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1 Introduction

If we consider a nonnegative C%! function (z,t) = u(x,t) satisfying a diffusion equation

Oy — A(u, Vu, D*u) + b(u, Vu) =0 (1.1)

in Q7 := RY x (0,T), a natural question is to understand what are the data on which
the function depends, besides the structural assumptions on the functions A and B. One
important approach is to associate to this function a general notion of initial value that
we call the initial trace problem. The initial trace problem is two-fold:

1- Is it possible to define in a suitable way the limit value of u(.,t) when ¢ — 0 7 This
limit, whenever it exists, is called the initial trace of u, noted tr (u). In most cases it is
an outer regular nonnegative Borel measure in RY.

2- Given an outer regular nonnegative Borel measure v in RY, is it possible to find a



nonnegative solution u of (1.1) in Qp such that ¢r (u) = v ? This step requires a sharp
study of the possible initial traces.

3- Is the correspondence between the set of initial traces v and the set of positive solutions
of (1.1) in Q7 one-to-one 7 More simply, is a positive solution defined in a unique way by
its initial trace.

In this formulation A is a real valued Caratheodory function defined in R x RY x MM (R)
and B a real valued Caratheodry function defined in RV x R.

In this full generality the problem is hard to analyse except for the mere diffusion
equation

Oyu — A(u, Vu, D*u) = 0, (1.2)

where the two cases of the porous-media equation (with A(u, Vu, D?*u) = Au™) and
the p-Laplace diffusion equation (with A(u, Vu, D?u) = div(|Vu[P~2Vu)) are fairly well
understood. In these cases the initial trace is a nonnegative Radon measure with some
growth at infinity. When the equation contains a reaction term, the situation is completely
changed, even in the mere case where A(u, Vu, D?u) = Au.

Ou — Au + b(u, Vu) = 0. (1.3)

The sign of the reaction term plays an important role. Surprisingly the question of iden-
tifying the initial trace of a solution of (4.161) is much easier if b(u, Vu) is nonpositive,
e.g. b(u,Vu) = —uf. In that case the function u is super-caloric and it always admits
an initial trace in the class of nonnegative Radon measures in RY. The second question
of reconstructing the solution from its initial trace is more involved, and the associated
question of uniqueness is even deeper. In this paper we will concentrate on the case where
the perturbation term is a nonlinear power term under the form

b(u, Vu) = eu? (1.4)

where ¢ = 1. The first easy to prove results dealing with the the case e = —1 and ¢ > 0,
or e =1and 0 < ¢ <1 is the following.

Theorem 1 Lete =—1 and ¢ >0 ore=1 and 0 < g < 1. Ifu is a nonnegative solution
of (1.3) in Qr there exists a nonnegative Radon measure p in RN such that

im [ ua, )¢ ()de = /

Cdu(z)  for all ¢ € C°(RM). (1.5)
t—0 JpN RN

The problems arising from the study of the model case
O — Au+ |[ul'u=0 in Qr, (1.6)

is now fairly well understood after the initial work of Marcus and Véron [43] who put
into light that the initial trace has to be understood in the sense of Borel measures and
the exhaustive study of the supercritical case by Marcus and Véron [45] and Gkikas and



Véron [31], [32]. Note that this study followed the very complete analysis of the boundary
trace of positive solutions of
—Au+u?=0 1in Q, (1.7)

which was carried on by Marcus and Véron [45], [46] and concluded by Marcus in the
remarkable paper [41] to which the construction of Gkikas and Véron [32] that we will
developed thoroughly in the sequel is much indebted.

Concerning (1.6), Marcus and Véron pointed out the key role of the critical exponent
e =1+ % and showed that the analysis is very different according to the position of ¢
with respect to g. Their starting result concerning this equation is the following

Theorem 2 Let ¢ > 1 and u is a positive solution of (1.5) in Qr. Then there exist a
closed set S C RN and a nonnegative Radon measure ju in R := RN \' S such that,

(1) For any ¢ € C°(R) there holds

lim u(z,t)(z)dr = Cdu(x). (1.8)
t—0 JrN RN

(ii) For any y € S and any € > 0, there holds

lim u(z,t)dr = oo. (1.9)
t—0 Be(y)

The set S := Sing(u) (resp. p := p(u)) is called the singular (resp. regular) part
of the initial trace of u. Conversely we have an existence and uniqueness result in the
subcritical case.

Theorem 3 Let 1 < q < q.. Then for any couple (S,u) where S is a closed subset of
RN and pu a nonnegative Radon measure in R := RN \' S, there exists a unique positive
solution u of (1.5) in Qoo := RY x (0, 00) with initial trace (S, ).

When ¢ > g, not every measure is admissible for being the measure part of the initial
trace of a positive solution of (1.5), neither every closed set can be the singular part. To

answer this question it is necessary to introduce the Riesz (%, q')-capacity of a Borel set

E Cc RV,

o o —y|¥ T

R () { [y e cr@Moscsics } (110)
R

This capacity plays a fundamental role since Baras and Pierre proved in [9], [8] two fun-
damental results which assert that

A Borel set S C RY is a removable singularity for any solution u of (1.5) in Qs :
RN x (0,00) which is continuous in Q. \ (S x {0}) if and only if
R>

/
qu

(S) = 0. (1.11)



Similarly there exists a solution u of (1.6) in Qo such that u(.,0) = p, where yu is a
bounded measure in RN if and only if

If S ¢ RY is a Borel set, R%q,(S) =0 = |u(S)| =0. (1.12)

For the sake of completeness, we sketch a proof in Theorem 3.12. Note that the bounded-

ness assumption on p is not necessary.
If R ¢ RY is open, we denote by M, (R) the space of Radon measures p in R satisfying

If S C R is a Borel set, R%q,(S) =0=|u(S)] =0. (1.13)

The positive cone of this space is denoted by DJI;IF (R).

If S € RV is closed and p is a positive Radon measure in S¢ we define
S ={y € S: u(B(y) NS = o0, Ve > 0}, (1.14)
which is the set of blowing points of the measure, and

S* {y €8 iz y(Bly)NS) >0, Ve > o} , (1.15)

which is the set of intrinsically non-removable points of S.

Theorem 4 Let q > q.. A couple (S, 1) where S is a closed subset of RN and pu € M (R)
where R := RN\S, is the initial trace of a positive solution u of (1.5) in Qs := RN x (0, 00)
if and only if S = 0,SUS*.

A striking aspect of the super critical case, i.e. ¢ > ¢, is that there exist infinitely
many solutions when § is not empty and the solution constructed in Theorem 2 is actually
the maximal solution with any initial trace (S,0). This has resulted in a finer definition of
the initial trace called the precise trace. The basic idea of this extension is to replace the
Euclidean topology which served as a basic tool in the definition of the trace process by the
thin € -topology associated to the (%, q')-capacity. Note that this process was developed
by Marcus and Véron [46] in a similar way for analysing the boundary trace of positive
solutions of

—Au+ulTtu=0 in QcRY. (1.16)

When ¢ > ¢, it is proved in [32] that any nonnegative solution u of (1.5) in Qr
admits a precise singular initial set S;(u) which is the set of £ € RY such that for any
thin-neighbourhood U (for the T, -topology ) of ¢ there holds

/T/ w! (H[1y))% dzdt = oo (1.17)
0 JRN

where H[1y] is the heat potential in Qs of the characteristic function of U. The set
Rq(u) := Sg(u) is the fine regular set of the initial trace. It is the set of the £ € R such
that there exists a thin-neighbourhood U of ¢ with the property that

/T/ wd (H[1y))% dzdt < occ. (1.18)
0 JRN
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Essentially the precise regular set of the initial trace carries a nonnegative Radon measure
KR, (u), absolutely continuous with respect to the Riesz capacity R2 ¢ and such that for
q bl

2 7
any bounded test function 7 belonging to the Besov space Ba? (RY) with ”support” in
Rg(u) (more precisely T,-support in a sense which will be defined in the text), there holds

lim u(m,t)niq,dx = /RN niqld,unq(u). (1.19)

t—0 JrN

This allows to define a solution vg, () of (1.5) corresponding to this measure pig, (y- It
is called the regular component of u. For defining the singular component of u we first
denote by Us,(,) the maximal solution of (1.5) with an initial trace vanishing in Sg(u).
The singular component is [u]s, () which is the maximal solution of (1.5) bounded from
above by u and with initial trace vanishing in Sg(u). The couple (ug, (), Sq(u)) is called
the precise initial trace.

The main results in the supercritical case (¢ > ¢.) are summarised by the following
statement.

Theorem 5 1- If u is a nonnegative solution of (1.5) in Qr, then the function vg, () ®
[u]s, (), which is the largest solution dominated by the super-solution vg (. + [uls,(u)
admits for precise initial trace (g, (u), Sq(w))-

2- The solution vy, () & [U]Sq(u) is o-moderate in the sense that it is the increasing limit
of solutions w,,, with initial data p, which are nonnegative bounded measures belonging to

2
Ba7 (RN). It is the unique o-moderate solution with such a trace.
3- Any positive solution u of (1.5) is o-moderate.

As a consequence there exists a one to one correspondence between the set of nonneg-
ative solutions u of (1.5) and the set of couples (kg (u), Sq(u))-

These notes are based upon the articles [43], [47], [46] written jointly with M. Marcus and
[31], [32] written with K. Gkikas, in both cases in a very fruitful collaboration.

2 Equation with sublinear or reaction forcing term

In order to point out the differences between the absorption case which is the main object
of this survey and the sublinear or forcing cases which are indeed much easier to treat, we
we present some standard results in these later cases.

2.1 The heat equation

We first consider the basic approach of the trace problem for the heat equation. Let
u € C*Y(Qr) be a positive solution of

Ou—Au=0 in Qr. (2.1)
If G C RY is any bounded domain, we denote by Ag the first eigenvalue of —A in H}(G)

and by ¢¢ the corresponding first positive eigenfunction normalized by max ¢ = 1. Then

u(z, )% (x)ds + 2)@/ u(z, )¢ (x)de = 2/(}u(x,t)|v¢g|2(:v)dx.

dtG G

6



Therefore the function
t— 62’\Gt/ u(z, )¢ (x)dx
G

is nondecreasing. It admits a finite nonnegative limit M, (G) when ¢ — 0 and
e”‘GT/ u(z, 7) o5 (2)dr — M, (G) = // u(z,1)|Vog|*(x)dzdt < oo,
G Q¢

where Q% = G x (0,T). This implies in particular that u € L'(Q%) for any 7 < T. Then,
if ¢ € C2°(RY) there exists £(¢) with the property that

t—0 RN

£(¢) = lim u(z, t)((z) = /RN u(z, 7)((z) — /OT /RN u(z, s)A((x)dzds

The mapping ¢ — £(¢) is a positive linear functional, hence it extends as a unique Radon
measure in RY that we denote p. The following characterisation of the measures p is
proved in [4], [5]

Let u be a nonnegative solution of (2.1) in Qr and p be the initial trace of u, then

1
/ 67“|m|2d,u(3:) <oo forala< —. (2.2)
RN 4T

Conversely, if ju is a nonnegative Radon measure in RN satisfying (2.2) the function u

defined in Qr by

1 oyl?
u(t,z) = T /RN e~ T du(y) < oo (2.3)

(4mt)

is the unique positive solution of (2.1) with initial trace p.

Definition 2.1 If p1 is a Radon measure in R, we denote by H[u| the heat potential of
u, defined by

1 _ =y
Bt = —— [ ) = [ e pau), (24)
(47Tt)2 RN RN
provided this formula has a meaning, e.g. if u is bounded. The function H(z,y,t) :=
w—y]2
%e“ 7 1s called the heat kernel in Q.
(4mt) 2

This result is the extension to higher dimension of Widder representation theorem
proved in 1-D in [56].
2.2 Equations with sublinear or forcing reaction. Proof of Theorem 1
2.2.1 The sublinear case

We assume that u € C*1(Q7) is a positive solution of (1.3) where b is continuous in
R x RV and satisfies

0<b(ré <ecr+d foralerOand§€RN, (2.5)



for some ¢ > 0 and d > 0. As in the case of heat equation we call ¢ the first normalised
eigenfunction of a bounded smooth domain G C RY, with associated eigenfunction \g.
Then

(e, 6 (@)de + (2Ac + ) [

u(z, )¢5 (x)ds + d/ $%(x)dz > 0.
G G

dt Jg

This implies that the function

t i eAatot </ u(z, t) % (z)dx + 2)\Gd+ c/ ¢é(x)dx>
I G

is increasing. Therefore it admits a finite limit (positive) when ¢ — 0 and thus there exists

t—0

My(G) :=lim [ u(x,t)dpZ(x)dz. (2.6)
G
Since for any 0 < 7 < T

/oT /G b(u, Vu)(z,t)¢% (x)dadt < ¢ /OT /G (e, )06 (z)dodt + d/oT /G ettt < oo

and G is arbitrary, it follows that u + b(u, Vu) € L (QF) where QF, := G x (0,7). As in
the case of heat equation we obtain that there exists a Radon measure p in RY such that
for any ¢ € C°(RY) there holds

lim u(z, t)¢(z)dx = Cdu(x), (2.7)

t—0 JpN RN

and also for any ¢ € (0,7),

t t
/ u(m,t)((x)—/ / u(z, S)AC(x)dxds—l—/ / b(u, Vu)(z, t)((x)dxds = / Cdu(x).
RN 0 JRN 0 JRN RN
(2.8)
This implies that v admits p as an initial trace in the sense defined by (2.7), and it is a

solution of
ou

5 Au+b(u,Vu) =0 in Qr (2.9)
u(.,0) =p in RV,

Finally, this problem can be solved for any nonnegative bounded measure p, and more
generally for any nonnegative Radon measure p such that the heat potential H[u] can be

defined.

2.2.2 The forcing reaction case

We assume that b satisfies

b(r,£) <0 forall >0 and & € RY. (2.10)



As in the previous case the function

t— 62’\Gt/ u(z, )¢ (x)dx
G

is increasing, thus (2.6) holds. From (1.3) we have for any 0 <t <7 < T,
/u(x,T)gz%(x)dx—{—Q)@/ /u(m,s)gz%(x)dxds:2/ /u(m,s)|v¢g|2(x)dxds
G t G t G
—|—/ / b(u, Vu)(z, s)¢& (x)dzds —|—/ u(z, )¢ (x)dz.
t G G

Because (1.3) holds u¢? € L'(Q%), hence, by the monotone convergence theorem both
b(u, Vu)pZ and u|Vehg|? are integrable in QF. If ¢ € C2°(RY) we obtain that (2.8), (1.5)
and (2.9) hold for some nonnegative Radon measure .

Remark. In the model case, the existence of solutions to

ou

- _ _ 9 = ; T
BT Au—u?=0 in Qg (2.11)
u(.,0)=p  inRY,

with ¢ > 1 depends on two factors: the total mass of the positive measure p and its
concentration. A necessary and sufficient condition is provided in [10, Théoréme 3.2]
under the form of a duality argument. In [55, Theorem 3] a sufficient condition for the
existence of a global solution in ) is as follows,

(@-1) /O B (s, ) 92 ds < 1. (2.12)

3 The rough trace

This section is devoted to the construction and the study of the properties of the rough
initial trace of positive solution of

Oou—Au+u?=0 in Qu, (3.13)

when ¢ > 1. The qualifier of rough will be justified later on in connection with surprising
non-uniqueness results.

Proof of Theorem 2. Let u be a nonnegative solution of 3.13 in Qs and y € RV, then the

following alternative holds:
(i) either there exists a > 0 such that

ul(x, t)dzdt < oo, (3.14)
QlBa(y)
(ii) or for any o > 0

//B ( )uq(x,t)dacdt = 00. (3.15)
Ql aly

9



If (3.14) holds, then u € LY(QZ) for any open ball B C B C By(y), and for any
¢ € C(B) there holds

4 < /B ula, t)Cda + / 1 /B (WAC — u() dwdT) =o. (3.16)

Consequently there exists ¢(¢) defined by

1
() :=1lim [ wu(z,t){dx = / u(z, 1)¢dx —i—/o /B(uAC —ui¢) dxdr. (3.17)

t—0 B B

The mapping ¢ — #({) is a positive linear functional on C2°(B), hence it is a Radon
measure g in B.

If (3.32) holds let B as above and ¢p be the first eigenfunction of —A in HJ(B) with
maximal value 1 and corresponding eigenfunction Ap. Then

4 u(m,t)gb?/dx—l—Qq’)\B/ u(:c,t)q%q/dx
=224 =) [ e )6 Vol do+ [ w06 do =0,
B B

where we have set B = Bq(y) and ¢’ = -Z5. Since

! (Sq / 1 ’
[ e 2 Von o <2 [ utteyi o+ - [ [90nP d.
B qJB 07q Jp

for suitable § > 0 and ¢ > 0, we have that

i 2¢'\pt 2¢' 62q/>\3t q 2q 2¢' \pt 2q’
e u(z, t)¢y do | + ul(x, t)¢py do < ce |Vop|™ du.
dt B 2 B B

Then

/ / 1 1 ’ /
e2a AB/ u(z, 1)(;5? dr + —/ e2a ABT/ uq(x,T)q%q dxdr
B 2/ B
(3.18)

1
< qu,)‘Bt/ u(z, t) o3 da +c/ qu,)‘BT/ V| dedr.
B t B

Therefore
lim u(x,t)q%qldx = 0. (3.19)

t—0 B

The set of points y such that (i) holds is clearly open and its union is called the regular

set R. By a partition of unity there exists a unique nonnegative Radon measure 4 on R
such that for any ¢ € C°(R) there holds

lim [ w(z,t){dx = /RNCd,u(x). (3.20)

t—0 JrN

10



For any y € S and any a > 0 we have (3.19), therefore we define a Borel measure v such
that for any Borel set £ C RY

W(E) = /Ed,u(x) if ECR (3.21)
00 it ENS #1,

and it is outer regular.

3.1 The a priori estimate
The function ¢, defined on (0, 00) by
1 \o1
=
o) = —— 3.22
0= = (7275 (3.2

is the maximal solution of the differential equation u’ 4+ u? =0 on (0, c0).
For any R > 0, let wgr be unique solution of
—Aw+w?=0 1in Bp
lim w(x) = oc. (3.23)

|z| >R

Existence follows from the universal Keller-Osserman upper construction and uniqueness
from the fact that ,
wr(z) = R 1wy (x/R). (3.24)

For any 4y € RY, R > 0 and € > 0 the function
Ue, Ry (T, t = Poo(t — €) + wr(x — y) (3.25)

is a super solution of (3.13) in Bgr(y) X (¢,00). Hence it dominates u therein. Letting
€ — 0 and R — oo, yields

w(z,t) < ¢oo(t) for all (z,t) € RN x (0, 00). (3.26)
This a priori estimate admits a localised version.

Proposition 3.1 Let ¢ > land R > 0.

