (5.91).

Finally, since R q (u) has a regular decomposition, µ Rq(u) is σ-finite on R q,?' (u). As for the claim that µ Rq(u) is T q -locally finite on R q (u) it is a consequence of the fact that every

If w is a moderate solution dominated by v Rq(u) and the T q -supp(w) ⊂ q R q (u) then τ := tr(w) ≤ µ Rq(u) . Now, let {w n } be an increasing sequence of moderate solutions such that F n := T qsupp(w n ) ⊂ q R q (u) and w n ↑ v Rq(u) . We claim that

(5.108)

By the previous argument, ν ≤ µ Rq(u) . In order to prove the opposite inequality, we proceed as follows: Let D be a T q -open set such that [u] D is moderate and let K be a compact subset of D with positive cap 2 q ,q ′ -capacity. Then

. Hence 1 D ν is a Radon measure which vanishes onBorel sets with zero cap 2 q ,q ′ -capacity. Also [w n ] D ↑ u 1 D ν , with the usual notation. Consequently v Rq(u) := lim

By the same argument as in the proof of Proposition 5.61-(ii) this yields

to obtain that

(5.109)

Applying this inequality to the couple of sets (Q m , Q m+1 ) we deduce that

Letting m → ∞ implies µ Rq(u) ≤ ν. This completes the proof of the claim (5.109) and assertion (v).

(vi) Since the measure µ Rq(u) is essentially absolutely continuous with respect to the cap 2 q ,q ′ -capacity, the claim follows from Proposition 5.63. (vii) For any n ∈ N, we have

(viii) The fact that [u] F = [v Rq(u) ] F for every T q -closed subset F ⊂ q R q (u) follows from assertion (vii). Next we assume that µ Rq(u) (F ∩ K) < ∞ for any compact set K and we set

is a Radon measure essentially absolutely continuous with respect to the cap 2 q ,q ′ -capacity, [u] F is moderate and (5.95) is verified.

Example There exist functions u ∈ U + (Q T ) such that R q (u) = R N which are not moderate solutions. We construct one of them as follows. Let η : [0, ∞) → [0, ∞) be a smooth function which is positive on (0, ∞), η k (0) = 0 for all k ∈ N (e.g. η(r) = e -r -2 ). We define the closed set K ⊂ R N by
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Then K is T q -thin at 0 for the capacity cap 2 q ,q ′ . We set

and define the measure µ = f dx.

Then the following properties hold:

q ,q ′ (F ) = 0. 4-There exists a non-decreasing sequence of bounded nonnegative Radon measures {µ n } absolutely continuous with respect to the cap 2 q ,q ′ -capacity such that (i)

5-We can construct a solution u of (3.13) such that R q (u) = R N and µ Rq(u) = µ.

We will prove later on that this solution is actually the unique one towhich has this initial trace since it is σ-moderate. Lemma 5.65 Let µ satisfy the conditions 1-4 above.Then there exists an open set R q ∼ q R N such that the measure µ is a Radon measure on R q .

Proof. By [46, Lemma 2.5] for any R > 1 and ǫ > 0 there exist a sequence of open sets {O m } and n(m) ∈ N * such that cap 2 q ,q ′ (O m ) < ǫ2 -m and

Jointly with (5.110) it implies that µ(B rx (x)) < ∞.

We set

The set R q is open and by letting R → ∞ and ǫ → 0, we obtain that R q ∼ q R N . By the definition of R q , for any compact set K ⊂ R q there holds µ(K) < ∞. Hence µ is a Radon measure in R q .

5.6 The precise initial trace

Definition and first properties

We can now define the precise initial trace of an element of U + (Q T ) in the supercritical case.

Definition 5.66 Let q ≥ q c and u ∈ U + (Q T ).

1-The function v Rq(u) defined in (5.90) is called the regular component of u and will be denoted by u reg . 2-Let {v n } be an increasing sequence of moderate solutions satisfying condition (5.89) and put µ Rq(u) := lim n→∞ tr(v n ). Then, the regularised measure µ Rq(u) , defined by (5.93), is called the regular initial trace of u. It will be denoted by tr Rq(u) (u).