1- There ezists a unique nonnegative solution u := usg g of (3.13) in Qs such that

%in% u(z,t) = oo wuniformly in Bg, (3.27)
ﬁ
and
%in% u(z,t) =0 locally uniformly in By. (3.28)
ﬁ
Furthermore
1
1 1 q—1
lim tTus gz, t) = <—> locally uniformly in Bp, (3.29)
t—0 ’ q—1

11



and for any o > 2:(11 there exists Cy, > 0 such that

[z - R
Vit

1 ¢ _(z-r)?
Uso,R(x, 1) < Cot a1 e 4 for all (z,t) € Qoo s.t. x| — R >Vt

(3.30)

2- There exists a unique nonnegative solution u := Uss ge of (3.18) in Qoo such that

%in% u(z,t) =0 wuniformly in Bg, (3.31)
_)
and B
2%in(l) u(z,t)dz = oo locally uniformly in BY. (3.32)
e
Furthermore
1
. 1 1 q—1 ) ) c
2151(1)15(1—1 Uso,re(T,1) = (q——l> uniformly in By, (3.33)

for any € > 0. Next, for any 6 € (0,1) and a < i;?, there exists Co 9 > 0 such that

L (R — [z \® _orjep?
Uso,re(2,1) < Cqpt = <R7t|x|> e for all (z,t) € Qoo s.t. |z| <OR — V1.
(3.34)

Proof. Step 1-1- There exists a unique C*°(0,00)) function W with positive value satisfying

O W — Ope W + W1 =0 in (0, 00)
EL%W(%” = 00 forallt >0 (3.35)

lim W(z,t) =0 for all x > 0.
t—0
This function is self-similar and endows the form

Wz, t) =t =W (%) , (3.36)

where W is the unique positive solution of
W+ 3W' + 5W — Wi =0 in (0, 00)
lim W () = o0 (3.37)
2~
Jim @t W (n) =0.
The construction is as follows. Let k£ > 1 and { = (. be the solution of

0( — 0pxC+¢2=0 in R

C('a 0) = 1[7]%0] on R. (338)
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The correspondence k +— (. is increasing. Since (i is bounded from above by 1, (j
converges to (s, which is the unique solution of

0y — 0p(+C1=0 in R x (0,00)

¢(+0) =1y on R. (3.39)

For ¢ > 0 we denote by Ty the scaling transformation which leaves (3.13) equivariant,
Til@)(x,1)) = £7-1 (€, £21) (3.40)

Then Ty[(s] := (oo is the solution of (3.13) in Qo with initial data = 1(_o0,0- Again
¢ — (o, is increasing. Since the function

1

2 1 -1 2 2

vy (POEVNTT 2 0 forall @50,
(¢—1)

is a solution of
O — Ogzv + 071 =0 in (0,00) x (0,00)

v(0,t) = o0 in (0,00), (3:41)

we have )
COO(x7t) < qu_ﬁ n (0,00) X (0700)7

which implies that, for all £ > 1,
_2
COO(‘T) t) < Coo,ﬁ(x’ t) < Qboo(t)l(foo,o} (x) + min {Cq|x| LA ¢oo(t)} 1(0,00)(x)' (3'42)

Thus (¢ converges to some function W when ¢ — oo, and W satisfies (3.13). Because
there holds for any ¢ € C2°((0, 00)),

| (o @0+ 20) + 2 9) daat 0,
0 R

the function W satisfies the same upper bound (3.42) as (¢ and it is a solution of

¢ = Opa(+¢1=0 in R
¢(,0)=0 on (0, 00) (3.43)
}ir%g(x,t) =00 for all x <0.
e

Finally, for any k > 0, Tj,0Ty = Ty, hence T;[(s0¢) = Coo,ke, which implies that Ty, [W] = W
1 —
for all £ > 0, hence W is self-similar. This implies that W (x,t) = ¢ «1W <%> and W

satisfies

— — 1 —
W/I+gw/+q_—1W—Wq:0 in (0,00)
lim no-TW(n) = 0 (3.44)
n—0o0 .
71]1_% W(n) = o0



The behaviour of W can be obtained by matching asymptotic expansion, if we consider
2

the function n — Wa = nae_nT which is a supersolution (resp. subsolution) when 7 — oo
if > 2%‘{ (resp. a < 2%‘{). Thus for any a > 2_;'11 there exists C, > 0 such that

M

n

W(U) < Cyn®e~ 1 for all nin [1,00). (3.45)

Inequality (3.34) follows from this estimate.
Step 1-2- We claim that there exists a unique positive function us r which satisfies (3.13)

PI% Uso,R (2, 1) = 00 locally uniformly in Bg, (3.46)
ey
and

: _ . . c

}gr(l] Uso,r(z,1) =0 uniformly in By . (3.47)
for any € > 0.

Since the equation and the initial conditions are invariant under the transformation 7y,
we can assume that R = 1. If e is a unit vector we denote by ve the function defined by

Wz —e,e),t) if ((z—e,e)>0,t>0

ve(2, 1) = { 0 if ((z—e,e) <0,t>0, (3.48)

and by HJ (resp. HJ) the half space {z : (r —e,e) > 0} (resp. {z : (xr —e,e) < 0}).
Then v, satisfies (3.13) in Qo with initial data ve(x,0) = 0 if z € HS and ve(z,0) =
if x € Hy . Then

v; = inf {ve : le] =1} (3.49)

is a supersolution of (3.13) in Q) which satisfies vi(x,0) = 0 if |z| > 1 and v;(z,0) = o0
if || < 1. For k > 0 let uy be the solution of (3.13) in Q with initial data kIp,. Then
up < wv1. Since k — wuy is increasing. Hence there exists a nonnegative function « which is
a solution of of (3.13) in Qs such that

limu(z,t) =0 if || >1 and limu(z,t) =00 if |z| <1 (3.50)
t—0 t—0

By construction u is a minimal solution and by (3.45), and (3.30) holds.
Let @ be another nonnegative function solution of (3.13) in Q satisfying (3.50). For ¢ < 1
and R > ¢!, there exists €¢,r such that

u(w,t) <wpg(z) forall (z,t) € Qoo s.t. £ <|z] < Rand 0 <t < ey,

where wp, is defined in (3.23). Therefore the supersolution (z,t) — Ty[u](x,t—ep r)+wr(x)
defined in Br x (€g R, 00), is larger than u on dBg x (e;,r,00) and for t = ¢, . Hence

uw(z, t) < Tylul(x,t —€) + wr(xz) forall (x,t) € Br x (e1,r,00).
When R — o0, €o,p — 0 and wg(z) — 0. This implies

u(z,t) < Tplu)(z,t) for all (z,t) € Qoo

14



Letting ¢ — 1 yields u < w. Similarly u < w.
Step 1-3- The function us g satisfies

1
1 1 a=1
lim $7-T Uso.p(T,1) = <—> ! locally uniformly in BR. (3.51)
t—0 ’ q—1
In order to prove this claim, for any R’ < R we construct a function 1 € C2(RY) such
that 0 < ¥ <1,v =1in Bg, ¥ =0 in B% and —Ay < Cv for some C = CR,R) > 0.
For any § > 0, the function

(x,t) = X(z,t) := (1 = 0)Y(x)doo ()
satisfies

(4

Then there exists € > 0 such that the above expression is negative for 0 < ¢t < e. Therefore
Uso,g > X in RY x (0,¢]. This implies

HX — AX + X7 < (1 —0)pooth (ém (=87t —1)-— %> :

1 1 a-1
lim inf ¢7-7 inf {to,r(z,t) : 2 € Bp'} > (1—19) <—> B (3.52)
t—0 ’ qg—1

Since ¢ is arbitrary, we obtained the claim from (3.26).
Step2-1- We claim that there exists a unique positive function us re which satisfies (3.13),

2%in(l) Uso, ke (T,1) = 00 uniformly in B, (3.53)
e

and
%in% Uso,re(,t) =0 locally uniformly in BR. (3.54)
—

The proof uses the previous constructions. For any k& > 0 we denote by v, the solution of

Ov—Av+v?i=0 in Qo
v(.,0) = klpe in RV, (3.55)
The sequence {vg} is increasing and it satisfies
(7, 1) < doo ()15, (x) + nf{doo (1), wr(2) 1B, (). (3.56)

Then it converges to a positive solution of (3.13) in @ that we denote uqo ge. Therefore
Uso, Re Satisfies

/ / ((-0¢ — A + Gl ) dardt =0 (3.57)

for all ¢ € C°(Bgr). Using (3.53) and (3.57 it implies that us re vanishes on Br. Unique-
ness of such a solution is obtained by the same scaling and shifting argument as in the
Steps 1-2.
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Step2-2- Improved estimates. As a subsolution of (3.13) in Qo we take
vo(x,t) = sup{v_e(—x,t) : € € OBy }. (3.58)

With the same notations as in Step 1-2, vy is a subsolution, and v (¢, 2) — 0 when t — 0
if z € B and va(t,z) — oo when t — 0 and = € Bf. This implies that (3.33) holds. The
construction of the supersolution is more subtle: for 0 < # < 1 there exists an integer ngy
such that
By C ﬂ H 4,0 C By,
1<j<ng
where
Hjg={ze RY . (x — Oej,e;) < 0} with e; € 9B.

Hence the function

vag(z,t) = Y W((—z+0ej e;),1), (3.59)

1<j<ny

is a supersolution of (3.13) in Q« which dominates uso ge. If @ € By, we have that
dist (z, H5y) < 0 — ||, therefore

570 = 17|

u(z,t) < ngt” @ 1W( 7 ) (3.60)

which implies thanks to (3.30),

u(z,t) < ngCut™ a- = <9:/£x|> g for (z,t) € Qoo s.t. |2| <0 —Vt.  (3.61)

From this inequality estimate (3.34) follows by rescaling. U

3.2 The subcritical case

For a given ¢ > 1 it not always possible to find a solution of (3.13) belonging to C'(Q,\{0})
vanishing on R x {0} \ {0}. Indeed Brezis and Friedman [18] proved the following results

Theorem 3.2 Let
ge=1+2%. (3.62)
If ¢ > q. any solution u of (3.13) belonging to C(Q.,\{0}) and vanishing on RN x {0}\ {0}
1s tdentically 0.
If 1 < q < qc, for any c € R there exists a unique solution u := u.s, of
ou—Au+ |ulTtu=0 in Qo

u(.,0) = cdo in D'(RV) (3.63)

where 0y is the Dirac mass at 0. Furthermore if {p,} is a sequence of positive integrable
functions which converges weakly to cdo in the sense of distributions in RN, then the
sequence of functions {u,, } which satisfy

ou—Au+ |ulTtu=0 in Qo
u(.,0) = pn in D'(RN)

converges to ues, locally uniformly in Q.

(3.64)
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An important consequence of the previous result is the existence of very singular so-
lutions which was first discovered by Brezis, Peletier and Terman in [19]. We give below
an alternative proof of its construction and uniqueness.

Theorem 3.3 Suppose 1 < q < q.. Then there exists a unique positive C function f
defined on [0,00) such that

f”‘i‘(E"i‘ﬁ)f/—i-Lf—fp:O on (0,00)
X i = 12 (3.65)
f/(O) =0 and nli_)rglo na1 f(n) = 0.

Furthermore

2

f(n) = Ae*%nﬁfN <1 + 2 <qi — N) n %+ 0(772)> asn—o0o.  (3.66)

Proof. For any € > 0, u. is bounded from above by the solution u ¢ of (3.13) with initial

data e (2,0) = cox1p, (x) which is defined in the proof of Proposition 3.1-Step 1. When

¢ — 00, U, increases and converges to some solution u, wich is a positive solution of (3.13)

and is bounded from above by 4 . Because of uniqueness there holds Ty[uc] =u 2 _y
c

a—1
where Ty is defined in (3.40). Therefore
Ty[too] = Uuoo for any £ > 0.

Hence uy is self-similar and radial because of uniqueness as u, is, thus it endows the form
2
Uoo(, 1) =t a1 f (%) : (3.67)

and f satisfies the ODE (3.66). Because uco(x,t) — 0 for  # 0 when ¢t — 0, it implies

that lim 77% f(n) =0. The function f is a positive radial and bounded solution of
n—00

—Anf—%n.Vf—q_%erfp:o in RV \ {0}.

Hence the singularity at n = 0 is removable. Thus f is C* in R and f/(0) = 0. Similarly
Tiftooe] = Usg f—1e- Therefore uq, . decreases and converges when € — 0 to the function
Uso,0 Which is a positive self-similar solution of (3.13), say

Uoo,0(, 1) = t_%ﬂ‘—jb , (3.68)

and fis a positive solution of (3.63). Since uso < Uso, One has f < f Actually, f (resp.
f) is the minimal (resp. maximal) solution of (3.65). Estimate (3.66) is obtained by the
classical method of matching asymptotic expansion.

For uniqueness, it follows from the fact that 0 < f(0) < f(O) combined to the expansion
(3.66) that there exists A > 1 such that

fn) < f(n) < Af(n) forallnp > 0. (3.69)
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Actually, only the truncated expansion

2?2 N
Ae” 1na-1" (14 0(1)) asn— oo,

which is easily obtained as in Proposition 3.1-step 2 is needed. If f # f: then f < fby
the maximum principle. We set
1

W:f—ﬂ(f—f)-

1 1 1 +\? 1 ~
(+ax) = ((raa) - 2aF) +

1 1

By convexity

Hence W satisfies

Since W = (% + ﬁ) f is smaller than W and satisfies
1 1 » N
there exists a positive and radial function f* satisfying
* 1 * 1 * *p . N
—Anf —§n-Vf _—q—lf +fP=0 inR"Y,

and such that 0 < f* < f, which contradicts the minimality of f. .

The following result is fundamental in the study of the singlar points of the initial
trace of a solution u of (3.13) in the subcritical case.

Lemma 3.4 Suppose 1 < q¢ < q¢, u is a positive solution of (3.13) and y € RN s such
that

t—0

lim sup/ u(z,t)de = oo  for all € > 0. (3.70)
Be(y)
Then

u(a,t) > 7w f (%) . (3.71)

Proof. For any € > 0, there exists a sequence {t,,} decreasing to 0 such that
/ u(z,ty)dr = M(e,n) — oo as n — oo.
Be(y)

Let ¢ > 0, then for n > ng = ng(e,¢), M(e,n) > ¢, hence there exist €, and k, > 0, both
depending on ¢ such that

/ min{u(x, t,), k, }dz = c.
BCn (y)
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Let uy, be the solution of (3.13) with initial data wu,(x,0) = min{u(z,t,), k15, (). By
the maximum principle

u(z,t +ty) > up(x,t) for (z,t) € Quo.
By Theorem 3.2 u,, converges to u.5, when n — oo. Hence
u(x,t) > ues, (z,t)  for (z,t) € Quo-

Since ¢ > 0 is arbitrary, the claim follows from the fact that lim wucs, (2,t) — U (z —y, 1)
c—00 h
by Theorem 3.3. O

Proposition 3.5 Suppose 1 < q < q.. Then for any closed set S C RY there exists a
unique positive solution of (3.13) with initial trace (S,0).

Proof. Step 1- Construction of the minimal solution ug . Let {an,} C S be a sequence

n
of points dense in S and p,, = nz da;- Then the sequence uy, of solutions of (3.13) is
j=1
increasing. By Lemma 3.4

Uy, > sup{um;aj 11 <j<n} (3.72)

Furthermore, by (3.16), for any y € S¢ and R = dist (y,S) there holds

_a =y \* _(r-le-uD?
Uy, (2, t) <Ot a1 7 e at for all (x,t) € Br(y) x (0,00), (3.73)
where C' = C(a,q) > 0 and @ > 222 and classicaly, u,, (z,t) < ¢uo(t). Therefore

p—17
the sequence {u,,, } increases and converges to some function denoted by ug o which is a

positive solution of (3.13) and satisfies the same estimate from above (3.73) as w,,. By
3.71) and 3.72) there holds

|z — ay,|

ugo(w,t) > t_q%lf (T) for all (x,t) € Br(y) x (0,00) and n € N. (3.74)
Because {a,} is dense in S, this last inequality implies that for any y € S and € > 0,

/ ugo(w,t)dr — o0 as t — 0. (3.75)
Be(y)

Step 2- We claim that the function ug o is the minimal solution with initial trace (S,0).
Let u be such a solution. For n € N* we consider a double sequence of real numbers {¢, ¢}
such that

ene <minflaj —a;|: 1 <4,5 <n,i#j} forall £e N

and since the set {a;};cy is dense in S, for any ¢ there holds

lim €nt = 0.
n—00

19



We assume also
lim €,,=0 for all n € N*
{—o00

For any n € N*, / € N* and j = 1, ..., n, there holds
/ u(z,t)der — oo ast — 0.
Ben,Z (aJ)
Then for fixed n € N* there exists ¢, , > 0 such that

/ w(x,tye)de > 2n forall j=1,.. n.
Bﬁn’[(aj)

Since €, — 0 when £ — oo, it follows that ¢, , — 0 under the same condition. Conse-
quently there exist positive numbers m;,, ¢ for j = 1,...,n such that

/ min{u(x,t, ), Mjnetde = n.
Bﬁn,[ (aj)

We set .
pael@) =Y minfu(z, o), mindLp, ) (@)- (3.76)
j=1
Then
n
lim pp, ¢ = ppn := nz 0q, in the sense of distributions in RY. (3.77)
l—00 = J

Since u(x,tn¢) > pne(x) we have that u(z,t +1t,0) > upe(x,t) in Qoo Where uy, 4 is the
solution of (3.13) with initial data p,¢. By Theorem 3.2 u, ¢ converges to u,, defined in
Step 1. Hence u > w,,. Letting n — oo implies u > ug j.

Step 3- Construction of the maximal solution Us . For € > 0 we set
S. = {z e RY : dist (z,8) < €}.

For R > 0 we also define Sc g = Sc N Bg. Let u = uc g, be the solution of (3.13) with
initial data nls,_,. The mapping (R,n) + uc Ry is increasing and bounded from above
by ¢, hence there exists

Ue := lim  ue Ry

n — oo
R — oo

The mapping R +— uc g is increasing therefore there exists a limit v, when R — oo
which satisfies

lim t7T t LA 3.78
—1 —
P ue(z,?) g—1 ’ (3.78)

uniformly on any ball By interior to S, and

(e =y \* _@eeyp?
ue(x,t) < Ct a 7 e 1 for all (z,t) € Br(y) x (0,00),  (3.79)
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for all y € S¢ where R = dist (y, S¢). This implies that the initial trace of . is (S, 0). It is
a consequence of the construction of u, as the limit of u. g, when (n, R) — (0o, 00) that
the mapping € — u, is decreasing with limit Us. Furthermore us > ug . Using (3.79)
applied with y € §¢ and R = dist (y,S) we deduce that s has initial trace (S,0), and
from now it is denoted us .

Step 4- We claim that the function Us o is the mazimal solution with initial trace (S,0).
Assume u is any positive solution of (3.13) with initial trace (S,0) and for R > 0 let wg
be the solution of (3.23). For € > 0 the function u +wp is a supersolution of the equation
in Bg x (0,00), thus for any 6 > 0 the function (1 + §)(u. +wg) is also a supersolution of
the equation in Br x (0,00). Since u(z,t) — 0 when ¢ — 0 uniformly in B \ S, we obtain
that v < (1 +0)(ue + wg) in Br x (0,00). Letting successively § — 0, R — oo, here we
use (3.24) and € — 0, we infer that u < ug .

Step 5- We claim that there exists K > 1 such that usp < Kug (. If y € S there holds by
(3.26) and (3.71) that

_ 1 1 -1 1
f0)t = < @S,O(%t) <Tso(y,t) < <q__1> a t qil, (3.80)

1
Thus the claim follows with K = <q%1> H(f(0)7L
If y € §¢let z € S such that |z —y| = dist (y,S) := d,. Then by (3.71) and (3.32),

d __1_ _ _ﬁ - (d,\*
£ (82) 07T < s olut) < Tslyt) < CeFe 7 (%) T

37?. For ¢ > 0 we put

Pa={(y,t):%§0}-

If (y,t) € P, there exists K, > 0 such that

ﬂS,O(yat) < KJQS,O(yat)' (382)

where o >

Next we prove that for any ¢ > 1 there exists o, such that for any ¢ > o, there holds
HJS',O(y? t) < KO’QS,O(y7 Ct) for all (1’, t) € QOO \PO'- (383)
It follows from expansion (3.66) that we have

1

S A (%)a <f (j—y—t) (ct) a1, (3.84)

which implies (3.83).
Next, for 7 > 0, let u; » and ug » be the solutions of (3.13) with respective initial data
Ulr = Ko1p, (1‘, T)QS,O(xv T)

(3.85)
uzr = (1 —1p,(z,7))ug o(x, CT).
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It is known and easy to prove that the solutions of (3.13) are uniquely determined by their
initial data ([17]). The function wu; , 4+ ug2 ; is a supersolution and

(urr +uzr)(2,0) = Kolp, (2, T)us o (2, 7) + (1 = 1p, (2, 7))us o (x, C7)
> Us,o(@, 7).
Since Kyug o(7,7) > u1,(z,0) it follows that
Kougo(x, 7 +1t) > ui,(2,t) forall (z,t) € Quo.
Similarly ug o(z,C7T) > uz +(x,0), therefore
ug o, OT +1) > ug r(x,t) for all (2,t) € Qoo
Combining these two inequalities we have that
Us,o(w,t +7) Sugr(w,t) +ur - (z,t) < Koug oz, 7 + 1) + ug o(x, C7 + ). (3.86)
Letting 7 — 0 yields
sz, t) < (1+ Kg)g&()(x,t) for all (z,t) € Qo. (3.87)

Next we set K =1+ K, and

1
W =ugoy— K (Us,0 — usy) -
If us o # ug o, then Us o > ug o and W is a supersolution of (3.13) by the same convexity
argument used in the proof of Theorem 3.3. Note also that (% + %) ugs (o is a subsolution
of (3.13) smaller than W. Hence there exists a solution w of (3.13) satisfying

1 1 -
— — <u<W. .
<2+2K>y570_u_w (3.88)

This implies that the initial trace of u is also (S5,0). Since W < ug, we have a contra-
diction with the minimality of ug g. O

The next result shows that the initial trace provides a one to one correspondence
between the set of nonnegative solutions of (3.13) and the set of couples (S, 1) where S is
a closed subset of RY and y a nonnegative Radon measure on R := RV \ S.

Theorem 3.6 Suppose 1 < ¢ < q.. Then for any closed set S C RN and any positive
Radon measure 1 on R := RN \' S there exists a unique positive solution of (3.13) with
initial trace (S, ).

Proof. Step 1- Construction of the minimal solution. The principle is standard. We set
Sc = {r € RV : dist (z,S) < ¢}. For R > 0 we define

te,R = 1senBp 14

22



and denote by uy,, 1, , the solution of (3.13) with initial data i, + ., gr where y,, has been
defined in the proof of Proposition 3.5-Step 1. Clearly (¢, R,n) + wy, 14, is increasing
in n and R and decreasing with respect to € and we have

max{ Uy, Uy g} < Up i g < Upay + Upse - (3.89)
If we set
U, = lim U 3.90
=S e—0,n—00,R—00 Hntie, R ( )
then

max{us o), Uy} < Us,, < US,0) T Uy (3.91)

Note that we have used Brezis'uniqueness result to obtain that u, is uniquely determined
by . Inequality (3.91) implies that the initial trace of ug , is (S, p).

Let u be any positive solution of (3.13) with initial trace (S,u). If & > R we denote by
wy, the solution of (3.23) in By. Then u + wy, is a supersolution of (3.13) in Q2+, Because
By, = (B, NSe) U (B N SE), there holds

lim (Upp4pe g — ©)4dr = lim (U, — u)pdx =0,
t—0 BpNSe ’ t—0 BpNSe

and
lim (Upn+ppe p — ©)+dx = lim (Upe g — u)4dr = 0.
t—0 B,NS¢ ’ t—0 Bj,NS¢ ’

Therefore the subsolution (uy, 44, , — % — wy)4 has zero initial data and it vanishes on
00(QBr) := 0B}, x (0,00), thus it is identically zero. Therefore

Ui Su—wp in QP (3.92)
Letting k£ — 0o, € = 0 and n — oo yields
Us, <u in Q. (3.93)

Step 2- Construction of the mazximal solution. For n,e > 0 we set pre = lsep and pg =
lsep + nlgdr. Let up, = ug, - When n — oo, the sequence {u, .} increases and
converges to a solution with initial trace (S, pie) denoted by us, .-

Let k,0 > 0, then ug ¢, := (1+6)us, .. +wy is a supersolution of (3.13) in Q. By (3.46),
the function (u — ug ¢ )+ satisfies

lim (u—ugep)s(z, t)de = 0.
t—0 SeNBy,

In the cylinder QZ* the function ug k. is a supersolution of (3.13) with initial data (1+6)u
and infinite boundary data. Hence it dominates u therein. Consequently

li — t)dx = 0.
fi [ () 0
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which yields

lim [ (u—wugek)s(z,t)de =0.
t—0 Bk: Y

Because ug  has infinite value on (9ngng we deduce that ug.r > u in Qi’f Letting
successively k — 0o, 6 — 0 and € — 0 we obtain that

USe e = U 1IN Qoo

When € — 0, us, ;. is decreasing and it converges to a solution %s,, of (3.13) in Qs with
initial trace (S, u) and is larger than any positive solution u with the same initial trace.

Step 3- End of the proof. With the notations of Steps 1 and 2, we set

Zepe = USe e — Uptpe  and Zeg = us, o — Uy

n*

Then
_ _ _ q .4 R N B
at(Zenuﬁ Z670) A(Zenuf Z670) + u867l,l/€ uMn+Me (use,o uun) - 0'
Now . .
ug -l = USespte ~ Upimtpe Zep
; Hntp € He)
el " ‘ u$€7,u'€ - uﬂn+ﬂe
and . .
U —u
Se,0 Hn
ug«mo — uzn =————Zp.
u8670 - u)ufn
Since

useyﬂe 2 max {uﬂn'f'ﬂe’usmo} and uﬂ/n S mln {uS€707 uﬂn‘f’ﬂe} I
the convexity of the function r — r? on Ry implies that

q 4 q )
uSe“U«e uﬂn‘f’ﬂe > uSg,O u/’l‘n

usalle - uMn+Me o use70 - ulln

> 0.

Therefore

q q
uSS,O — Upy, (

at(Ze,,u6 - Ze,O) - A(Ze,,ue - Ze,O) + Us. 0 — U
€ )ufn

Zeye — Zep) < 0.

Since
lim (Zepe = Zep)+(x,t) =0,

t—o0 RN
it follows by the maximum principle that Z, , < Zc . Letting n — oo and € — 0 implies
US,y — Us ,; < US,0 — Us -
Uniqueness follows by Proposition 3.5. ]

Extensions and comments. The initial trace of positive solutions of (3.13) in the
cylinder QS% can be defined similarly. If u is such a solution, it admits an initial trace
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in © which consists in a closed subset S C Q and a Radon measure p defined in Q \ S.
Furthermore the value of u on the parabolic boundary 6@@& has to be taken into account
in order to prove results of existence and uniqueness. This theory is developed in [43] in
the following framework:
(i) © c RY is a smooth domain.
(i) ulp,0o= f € L' (9:Q%).
(iii) p is a positive Radon measure in £ which is bounded in a neighbourhood of €.
(iv) 1<g<1l+ 2.

Under these conditions and the subcriticality assumption, the initial trace provides a
one to one correspondence between the sets of positive solutions u of

Ou—Au+u? =0 in Q%
u=f on dQ%L,

and the set of couples (S, 1) where S is a closed subset of Q and p a nonnegative Radon
measure f in R := Q\ S which is bounded in a neighbourhood of 952.

(3.94)

3.3 The supercritical case
The next lemma shows that a very singular solution of (3.13) cannot exist if ¢ > ge.

Lemma 3.7 Let g > q., then problem (3.65) admits no positive solution.

2
Proof. Let f besuch a solution. Since f(n) = o(n a-1) asn — oo, by matching asymptotic
expansion we obtain that for any a > L N there exists ¢, > 0 such that

[N

n

f(n) <cane” 7 forallnp>1. (3.95)

Then it follows from the equation that

2
f'(n) < dntle T forally>1. (3.96)

2
Set ¢1(n) = e~ T, then

2,0\ _N
(1 o) = e o,

We write 3.65) under the form
2 / 2 1
(an@Z%(W)) AR <ﬁf - fq> = 0.

Multiplying by ¢; and integrating on (0,00), which is justified by (3.95) and (3.96), we

infer that - ) ,
0 _

This leads to a contradiction because q_% - < 0. O

The following result proved by Brezis and Friedman [18] points out the role of the
exponent ¢. the study of singularities of solutions of (3.13).
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Theorem 3.8 Let ¢ > q., Q@ C RN be a domain containing 0 and u € C(Q—g\ {(0,0)}) be
a solution of (3.13) in Q¥ vanishing at t = 0 except at x = 0. Then u can be extended as

a continuous function in C(QF).

Proof. We can assume that Br C € and we first assume that u vanishes on dBg x (0, 7).
Then for any € > 0 the function uy is bounded from above by the function ue which
satisfies (3.13) in Qoo and has initial trace (B¢, 0). By scaling

Ty[tie,00] = Up-1¢ o0 for all £ >0,

and since € — U is increasing, there exists ug oo = lil% Ue,o- Furthermore ug o is
€E—r
selfsimilar and u4 < up,o0. By Lemma 3.7 ug o = 0, thus uy = 0.
In the general case we denote by ¢ the boundary value of u on 85@?’*, and by v the
solution of
o — A =0 in QPr
B
Yv=¢4 on 0 Qp"
¢(,O) =0 in BR.

Then (u—1)4 is a subsolution of (3.13) in Q]‘TgR. By the previous argument, (u—1)4 = 0.
Hence uy is bounded from above. Similarly u_ is bounded, this implies that u remains
bounded in Q?R. Standard regularity results imply that u vanishes on Br x {0} and the
claim follows. O

When ¢ > ¢, there exists no solution of (3.13) in Q with a Dirac measure as an
initial data. This phenomenon is general and the next result proved in [9] shows that if
p € M(RY) the problem with measure initial data

O — Au+ [u|Tu =0 in Qs
u(.,0) = p in RY, (3.97)
can be solved only if the measure pu is not too concentrated.
Definition 3.9 Let pp € MRY). A function u € L] (Q.) N C(Qw) is a weak solution
of (3.97) if for all for all ¢ € C3(Q.,) there holds

/ / u(0¢ + AQ) + [ul|? MuC) dedt = / C(z,0)du(z). (3.98)

A measure p for which (3.97) is solvable is called q-admissible.

For the sake of completeness we introduce the Bessel capacity capz ¢ (relative to RN )
q7
defined by

: [C(z) — <)l
2 ,(F) = inf —d d
capaq( ) =in {/RNXRN |g;_y|N s x y—i—HC”Lq (RN) (3.99)

(e CXPRM),0<¢<1,(>1p
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The properties of Bessel capacities caps, which are associated to the Besov space B*?
and the Bessel kernel G are fully developed in [1]. It is noticeable that when ¢ > ¢, the
zero-capacity Borel sets of the Riesz and the Bessel capacities coincide since there holds
[1, 5.6.1]

R ,(E) < capz , (E) < A (Rz,q,(E) + (R%,q,(E)) NZ%) . (3.100)

q7
Theorem 3.10 A measure p € M(RY) is g-admissible if and only if
caps o (F) = 0 = [ul(F) =0, (3:101)
for all Borel set F C RN

Before proving this result we give an equivalence of norms estimate which will be used in
the sequel.

Lemma 3.11 Assume q > q.. Then fm’ any T > 0 there exists ¢ = c¢(n,q,T) > 0 such
that for any bounded measure p € B~ Q’q(RN) there holds

! Il 2.0 vy < WM Lo ry < €l 2.0 v - (3.102)

Furthermore, if ¢ > q., there holds
-1
gy < Wy < € (1] 2y * Wil ) (3109

Proof. Tf u € B~%/44(RN), there exists a unique w € B>~ /44(RN) such that y = (I —A)w,

and ||pl| g-2/¢.0 = ||w|| g2-2/4.¢- Applying standard interpolation methods to the analytic

semi-group e tU=2) = ¢~tetA (see e.g. [11], [54]) we obtain,

</ | fr - A)Hw("df_itdt>l/q - (/ | 1t1/qu(qdffdt>l/q

~ lwll g2-2/4.0 (3.104)

~ [l p-2/a.0-

Clearly

—qt
tl/qH[ d:c—<// tl/qH ? daS tdt,

=y
T
—qt
// ‘tl/qH[u]‘q xe dt _ //
oo QT4n+1\QT+n

—Z// (s +n)|?e 1+ ds

(511,
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and
e~ tdt

Y IH [ ]( dz

dt
|




and (3.102) follows. Notice that |||[H[u](.,)|[|%, < et=N@=1/2|1]|2., therefore H[u] belongs
to LY(Qwo) if ¢ > g, (but not if ¢ = ¢q.). If ¢ > g, (equivalently N(¢q —1)/2 > 1),

// tl/qH d:v— Z// tl/qH[ ]‘qu@
QT+n+1\QT+n
:// Y IH[] dx— // ZUHI (s +n)|?dzds
T T n
<[ [ | dx—+c<2n V?) TS
Qr

Thus we obtain (3.103). O

Proof of Theorem 3.10 We present here an abridged proof slightly different from the original
2 7
one due to Baras and Pierre [9]. We first notice that if 1 < ¢ < g, any function in Ba"? (RV)
coincides with a continuous function. Hence only the empty set has zero capz ,-capacity.
q ’

Therefore any measure in RY is g-admissible. From now on we assume that ¢ > g.. Let
F be a compact set with zero capz o -capacity and {(,} a sequence as in the previous
q7

theorem. We take ¢, = GH[C,] for test functions, where now ¢ € C®(RY x [0,00)) is
nonnegative, takes value in [0, 1] and is equal to 1 in a neighbourhood of F. Then (3.116)
is replaced by

/OOO/RN (“qgn U (@5,1 + A5n>> drdt = /RN@H[Cn])(-, 0)du(z) > p(F).  (3.105)

Since (,, > 0 and 0 < (, < 1, 5,1 — 0 a.e. and at&s’n + A(;Agn S 0in LY

loc

Thus the left-hand side of 3.105) converges to 0, which implies u(F') = 0.

Conversely, if p is a nonnegative measure which vanishes on Borel sets with zero
cap: ,~capacity, it can be proved by the Hahn-Banach theorem (see [30]) that there exists
q7

(RN x [0,00))).

an increasing sequence {u,} of nonnegative bounded measures belonging to B_g’q(RN )
which converges to u. We first prove that a nonnegative bounded measure p belonging
to Bfg’q(RN) is g-admissible. By the previous lemma, H[u] belongs to L{ (R x [0, 00)).
Next, for k > 0, we set gi(r) =sign(u) min{|ulP, kP} and we denote by wy the solution of

Ou — Au+ gg(u) =0 in Qs

u(.,0=p in RV, (3.106)

For 0 < k < £ one has 0 < up < ug < H[u]. We denote by u the limit of the uy. Since for
any ¢ € C®(RYN x [0,00)) there holds

/ / (g (ug)C — (0:C + AQ) ug) dedt = ¢(.,0)dpu, (3.107)

RN
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and gg(uy) < (H{u))? € L} (RN x [0,00)) we deduce by the Lebesgue dominated conver-
gence theorem that

/00/ (uP¢ — (Ok¢ + AQ) u) dxdt = ¢(.,0)du. (3.108)
0 RN RN

This prove that u is a nonnegative solution of (3.97) and p is g-admissible. Finally if u is a
nonnegative measure satisfying (3.101), there exists an increasing sequence of g-admissible
measures {u,} converging to u. For each n, let u, be the solution of (3.97) with initial
data fi,. Then the sequence {u,} is nondecreasing. For any nonnegative ( € C2(Q.)
there holds

/Oo/ (—up (0:¢ + AQ) + ul () dedt = / C(z,0)duy (). (3.109)
0 JRN RN

Let u be the limit of the increasing sequence {u,, }. By the Beppo-Levi convergence theorem
one has (3.98). This implies in particular that v € L] (Q,). If ¢ is nolonger nonnegative
then

(o]
lim// ul{dxdt,
n—oo 0 RN

by the dominated convergence theorem. Since

n—oo

lim /OOO/RN Un (04 + AC) dadt = /OOO/RNu(@CJr AC) dadt

it follows that u is a weak solution of (3.97) and therefore u is g-admissible.
For a general measure p satisfying (3.101), we write the Jordan decomposition p = 4 —pi—
and the proof follows. O

Baras and Pierre proved in [9] a general removability result which involves the Bessel
capacities of a set.

Theorem 3.12 Let ¢ > 1 and F C RY a closed set. A function u € C(Q, \ F') which is
a solution of (3.13) in Qx can be extended continuously to a function in C(Q.) if and

only if )
capg,q,(F) =0 where ¢' = 23 (3.110)

Proof. We give an abridged proof in order to point out the duality method introduced in
[9]. We recall that the heat potential of a measure w is

1 _le—yl? B . "
Bolin.t) = oy [ ) = [ A i) (3111)

Without loss of generality, we can assume that F' is a compact subset of Br. Since
capz ,(F) = 0, there exists a sequence {(,,} C C(RY) such that ¢, =1on F,0< (, <1
q7

and
HC”“B%"/ —0 asn— oo.
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We can assume that the support of ¢, is included into Bri1. Let § € C°(RY) such that
0<6<1,60=1in Bgy1 and § = 0 in B ,. We set 1, := 0H[1 — (,] and take n; for
test function where a > 0.

By a straightforward computation based on Holder’s inequality we get

/ 4Jﬂa¢mp<%/ / o ([0ml” + |Aul?) + [V [V, |7

(3.112)
a%WnW>Mﬁ+/Jmﬁ@UM.

We fix a = 2¢’. Replacing 7, by its value, we obtain,
i Oyl ” < 67 |OH[C]Y < [OH[G)|

At this point we use the interpolation results associated to the analytic semigroup in
LY (RN) generated by —A, see e.g. [54, Section 1.14.5]. We get

/ o omicar < el . (3.113)

Similarly
/ [ Al e < ], (3.114)

For the last term, we use Triebel’s result combined with Gaghardo—Nirenberg inequality
/ / 22 |90 20 dt < lnallfee Il < linall 5 - (3.115)

2 7
Letting n — oo and using the fact that 1, — 0 in B2'? | we infer that v € LI(RN x (0,1)).
In order to prove that u is a solution, we take ¢, = ¢H[1 — (,] for test function where
¢ € CX(RY x [0,00)). Then

/ (ugy)(.,0)dx = / / (ulpy, — u (Opdn, + Adpy)) dadt. (3.116)
RN RN
By computation,
(at¢n + A¢n) = H[l - Cn]aﬂs - QSatH[Cn] + H[l - Cn]Agb - ¢AH[CH] - QV(JSVHK”]
When n — oo, we have that
H[1 — o] (O + Ad) = Opp + Ag
in LS (RN x [0,00)), and

$OH[Cn] + AH[Cn] + 2V VH[(,] — 0
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in LP(RY x [0,00)). Hence, we infer that

/RN( u)(-,0)dz —/ /RN (w9 — u (9 + Ag)) dudt (3.117)

from (3.116).
The converse is a consequence of the fact that any compact set with positive capz e
q7

capacity is the support of a nonnegative measure (the capacitary measure) p belonging to
2
the space B~ «"/(R") see [1, Theorem 2.2.7]. By Theorem 3.10 any nonnegative bounded
2
measure belonging to B~ +'(R") is g-admissible. The result follows. O

In order to prove some analogue of Theorem 3.6 in the case ¢ > g, there are conditions
both on the measure p which has to satisfy a non-concentration condition such as (3.101)
and on the singular set S which cannot be locally removable. Furthermore the singular
set § can locally be created because the measure p may be locally unbounded.

Definition 3.13 Assume ¢ > 1. Let S C RN be a closed set and p a nonnegative Radon
measure on R := RN\ S satisfying (3.101) for all Borel sets F C S. We denote

OuS ={x €S : p(Be(x) NS) = o0 for all e > 0}, (3.118)

and

St = {x €S: capz y(Be(z)NS) >0 for all € > O} . (3.119)
q7
The next result is proved in [43].

Theorem 3.14 Let ¢ > q.. There exists a maximal positive solution u of (3.138) in Qo
with initial trace (S, p) if and only if p satisfies (3.101) or all Borel set FF C S and

S=08,8US". (3.120)

Proof. Step 1: Construction of u,,. Let {K,} be an increasing sequence of compact subsets
of R := RV \ § such that U, K, = R, pu, = 1k, u. Since p, < pu, it follows from
Theorem 3.10 that there exists a unique solution u, to (3.97) with initial data u = p,.
The sequence {u,} is increasing and it converges to some nonnegative solution %, of (3.13)
in Qoo By Proposition 3.1-2, @,(.,t) converges to 0 when ¢ — 0 locally uniformly in the
interior of S. For any y € R and R > 0 such that Bgr(y) C R, %, is bounded from

above in Qs Br(v) by wr(y —.) +ui, au Where uy, o s the solution of (3.13) in QBR @)
with initial data 1, and vanishing on 9yQoc R(y , and wp is defined in (3.23). Since
wr(y —.) + U1y, u is bounded in Lq(QTR'(y ) for any 7' > 0 and R’ < R it follows that
u,, satisfies (3.98) for any ¢ € CgO(QOBOR(y)).

Step 2: Characterization of 9,S. For any x € 0,5, ¢ > 0 and n € N, u, is bounded from

below by the solution uy, ¢ of (3.13) in Qs with initial data 1, B.(y)#- Furthermore for
any nonnegative ¢ € C°(Bc(y)),

lim inf /Be(y) u(z,t)((z)dr > lim Un,e(z,t)((x)d :/ C(x)dp(z). (3.121)

t—0 t—0 Be(y) KnNBe(y)

31



We can take ¢ such that ( =1 on By (y) for some 0 < € < e. When n — co, we have

lim inf x)du(x) = x)du(r) = oo,
/m&(yf””” [ @)

n—roo Be(y)nSe

hence y belongs the singular set of the initial trace of w, that we denote by Sing(w,).
Therefore
oS C Sing(wy,).

Conversely, if y ¢ 0,S there exists § > 0 such that p(Bs(y) NS¢) = ms, < co. Then for
any nonnegative ¢ € C2°(Bs(y)), one has

lim Uy (z,t)((z)de = ((z)dp(z) < oo.
t—=0 JrN RN

This implies that y ¢ Sing(u,). Thus
oS = Sing(wy,). (3.122)

Step 3: Construction of Us. By thickening S into S. = {x € RY : dist (z,S) < €} we
construct an increasing sequence of solutions {us, } with initial trace (Se,0). When € | 0,
{us.} decreases and converges to some nonnegative solution us of (3.13) in Q. Let
y € 8*. Then for any € > 0 the set Bc(y) NR has positive cap z, ,~capacity. Hence there

2
exists a positive measure pi, in the dual space B~ «*(RY) with support in B.(y) N R.
For n € N, we denote by up,, , the solution of (3.13) in Q5™ with initial data Npe 5 and

which vanishes on 85Q%(y). Then us > upy, , in Q%(y). Hence

liminf/ us(x,t)dr > n/ dfte y.
Be(y)

t—0

Since n is arbitrary this implies that

lim us(z,t)dr = oo, (3.123)
t—0 Be(y)

hence y belongs the singular set of the initial trace of us that we denote by Sing(us).
Thus
S§* C Sing(us).
Conversely, if y € S\ 8%, there exists § > 0 such that capz ,(Bs(y) NS) = 0. For
q7

0 < e < ¢ < d wedenote by uj . (resp. ug ) the solution of (3.13) in Qo with initial trace
SN By (y) (resp Sc N B (y)). Then

us, < Ui,e + U2 e-

When € — 0, uy,e | u1,0 (vesp. uge | uzp) where uj g is a solution of (3.13) in Qs with
Sing(u10) C SN By (y) (resp Sing(uzp) C SN B§(y)) and with no regular part. By
Theorem 3.8 uj g = 0. Since

us < Ui+ U0 = U0,
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we have for any 0 < 6" < ¢,
lim us(z,t)dr < lim ug,0(z,t)dx =0,
=0 B (y) =0 B (y)

hence y ¢ Sing(us). We conclude that
S§* = Sing(us). (3.124)

Step 4: Construction of a solution u with initial trace (S, ). Since max{us,u,} is a
subsolution of (3.13) and %s +7,, a supersolution, and since max{%s, %, } < Us +y, there
exists a solution u such that

max{ts, U, } < u < Us + Uy. (3.125)
Then
Sing(u) = Sing(us) U Sing(u,) = S*UusS. (3.126)

Therefore Sing(u) = S if and only if (3.120) holds.
As in the proof of Theorem 3.6-Step 2, the fonction constructed above is the maximal
solution of (3.13) with initial trace (S, p). O

We end this section with a non uniqueness result which asserts that in the supercritical
case there could exist many positive solutions of (3.13) with the same initial trace with
a non-empty singular set. This was proved first by Le Gall [39] in the framework of the
Brownian Snake, with ¢ = 2 and N > 3.