3-The couple (tr Rq(u) (u), S q (u)) is called the precise initial trace of u and will be denoted by tr c (u). 4-Let ν be the Borel measure on R N given by

for every Borel set E ⊂ R N . Then ν is the measure representation of the precise trace of u and it is denoted by tr(u).

Remark. In the definitions of tr c (u) and tr(u), the exponent c stands forcouple, but the two objects are the same in their respective classes. Thanks to Proposition 5.64 the measure µ Rq(u) is independent of the choice of the sequence {v n }.

The next fundamental result is the parabolic version of the construction given in [START_REF] Marcus | The precise boundary trace of positive solutions of the equation ∆u = u q in the supercritical case[END_REF].

Theorem 5.67 Assume that u ∈ U + (Q T ) is a σ-moderate solution, and more precisely that there exists an increasing sequence {u n } of positive moderate solutions such that u n ↑ u and tr(u n ) = µ n . Set µ 0 = lim n→∞ µ n and define µ on Borel sets E ⊂ R N by

(5.112)

Then: (i) µ is the precise initial trace of u and µ is T q -perfect. In particular µ is independent of the sequence {u n } which appears in its definition.

.113)

This statement is equivalent to 

and

We can assume that the function η has value 1 in some T q -open set D ⊂ Q and 0 ≤ η ≤ 1 (see Lemma 5.21). If we let n → ∞, we obtain from the above relations

Then the assertion follows from Proposition 5.28.

In conclusion, we have proved that if ξ ∈ S q (u) and Q is a T q -open neighbourhood of ξ, then µ 0 ( Q) = ∞. By the outer regularity of µ with respect to the T q -topology, it means that µ(ξ) = ∞. Combined with (5.116) this implies that µ is the precise trace of u.

(5.117)

By expression (5.117) u * ≤ u. Since u is σ-moderate there exists an increasing sequence {u n } of moderate solutions which converges to u. For any n we have proved in the beginning of the Section on moderate solutions that given u n there exists an increasing sequence {u n,m } m∈N = {u µn,m } m∈N of elements of U + (Q T ) where µ n,m ∈ B

) and τ ≤ tr(u), then we have that tr(u τ ⊖ u n ) = (τµ n ) + and the corresponding sequence decreases to 0 when n → ∞. Therefore u τ ⊖ u n ↓ 0 which implies u τ ≤ u and thus u * * ≤ u. Consequently, (5.113) implies (5.114). This shows that the two identities which define σ-moderate solutions are equivalent. (iv) The implication =⇒ follows from (5.114). For proving the opposite implication, it is sufficient to show that if u is σ-moderate, w is moderate and w ≤ u, then tr(w) ≤ tr(u). For this task, we consider an increasing sequence of moderate solutions {u n } which converges to u. Then u n ∧ w ≤ u and consequently u n ≤ u n ∧ w ↑ u.. This implies tr(u n ∧ w) ↑ µ ′ ≤ tr(u). Hence tr(w) ≤ tr(u). This results extends Proposition 5.64 which deals with the regular initial trace. Theorem 5.68 Let u ∈ U + (Q T ) and ν = tr(u). (i) u reg is σ-moderate and tr(u reg ) = tr Rq(u) (u).

)

(5.119) (iii) A singular point of the trace can be characterized in terms of the measure ν as follows:

(5.120)

The singular set of u reg may not be empty. Actually

where b q (S q (u)) is the set of thick points of S q (u) for the T q -topology.

(vi) Put S q,0 (u) := ξ ∈ R N : ν(Q \ S q (u)) = ∞ for all T q -neighbourhood of ξ .

(5.123)

Then S q (u reg ) \ b q (S q (u)) ⊂ S q,0 (u) ⊂ S q (u reg ) b q (S q (u)).

(5.124)

Remark. We will prove later on that any element of U + (Q T ) is σ-moderate. Hence implication (5.118) is actually an equivalence.

Proof. The first part of assertion (i) is proved in Proposition 5.64-(i) and the fact that u reg = v Rq(u) . The second part follows from Definition 5.66 and Theorem 5.67-(i).

(ii) If v ≤ u, then R q (u) ⊂ R q (v) and by definition v reg ≤ u reg . By Theorem 5.67-(iv) we have tr(v reg ) ≤ tr(u reg ). This implies tr(v) ≤ tr(u). Inequality (5.119) is a consequence of (5.118).

(iii) If ξ is a regular point, there exists a

. By Proposition 5.64-(ix) we obtain the implication =⇒ in (5.121). Conversely,

Because T q -supp (u reg ) ⊂ R q (u) and R q (u) ⊂ R q (u reg ), we have S q (u reg ) ⊂ S q (u) ∩ R q (u).

Next we prove that S q (u) \ b q (S q (u)) ⊂ S q (u reg ).

If ξ ∈ S q (u) \ b q (S q (u)), then R q (u) ∪ {ξ} is a T q -open neighbourhood of ξ. By (i) u reg is σ-moderate and thus its trace is T q -perfect (see Theorem 5.67)

where, it the last inequality, we have used the fact that

D is moderate and ξ ∈ R q (u, contrary to our assumption. Therefore tr(u)( Q \ {ξ}) = ∞ which implies tr(u reg )(Q 0 \ {ξ}) = ∞ for every bounded T q -open neighbourhood Q 0 of ξ, and consequently ξ ∈ S q (u reg ), which ends the proof of (v).

(vi) If ξ / ∈ b q (S q (u)) there exists a T q -open neighbourhood D of ξ such that (D \ {ξ}) ∩ S q (u) = ∅, and thus

(5.125)

Furthermore, if we assume that ξ ∈ S q,0 (u), then

If Q is an arbitrary T q -open neighbourhood of ξ, then the same relation holds if D is replaced by D ∩ Q. Therefore tr(u reg )(Q \ {ξ} = ∞ for any such Q. This implies that ξ ∈ S q (u reg ) and S q,0 (u) \ b q (S q (u)) ⊂ S q (u reg ).

On the other hand, if ξ ∈ S q (u reg ) \ b q (S q (u)), there exists a T q -open neighbourhood D of ξ such that (5.125) holds and tr(u reg )(D) = ∞. Since u reg is σ-moderate tr(u reg ) is T q -perfect, which infers tr(u reg )(D) = tr(u reg )(D \ {ξ}) = ∞. Using (5.125) we obtain that tr(u)(D \ S q (u)) = ∞. At end, if Q is T q -open neighbourhood of ξ, then D can be replaced by D ∩ Q, which yields tr(u)(Q \ S q (u)) = ∞. This proves that ξ ∈ S q,0 (u) and ends the proof of (5.125).

Proposition 5.69 Let F be a T q -closed set. Then S q (U F ) = b q (F ).

Then a solution of (5.128) is given by u = v ⊕ U F where

(5.131)

(iv) The solution u := v ⊕ U F is σ-moderate and it is the unique solution of problem (5.128) in the class of σ-moderate solutions. Furthermore u is the largest solution of this problem.

Remark. 1-We recall that if E ∈ E ν then 1 E ν is a locally bounded Borel measure which does not charge sets of cap 2 q ,q ′ -capacity zero. Recall also that if µ is a positive measure possessing these properties, then u µ denotes the moderate solution with initial trace µ. 2-We will see later on that u := v ⊕ U F is the only solution to problem (5.128) since every solution happens to be σ-moderate.

Proof. (I) If

(5.132) By Proposition 5.64, u reg is σ-moderate and u ≈ Rq(u) u reg . Therefore

By Theorem 5.67

where the second equality holds by definition. Actually, by Theorem 5.68, for every

for some set A with cap 2 q ,q ′ (A) = 0 and for every compact set K ⊂ R N . Hence, by Proposition 5.64-(ix), E is regular, in the sense that there exists a T q -open regular set such that E ⊂ q Q. Hence u 1 E ν ≤ [u] Q . This implies that v ≤ u reg , which proves (5.133). Furthermore, if E ∩ S q (u) = ∅, then ν(E) = ∞ by Definition 5.66. Therefore ν is outer regular with respect to the T q -topology.