Theorem 3.15 If q > q., there exist infinitely many solutions with initial trace (RN ,0).

Proof. Let {a,} be a dense sequence in RV, {¢,} a sequence of positive numbers such
that the series ), €, is convergent and {u,} the sequence of maximal solutions of (3.13)

in Qo with initial trace (B, (ay),0). We have
up(z,t) = Up(|x — apl,t).

The function u,, is radial and radially decreasing for fixed ¢. Furthermore ¢ — w,(z,t) is
decreasing if z € B, (a,). We set

N = sup{ty,(z,t) : (x,t) € RY x [1,00)} = u,(0,1).

Since ¢ > q¢, U, — 0 uniformly on RY x [¢,00) when n — oo, for any € > 0. For any
E > 0 we can choose the ¢, such that the following inequality holds

> m <E.

n>0

Since |uy(x,t)[971 < ﬁ, it follows by the parabolic Harnack inequality that the series
ano u, converges normally on any compact subset of RV x (0,00), and we denote by U
its sum. Since (a + b)? > a4 + b? for any a,b > 0, U is a supersolution of (3.13). We set

U = sup{u, : n € N}.
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Then U is a subsolution of (3.13) and it is smaller than U. Therefore there exists a positive
solution U of (3.13) in @ such that

U<U<U. (3.127)

For any 3 € RY and e > 0 there exist infinitely many a,, such that B, (a,) C Bc(y), for
such an n

li = 00.
lim o o) up (z,t)dr = 0o

Hence y € Sing(u). Since the sequence {e,} can be chosen such that > o7, < E, we
obtain
0<U(0,1) < E. (3.128)

This ends the proof. O
This result can be improved in the following way, ([43, Proposition 4.14]).

Theorem 3.16 If g > q, for any € > 0 there exists a positive solution u of (3.13) in Qo
with initial trace (R™,0) and a Borel set F C RN shuch that

/ ledr <,
RN

lim u(z,t) =0 for allz e RN\ E.
t—0

and

Starting from this result it appeared clear that the definition of the initial trace per-
formed by an averaging of the function u(.,t) in an Euclidean neighborhood of a point y is
not suitable to distinguish between the different solutions of (3.13). The idea of using the
fine topolgy associated to the cap% q,—topology is due to S. Kuznetsov. It was first used in

[29] in the framework of the study of the boundary trace of positive solutions of
—Au+ul=0 (3.129)

in a domain Q C RY. In [45, 46], a sharper definition, suitable for all the supercritical
exponents in the semilinear elliptic problem (1.16), was introduced and developed. This
is this method, adapted to the parabolic case in [32] that we present in the next section.
It will apply to all the exponents g > q..

4 The capacitary representation

4.1 o-moderate solutions

We denote by SJT?F(RN ) the set of nonnegative bounded Radon measures in RY. If y is a
g-admissible measure, we denote by u,, the solution of (3.97).
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Definition 4.1 A positive solution u of (3.13) in Q is called o-moderate if there exists

2
an increasing sequence {yi,} C B~ a1 (RN)NINE (RY) such that the corresponding solution
w =y, of (3.97) converges to u locally uniformly in Q.

If F is a closed subset of RY we set
up = max{u, : p € B¢ (RY) 09w (RV), u(F°) = 0}. (4.1)

4.1.1 Besov and Bessel capacitary potentials

The main goal of this section is to prove that uy coincides with the maximal solution up
of (3.13) in Q« with initial trace (F,0). We introduce several tools linked to Bessel and
Besov capacities relative to a domain Q ¢ RY. If K is a compact subset of the domain
Q c RY, we set

Ta(K)={neCX(Q),0<n<1l,n=1on K}. (4.2)

Definition 4.2 Let s € (0,1), p > 1 such that sp < N and Q C RN be a domain. The
Besov capacity Rgp of a compact set K C ) is

BE,(K) = inf { |16l :6 € Ta(K)}. (4.3)

where Bs,p is the Aronszajn-Slobodeckij norm defined by

lolls,, = ([ [ 1= dway) " (14)

If Q =RV the Besov capacity coincides with the Riesz capacity defined in (1.10).
The Bessel capacity capgfp relative to Q) is defined by

capl,(K) = inf {||6| & € Ta(K)}, (4.5)
and cap]fz = caps.p-

In the sequel we will see that the capacity Rg q,(K ) is more suitable for the computa-
q b

tions in our problem than the Bessel capacity capz e
q b

Definition 4.3 Let g > 1. If F C RY is a closed set we denote forn € N and (z,t) € Quo
Fp=Fy(z,t)={yeF:d, <|z—y|<dpy1} where d, =+/nt,

Iy, = By, \ Ba, ={y € RY 1 d,, < |y| < dpi1}-
The Bessel-capacitary potential of F is the function Wg defined by

1 o= N-2- . F,
H=—> d ,Tle 1 == I (z,t o 4.
Welet) = 5 oAy e hoan, (725) forallwt €@ (10

n=0

35



Similarly, the Besov capacitary potential of F is Wp defined by

1 & 2 F,
W (z,t) = =¥ Z - “RI;nq, <d ) for all (2,t) € Quo. (4.7)
t2 ’ n+1

n=0

The Besov capacitary potential of F' is invariant by the scaling Ty in the sense that for
any £ > 0,

(T W (Vlx, 0t) == To[Wr)(z,t) = W% (z,t) for all (z,t) € Qu. (4.8)
4
The Besov capacity is linked to the Bessel capacity through the following directional
Poincaré inequality [43].

Lemma 4.4 Letb > a > 0 and Q be a domain in RN such that Q C Hyp = {z = (z1,2') :
a<xzy<b}. Ifs€(0,1) and p > 1 verify sp < N, there exists A = A(N, s, p, g) > 0 such
that

[ e sy = 50 = a7 [ s for ot n e C¥0). - (19)

It is noticeable that the above domain €2 is not necessarily bounded, in which case the
standard Poincaré inequality is easy to prove, but it is only contained in a strip of finite
thickness. The Aronszajn-Slobodeckij norm in C2°(2) is smaller than the standard B*?-

norm associated to the Bessel potential G4 := F[((1 + \5]2)_§] (see [1]) and defined by

10l gsr = 015, , + ¢l for all g € CZ(Q)

However, thanks to Lemma 4.4 there holds

Lemma 4.5 Let b > a > 0 and Q be a domain in RN such that Q C Loy = By \ By. If
s €(0,1) and p > 1 verify sp < N, there exists A = A(N, s, p, g) > 0 such that

16l 5sp < Ml gsw < (L +C0—0a)*) 4llgsp  for all n € CZ(Q). (4.10)

The following properties of Bessel capacities cap?,p relative to 2 and Besov capacities
relative to RV are classical and easy to establish.

Lemma 4.6 For any 7 > 0 and any Borel set K C ) there holds
RS (K) = V=PRI '} (r 1K), (4.11)
Ifb>a and Q C By \ B, there exists ¢ = c(b — a, g,N,S,p) > 0 such that

1 .
zcapgfp(K) < R} (K) < ccapl (K). (4.12)

Finally if K C Q' C O c Q, there exists ¢ = c¢(dist (', Q°), N, s,p) > 0 such that

1
Ecapgp(K) < capgp(K) < ccaps p(K). (4.13)
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4.1.2 Heat potential and Besov space
If 2 is a bounded domain in RY, p > 1 and s € (0,1), we extend any n € C2°(Q2) by zero

in Q€ and set
1-3 » dt
01l 5o.r = [t F o ] Pz ) (4.14)

It is proved in [11] that the following equ1valence of norms holds for the Besov space

BoP(Q),

C nllgew = C™H (Inll o + Il o) < M0l e + I0ll 5or < C (Il + 10l pon)  (415)

for all n € C°(92) for some C' = C(s,p, N) > 0. Actually it is easy to see by scaling that
the two norms ||| g, and [|.|[ 5., are universally equivalent in the sense that there exists
C =C(s,p,N) > 0 such that for any domain Q and any n € C°(Q),

C_l HnHBs,p < Hn”ﬁs,p <C HnHBsyp . (4'16)
If K is a compact subset of 2 and 1 € To(K) we set
Rln) = [0/H[n]| + |VEH)[*. (4.17)
Lemma 4.7 There ezists C = C(N,q) > 0 such that for every n € To(K) there holds

Il < WD, = [ [ (R deat < iy, (4.19

Proof. Using the Gagliardo-Nirenberg inequality in RY, an elementary elliptic estimate
and the fact that 0 < H[n] < 1,we see that

[ IEBIC 0P d < D% 0 IOl

< C||AH( )17,
for all ¢ > 0. Since 0,H[n] = AH[n], (4.18) follows. O

4.2 Estimate from above
The main result that we prove in this section is the following upper estimate

Theorem 4.8 Let q > q.. There exists a positive constant ¢ = ¢(N, q) such that for any
closed subset F C RN any nonnegative function u € C*1(Quo) NC(Q \ F x {0}) verifying

Ou—Au+u’ =0 m Qoo

}ir% u(z,t) =0  locally uniformly in F€, (4.19)
e

satisfies
u(z,t) < CWg(x,t)  for all (z,t) € Qo, (4.20)
where W is the capacitary potential defined in (4.6).

We will first consider the case where F' = K is a compact set.
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4.2.1 Global L? estimates
Let K ¢ B, C B, C B, where r,p > 0 be a compact set. We set
ﬁ,p(K) = {77 € Ccoo(Br+p)7 0<n<l,n=1on K}

If n € Tr.p(K we set
m'=1-n and ¢=(H[p])*.

Lemma 4.9 If u is a positive function satisfying (4.19), there exists C = C(N,q) > 0
such that for every T > 0 and every compact set K C B,,

// wICdx dt + /RN(UC)(JU,T)dm < CHR[n]ng, Vn € Trp(K). (4.21)

Proof. By assumption n* vanishes in an open neighbourhood N of K, for any open set
N5 such that K C Ny C Ng C Nj there exists Chy,, ca,, > 0 such that

c

* _ N N
Hn*|(z,t) < Cpnre™ ¢ for all (x,t) € Q2.

By Proposition 3.1-2, this implies

lim (u¢)(z,t)dt = 0.

t—0 RN

Taking ¢ as a test function, we obtain

/ / TuchwdH /R L) (@, Tdz = / / T((?tC+AC)udxdt. (4.22)

Since
’ ’ 2
8¢+ AC = 2/ Hly" P~ (9, Hly) + AB)) + 24'(24' — D0 2| VLD

we deduce

1
ol

‘//T (0,C + AQ) udmdt' < c(q) <//Tqudmdt>; (//TR[n]Q’dmdt> o

where R[n] is defined in (4.17). The proof follows from Lemma 4.7. O

Proposition 4.10 Under the assumptions of Lemma 4.9, let r,p >0, T > (r + p)?,
5T+P ={(z,t) € Qx : |x|2 +t<(r+ p)Z},

and Qr4p1 = Q1 \ Er4p. Then there exists C = C(N,q,T) > 0 such that

/ / widzdt + / u(z,T)dz < C||R)|%,  for all n € Ty, (4.23)
Qrip,T RN
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Proof. In view of the previous lemma we have to show that under the above assumptions
on T and 7, there exists some C' = C(N, ¢,T") > 0 such that

¢=H[y " >C.

Since, by assumption K C B,, n* = 1 outside B,;, and 0 < n* <1, we have

* 1 o2 2
Hir'lo,t) 2 B~ 1p, ) = —— [ =y
(4mt) 2 Iy\>T+P

1 R 2
=1- & / i dy.
(4mt)=2 Iy\Srer

If (z,t) € Qrypr, We write z = (r+p)é, y = (r + p)v and t = (r + p)?7. Then
& 71)eq and

(r+ p)2

1 =yl 1 le—v|?
ﬂ/ i dy = ﬂ/ e 4 dv.
(4mt)=2 Iy\§T+P (4rT)2 Jpl<1

It is therefore easy to verify that

1 —vl?
max 7]\,/ e T du &T1)eQ, =/, (4.24)
(4m7) 2 Jlwl<t "rte)?

and ¢ = {(N, G +p)2) (0,1). Actually ¢ is independent of G + (D Eif this quantity is larger
than 1. Putting C = (1 — £)~! we deduce (4.23). O

4.2.2 Pointwise upper estimates
In this section the assumptions of Lemma 4.9 are fulfilled.

Lemma 4.11 There exists a constant C = C(N,q) > 0 such that, for any n € T, ,(K)

R[n)||7.,
u(zx, (r+ ,0)2) < CHLHM}V for all z € RV, (4.25)

(r(r+p))2
Proof. Integrating the equation

T
/ / uldzxdr + / u(z, T)dx = / u(z, s) forall T's > 0, (4.26)
s JRN R R

and by Proposition 4.10 we have that

/ u(zx, s)dr < C’// )9 dxdt for all T > s > (1 + p)*. (4.27)
RN T

Since

u(z, s + 1) < Hlu(s, . )|(z,7) < 1 ~ / u(y, s)dy,
(dmT)2 JRN
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we obtain (4.25) from (4.26) and (4.27) with s = (r + p)? and 7 = (r +2p)? — (r + p)? =
r(r+ p) if p = o(r). O

In the next result we show an integral estimate of u on the lateral boundary of @), ".

Lemma 4.12 Let v > r+2p and ¢ > 0, and either N =1,2 and 0 <t < 672, or N >3
and t > 0. Then, for any n € T, ,(K), there holds

t /
/ / u(z, 7)dSdr < C HR[U]H%q/ , (4.28)
o8B,

where C' > 0 depends on N, q and ¢ if N =1,2 or N and q if N > 3.

Proof. Assume first that N = 1,2 and set G7 := BS x(—00,0) and 9,G" := 0B x (—00,0).
Let h, be the function

~
h’Y(x) -+ m7
and 1, the solution of
Opy + Atpy =0 in GY
Py =0 in 9,G" (4.29)

¥y(,0)=h,  in B
Then the function ¢ (z,7) = Yo (v, v*7) satisfies

Oh + AP =0 in G
Y =0 in 9,G* (4.30)
¥(,0)=h;  in BY.

By the maximum principle 1; < 1 and by Hopf lemma

(9
00 e 0> 0 (431)
where § = (N, c¢). Thus
A 0
—a—nylanx[f»y?,O]Z ; (4.32)

Multiplying the equation by . (x, 7 —t) = ¥} (z,7) and integrating on BS x (0,%) implies

t
// uql/J*d.%'dT-i-/ (uhv)(m,t)dx—// % »dSdr
< B¢ 0B, 0
—udeT
/ /aB7 on

Since 0 < ¥ <1, we derlve (4.28) from (4.32) and Proposition 4.10 since BS x (0,t) C &5,
first by taklng t =T =~2> (r+2p)?, and then for any t < v?t If N > 3, We proceed as
above except that we introduce a new function

m@g:1—<%0N4.
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This function is harmonic, thus the solution -, of (4.29) coincides with h,, and § = N —2
is independent of the length of the time interval. This ends the proof. O

The following estimates concerning solution of the heat equation are easy to obtain
from the Gaussian integral representation and left to the reader.

Lemma 4.13 I- Let M, a > 0 and n € L=(RY) such that

0<nx)< Me~al=F a.e. in RY, (4.34)
Then, for anyt > 0,
M alz|® N
0 < Hp](z,t) < —————x € TaitT for all x € R™. (4.35)
(4at +1)=2

II- Let M, a, b> 0 and n € L=(RY) such that

0<n(z)<M ~allal-b)% a.e. in RY. (4.36)
Then, for any t > 0,
0 < Hin|(x,t) < % for all z € RN, (4.37)

Lemma 4.14 There exists a constant C = C(N,q) > 0 such that, for any n € Ty ,(K),
there holds

L’
(4.38)

rtp lz| —r —2p) —lal=Gr2)?
( (7"+2P) )<Cmax{(|x| —T‘—2p)N+17 (T+p)N+1 e 4(r+2p)2 HR[ ]H

for any x € RN\ B, 3.

Proof. The heat kernel in Bf x (0,00) with Dirichlet data on 0Bf x (0, 00) satisfies

o’ —y"|2

HB (2! 2/t s") < C(t' —s')7 2 £l Yz| — 1)e 4= fort' > ¢ (4.39)

If we denote z = (r + 2p)z" and t = (r + 2p)*t' for (z,t) € B 5, x (0,T), then

z 2
e ‘4(15 ys‘)
u(z,t) < (|lz] —r — 2p) / / dS(y)ds. (4.40)
8B,~+p t — S

The right-hand side term in (4.40) is bounded from above by

—r—_-9 _ (lz]—r—2 )2
max C(lz| —r P) T (0,t) / / u(y, s)do(y)ds. (4.41)
(t )1+2 8B7‘~b»2p
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We fix t = (r + 2p)? and |z| > r + 3p. Since
_ (zl=r=2p)°
4s

N
sta

- r+2p 2
= —r—2p) 2N e . -
(|| = — 2p) max{aj2V+1 <o < (=7 —2p) ;

a direct technical computation shows that

15 €(0,(r+2p)?)

—r_2p)?
6_(\:0\ - 2p) ) o N (\x\—r—Qp)Q
max s 15 €(0,(r+2p)°) p SC(N)p “ Vel it (4.42)
s T2
Combining this estimate with (4.40), (4.41) and Lemma 4.12, one gets (4.38). O
Remark. Since there exists C' > 0 such that
|z|—r—2p? 2 (lz|-r=3p\?
(lx| —r— 2p)e< 2r+dp ) < C(T _;’0) e ( 2r+p ) for all z € B 5, (4.43)
the following variant of (4.38) holds for all x € By 5,
e, r+20)?) < O { - P e e G g
’ - p(lzf =7 = 2p)NF1 p(r + p)NH1 L
(4.44)

Next, we give a sharp pointwise upper bound of u(x,t) when ¢ is bounded from below.

Lemma 4.15 There exists a constant C = C(N,q) > 0 such that for any n € Try,(K)
the following estimate holds,

i _Uel=r=3p)%
4t /
u(e,t) £ ——————|RIIY, for all (z.) € RY x [(r +p)%,00),  (4.45)
te
where
N
(1+%>2 if |zl <r+3p
N: M = N+3 . 3
M=Menp) =9 Lo ir43p <ol <ciyrv2p)  (410)
1+ if |z| = en(r+2p),

with ¢y =1+ V44 2N.

Proof. By the maximum principle

u(z,t) < Hlu(., (r +2p)?)(z,t — (r +2p)?) for any t > (r + 2p)?.
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By Lemma 4.11 and (4.44),

— _ (zl=r=3p)> /
u(z, (r+2p)?) < CMe  4G+20)7 HR[n]Hiq, ,
where
N

(r(r+ )% it [o] < +3p

T— gt - +p)N+3 : *

M"= M"(z,r,p) = W if r+3p < l|z| < cy(r+2p)

1+7 if |x| > ¢y (r+ 2p).

Applying Lemma 4.13 with a = (2r +4p)~2, b = r + 3p and t replaced by t — (r + 2r)?
implies

MT(r42p)V _ (z1=r—30> /
wmwsc—i7E—Le = | R, (4.47)
2
for |z| > 7 +3p and t > (r + 2r)2, which implies (4.45). O

Finally we obtain an upper bound of u(z,t) when ¢ is not bounded from below.

Lemma 4.16 There exists a constant C = C(N,q) > 0 such that for any n € Tr4,(K)
the following estimate holds when 0 < t < (r + 2p)?,

1 1 _ (lz|-r=3p)* /
) 50t | et e L
pt 2

for any (z,t) € (RN \ Brys,) x (0, (r + 2p)?].