Next we prove that ν is essentially absolutely continuous (cf. Definition 5.62-(iii)). Let Q be a T q -open set and A a non-empty

we have by the definition of ν and Proposition 5.64-(ix) that [u] En is moderate. Using Lemma 5.18, Lemma 5.17-(ii) and [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] there holds

This implies that [u] D is moderate and thus D ⊂ R q (u). Therefore, since every point A has a neighbourhood D as above, we conclude that A ⊂ R q (u) and hence ν(A) = tr Rq(u) (u)(A) = 0. If A is any a non-empty Borel subset of Q such that cap 2 q ,q ′ (A) = 0, we use the inequality cap 2 q ,q ′ ( A) ≤ Ccap 2 q ,q ′ (A) to conclude that ν is absolutely continuous and hence ν ∈ M q (R N ).

Next we prove: (II) Suppose that (τ, F ) ∈ C q (R N ) satisfies (5.129) and put ν = T(τ, F ). Then the solution u := v ⊕ U F with ν as in (5.131) satisfies tr(u) = ν. Notice that implies ν ∈ M q (R N ) by (5.131).

The solution v is σ-moderate by construction. Since τ is locally T q -finite in F c and essentially absolutely continuous with respect to cap 2 q ,q ′ we have that

Therefore, it follows from the definition of v that F τ ⊂ S q (v). By Proposition 5.69 and Theorem 5.68-(iv) we have that

Hence F = S q (u), v = u reg and τ = tr(u reg ). In turn, this implies tr(u) = (τ, F ), which is equivalent to τ = tr(u).

Then we prove: (III) Suppose that (τ, F ) ∈ C q (R N ) and that there exists a solution u such that tr c (u) = (τ, F ) (see Definition 5.66 for the definition of tr c ). Then τ = tr Rq(u) (u) = tr(u reg ) and F = S q (u).

(5.136)

If U := u reg ⊕ U F , then tr(U ) = tr(u) and u ≤ U . U is the only σ-moderate solution of (5.128) and (τ, F ) satisfies (5.129). Assertion (5.136) follows by Proposition 5.64-(i). and Definition 5.66. Since u reg is σ-moderate, we have that τ ∈ M q (R N ) by Theorem 5.67. By Proposition 5.64-(vi) there holds u ≈ Rq(u) u reg . Therefore the function w := u⊖u reg which vanishes on R q (u) is dominated by U . Note that uu reg ≤ w and therefore u ≤ u reg ⊕ w ≤ U.

(5.137) By defintion, S q,0 (u) = F τ and by Theorem 5.68(vi) and Proposition 5.69 we have

On the other-hand R q (U ) ⊃ R q (u Rq(u) ) = R q (u). As u ≤ U we have R q (U ) ⊂ R q (u). Hence R q (U ) = R q (u) and S q (U ) = S q (u). Therefore, by (5.135), (5.137),

This implies that (τ, F ) satisfies (5.129) and tr c (u) = (τ, F ). That U is the maximal solution with this trace follows from (5.137).

The solution U is σ-moderate because u reg and U F are σ-moderate (see Theorem 5.43).

Finally we prove:

(see (5.130) for the definition of E ν ) satisfies (5.129). This is the only couple belonging to C q (R N ) satisfying ν = T(τ, F ). The solution v is σ-moderate so that τ ∈ M q (R N ).

We first prove that u := v ⊕ U F is a solution with initial trace tr(u) = (τ, F ). Actually u ≥ v, so that R q (u) ⊂ R q (v). On the other hand, since τ is T q -locally finite in R q (v) = F c , it follows that S q (u) ⊂ F . Therefore R q (v) ⊂ R q (u), and finally R q (u) = R q (v) and F = S q (u). This also implies v = u reg .

At end

S q (u) = S q (v) b q (S q (U F )) = b q (F ) F, which means that (5.129) holds.

That for ν ∈ M q (R N ) the couple (τ, F ) defined by (5.129) is the only one couple belonging to C q (R N ) satisfying ν = T(τ, F ) is a mere consequence of their expression in Definition 5.70.

Finally, statements (i)-(iv) follow from (I)-(IV).