Proof. From Lemma 4.12 we deduce by a simple modification of (4.38) that for any |z| >
r 4 2p, there holds

_ (zl=r=2p)?
4s /
u(z,t) < C(|lz| —r — 2p)(r + 2p) max N 0<s<t ||R[77]Hiq, . (4.49)
s T2
Next,
_ (zl=r=2p)?
(& 4s
max = 0<s <t
S+

N + 43 (jz] —r —2p) V275" i 0 < || <7+ 20+ /24N + 2)

= _ (z]=r—2p)*
e 4t X
— if x| > 74+ 2p+ \/2t(N +2).
tita

When = € Bj 3,, we have that

(2lr—20)? zl=r—sp® | PE T if 2t < p?

(|z] =r—=2p)e” " @ ~ <e m >

20 402 e 2 2
—e T if p* <2t <2(r + 2p)~.
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However, since

(M

_p
e it <

+ D

)

|

we derive
_ (z|=r—2p)* Ct _ (zl-r=3p)2
4t < —e 4t

p
and (4.48) follows. O

(2] = 7 = 2p)e

)

4.2.3 The upper Wiener test estimate
Definition 4.17 We denote by o and 0o the two parabolic distances

(Z) 52[(1'7”7 (y7 S)] = \/(.%' - y)2 + ‘t - S‘ (4.50)
(i) Ooo[(,1), (y, 8)] = max{|z —y[, /[t — s[}.
If K cRY andi=2 or oo,
Vdist2(z, K) + |t] ifi=2

6i[(x’t)’K] = inf{éi[(x’t)’ (y,O)] ‘Y€ EK} = { max{dist (m K) \/E} ifi = oo.

For 8 > 0 and i = 2 or oo, we denote by B% the parabolic ball with center m = (z,t)
and radius § in the metric 9;.

If K ¢ RY is any compact we denote by Ty the maximal solution of (3.13) with initial
trace (K, 0).

If m = (x,t) € Qr we set dg = dist (2, K), Dg = max{|z —y| : y € K} and

A = /d% +t = 82(m,K). We define the slicing of K by setting d,, = d,,(K,t) := v/nt
n € Ny, df = <\/Ei%> and
"+

T = Edzﬂ(ag) \ By (z), T, = Bg,.,(x)\ Bg,(z) forall neN,

thus T = §2\/Z(3:), Ty = E\/Z(x), and set
K, =K,(z,t)=KNT, and Q,:= Q,(x,t) = KNT,.
The main result of this section is the following upper estimate

Theorem 4.18 Assume q > q., then there exists a constant C = C(N,q,T) > 0 such

that _
C < N--2 K,
T < — d " | —= U (x,t 4.51
UK_t%nZ:o ntl CAP2 4 (dn+1> for all (z,t) € Qr, (4.51)

where a; is the largest integer such that K; # ().
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We can assume that x = 0. Furthermore, in considering the scaling transformation 7, with
£ > 0 we can assume t = 1. Thus the new compact singular set of the initial trace becomes

%K that we still denote by K. For n € N, set 6, = dp+1 — dy,, then 2\/_ <4, < 2\/—

By convention dp = 1. It is possible to exhibit a collection ©,, of points a,, ; with center
on the sphere ¥, = {y € RV : |y| = (dns1 + dy)/2}, such that

T, C U Bén (an,j)a ’an,j - an,k‘ > 0p and #6O, < CnNily
an,je@n

for some constant C' = C(N). If K,, ; = K, N Bs,, (an,j), there holds

K= J U Kus

0<n<a, an, ;€O

The first intermediate step is based on the quasi-additivity property of capacities de-
veloped in [2].

Lemma 4.19 Let q > q.. There exists a constant C = C(N,q) such that

a 2 K"
Z R;Q‘S”( "J) ) < Cd “leapz <—> Vn € N,. (4.52)
anjeen e v dn+1

Proof. The following result is proved in [2, Th 3]: if the spheres B 9(b ), 0 =1— W

are disjoint in RY and G is a Borel (more generally an analytic) subset of U B, (bj) where

the p; are positive numbers smaller than some p* > 0, there holds

cap%q,(G) < anp%q,(G N By, (b)) < Acap%q,(G), (4.53)

for some A depending on N, ¢ and p*. This property is called quasi-additivity. We define
for n € Ny, B B N
T, = dn+1Tn7 Kn = dn+1Kn and Qn = dn+1 Qn

Since Ky, j C Bs, (an,j), it follows that
K= dn1Knj © Ba, s, (@ng)-

Note that by Lemma 4.6

RBQM( n,])(K ) — e i R326n dp 1 (@nt1 J)(KnJ’)

2/q,q' n+1 2/q,q’
—N  Bospd,yq(dntiang), =~
~ i eap Pofaq " (Kn.j) (4.54)

2

-N ~
~ d? q-1 .
diy cap%q/(Kn,J),
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where [?n,j = dp4+1K,, ;. For a fixed n > 0 and each repartition A of points a, j = dy+1 ap j
such that the balls Bgs(ay, ;) are disjoint, the quasi-additivity property holds: if we set

Kn,A = U Kn,j ) Kn,A = dn+1 Kn,A = U Kn,j and K, = dn+1 Ky,
an,jGA an’jGA

then

Z capz ,(Ky ;) = capz ,(Ky ). (4.55)
q q

an,j€A

The maximal cardinal of any such repartition A is of the order of Cn¥ ! for some positive
constant C' = C(N ), therefore the number of repartitions needed for a full covering of the
set T, is of finite order depending only on the dimension. Because K, is the union of the
Kn,A,

capz (K, ;) = capz ,(Ky ) =~ capz ,(K,). 4.56
Z p%,q( n,_]) Z Z p%,q( ny.]) p%g( n) ( )

an,jeG)n A an,jeA

By Lemma 4.6,

~ Bag > N-a B K, N——Lo K
< n+1 ~ q—1 2 ~ q—1 , n
capaq/(Kn) < capy ), (Kn) = d, 4 capy o o do d, 1 capz i)

we obtain (4.52) by combining this last inequality with (4.54) and (4.56). O
Proof of Theorem 4.18. Step 1. We first notice that

g <Y Y Wk, (4.57)

0<n<a; an ;€O

Actually, since K = |, Uanj K, j, there holds Ko C |, Uanj K, je for any 0 < € <e.
Because a finite sum of positive solutions of (3.13) is a super solution,

ﬂKe, < Z Z ﬂKn,je' (4.58)

0<n<a, an, ;€O

Letting successively ¢’ and e go to 0 implies (4.57).

Step 2. Let n € N. Since K, ; C B;, (an ;) and |z — a,, j| = (dy + dp41)/2, we can apply
the previous lemmas with 7 = 8, and p = r. For n > ny, there holds t = 1 > (r +2p)? =

9/(n+1) and |z — ay ;| = (Vn+1—+/n)/2 > (24 Cn)(3/v/n+ 1) (notice that ny > 8).
Thus

2 . n o -
ur, ,(0,1) < CelV=3/Vnt1)/4 RiQ;Zfa"’J)(Kn,j) < Ce3/2e_ZR§2q‘SZ,( (). (4.59)

Using Lemma 4.19 we obtain, with d,, = d,, (1) = vn+ 1,

a a

: D<o S d e Kn 4
Z Z uK,;(0,1) < N A (4.60)
N=ny an, ;€O n=n, 1 n+1



Finally, we apply Lemma 4.11 if 1 <n < n, and get

nN—l nN—l K
Y. > uk, () <C Y caps
1 a,,€0 1 ! dnt1
I I (4.61)
e~ N-2 K,
<’ Z d, " e_anp%q/ <d—+1>
mn

For n = 0, we proceed similarly, in splitting K in a finite number of sets K1 ;, depending
only on the dimension, such that diam K ; < 1/3. Combining (4.60) and (4.61), we derive

K ON-2 K,
ur(0,1) < C d 7 e dcapz , <—> . 4.62
K( ) nZ:O n+1 2.q dnJrl ( )

In order to derive the same result for any ¢ > 0, we notice that

__1
HI((yat) =t q_lﬂK/\/E(y/\/za 1)

Going back to the definition of d,, = d,,(K,t) = v/nt = d,(K+/t,1), we derive from (4.62)

and the fact that Uy = 0y g

(0,t) < Ct 3 “E dN qgl i <d "Jr ) (4.63)
U , 2 e 4capz , , .
“ n=0 o pq’q n+1

with d,, = dp(t) = \/t(n +1). This is (4.51) with = 0, and a space translation leads to
the final result. O

Proof of Theorem 4.8. Let m > 0 and F,, = F N B,,. We denote by Upe, the maximal
solution of (3.13) in Q the initial trace of which vanishes on By,. It is straightforward
by scaling to verify that such a solution is actually the unique positive solution of (3.13)
which satisfies

lim u(x,t) = 0o
t—0

uniformly on B¢, for any m' > m. Furthermore
2
lim Uge (y,t) = lim m_FUBf(y/m,t/mQ) =0,
m—0oQ m—0oQ

uniformly on any compact subset of Q. Since &, + Upe, is a super-solution, it is larger
that wp and therefore up,, T up. Because Wg, (x,t) < Wg(z,t) and up,, < C1Wg, (z,t),
the result follows. O

Remark. It is clear that Theorem 4.8 still holds if w is a positive subsolution of (3.13)
satisfying the initial trace condition (4.19).

The Bessel capacitary potential admits an integral form. The next result is a variant
of Theorem 4.8.
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Theorem 4.20 Assume q > q.. Then there ezists a positive constant Cf = C7(N,q,T)
such for any closed subset ' C RN there holds for all (z,t) € Qr,

C tlaet2 2 o 5 1
up(z,t) < t1+lﬂ /\[ e Hws a1 capz o <;B N Bl(x)> sds, (4.64)
2 JVi

where ay :min{n eN:FC B\/Wr—l)t(m)}

Proof. We use the inequality

capz <capz o | =—N By )
24 <dn+1 27 \ dpis

F
¢(s) = capz <; N B1> for all s > 0. (4.65)
q7

and we set

Step 1. By [1], [45], there exists ¢ = ¢(N, q) > 0 such that
1 1
—o(as) < ¢(s) < cop(Bs) forall s >0 and 3 <a<1<p<2 (4.66)
c

Actually, if 5 € [1,2],

—_

o0 = cana o (5 (370 Bato) ) ) w cam (SF 0 Bale)) = 2o6),

and if o € [3,1],

p(as) = capz <é <%Fﬂ Ba(x)>> N capz <%F N Ba(x)> < ch(s).
Step 2. By (4.66)

F F
capz (d— N Bl(x)> < ccap:z <— N Bl(x)> for all s € [dp41,dn+2],
q n+1 q S

and n < a;. Then

dpt2 2 2 F
c/ sV e T eapo ¢ <— N Bl(x)> sds
dni1 q’ S
F dnt2 o2
> capz <— N B1(ﬂf)> / sN Ta-Te T sds.
q’ dn+1 dni1

Because N — —q%l >0 as ¢ > q., we obtain
N--22 .
2 td, e 2

dn+2 2 s n+2 N*L
[ e s > T s — dar) > )
dn+1 e

which implies (4.64). O
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4.3 Estimate from below

If 41 is a bounded nonnegative g-admissible measure, we recall that u, is the solution of
(3.97). The maximal o-moderate solution of (3.13) with an initial trace vanishing outside
a closed set F' ¢ RY is denoted by u and defined by

up = supfu, : p € MY, and ¢- admissible s.t. p(F) = 0}. (4.68)
The main result of this section is

Theorem 4.21 Let ¢ > q. and T > 0. Then there exists a positive constant C =
C(N,q,T) such that for any closed set F C RY,

up(x,t) > CWp(z,t) for all (z,t) € Q. (4.69)

We first assume that F' is compact and we denote it by K. If y is g- admissible and
nonnegative, then u, < Hu]. Since

w, = H[u] - Glu],
where G is the Green parabolic heat potential, defined by

_Jz—y|?

G[f](x,t) = H[f(.,s)](x,t — s)ds = %e 4t=9) f(y,s)dyds (4.70)
0 0 JRN (47r(t — s))2

for all (z,t) € Q, there holds
up(w,t) > Hp)(z, t) — G[(H[u])?)(z, t)

() L
2 (i) fou 0 )

t 1 _lz—yl? 1 —z|° !
e (s [ ) ) dyas
0 JRN (471'(75 — 5))7 (47‘(‘8)7 RN

for all (z,t) € Q. The main idea of the proof is as follows: for any (z,t) € Qr we
construct a ¢-admissible bounded measure p = i, ; such that

M) (2, 1) > CWi(z, 1), (4.72)

and
G[(H[pa])!] < CH[ped] n Qoo, (4.73)
with constants C' depending only on N, ¢ and T. From this first estimate we replace p ;

1
by €fiz+ with e = (2C')” ¢=T in order to obtain
1 C
Uepz s (x’ t) > §H[EMJB¢]($’ t) > EWK(xa t)-
If such an estimate holds for any (z,t) € Q, it will follow by the definition of uy that

C
Ug = EWK' (4.74)

49



4.3.1 Estimate from below of the solution of the heat equation

The slicing of RV used in the previous section is the intersection with RY x {0} of an
extended slicing of Q7 that we construct as follows: if K is a compact subset of RY,
m = (z,t), we define dg, A, d,, as in Definition 4.17 and a; as in Theorem 4.20.

Let o € (0,1) to be fixed later on. For n € Z we set

BQT (m)\ B2=(m)  ifn>1
7;‘:{82 HE \B2,_ (m) ifn<0
RV al=n\t =

and

T* ﬂ Qt ifneZ.
For any n € N, and m = (z,t) € Qr, we recall that

Qn:KmBQ KﬂBdn+1( )

t(nJrl)( )

and

K,=KnNnTyr1=Kn (Bdn_H(.%')\Bd (.%')) .

Let v, € M (RY) N B~ o7 (RY) be the capamtary measure of the set dnJrl (see [1,

Section 2.2]). Then v, vanishes outside d_ 1, K, and satisfies

n+1

Q|

va(dyt ) = capz (di Ly K) and vl sy = (eapz g (di 1K) T (475)

7 (®Y)
Let p, be defined on any Borel set A C K,, by
N2
pn(A) = dn+1 (dr_LHA) (4.76)
We set o
Mt K = Z Mo
n=0

and

MtK ZH,U%

Proposition 4.22 Let g > q., then there holds

1 a _2 d
K = X Ze*Tdan*lcap;q, < I’}“) for all (x,t) € Qr. (4.77)
(47Tt) 2 p=0 ! n

Proof. We have

Balie.t) = o [ o)
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Furthermore

!

lz—yl|?
4t

_ == y\

o) < (maxte”

vE ) )l

z—y|? N—-2_
< <max{e‘ T y € Kn}> dy 1" capz q,(d;_lHKn),
q7
by (4.75) and (4.76). Thus
_ == u\2 _n+l N—%
[ ) < T a0 K,
by the definition of K, and d,,, and (4.77) follows by the definition of 1 k. O
4.3.2 Estimate from above of the nonlinear term
We write (4.71) under the form
q
(2,0) = 3 Hlpn)(, 1) / Hapt =) (Y Bl | duds 0
neZ RY neAx '
=1 — I,
We recall that p, =01ifn ¢ Ax =NN[1,a;. Then
q
N _le—y?
/ / (t—s)2e -9 Z Hlpn)(y,s) | dyds
(4m) =z RN n€Ay (4.79)
241
< = (Je + Jp),
(47T)?
where
, q
_lz—y]
Jy = Z// (t— s)%e prez) Z H(p,](y,s) | dyds,
PEL Ty n<p+4
and
q
_lz—y|
=3 / (t—9)%e i |7 Hiul(y,s) | dyds.
PEZL 3 n>p+4
In these expressions ¢ € N will be fixed later on.
Lemma 4.23 Let 0 < a <b andt > 0, then
a2 f%e*%N if 52 > 1
max{ Te i 0< o<t at < p? +a<bt} ON\2 ~
(E) e 2 ’Lf % < 1.
(4.80)
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Proof. Set
N

J(p,0) = 0-_76_2_‘7’

and
Kapt = {(p,0) €[0,00) x (0] : at < p* + o < bt}.

We notice that, for fixed o, the maximum of J(.,o0) is achieved when p is minimal. If
o € |at, bt], the minimal value of p is zero, while if o € (0, at), the minimal value is v/at — s.

- Assume first a > 1, then j(at 0,0) = e%a Te i . Thusif1 < 2(11\/7 the minimal value

of J(Vat —o,0) is e (ZN) while if 5% < 1, this minimum is eit-%e 1.

- Assume now a < 1, then

max{J(p,0) : (p,0) € Kaps} = max{ m(ax J(0,0), m(%x J(Wat — O',O')}
oc(at,t oe(0,at

N
N _1-2n (2N 2
=max{ (at)"2,e 4 [ —
at
_1-2nv (2N
i 4 B —
at

From these two estimates, (4.80) follows. O

oz

Remark. The following variant of Lemma 4.23 will be useful in the sequel: For any 6 > ﬁ,
there holds

max {7 (p,0) : (p,0) € Kape} < et (2]:9) ei if fa> 1. (4.81)

Lemma 4.24 There ezists a positive constant C = C(N,q,¢,T) such that

at 2
N N——=— 1+(n—4) 4 K
Jy < Ct 2 E d, "le” T 1 — ). .
v il € capz g (dn+1> (4.82)

Proof. The set of the indices p for the summation in Jy is reduced to ZN[—{+ 2, 00), thus
there holds Jy = Jy ¢ + Jo ¢ where

q
\

_la—y[?
Jie = Z // (t—s) Fe i > Hlunl(y,s) | dyds

p=2—/4 n<p+4

and
q

> |z —y/?
Jog =) / / (t—s)"Fe @7 [ 3 Hiual(y,s) | dyds.
p=1 P

n<p+~
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Ifp=2—p,..,0,
(y,8) €Ty = ta> ® < |z —y|* +t— s < ta™ >,

while if p > 1,
(y,s) €T = pt < |z —yP +t—s<(p+ 1)t
By Lemma 4.23 and (4.81), there exists a positive constant C' = C(N, ¢, ) such that

N _lz=y? N _a%7P
max q (t—s)"2e =) 1 (y,s) €T p <Ct 2e 1, (4.83)
whenever p =2 —¢,...,0, and
_le—yl?
max {(t — s)_%e i (y,s) € ’7;*} <Ct 2e i, (4.84)

when p > 1.
Whenp=2—-1¢,...,0

p—_L—1 q p—t—1
<§ijme <C Y Hlpa) (y:5), (4.85)

where C' = C(gq,£) > 0, therefore

0 p—ﬁ—l
Jie<Ct 2 Z Z HH[Mn]Hqu(QT)
p=2—4 n=1
Lt 0 -
<Ct 2 Z Heallfeigny Do € 3 (4.86)
n=1 p=n—_{+1
_N _a*-2
<Otz 4 Z HH[Nn]Hqu(QT) .

n=1

When the set of indices p is not upper bounded, we introduce some extra parameter to be
made precise later on. Then

p—~L0—1 q p—~L0—1 o
( > H[M](%S)) < ( eqT>
n=1 n=1

Remembering thet p, = 0 if n > a4, we obtain that there exists C' > 0 depending also on
0 such that

Qo

p—~L0—1

S e M) (v 5). (4.87)
n=1

N 0 S(p+e-1)g—p 1) p it
i P q—p
Jop < Ct Z Z ||H Mn]||Lq(QT
> S(p+L—1)qg—p
<Ctz Ze o ([, HLq (Qr) Z € 4 (4.88)
p=n—~_{+1V1
B R LGS
<oriye 1E o] 1 0 -

n=1

53



We chose 0 such that 6¢g < 1. Combining (4.86) and (4.88) and using Lemma 3.11 and
(4.75) and (4.76) we obtain (4.82). O

The set of indices p such that the term p, is not zero in the summation Jj is Z N
(—o0,a;r — f]. We write
Jp=Ji 0+ Joy

with
P=0 N _le—yl? ad !
Jix:Z// (t—s)"2e 0 [ > Hipl(y,s)
—00 v n=1vp+¢
and
q
ar—~¢ N lo—yl? 0
=3 [ [ = 3 T (Y Hules)
p=1 I3 n=p+~
Lemma 4.25 There ezists a positive constant C = C(N,q, ) such that
a
1 N, (1+ﬁo)(n Wi Ng—2 K
J{,Z <Ct a Ze dnfl qcapgq,q, ?:1 , (4.89)
n=0

where By = ‘14;1 and h = %.

Proof. Since
(y,8) €T, and (2,0) € K;, = |y — 2| > (Vn — a PV, (4.90)
there holds by Lemma 4.23,

| €V _N _(/a—a"P)?
Hlpa)(y, s) < e B pun(K,) < Ct 2e T (K).

Let {e,} be a sequence of positive numbers such that

o0

A, = Zen < 00,
n=0
then
_ Mg aou? ONavamah?
Jig < CA t Z // (t—s) —Ye i) Z €,le 1 (un(Ky))? dyds
p=—0o0 n=1Vp+<{
4, 00 0An—¢ (o P)? Ja—y?
CCATFES 1K) Y et / / (t - 5)"Fe T dyds
n=1 p=—00 ;
L Nos )0 oo H? j2—y1
<CAft 2 Zen (i (Kp))Te™ (t—s)" Te ~ A9 dyds
| Up<oT,

q o
v (f
< CASHHY et ().
n=1

(4.91)
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Set h = 224tl) and Q = L1 then q(v/n—1)2>Q(n —h), for n > 1. Then

(q-1)2 2
(a=1)(n—h), L gyme1? (@43 (n—h)y
€n, =€  16d = ¢, %€ 1 <e 16 .
Therefore -
N (14Bp)(n—h) 4
Jie < Ct—= Z e * (1 ()7

n=1

This implies (4.89) from the properties of fu,. O

The estimate of the term JJ , is more involved. In order to help the reader to follow
the idea, we first give a proof in dimension 1.

Lemma 4.26 Assume N =1, ¢ > 3 and { is an integer larger than 1. Then there exists
a positive constant C' = C(q,¥) such that

ag

K

Jé’g < Ct2 g e 4dn+lcap2 , <—n> . (4.92)
n={ dn+1

Proof. It p>1,n>p=~(and if y,s) € T and z € K, there holds [z — y| > Vt,/p and
ly — z| > vVt (v/n — v/p+1). Therefore

q
at

1 (Vn—pFD)?
Jhy < OV Z / | 3 e T () | ds.
n=p+~£

Let € € (0,q) be some parameter to be made more precise later on, then

q
at

Z 1 7(\/5*\/4P+1)2t

%6 s tin(Kn)

~

at at
S D S D DI e )
n=p+~{ n=p+~{

By comparison between series and integrals we have

at

_ed (Vn—/pFD)?t e (Va-vrpED%
Z e s < e s dx
p+e

n=p+~{
o0 eq/x2
SQ/ e 3 (v++/p+1)dx
Vp+Hl—/p+1
4 /(\/1? \/17+ ) t 0o eq x2t
<@ 2P+ e o de

2
< O s e LB

< C (p—;l)s .
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Set q¢ = q — €, then

/ o n—{ ¢ ot 2
_a __—pt_ (/n=+p¥T)
Jyp < Ce T3 E (n(Kp))? E / Vst —s)e s ¢ de T tds,
n=0+1 p=170

where C' = C(e,q) > 0. Since

)2

f—\/T)Q (VA= v/pT
/\/ (= s)e Taom gmae VA /\/ (1—s)e T 90 ds,

we can apply Lemma 4.34 with a = %, b= %, A=./p, B=/q:.(v/n—+/p+1). For such

a choice,
{—1)./qc
B>\/_(\/p+€—\/p+1) > %:Ni:(é—l)\/@,
and
\/ A \/ B VPV =P
< .
A+BVY A+B — vn
Therefore
te"*(fpijﬂe—qi(‘/ﬁfgfﬂ)% VPV = VP (g vrm)?
/ ds<(C———e¢ 1 .
0 s4(t — s) NLD

This implies

at

Jhy < Ct2 Z i

n=~0+1

(V/P+ /e (v/rn—v/pF1))?
Y O (4.93)

where C' = C(e,q,£¢) > 0. Then, by Lemma 4.35,

T <O ST n' T e (a(K)?. (4.94)

q—3

Replacing p, (K,) by its value d,ﬂcapg ¢ (dK—:l), the expression when N = 1, and since
q n

diam (K—”l> < %, we obtain

dos
q—3 q—3
K,))<C AN K, C B ? it Ko
(,U'n( n)) < E ,Un( n) = E dn+1cap%q, K_H R (4.95)
and the proof follows. O

Next we give the proof for N > 2. For this task we will use again the quasi-additivity
property.

56



Lemma 4.27 Assume N > 2 and £ is an integer larger than 1. There exists a positive
constant C; = C1(N, q,¥) such that

N 2 K
Jo, <Cit™ 2 Z 4d “leaps (—n> . (4.96)
’ " a’ dnJrl

Proof. As in the prof Theorem 4.18 there exists a finite number J depending only on the

dimension N of separated sub-partitions {@Zn},{zl of the rescaled sets T}, = ”THTn

by the N-dimensional balls By (ay, ;) where a, ; = w/”THan,j, lan,j| = %(dn + dpy1) and

|@n,j—an | > n4—_i1. Furthermore #@Zn < Cn™¥"1. We denote Ky, j = K,NB 5 (an,;).
n+1
J J
We can write p,, = Z ,uﬁ and accordingly Jé’g Z MZJZLK where ,uz = Z fn,; and the
h=1 h=1 jeoh

tn,; are the capacitary measures of K, ; relative to B, j := B o (@p,;, which means

1

Bhn.j a
Vn,j(Knj) = Capg o g and gl 2, = <cap2 q’f(K,w) : (4.97)
n,]

q 9
Thus

ar—¥¢

Jzz—Z//* S W) | a9

n=p+Ch=1jeGthl,,

We denote

at —L 2
_lz—y|
// ge 1(t—s) E g Hpn ;(y,s)] | dyds.

n=p+{jeGihl,,

Since J depends only on N and g,

J
Jap < CZ I3y
h=1
If n and p are such that n > £+ 1, we set

Mgy = i {[y = 2|+ 2 € By y(@ny | = Iy = angl = Vin +1.
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Then

Z/ _lu- z\ Z Z e

n=p-+{ n=p+t jeGthl,

[y oy et

n=p+t jeGthl,

X Z > e T (pn (K ))?

n=p+{jeGihl,,

@JH

Q-

where € > 0 will be made precise later on.

Step 1. We claim that
a
YooY e g <o, /B = (4.99)

n=p+LjeGth},
where C' = C(e,q,N) > 0. If y € T),, let 2z, € T}, such that |y — z| = dist (y, T},,) hence

ViV —p+1) < |y — 2 < VE(/n—/p+1).

_ Vilp+D) _ Y . _ kvt
Let Y = oY € = 17 and, for integers k € [—n,n], by = e We denote by

H, j the domain in RY limited by the hyperplanes orthogonal to e going through the
points L\}%ﬁe and (k%}%ﬁe, and by G, ; the spherical shell obtained by intersecting the
spherical shell T}, with H,, .. The number of points a, ; belonging to G, j is smaller than
C(n+1—1|k|)N=2 where C = C(N) > 0. Let A, 1 be the set of indices j € O, such that
anj € Gy . Note that in a,; € Gy, it is a consequence of Pythagora’s theorem that
A2 . is larger than t(n +p+1— 2/<:p+1) Therefore

n.J,y
at RS ed (ntp+1—2k/pED)E
o) ewit<e Z Z (n+1—k)V2e asm . (4.100)
n=p+fjEOt n n=p+L k=—n

Case N = 2. Summing a geometric series and using the inequality —F— <1 + = on (0, 00),
we obtain

n kT / /bl ' JPTT 2sy/n
€q P e/ VpFIt € 2svn €q' /p+1t Sy\/ 1N
Z e 2svn S e 2s W S e 2s <1 + /7) (4101)
f— ¢ mve wtvptl

Therefore using comparison between series and integrals,

at >\2 i at
s sv/n \/T t
Z Z e_eq/%sLlL S C Z 1 + \/_ /(\/_ p+1)
=p+L jeGthl =p+l tvp
n=p+tjeGth}, n=p
oo 2 2
o (E-vpED%e Cs g =YD
<C e d 4s dx —/ Vwe 1 4s dz.
p+1 tvn Jp

(4.102)
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Next

o 2 o 2
(Va—vpED?t (uy=vpFD%t
/ et T dr = 2/ emed s ydy
p+1 Vp+1

oo 2t S syt
= 2/0 e T ydy +2/p+ 1/ e I dy (4.103)

00 2 /
= % e~ 2dz + p + 1 / e~ T dz
0

o0
(ﬁ*vp+ )%t —vp¥D)7t \/p+ )2t
/ et \/_dx—Q/ et y2dy
p+1 Vp+1

0o L2
:2/ e (y+/p+ 1)%d
0

o0 /y2t o0 /y2t
4/ e U nyPdy +4(p+ 1) / e dy
0 0

and

IN

S % o0 22 2 S b )22
<4 <—) / e “UT2%dz+4(p+ 1)/ = / e I dz.
t 0 t 0
(4.104)
Combined with (4.102), this inequalities imply
2 @'\ ps
> D s (4.105)

n=p+£Lj€O¢n

Case N > 2. The value of the right-hand side of (4.100) is clearly an increasing function
of N, hence it is sufficient to prove (4.100) when N = 2 + 2d with d € N,. There holds

n

eq'kt/pFL eq’ kt/pF1

> (41— Jk))e v <22 (n+1—k)e 2svn . (4.106)
k=—n k=0
We set .
/b p+ _ d_k
Since
eka B e(k-‘rl)a _ ekoz
o e —1 ’
we use the Abel’s transform and obtain
1 n
= e (€ ) 3 (2 ) (041 R)a) ’“)
k=1

IN

1 <(1 — )t (4 1) 4 de? S (n 41— k)>e’m> .

k=1
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Therefore the following induction relation holds

de”

I <

ot (4.107)

We use again the fact that

de §C<1+S\/E>
e*—1 t\/p

I,<C (1 (‘i?)m) Io.

Therefore (4.102) is replaced by

i Z emei- f<C Z <1+i>d+ g WA=y

n=p+ljeGthl} . n=p-+( (4.108)

L (/o-J/EED% Cs \ [ an L (E-vEED2
< C/ e 4s dr + v / z 2 e 4s dx.
p+1 p p+1

Using the estimate of the first integral of the right-hand side of (4.108) that we have
obtained in (4.103), we can concentrate on the second integral,

e ) (VE—/pF1) %t > 1yt
/ el T gy — / (y ++/p+1)42e« ra dy
p 0

+1
o0 /yt
<C/ —ed dy+Cp1+ / e s dy
0
é /22
SC( ) 2/ e I Tdz
t 0
S 3 d e /22
+C<Z>2p1+2/ e I dz.
0

We obtain (4.99) from (4.104), (4.108) and (4.109).
Step 2. Since T, C 'y x [0,t], where we recall it I'), = Byy1(z) \ By, (), the fact that
(y,s) € T, implies |# — y[> > (p — 1)t. Therefore JJ, satisfies

as in (4.101), and

(4.109)

- |z —y|?
JﬁhZSCtl / / t—s) -5 T
k) I_‘p
q(1— €)>\njy
x Z Do T m T (K y))! dyds
n=p+tjeor
’ (4.110)
SO SN (K
n= eré]E@h

ﬂ —aW-1)+1 1)+1 _gle=y® aC- €)>‘nz
/ / (t—s) 2 ili-s e dyds,
FP
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where C' = C(N,q,€) > 0. Next we set g. = (1 — €)gq. If we write

|y_an,]|2 |x—y|2+ |x_an,j|2 _2< — Xy An,j —$>
Zpt—l—\x—an,]] -2y —z,an; — ),

we deduce
gely—an ;1 frenl? 12 P+1 vzt )
/ e~ 4 dy= / / ds,(y)dr.
Iy 8Br(x)
Since the value of the spherical integral is invariant by rotations in R, we can assume
that a,; —z = (0,0,0,...,|an; — z|. We then use the spherical coordinates in RY with

center 2 and the representation of SV ! = {(sin¢.0,¢) : ¢ € SN2, 4 € [0,7]}. With this
representation (y — x,ay ; — x) = |y — x||an; — x| cos ¢. This yields

(y—x,a,, i—x) ™ lay, j—z|rcos¢
/ e 2 dS,(y) = TNIISN2/ ede 2 sin®™ =2 pdep.
0B, (z) 0

By Lemma 4.36

‘n] |

(y—m,ap j—x) N 16(]67‘
/ e i 2s dSr(y) <C N—l
OBr(x) <1 + r\anj m|) 2 (4 111)

N—-1

N—1 r 2
o ()
|an,j — x|

‘ 2 No1 (lag, ;=] —y/t(p+1))?

_dely7n 41 -1 N-3S 2 e 4 s

/ e Is dy<Ct 14 p 4 . (4112)
r

Therfore

N—-1

anj — x|

Since |a,,; — x| > Vtn we obtain

t N _gN=D+1 _ lz—yl? AQ
(t—s) zs T e A9 e T dyds
0 Jr,

tp— 4 t N _a(N=D+1 __p _ (Vin—/(p+Dt)?
< C\/_le\fil/ (t—s)"2s 2 e Hse It ds  (4.113)
n 4 0
tlfq(éVfQ) 1 (V141 (i VoED)?
_N _gN=-D+1 __ P n—+/p+
< CT/ (1—7') 2T 2 e 41-7)e 4 ar dr.
n- 14 0

We apply Lemma 4.34 with A = \/p, B = \/q.(v/n —/p+1), b = W’ a = %
Vae(t—1)

and k = ¥=——=, as in the case N = 1. For these specific values

1—-(g=DH(N—=1)

B A ) = (Ve (Vi VD))
(EevE(va-verD)) T

+
(5T

¥4
20
p
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where C' = C(N,q, k) > 0. Hence

e\x ‘
// (t—s)” Tsre T dyds
FP

1—g(N— N-3 1—(g— 1)(N E9)

- thpT < ) <\/_ - \/_> 7(«@@(@—«—“1»2 (4.114)
= - N-—1 e

n% p vn

la(N-l) 1 (a=D(V-1)-2 1-(=1(N-1) (/Ft+/T(Vr—vpFD)?
< Ct p an, 1 (\/ﬁ — \/ﬁ) 2 e 4 .

Then we deduce from (4.110), (4.114)

_Ng (g—DH(N-1)—-2 1)(1\’ 1)-2
Jé <Ct Z Z n (pn, (K 5))?

/+1 h
IS (4.115)
2¢-3 1=(@=DIN=1) (/P /Fe(vn—vpF)?
xYop T (Va-vE) P e ; -
By Lemma 4.35 with o = 2q473, 8= 1-(a— E(N L) , 0= Z and v = ¢., we obtain
n—~_
2¢—3 1=(g=D(N=1)  (/p+/Te(va—vpT1)? N(g=1)+q—3 _n
Zp I (\/ﬁ—\/]_?) 2 e 4 <Cn e 4, (4.116)
p=1
thus .
t
h 1_Ng N@-1) ¢ _n
<ot Y nm e Y (g (Kg)? (4.117)
n={+1 ]e@ﬁn
Because

:un,j(K ,J) CapQ ,(Kn,j),

we use the rescaling procedure of Lemma 4.19 except that the scaling factor is /(NN + 1)t
instead of v/ N + 1, so that the sets T J Kn, Kn,j and Qn remain unchanged. Using the
J

quasi-additivity and the fact that Jé,é = Z Jgfg, we deduce
h=1

N ey K
Joy < Ct™2 Z atdnJrl capz g <d—n> ) (4.118)
n=~+1 ntl

which implies (4.96). O
The proof of Theorem 4.21 follows from the previous estimates on .J; and Js.

In the same way as for Theorem 4.8, the estimate in Theorem 4.21 admits an integral
form. Fortunately it yields the same form as for Theorem 4.20
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Theorem 4.28 Assume q > q.. Then there exists a positive constant C5 = C5(N,q,T
such for any closed subset F C RN there holds for all (z,t) € Qr,

cr o (VHatZ 2 1
up(z,t) > —2 / e ds  aTcapz . (—B ﬂBl(x)> sds, (4.119)
q’ S

where ay is the smallest integer j such that F' C B /().

Proof. We distinguish according ¢ = ¢, or ¢ > ¢, and for simplicity we denote B, = B, (x)
for the various values of r.

Case 1: ¢ = q. <= N — qz—l = 0. Because F;, = F'N(Bg,,, \ Bg,) there holds

Fo ) F o5 FN By,
“Pait \dr ) = “Pr G OB~ T )

Furthermore, since d,4+1 > dp,

F'n By, d, FnN Bg, < F "B
ca ——— | =ca _ ca | = ,
& ,q dnJrl P ,q dnJrl dn - p% 4 dn !

thus F . .
) > —nNB | - N=—nNnB1],
Cap%’q <dn+1> ‘ pQ,q <dn+1 1> Cap%,q (dn 1)
it follows
at
e_%capg e~ 4cap2 ﬂB1> e~ 4cap2 ,( ﬂB1>
> temyy () 2 Yot (70 ) - 3
F ol F
> e ica 2 o NBy ) —e ¢ e icaps , NnB
Z i (d +1 1> nz% e <dn+1 1)
a,—1 F
1 1
1—e 4 T4 / NBy | —e ¢ / NnB
e et (1) = e (Z02)

Since, by (4.66),

F F F
capz . <—/ N B1> > capz ¢ < N B1> > capz ¢ <— N B1> ,
q’ S q’ dn+1 q’ S

for any &' € [dy41,dnt2] and s € [dy,, dp11], there holds

n F F dn+1
te” 4capz q <— N B1> > capz q (— N B1> / e 4s ds
q’ dn+1 q’ dn+1 n

dn+1 F
> / 6_52/4tcapg y (— N Bl> sds.
i q? S

Vita r
Wg(z,t) > (1 - e_i)t_(Hg)/ et capy o (; N Bl> sds.
0

q°

This implies
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Case 2: ¢ > q. <= N — q%l > 0. In that case it follows from Lemma 4.6 that

F, 2__N
ca | —— ) =d7.  ca ,(Fy) .
ria () = e 5

Thus .
t
=1 _n
Wp(x,t) =~ t7 2 Ze teapy (Fy).
n=0
Since
capz g (Fn) > capz g (FNBa,,,) — capz g (FNBy,),

we obtain, using again Abel’s transform,

at at—l

_N _n iy, N _n

t~ 2 goe 4cap%’q,(Fn)Z(1—e 1)t 2 goe 4cap§’q, (Fden+1)
n= n=

) Ny [Yiar o o
>(1- e_Z)t_(H?)/ e” wcap: , (F'N By)sds.
0 e’
Because cap: , (F'N Bs) = sNﬁ%capg ¢ (s7'F N By), (4.119) follows. O
q’ q’

4.4 Applications
The main result of this section is the following,

Theorem 4.29 Let N > 1, ¢ > 1 and F be a closed subset of RN. Then iy = up.

Proof. When 1 < g < q. this is proved in Proposition 3.5. The principle of the proof uses
convexity and the integral forms of Theorem 4.8 and Theorem 4.21. The technique is an
adaptation that we recall for the sake of completeness of the proof in the subcritical case.
By Theorem 4.20 and Theorem 4.28 there exists a positive constant C, depending on NV,
q and T such that

up <up < Cup in Qr. (4.120)

Let us assume that up # up. By the strong maximum principle up > up. By convexity
u= ﬂp—%(ﬂp—gp) is a super-solution, which is smaller than up. If we set § := (% + %),
then 0 < # < 1 and fuy is a subsolution smaller than uz. There exists a solution u* of
(3.13) which satisfies

fup <u* <u<up inQr.

Hence u* is a solution of (4.28). If u is an admissible measure vanishing outside F', then
ugy, is the smallest solution above the subsolution 6u,. Thus ug, < u* < up. Since u is
arbitrary, we deduce up < u* < up, which is a contradiction. g

Another consequence of the uniqueness result is the following equivalence of the discrete
and integral capacitary potentials.
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Proposition 4.30 Assume q > q.. Then there exist two positive constants CI, C;r, de-
pending only on N, q and T such that

2

Via . F
C;rt(Hg)/ stﬁefﬂcapg o <— N Bl(az)> sds < Wg(z,t)
q’ S
0 = (4.121)
act 2 F
< Cirt_(“r%)/ sN_%e_thapg ¢ <— N Bl(x)> sds
NG q’ S

for any (z,t) € Qr.

Definition 4.31 If F is a closed subset of RN, we define the (%,q’)—mtegml parabolic
capacitary potential Wg by

N Dr@@) v 2 2 F
Werp(x,t) =t 2 s aTe wcapz , | —NBi(z) ) sds V(z,t) € Quo, (4.122)
0 q’ S

where Dp(x) = max{|z —y|:y € F}.
By an easy computation we obtain that

2

Via . F
0 < Wpg(z,t) — t_(1+%)/ stqEI e wcapz <— N Bl(m)> sds
0 q’ S

(4.123)
Ct(q—3)/2(q—1) D2 (x)
< (C——Fe % |
- Dp(z)
and
t(at+2) &2 F
0< t_(1+]2v)/ s _q%le_ftcapgg, (— N Bl(az)> sds — Wrp(z,t)
0 NS (4.124)
Ct(q—3)/2(q—1) D% (x)
<(— e "1 R
- Dp(m)
for some C'= C(N,q) > 0. Furthermore
L (Pr@VE e F
Wer(x,t) =t a1 s a-le 4tcapz , <— N Bl(ﬂz)> sds. (4.125)
0 qad s\/f

The following result gives a sufficient condition in order that wr has a strong blow-up
(i.e. of the maximal order t~1/(¢=1)) at a point z.

Proposition 4.32 Assume g > q. and F is a closed subset of RN. If there exists v €
[0,00) such that

. F
}_li% capz g <? N By (x)) =7, (4.126)
then )
li ) = 4.12
tl_I)%tq up(x,t) = Cy, (4.127)

for some C = C(N,q) > 0.
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Proof. Clearly, condition (4.126) implies

) F
fimears (730 Bi(o)) =

for any s > 0. Then (4.127) follows by Lebesgue’s theorem. Notice also that the set of
is bounded from above by a constant depending on N and q. O

In the next result we give a condition in order that the solution remains bounded at a
point z. The proof is similar to the previous one.