Remark. If ν ∈ M q (R N ) then G and v as defined by (5.131) have the following alternative representation:

where
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In order to prove (5.140) we first observe that if A is a T q -open set, then there exists an increasing sequence of T q -quasi closed sets {E n } such that A = ∪ ∞ 1 E n . This follows from Lemma 5.18-(II-i-ii) with E n = F n \ L where L = A ′ \ A and cap 2 q ,q ′ (L) = 0. Thus

On the other hand, if

. By Proposition 5.64 (ix), E is regular in the sense that there exists a

where {E n } is an increasing sequence of T q -quasi closed sets. This implies

However, if E ∈ E ν there exists a T q -open regular set Q such that E ⊂ q Q. This implies the inequality in (5.140).

Representation of positive solutions of ∂

In this section we prove a general representation theorem for positive solutions of

where

for some positive constant. Our results are the parabolic counterpart of Ancona's results [START_REF] Ancona | Negatively curved manifolds, elliptic operators and the Martin boundary[END_REF] concerning representation of positive solutions of We recall first some well-known facts concerning weak solutions of (5.142).

Definition 5.72 Let µ ∈ M(R N ). We say that u is a weak solution of

and there holds

where

Note that this definition implies that the function u admits the measure µ as an initial trace as described in Section 2. The next result is an easy adaptation of the techniques developed in Section 2.

Lemma 5.73 Let µ ∈ M + (R N ) and assume that there exists a positive weak solution u of problem (5.146) where V satisfies (5.145). Then for any smooth bounded domain Ω there exists a unique positive weak solution v = v Ω of problem

(5.148) Furthermore 0 ≤ v Ω ≤ u and the mapping Ω → v Ω is nondecreasing.

Proof. Let ǫ n be a sequence converging to 0 and v n the solution of

in Ω.

(5.149) Such a solution exists since u(., ǫ n ) ∈ L 1 (Ω) and it satisfies 0 ≤ v n ≤ u in Ω × (ǫ n , T ). By classical parabolic regularity estimates we may assume that the sequence {v n } converges locally uniformly in Q Ω T to a nonnegative function v dominated by u.

, then from (5.148), and assuming that ǫ n ≤ δ we have

(5.150)

we deduce from the dominated convergence theorem that the left-hand side of (5.150) converges to for all (x, t, y, s) ∈ Q T × Q T with a 1 ≥ a 2 > 0 depending on T , N and M 2 , and such that v admits the following representation v(x, t) = R N Γ(x, t; y, 0)dµ(y), (5.159) where µ is the initial trace of u obtained in Lemma 5.75. Furthermore there holds

Note that if the initial trace of u is a function u 0 such that e -γ|x| 2 u 0 (.) ∈ L 2 (R N ) for some γ > 0 and u 0 is continuous at some x ∈ R N then lim t→0 R N Γ(x, t; y, 0)u 0 (y)dy = u 0 (x).

(5.160)

Finally, we have the representation u(x, t) = e ψ(x,t) R N Γ(x, t; y, 0)dµ(y).

(5.161)

5.8 σ-moderate solutions

The Marcus approach

In this paragraph we adapt to the parabolic framework the construction in [START_REF] Marcus | Complete classification of the positive solutions of -∆u + u q = 0[END_REF] used for characterising, by mean of their precise boundary trace, all the positive solutions of -∆u + u q = 0 in Ω (5.162) in a smooth bounded domain Ω.

(5.163)

Proof. From Proposition 5.64-(ii) the function v = u ⊖ u Rq(u) has it T q -support included in S q (u) since its vanishes on R q (u). Furthermore v ≤ u, hence v ≤ [u] Sq(u) . Therefore u-u Rq(u) ≤ v, which implies u ≤ u Rq(u) +[u] Sq(u) . The left-hand side inequality in (5.163) follows by the construction of u Rq(u) and the definition of [u] Sq(u) .

Proposition 5.77 

and T q -supp (τ n ) ⊂ q A while T q -supp (τ ′ n ) ⊂ q B (see Proposition 5.49). Thus

Moreover, by Proposition 5.42-(ii) and Definition 5.50,

(5.165)

which means that u is σ-moderate.

By definition of the operations ⊕ and ∨, identity (5.164) admits the following equivalent formulation; (a) u is the largest solution dominated by

† is defined in the notations (e) in Section 4.1. This implies that T q -supp (ν) ⊂ A and T q -supp (ν) ⊂ B. S q (u) = S q (w).

As a consequence any regular T q -open regular subset Q ⊂ R q (w) is included into R q (u). Using now Proposition 5.42-(ii) and the fact that the T q -support of w is included into 

where F is defined in (5.131). Since σ-moderate solutions are uniquely defined, w and u coincide. Hence the result follows from (5.165) and (5.166) by letting n → ∞.

Characterization of positive solutions of ∂

where V satisfies estimate (5.143) with C = (q -1)

q-1 . The function u belongs to C 2;1 (Q T ) and there exists a nonnegative Radon measure µ in R N such that the following representation formula holds: u(x, t) = e ψ(x,t) R N Γ(x, t; y, 0)dµ(y) for all (x, t) ∈ Q T , (5.169) where ψ is the solution of (5.153) expressed by (5.154). The measure µ is called the extended initial trace of u.

The next result is fundamental and points out the importance of the function (u) E .

Lemma 5.78 Let F ⊂ R N be compact, then

.170)

Proof. Let A ⊂ R N be a Borel set and 0 < β ≤ T 2 . We denote by v A β the solution of 

). The result follows from (5.177).

In the next result we prove that the extended initial trace of a positive solution of (3.13) is absolutely continuous with respect to the cap 2 q ,q ′ -capacity. Proposition 5.79 Let u ∈ U + (Q T ) and µ be its extended initial trace as defined in (5.169). Then µ(E) = 0 for any Borel set E ⊂ R N such that cap 2 q ,q ′ (E) = 0. Proof. If K is a compact set satisfying cap 2 q ,q ′ (K) = 0, then U K = 0 by Corollary 5.40. Therefore [u] K = u ∨ U K = 0. Consequently, by Lemma 5.78 (u) K = 0 and µ(K) = 0. Since this holds for any such K, it also holds for E by outer regularity.

We recall that for any ν ∈ B

.

(5.178) Proposition 5.80 Let u ∈ U + (Q T ), µ be its extended initial trace and ν ∈ B -2 q ,q (R N ) ∩ M b + (R N ). Suppose that there exists no positive solution of (3.13) dominated by v = inf{u, H[ν]}. Then µ and ν are mutually singular, that we denote µ ⊥ ν.

(5.179)

We first prove by contradiction that there exists no positive solution of (5.179) dominated by v. Indeed, if such a solution w of this equation does exist, there holds

Because of (5.178) the function w is a moderate solution of (3.13) dominated by v, contrary to the assumption. Next, we have a representation formula valid in Q T where we use Aronson's estimates 5.157 and the constants a 2 and C from this inequality, inf{u,

We notice that

is a supersolution of the equation ∂ t w -1 max{a 2 ,1} ∆w = 0, therefore there exists a nonnegative Radon measure ν in R N such that

(5.180) By Lemma 5.74 and Lemma 5.75 there exists a positive solution ṽ ≤ v of the initial value problem

By the first claim it yields ν = 0. By the Radon-Nikodym theorem there exists a positive measure σ and a Borel function θ ∈ L 1 (R N , µ) such that σ ⊥ µ and ν = θµ + σ. Therefore if H is the heat kernel in Q ∞ , we obtain 0 = lim Proof. . As in the previous lemma, the proof is an adaptation to the parabolic framework of the construction in [START_REF] Marcus | Complete classification of the positive solutions of -∆u + u q = 0[END_REF]. By the previous lemma,

Suppose now that µ = 0, then by Lemma 5.78 µ vanishes on Borel sets E ⊂ R N such that cap 2 q ,q ′ (E) = 0. Therefore, there exists an increasing sequence {ν k } ⊂ M b + (R N ) ∩ B -2 q ,q ′ (R N ) which converges to µ. Therefore µ ⊥ ν k and for every k ∈ N there exists a Borel set A k ⊂ R N such that µ(A k ) = 0 and ν k (A c k ) = 0.

If we denote A = ∪ k A k , then µ(A) = 0 and for all integer k, ν k (A c ) = 0.

But since ν k ≤ µ we have also ν k (A) = 0 and thus ν k = 0 for all k, contradiction.

The next result is fundamental.

Proposition 5.82 Let u ∈ U + (Q T , then [u] Sq(u) is σ-moderate.