Proposition 4.33 Assume ¢ > q. and F is a closed subset of RV, If

_2 F
limsup7 a-Tcapz . <— N Bl(m)> < 00, (4.128)
q’ T

T—0

then up(x,t) remains bounded when t — 0.

Remark. If we assume that f is a convex function on RT satisfying
et < f(r) <ert V>0, (4.129)

for some 0 < ¢o < ¢; we can construct in the same way as for (3.13) the solutions up and
up for equation

Ou—Au—+ f(u) =0 in Qr. (4.130)

The bilateral estimate estimate (4.120) is still valid (up to change of the C;). Since only
convexity of f is used in the proof of Theorem 4.29, there still holds up = uwp. Similar
extensions of Proposition 4.32 and Proposition 4.33 are also clear.

4.5 Appendix

We present here some highly technical computations which are not of particularly interest
for the trace theory but are usefull in the proof of the results.

4.5.1 Generalized beta integrals

Lemma 4.34 Let a and b be two real numbers, a > 0 and k > 0. Then there exists a
constant C' = C(a,b, k) > 0 such that for any A >0, B > k/A there holds

1
/ (1 - x)—ax—be—A2/4(1—a:)e—B2/4xd1_ < Ce—(A+B)2/4A1—aBl—b(A + B)a+b—2. (4.131)
0

Proof. We first notice that

max {e—AQ/“(l—x)e—BQ/“ 0<z< 1} = e~ (A+B)?/4, (4.132)

and it is achieved for zg = B/(A + B). Set ¢(z) = (1 — a) "%z be A*/41-)=B*/4z g
1 x0 1
/ ¢(z)dr = / o(z)dx +/ d(x)dr = I p + Jop
0 0 x0
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Put
A2 B2

= — 4.1
R TE s (4.133)
then
4ua® — (4u+ B* — A®)z + B2 =0. (4.134)
If 0 < & < x¢ this equation admits the solution
1
7= a(u) = = <4u + B2~ A% — /1602 — 8u(A% + B2) + (A2 — 32)2)
u
o 0o
/ (1 — )0 be=A*/A0—0)=B/dzg, —/ (1 —z(u) % (u)"be "2 (u)du
0 (A+B)2/4
Putting 2’ = 2/(u) and differentiating (4.134),
4z(1 — z)
2 2 2 _ _
42° + 8uzar’ — (du+ B* — A%)2' —dx =0= -2’ = Wi B A —sus
o (1~ () a(u) !
o o 1—z(u) * x(u)""e “du
dr = 4 . 4.135
/0 $(w)dz /(A+B)2/4 4u + B? — A% — Buz(u) ( )

Using the explicit value of the root x(u), we finally get

(1 _ :U(u))_a'H ( )_b+1e_udu
/ Ao)ds = 4/(A+B 12/4/16u2 — 8u(A2 + B?) + (A2 — B2)?’ (4.136)

and the factorization below holds
16u* — Su(A? + B?) + (A% — B%)? = 16(u — (A + B)*/4)(u — (A — B)?/4).
We set u = v + (A + B)?/4 and obtain

v+ (AB + B%) /2 — \/v(v+ AB)
2(v+ (A+ B)?2/4) ’

+ (A2 + AB)/2 + /v v—i—AB
1—z(u) =
2(v+ (A+ B)?/4)
We introduce the relation =~ linking two positive quantities depending on A and B. It
means that the two sided-inequalities up to multiplicative constants independent of A and
B. Therefore

(u) =

and

/(b dr = 207 b4 (A+B) /4/ ¢(v)dv  where

N <v+(AB+B2)/2_ v(v—i—AB)) (v+(A2+AB/2+\/ v—i—AB)
o) = e (v+ (A+ B2/4)2 " Jo(o + AB)

(4.137)
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Case 1: a > 1, b> 1. First

(U+ (A+B)2/4)a+b—2 B (’U—|— (A+B)2/4)a+b—2 B (’U—|— (A+B)2)a+b_2

< ~ (4.138)
v(v+ AB) v(v + K) v(v + K)
since a+b—2 >0 and AB > k. Next
1-a
(1) + (A2 4+ AB)/2 4+ \/olv + AB)> ~ (v+ A(A+ B)'e. (4.139)

Furthermore

v 2 — v/o(v — B2 U+(A+B)2/4
HAB+BY/2 = olot AB) = B T AT (4.140)
z320+(A+B)2

v+ B(A+ B)’
Then
_ b—1
<v +(AB +B?)/2 — \/v(v+ AB))1 "~ (%) (4.141)
It follows
- 2o 0+ (A+B)? > (v+B(A+B)"!
p(v) <CB <v AT D) o) o
< OB2-2 (U"‘(A"‘B)Q)a_l o'+ (B2 4+ AB)"! .
- v+ A(A+ B) v(v + K)

where C' depends on a, b and k. The function v — (v + (A + B)?)/(v + A(A + B)) is
decreasing on (0,00). If we set

o) 00 yb=le=v and O — e dv
T Vot " Volvtr)

then
C1 < K(B?>+ AB) 10y

with K = C1x'~?/Cy. Therefore
0
/ ¢(z)dr < Ce~(ATBI*/ABI-bpl-a( g 4 B)atb=2 (4.143)
0

The estimate of J, 4 is obtained by exchanging (A, a) with (B,b) and replacing = by 1 —x.
Mutadis mutandis, this leads directely to the same expression as in 4.143 and finally

1
/ p(x)dn < Ce™ATBI/Agl-apl=big | pyatb=2, (4.144)
0
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Case 2: a > 1, b < 1. Estimates (4.137), (4.138), (4.139), (4.140) and (4.141) are valid.
Because v — (v + B(A + B))"! is decreasing, (4.142) has to be replaced by

e >H (857 7 (4.145)

3(v) < OB <— Ty o

This implies (4.143) directly. The estimate of J, 5 is performed by the change of variable
rz—1—xz. If z1 =1 — g, there holds

1 1
Jap = / x (1 — x)fbefAQ/‘lme*BQM(l*m)dx = / U(z)dz.
0 0

Then
1 1 __
/ U (z)dr = 2b_“_46_(A+B)2/4/ U(v)dv where
0 0
1-a 1-b
- <v 4 (AB + A%)/2 — \/o(v + AB)) <1) 4 (B + AB)/2 + /olu AB)>
U(v) = .
) e’ (v+ (A+ B)2/4)> ™" /u(v + AB)
(4.146)
Equivalence (4.138) is unchanged; (4.139) is replaced by
1-b
(v +(B%+ AB)/2 + \Jolv + AB)> ~ (v+ B(A+ B)'?, (4.147)
(4.140) by
+ (A+ B)?
AB + A%)/2 — \/v(v + AB) ~ A2 212 4.148
v (AB+ 42— ilo 4 AB) ~ 47D (4,143
and (4.141) by
1-a o (v+ A(A+ B)\“!
AB + A%))2 — AB ~ AT 4.149
(v—i—( + A?)/ v(o + )) <v+(A—|—B)2> (4.149)

Because a > 1, (4.142) turns into

p1 (V+ A%+ AB)* Y(v+ B? + AB)17?
v(v + k)

U(v) < CA22(y+ (A+ B)?)

< Cef(A+B)2/4A272b(A + B)2b72
« pab + (A2 + AB)a—lvl—b + (32 + AB)l—bva—l + Aa—lBl—b(A + B)a—b
v(v+ k) :

(4.150)
Because AB > k, there exists a positive constant C, depending on «, such that

/Oovab+(A2+AB)a1?}1b+(BQ+AB)1bUa1 "y
e v
0 v(v+ k) N (4.151)
< CAa—lBl—b(A + B)a—b/
0

Vo + k)
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Combining (4.150) and (4.151) leads to
1
/ U(z)de < Ce~(A+B)?*/4pgl-apBl=b(g 4 B)atb-2, (4.152)
0
This, again, implies that (4.131) holds.

Case 3: max{a,b} < 1. Inequalities (4.137)-(4.141) hold, but (4.142) has to be replaced
by

Jv) < CB> ( +(A+B)’ ) (v+B°+4B)""

v+ A(A+ Bz_a ; v(v —{—_IZ) (4.153)
< CBlfb(A + B)2a+b73v + (A + AB)
v(v + K)
Noticing that -
o0 ae—v 9 oo e—Ud,U
TR <C(A%+4B)'" T
it follows that (4.143) holds. Finally (4.144) holds by exchanging (A,a) and (B, ). O

4.5.2 Discrete generalized beta series

Lemma 4.35 . Let «, 3, v, 0 be real numbers and £ an integer. We assume v > 1,6 >0
and £ > 2. Then there exists a positive constant C' such that, for any integer n > ¢

n—~_
Zp (v — /p )P e 0PIV < Cpa—fl2e=0n, (4.154)

Proof. The function = — (v + /7(v/n — vz +1))? is decreasing on [(y — 1)7!,00).
Furthermore there exists C' > 0 depending on ¢, « and 3 such that p®(yv/n — \/ﬁ)ﬁ <
Cx®(/n—x +1)8 for x € [p,p+ 1]. If we denote by pg the smallest integer larger than
(v — 1)L, we derive

n—~¢
S e Zpa(\/_ — \/ﬁ)ﬁe_(ﬁ+ﬁ(\/ﬁ_vp+1))2/4
=1
zo 1 nt
_ Z +Zp (Vi — P)Pe SWPHVAA=VPTD)?
po 1

< Zpa(\/— _ \/13)5675(\/5+ﬁ(x/ﬁf¢p+1))2

n+1-—4
+C 2%(/n — z )Pe 0Vt vIVn—vatD)? gy

Po

(notice that v/n — vz ~ /n —+/z+ 1 for z <n —{). Clearly

po—1

ZP (V7 — /B )Pe SWPHAVI—VITD)? < Cone(/i — V= 8)Pe ", (4.155)
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for some Cy independent of n. We set y = y(z) = V& +1— /z/,/7. Obviously

Thus their exists ¢ = ¢(6,7) > 0 such that v2\/x > y(x) > ey/z and y/(z) > €¢/\/z.

Moreover
VI (y+ v+ 1-7)
Va = — ,
S (RN BN R Vi aa e

__ n(y=DH+r-2/Am -’
Va(y—=1) =+ VAV + 11—y
n(y—1) +~v—2y,/An -1y’

Jn

since y(x) < y/n. Furthermore

n(y—1)+v=2y/An — v’ =v(Vn+1+n/A+y)Vn+1—n/y7—y)
~n(Vn+1—/n/\/q-y),

because y ranges between vn +2 —(—+vn+1 — (/7 = /nand \/pg + 1 —/po/7. Thus

(V= Vi) ~ (Vi L= va/yi—y).

This implies

n+1—¢
/ 29 (/ — /T P S (A—VETD) g

po

y(n+1-0)
<C / v (Vi T = Vi3 =) ey
y

(po)

1-y(po)/v/n )
< Cno”rﬁ/z“/ (1—2)2 (2 4+ /1+1/n—1-1/,/7) e 7" dz.
1—y(n+1-0)/vn
(4.156)
Moreover
y(po) 1 ( \/p_o>
1— —1-—(Vp+ri-¥Y=),
Vi Ve \YP T A
1_y(n—€—|—1) 1 Vn—0+2 N vn—{+1
vn vn VY ) )
1 0—2)—¢+1 -2 —U—-1
Nal 2n 8n
(4.157)
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yin—t+1) _, __ y(ro)

Let 6 fixed such that 1 — NG NG

for any n > pg. Then

1-y(po)/vn )
/ (1—2)% 2+ /1+1/n—1-1/,/7) e dz
0

(1 _ Z)2a+1e—'y6n22dz

1-y(po)/vn
< Ce/

< Cy 6_76n62

1—y(po)/v/n
/ (1 — z)2etldy

0

< C e max{1,n=o"1/2},
Because 762 > 1 we derive
1-y(po)/v/n )
/ (1—2)2F(z 4+ /1+1/n—1-1/,/7) e dz < Cn=Pe ", (4.158)
6
for some constant C' > 0. On the other hand

0
/ (1—2)2* (4 T+ 1/n—1—1//7)Pe 1 dz
1—y(n+1-0)/V/n

0
gcg/ (z+ 1+ 1/n—1-1//7) e 194z,
L—y(n+1-0)/v/n

The minimum of z — (2 4+ /1 +1/n —1—1/,/7)? is achieved at 1 — y(n + 1 — ¢) with

value
\/*_y(ﬁ +1)+1—-¢
Qnﬂ

and the maximum of the exponential term is achieved at the same point with value

+0(n™?),

e—n5+((z—2)ﬁ+1—£)/2(1 +0(1)) = Cve‘"‘s(l + o(1)).

We denote
0

Zym=1+1/y/y—+/1+1/n and Ig= / (z — Z%n)ﬁe_%"Zde,
I—y(n+1-6)/v/n

Since 1 —y(n+1—¢) > 1/4/2y for n large enough,

0
Iz < \/2y (z — z,y,n)ﬁze_“/‘sm2dz
1=y(n+1-£)/v/n

) 0
= ; [(Z — 2y n)ﬁe_wng]

2n~0 ’ 1—y(n+1-0)/\/n

P
Bv2y (z — z%n)ﬁ_lze_V‘S"Zde.
2070 Ji—y(nt1-0)/vi

+
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But 1 —y(n+1—-12)//n— 2y, = (¢ —-1)(1-1/\/7)/2n, therefore
Ig < Oin Pt 4 BCIn~ g 4. (4.159)
If 8 <0, we derive
Iﬁ < Cln_ﬁ_le_én,

which inequality, combined with (4.156) and (4.158), yields to (4.154). If 5 > 0, we iterate
and get
Iﬁ < Cln_ﬁ_le_‘sn + C{n‘l(Cln_Be_‘S" + (ﬂ - 1)0{71_1[5,2).

If 5 —1 <0 we derive
Is < Cyn Ble=om 4 C’lC{n*l*Be*‘sn = C’gnfﬁfle*‘sn,

which again yields to (4.154). If 3 — 1 > 0, we continue up we find a positive integer k
such that g — k < 0, which again leads to

Ig < Cknfﬁflefzsn,

and finally to (4.154). O

4.5.3 Generalised Wallis integrals

Lemma 4.36 For any integer N > 2 there exists a constant cy > 0 such that
em

" mcosO _: N—2 <
[ et 20 < en o Crmy im0 (4.160)

Proof. Put Zn(m) = / emcosfsinN=20dp. Then Zh(m) = / ™% cos § df and
0 0

Zl(m) = /0 ™50 cos? 0 df = Ty(m) — /0 emeos0 sin2 6 df

1 s
=To(m) — — [ e™%cos 6 db
m.Jo

= Ty(m) ~ —T(m).

Thus Z, satisfies a Bessel equation of order 0. Since Z5(0) = 7 and Z,(0) = 0, 71T, is
the modified Bessel function of index 0 (usually denoted by Iy) the asymptotic behaviour
of which is well known, thus (4.160) holds. If N =3

s mcos617T :
— 2sinh
Z3(m) =/ emes0sin g dp = [ em ] — ZSImAm
0

0 m
For N > 3 arbitrary

T—1d N-3 [T
T = [ ——(emNsinV30dh = —2 | em%cos0sinV*0dh. (4.161
N(m) o d@(e ) sin m e cos 6 sin ( )
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Therefore,
1 ™
Zy(m) = —/ emesY cos 0 df = Th(m),
mJjo

and, again (4.160) holds since I)(m) has the same behaviour as Ip(m) at infinity. For
N >5

™ N-=-3 [T d
"0 cos f ginV P 6}0 + — /0 emww@ (cosé?sinN_5 0) do.

Differentiating cos 8 sin’~° @ and using (4.161), we obtain

B 4sinhm  4sinhm

Z5(m) = s R
while
T(m) = E=IE = (1 om) — Ty o)), (4.162)
for N > 6. Since the estimate (4.160) for Z,, Z3, Z4 and Z5 has already been obtained, a
straigthforward induction implies the general result. O

Remark. Although it does not has any importance for our use, it must be noticed that Zy
can be expressed either with hyperbolic functions if NV is odd, or with Bessel functions if
N is even.

5 The precise trace

In the supercritical case ¢ > ¢., Theorem 3.15 has pointed out the necessity to introduce a
finer definition of the initial trace which could distinguish among solutions of (3.13) which
have the same initial trace in the sense defined previously.

5.1 Lattice structure of the set of positive solutions of (3.13)

The idea of analysing the algebraic structure of the set of positive solutions of the semilin-
ear elliptic equation (1.16) is due to Dynkin [26]. It was intensively used by Marcus and
Véron [46] in the construction of the precise boundary trace for such equations.

Definition 5.1 We denote by U (Qr) the set of nonnegative solutions of (3.13). All the
elements of U (Qr) belong to C*H(Qr).

q

By a subsolution (resp. supersolution) of (3.13) in Q)7 we mean a function u € L}

satisfying

// (— (0 + AQu + |u|q_1uC) dzdt <0 (resp. >0) forall ¢ € C*(Qr), ¢ >0.
Qr
(5.1)
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Lemma 5.2 Let u be a subsolution of (3.13) in Qr, then

lu(z,t)| < (ﬁ) QTI for almost all (x,t) € Q7. (5.2)

Proof. Because of Kato’s inequality, the function |u| is a subsolution of (3.13). Hence
we can assume that u is nonnegative. Let {p,} (€, > 0) be a sequence of C°(RN 1)
nonnegative functions with support in B, and total mass equal to 1. We assume that
€n, — 0, hence pe, — do is the sense of distributrions. Such a sequence is called a sequence
of mollifiers. If ¢, < ¢ the distribution wu,, := u*p., is well defined and is C* in R x (¢, T')
where, by convexity, it satisfies

Opty, — Ay +ul < 0.

As in the proof of (3.22), for any y € RY, the function (z,t) = ¢uo(t — €) + wr(z — )
where wg, is defined in (3.23) is a supersolution of (3.13) in RY x (e, T') which dominates
u, at t = € and for |x —y| — R. Hence it is larger than u,, in this domain. Letting R — oo
and € — 0 yields

Un(x,t) < Ppoo(t) for all (z,t) € Q.

When €, — 0, u,, converges to u a.e. in Qr and in L} (Qr). This implies (5.2). O

loc

Proposition 5.3 Let T > 0 and v € L} (Qr) be nonnegative.

(i) If u is a subsolution of (3.13) there exists a minimal solution v above u, that if U is
any solution larger than u, then u < v < U.

(i) If u is a continuous supersolution of (3.13) there exists a mazimal solution w dominated
by u, that is if U is any solution smaller than u, then U < w < u.

All the above inequalities hold both almost everywhere and in the sense of distributions.

Proof. (i) We use again the subsolutions u, := u * p.,, and for ¢, R > 0 we denote by
Up 1= Ve, e,k D€ the solution of

Oy, — Avp, + vk =0 in Bg x (¢,T)
Up, = Up, on OBr x (e, T) (5.3)
Un(.,8) =up(.,s) in Bg.

Then v,, > u, by the comparison principle. Furthermore v,, satisfies
’Un(,I,t) S ¢oo(7f - 6) + ’U)n(fE),

where wg is the large solution in Bp defined in (3.23). Hence it is locally bounded in
Br x (,T) for any € > 0 and R > 0. Therefore, up to a subsequence {R;} such that
R; — 00, the sequence {ve, e r,} converges locally in C*!'(RY x (¢,T)) to a nonnegative
solution v = v,  of (3.13) in RN x (¢, T). Furthermore

Ve e(@,1) > uy(z,t) for all (z,t) € RY x (¢,T).

Since v, . satisfies the uniform parabolic a priori estimates and the associated compactness
properties, we infer that, up to a subsequence v, . — v, locally in C?>YRYN x (¢,T)) when
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€, — 0. As for u, it converges to u a.e. and in L} (RN x (¢,T)) for any p < oo.
Furthermore
ve(x,t) > u(z,t) for all (z,t) € RN x (¢, T).

By letting ¢ — 0 using again the local compactness of {v.} in C*!(Qr), we obtain that up
to a subsequence, ve converges locally to a nonnegative solution v of (3.13) in Q7 which
dominates u therein. By construction v is smaller than any element of Uy (Q7) which
dominates u.

(ii) For €, R > 0 we denote by w := w, g the solution of

Ow — Aw —wl =0 in B x (¢,T)
w=u on 0Br % (6,T) (5.4)
w(.,€) =u(.,e) in BR.

Note that the boundary values of w are well defined since w is continuous. By the com-
parison principle
0 <wepr <wuin Br x (¢,T).

Furthermore we g dominates in Br x (€,7) any nonnegative solution U smaller than w.
Since u is continuous in Qr, it is locally bounded therein. As in (i) the set of functions
{we g} is eventually locally compact in CZHRY x (0,T)). We conclude as in (i). O

The following result has already been proved but we mention it for the sake of com-
pleteness.