Proof. We simplify the notations in setting u S = [u] Sq(u) (there will be no ambiguity), and we denote F = T q -supp (u S ). Then F ⊂ S q (u). We know that if S q (u) is thin at ξ, then S q (u) c ∪ {ξ} is T q -open and S q (u) c ∪ {ξ} ∼ q S q (u) c . Since F is the T q -support of u S we see that F consists exactly in the set of cap 2 q ,q ′ -thick points of S q (u), and therefore S q (u) \ F is contained in the singular set of u Rq(u) .

q ,q ′ (R N ) and u ν is the solution of (3.13) with initial trace ν we put u * := sup u ν :

(5.181)

By the previous lemma, u * do exist since some elements u ν of this family exist. Also u * is σ-moderate by Theorem 5.67-(iii). Therefore u * is the largest σ-moderate moderate solution of (3.13) dominated by u S . Let

q ,q ′ (R N ) be an increasing sequence such that u ν k ↑ u * .

Let F * be the T q support of u * , then F * is T q -closed and included in F . Let us assume that cap 2 q ,q ′ (F \ F * ) > 0, then there exists a compact set E ⊂ F \ F * such that cap 2 q ,q ′ (E) > 0 and (F * ) c := Q * is T q -open and contains E. By Lemma 5.17 there exists a T q -open set Q ′ such that E ⊂ q Q ′ ⊂ Q ′ ⊂ q Q * . Because Q ′ ⊂ q T q -supp (u S ), [U S ] Q ′ > 0 and by Proposition 5.79 there exists a positive bounded measure τ ∈ B -2 q ,q ′ (R N ) with support in Q ′ such that u τ ≤ u S . As the T q -support of τ is a T q -closed set disjoint from F * , the inequality u * ≥ u τ cannot hold. However since τ ∈ M b + (R N ) ∩ B -2 q ,q ′ (R N is such that u τ ≤ u S , it follows that u ≤ u * , which is a contradiction. Hence cap 2 q ,q ′ (F \ F * ) = 0. Since u ν k ↑ u * , the T q support of ν k is contained into the T q support of u * which is F * . Therefore there exists a T q -closed set F * 0 contained into F such that S q (u * ) = F * 0 and R q (u * ) = (F * 0 ) c . Suppose now that cap 2 q ,q ′ (F \ F * 0 ) > 0, and let Q ′ be a T q -open set contained into R q (u * ) such that [u S ] Q ′ is a moderate solution of (3.13). Then Q ′ ⊂ q R q (u * ) and [u * ] Q ′ is a moderate solution too, thus

On the other hand Q ′ is a T q -open subset of F which is the T q support of u S . Consequently the initial trace of [u * ] Q ′ has no regular part, that is

In such a case we call [u * ] Q ′ a purely singular solution of (3.13).

is a purely singular solution too. Let v * be defined as in expression (5.181) with u S replaced by v. Then v * is a singular σ-moderate solution of (3.13). As it is dominated by u and σ-moderate, it is smaller than u * . Now, T q -supp( v * ) ⊂ q Q ′ ⊂ q R q (u * ), therefore u * cannot be larger or equal to v * , hence (v *u * ) + is not identically zero. Since both u * and v * are σ-moderate, it follows that there exists a nonnegative bounded measure τ ∈ B -2 q ,q ′ (R N ) such that u τ ≤ v * and (u τu * ) + is not identically zero, and obviously that u * ≤ max{u τ , v * }. The function max{u * , u τ } is a nontrivial subsolution of (3.13) and there exists a smallest solution Z above it, which also strictly larger than u * . However u τ ≤ v * ≤ u * and thus u * = Z, contradiction. As a consequence cap 2 q ,q ′ (Q ′ ) = 0 for any T q -open set included in R q (u * ) such that [u * ] Q ′ is a moderate solution. Hence cap 2 q ,q ′ (F \ F * 0 ) = 0.

(5.182)

In conclusion u * is σ-moderate, T q -supp (u * ) ⊂ F and F * 0 = S q (u * ) ∼ q F . Therefore, by Proposition 5.71 and the remark which follows u * = U F . Since by definition (5.181) u * ≤ u S ≤ U F it follows that u * = u S and thus u S is σ-moderate.

The following result is the icing on the cake of the precise trace theory.