Proposition 5.4 Let u and v be nonnegative, locally bounded functions in Q.

(i) If uw and v are subsolutions (resp. supersolutions) then max{u,v} (resp. min{u,v}) is
a subsolution (resp. a supersolution).

(ii) If w and v are supersolutions then u + v is a supersolution.

(111) If u is a subsolution and v is a supersolution then (u —v)4 is a subsolution.

The following notations have been introduced by Dynkin [26].

Notations Let u and v be nonnegative, locally bounded functions in Q.

(i) If u is a subsolution, [u]{ denotes the smallest solution dominating u.

(ii) If u is a continuous supersolution, [u]" denotes the largest solution dominated by w.
(ili) If u and v are subsolutions then u V v := [max{u, v}];.

(iv) If u and v are continuous supersolutions, then uAv := [min{u, v}]" and u@v = [u+v]’.
(v) If u is a subsolution and v is a supersolution then u © v := [u — vl;.

Proposition 5.5 The following properties hold
(1) (uVo)Vw=uV(vVw)=max{u,v,w}s,
(i) (u Av) Aw =uA (vAw) = min{u, v, w}.

Proposition 5.6 (i) Let {uy} be a sequence of positive, continuous subsolutions of (3.13).

Then U := sup uy is a subsolution. The statement remains valid if subsolution is replaced
by supersolution and sup by inf.
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(ii) Let T be a family of positive solutions of (3.13). Suppose that, for every u; and usg
belonging to T there exists v € T such that

max{u,us} <wv (resp. min{uy,us} > v).
Then there exists a monotone sequence {u,} C T such that

up T supu, (resp. uy, | infu).
T T

Therefore supyu (resp. infru ) is a solution.

Proof. (i) We set

vj = max{ui, uz, ...u; }.

By induction on j it is clear that v; is a subsolution and the sequence {v;} is non-
decreasing. Because of the universal upper bound (3.26) v; converges to some function
v when j — oo, and v is a subsolution which coincides with U. The proof for the min
assertion is similar.

(ii) is already proved in [25] and we recall the construction. For every x € Qp, we set
l(x,t) = sup{u(z,t) : u € T}. Let A= {(zp,t,)} be a countable dense subset of Q7. For
every n there exists a sequence {uy,,,} C T such that

sUp{tmn(Tn,tn)} = UM wpn(Tn, tn) = (zn, ty).

m m—00
We set Uy, 1 = Um,. Since T is closed with respect to the relation V, wp, = Um,1 V Um2
belongs to 7 and the sequence {u,,,} is increasing and it satisfies

lim  wp, (z5,t5) = €(x),t;) for j=1,2.

mj—>00
By induction we construct an increasing subsequence {u,,, } of 7 such that

Hm U, (Tn, tn) = (X0, ty) for all n € N,.
My, — 00

Let us denote by 7y the countable subset of T of functions {u,,, } and set v = sup 7p. Then
(X, tn) = (zp,t,). Using estimate (2.1) and regularity results for parabolic equations
we infer that the set 7 is relatively compact in the Cl2 O’CI(QT)—topology. Hence, there exists
a subsequence sequence of 7 still denoted by {u,,, } which converges in this topology to a
function w which is a nonnegative solution of (3.13) and such that w,,, (zn,t,) = w(x,, ty)
as my — 00. hence w(zy,t,) = l(xy,t,). We claim now that w = sup; u. Indeed, ifu € T,
W(Ty, tn) > (Tp, tn) > u(x,, t,). By continuity, w(x,t) > u(x,t) for all (z,t) € Qp. Thus
w is an upper bound of 7. It is clearly the least upper bound because any other upper
bound u € U4 (Qr) is larger than u,,, on A, hence larger than w on A, and thus larger
than w by density and continuity.

The proof concerning the existence of the greatest lower bound is similar if 7 is stable
under A.
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The set U4 (Qr) is partially ordered for the relation <. Since for any u,v € U (QT),
uAv and u Vv belong to Uy (Qr), it is a lattice. Since, by Proposition 3.4, any nonempty
subset 7 of U (Qr) admits both a least upper bound (the supremum) and a greatest lower
bound (the infimum), it is a complete lattice. In the case of semilinear elliptic equations,
the similar result is to be found in [25, Theorem 5.1].

Corollary 5.7 The set U (Qr) is a complete lattice stable for the laws @ and ©.

5.2 Fine topology and Besov spaces
5.2.1 The T -fine topology

It is classical in potential theory that there exists a topology which is naturaly adapted
to the study of subharmonic functions. This topology was initially introduced by Henri
Cartan and its definition is expressed in terms of the Newtonian capacity capip. In the
study of the initial trace the fine topology is the one associated to the cap 2 capacity. In

this section we assume ¢ > ¢. and we note ¢/ = qu.

Definition 5.8 A set ' C RY is (%,q’)—thin at a € RN if

1 (capz ,(F' N Bs(a)) . ds
/>< 2 ) s _ (5.5)
0

S

If the above integral is infinite, the set F is (%,q’)—thick at a.

A set Fisa (%,q’)— fine neighbourhood of one of its points a if F'¢ is thin at a.

A set I is (%,q/)—ﬁnely open, if F¢ is thin at any point a € F . It is (%,q’)—ﬁnely closed
if its complement F° is (%, q')-finely open.

Notations and vocabulary For simplicity we will denote by €, the cap , q,—ﬁne topology

associated to these notions (see [1, Chapter 6] for a detailled study of these notions).

Let A,B C RN
a) A is T -essentially contained in B, denoted by A C? B, if

capz (AN B°) =0.
q7
b) The sets A and B are Tg-equivalent, denoted by A ~? B if
capz ,(AAB) where AAB:=(ANB°)U(BNA").
q7

c) The closure of a set A in the T, -topology is called the T ,-closure and denoted by A.
The T4-interior of A is denoted by A°,

d) If € > 0, we denote by A, the e-neighbourhood of A in the standard Euclidean topology
associated to the distance function.

e) The set of all T -thick points of A is denoted by b,(A). It is the set of points a of A
such that A is (%, ¢')-thick at a. The set of all T -thin points of A, is denoted by e, (A).
The next result is essentially due to Kellog ([1, Corollary 6. 3.17]).
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Proposition 5.9 There holds
A is Ty-open <= A Ceq(A°), B is T,-closed <= by(B) C B.

Therefore B
A=AUby(A)  A® = ANe, (A°).

Furthermore the capacity capz g Dossesses the Kellog property
q7
capz (AN eq(A)) = capz ,(A\bg(A4)) =0. (5.6)
q’ q’

Proposition 5.10 (i) If Q C R is Ty-open, then e,(Q°) is the largest T,-open set which
s equivalent to Q).

(it) If F C R is T4-closed, then by(F') is the smallest T,-closed set which is equivalent to
F.

It is often easier to use the related notions of quasi open or quasi closed sets although
these notions are not equivalent. All details to be found in [1, Chapter 6].

Definition 5.11 A set F C RY is T 4-quast open if for any € > 0 there exists an open set
G C RY verifying capz q,(G) < € such that F N G€ is open in the relative topology of G°.
q?

A set F is Ty-quasi closed if F¢ is (%,q’)—quasi open.

A property P holds T4-quasi everywhere in an open set 0 C RN if it holds in Q except on
a set with zero cap%q/—capacz'ty. Abridged notation: T4-q.e.

A function f defined T,-q.e. in an open set Q) C RY s T g-quasi continuous if for every
€ > 0 there exists an open set G C §2 such that capz q,(G) = 0 with the property that f|ge
q7

is continuous in G¢ for the induced topology.

2
Proposition 5.12 Any function f in Ba'?(Q) is T,-quasi continuous. Thus every el-

2 7
ement of B« (Q) admits a T,-quasi continuous representative. Let fi and fo be two
T q-quast continuous functions which coincide a.e. in 1, then they coincide T4-q.e.

Remark. The notion of (%, q’)-quasi openedness defines a quasi-topology. It is not a topol-
ogy because an arbitrary union of quasi open sets may not be quasi open. However a
countable union of quasi open sets is quasi open.

The next result is proved in [46, Proposition 2.1]. We list below a series of results
concerning the €, -topology and T,-quasi topology which are used throughout this section.
Their proofs can be found in [1, Proposition 6.4.13] for assertion (i), in [1, Proposition
6.4.12] for assertion (ii), in [1, Proposition 6.4.9] for assertion (iii) and in [1, Proposition
6.4.11] for assertion (iv). Assertions (v)-(viii) are classical in the theory of capacities as
exposed in the same book.

Proposition 5.13 Assume q¢ > q..
(1) Every T,-closed set is T4-quasi closed.
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(i1) If F is T4-quasi closed set, then E ~1 E.
(111) A set F' is Ty-quasi closed if and only if there exists a sequence of closed sets {Fy,}
such that capz ,(F N Fy) — 0.

q7

(iv) There exists a positive constant C such that for every set F,
capz q,(ﬁ) < Ccap: o (F).
q’ q’

(v) If E is T4-quasi closed and F ~1 E, then F is T;-quasi closed.
vi) If {E,} is an increasing sequence of Borel sets of RN then

q

Capaq/ <LnJ En> = nlggo Capz,q/(En)-

(vii) If {K,} is a decreasing sequence of compacts sets of RN, then

q’

capz o <ﬂ Kn> = 1111}010 capz ,(Ky).
n
(viii) For every Borel set F C RY (and more generaly for every Suslin set), there holds
capz q,(F) = inf {capg q,(G),F cGqG, G open} = sup {capg q,(K),K cF K compact}.
q’ q’ q’

As a consequence of (iii) there holds:

Corollary 5.14 A set F' is T4-quasi closed if and only if there exists a sequence {F,} of
Ty-quasi closed subsets of I such that capz ,(F N Fy7) — 0 as n — oo.
q7

Definition 5.15 Let I’ be a T4-quasi closed set.
(1) An increasing sequence {F,} of closed subsets of F' is called a T,-stratification of F' if
capz ,(F N E7) — 0 asn— oo.

q7

(it) A Ty-stratification {F},} is called a proper Ty-stratification if capz ,(FNF;) < 2 -1
q7
The sets Fy, can be chosen to be compact.
(111) A Ty-open set V verifying capz q,(F NV =0 is called a T4-quasi neighbourhood of
q?
F.

The next separation result is valid in any locally compact Hausdorff space.

Proposition 5.16 Let X be a locally compact Hausdorff space, K C X be a compact set
contained in an open set A. Then there exists an open set G such that

KcGcGcA.

Although the fine topology is not locally compact (even if it is Hausdorff) it admits
some separation results which are the counterpart of Proposition 5.16.
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Lemma 5.17 Let F C RN be Eq-closed. Then:
(i) If D is an open set such that capz q,(Fﬂ D€) =0, then there exists an open set O such
q7

that ~
FctOcCcoOcC?’D. (5.7)

(11) If D is a T4-open set that verifies F' C9 D, there exists a Tq-open set O such that
(5.7) holds.

Proof. Since FND ~% F', FND is T ;-quasi closed and there exists a proper T -stratification
{F,} of F N D by compact sets such that F' ~9 F' := U2 | F),.

If E’ is closed, the result follows by Proposition 5.16. If it is not the case, we can assume
that Fy41 \ F), # 0 for all integer n. We apply Proposition 5.16 with K = F,, and G = F,

is the open set containing Fj, such that its closure F; is contained in D: because

capz o(Fn \ Frm1) < capz ,((EN D)\ F,) < 2 n-1
q’ q’

there exists an open set D,, containing F,, \ Fj,_1 such that capz q/(Dn) < 27", We have
q7

also,
D,NFE,CD,NFE,CD,CD foralnécN.

Since F' = Fy U2, (Fy, \ F,—1) we have that
0 0 —_—
F = UDangc UDnﬂF;LCD.
n=1 n=1

It is therefore sufficient to prove that (J;- ; D, N F}, is T4-closed. Actually, for any n € N
we have

[o¢] m o0 o0
cap%q, (U D, NF!\ U D, ﬂFﬁ) < cap%q/ < U D, ﬂFﬁ) < Z capg,q, <l~)n)

n=1 n=1 n=m++1 n=m-+1
o o
<c Z capz g (D) <c Z 27 =27,
n=m+1 n=m+1
m —_ N —
Because U D, N F], is T,-quasi closed the result follows by Corollary 5.14. g

n=1

Lemma 5.18 I- Let F' be a T, closed set and {F,} a proper T,-stratification of F. Then
there exists a decreasing sequence of open sets {Q;} such that UF, := F' C Q; for every
j € N and N
(Z) m_762_7 = F,’ Qj+1 C Q];
(it) lim cap: ,(Q;) = capz ,(E).

j—o0 q q

II- If A is a T, open set, there exists a decreasing sequence of open sets {A,} such that

ACﬂAn::A', capz (A \A') = 0asn— oo, A~TA.
q7
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Furthermore there exists an increasing sequence of closed sets {E;} such that E; C A" and
(i) UjE; = A, E; C1 E]<~>+1,
(i1) capaq,(Ej) — cap%q,(A’) when j — 0o.

Proof. Let {D;} be a decreasing sequence of open sets containing F' such that
lim capz ,(D;) = capz ,(F') = capz ,(F).
Jj—00 q’ q’ q’

Case 1: F is closed. We can assume that F,, = F for all n and we set K, = By(z) N F
for some z € F. By Proposition 5.16 there exists a decreasing sequence {e; ,,} converging
to 0 such that

0 am
Fc@ :=|JK.* cQ cD,
n=1
fl,n
where K, = By(z) N F and, we recall it, K,?> = {y € RY : dist(y,K,) < %~}

By Proposition 5.16 there exists a decreasing sequence {ez,} converging to 0, such that
€a.n < €1, for all n and

n

S
FCQQ::UK}L4 C Qy C Ds.
n=1

Note that
o0 €1,n o €1,n
QQ C U Kn4 C U Kn2
n=1 n=1

‘ln —
Since K,* is closed, we have 2 C @5 C (1. By induction we construct a double
sequence {€;,} decreasing in n and converging to 0, non-increasing in j for any fixed n
such that
00 .
Simo
FcQ;=|JK.* cQcDb;,
n=1
and
Qj+1 C Qj+1 C Qj for allj > 1.
Noting that F' C Q; C F?77 we deduce that F = N;Q;. Finally,

/ < li / )< li / i) — / .
capz (F) < jlir&cap%7q (Qj) < jlggocap%q (D) capz 4 (F)

This yields the result in that case.

Case 2: F is only T, closed. There exists a proper ¥, stratification {F,} of F' such that
F ~9 F = U2 F,. We can also assume that F, 1 N FS # 0 for all integer n.
As in Case 1, for each n we construct the sets Q? relative to F;, that were denoted @;

e~ —

and were related to F. Because capz ,(Fy \ Fy—1) < ccapz ,(Fy \ Fn—1), we can choose
q’ q’

an open set D} such that capz q,(D}L) < 27" In view of Lemma 5.17 the set
q7

[e.e]

Q= JDinQy

n=1
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is open and _
F,CQ1CQ1CD1.

Furthermore the set -

Ubiner

n=1
is T4-quasi open. By Lemma 5.17 there exists an open set D? such that

D?c D2 c D},
and by induction we construct a sequence of open sets D% such tht
1 miaq , , 3
DTl c DIl ¢ DI and capz o (Dp) < €27

By Lemma 5.17 the set
Q;=|J=1"D] Q]
n

is open and the set

~——

UJ=1°Din@Q"

n

is T4-quasi closed. For any n € N, we have

—~—

DiNQyCcDiNQrCcDiNQy DI NQy .

Therefore
~ > <
QcQc|Jphin@rc DI 'nQ), cD;.
n=1 n=1
Since the set U D}, N Q? is T4-quasi closed, we have
n=1
Q; CQj CQj-1.
Finally,

oo
Fccr?’ =F=[)Q;
n=1
Because we have
capz ,(F) < lim cap: ,(Q;) < lim capz ,(D;) = capz ,(F),
a9 Jj—ro0 a7 Jj—ro0 a7 a7

the assertion follows.

The next results are classical in the framework of the T,-topology.
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Proposition 5.19 I- Any family D of T4-open sets contains a countable subfamily D’
whose union differs from the union of the sets of the whole family D by a set with zero
capz . -capacity.

1I- qLet F be a bounded T,-open set and let D be a covering of F' consisting of T4-open
sets. Then, for every € > 0 there exists an open subset O, of F' such that cap%q,((’)e) <€

and F N O¢ is covered by a finite subfamily of D.
III- Let I be a T4-open set. Then for any & € I there exists a T4-open set Q¢ such that

£€Q:C Qs CF.

Proof. Assertion I is the quasi-Lindelof property, see [1, 6.5.11]. The second assertion is a
consequence of the quasi-Lindel6f property and is proved in [46, Lemma 2.5] and the last
assertion is a consequence of the fact that any point in F' is a €,-thin point of F'° and is
proved in [46, Lemma 2.7] using the definition. O

5.2.2 Approximations in Besov spaces

Lemma 5.20 Let U C RY be a Tq4-open set and z € U. Then there exists a function f

n B%’ql(RN ) with support in U such that f(z) > 0. In particular, there exists a bounded
Tq4-open set V such that V C U.

Proof. The result is clear if z is an interior point of U with respect to the Euclidean
topology. Thus we assume that it is not the case. Since U is T-open, U¢ is thin at z. By

the assumption we have that z € U\ U. By [1, p. 174] there exists an open set W such

that z € W N W€ and W is thin at z. We recall (see [1, Theorems 2.2.7, 2.5.6]) that for a

Borel set E with positive capz q,—capacity, we define the Besov nonlinear potential of the
q7

capacitary measure pg by
1
Fp:=V"' =G1* (G *pug)eT,
q q

where G'1 is the Bessel kernel in RY. By [1, Theorem 6.3.9] there holds
q

VHE (2) <

)

DO | —

if we take for E the set B,(z) N W for r > 0 small enough. By [1, Theorem 6.3.9] we
have V*2 > 1-%T,-q.e. on B,(z) N W, and by [1, Theorem 2.6.7] V*# > 1 everywhere on
B, (z) N W. Therefore
1
VHE (z) < 5 < 1< VHE(z) forall x € B.(2) N W.
This implies that for » > 0 small enough there holds

1
VHE (z) < 5 < 1 <inf{V'E(x): 2 € B, (z) N W}.

84



Now let H be a smooth nondecreasing function defined on R, such that H(t) = 0 for ¢t < 0
and H(t) =t fort > 1. If n € CX(RY) satisfies 0 < n < 1, supp(n) C B,(z) and n(2) = 1,
then the function

fi=nHo (1 —-VFE)

satisfies the requirements of the Lemma. O

Lemma 5.21 Let U be a T4~ open set and z € U. Then there exists a T4-open set 'V,

such that z € V. .C U, and a function i € Bg’q(]RN) such that 0 <1 <1,¢ =1 g-a.e. on
V and ¢ =0 in U°.

Proof. We keep the notations of Lemma 5.20 and assume that z is not interior to U. Let
u be the capacitary measure of B,.(z) N U with (up to changing r),

1
VH(z) < 1 and V¥(z) =1 forall x € B,(z) NU".

By [1, Proposition 6.3.10] V¥ is quasi continuous, hence there exists a T,- open set W
which contains z such that

S q. a.e. on W.

Ry

Let € C(RY) such that 0 < n < 1, supp(n) C B,(z) and n(x) = 1 for all x € B,.(2).
We set

(@) = 2n(x)H o (1 “He (% _ wm) - wm) .

Then f € Bg’q/(RN), 0<f<lonBy(z)NU® f=1on Bg(z) "W and f = 0 outside of
B, (2)NU. O

Definition 5.22 If ¢ is a function defined in RN we denote by Ty-supp(C) the closure in
the T,-topology of the set {x € RN : |((x)| > 0}.

Lemma 5.23 Assume g > 2. Let K be a compact set and U a T,-open set containing K.
Let {U;} be a sequence of T,- open subsets of U covering U up to a set of zero Z of zero
capz q—capacity.

q7

2
1- If there exists a nonnegative function u € Ba? (RNV)NL>(RN) with T,-supp(u) included
in K, then for any k € N, there exist an integer m(k) and nonnegative functions uy ; €

B (RV) N L®(RN) with Ty-supp(uy, ;) included in U; such that

m(k)
Z up; <u inRY, (5.8)
j=1
and
m(k)
u— Z (. -0 ask — oco. (5.9)
Jj=1 paa
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2 7
2- If u is a signed function, and since ¢ > 2, u™ belongs to Ba'* (RY). The existence of
the {uy ;} is replaced by existence of {uy j+}. Estimate (5.8) is replaced by

m(k)
Up j+ < ut i RY, (5.10)
j=1

estimate (5.9) remains valid with uy, ; replaced by uy j 4+ — g j—-
Proof. We can assume that U and U; are bounded. For any j, k there exists an open set

G'i,j such that capz q,(Gk,j) <27kiforj>1, K C G0, and for j > 1, the sets U; UG}, ;
q7

are open. Furthermore the sets

UGkJ and UGkUUj
Jj=0 Jj=0 J

are open, and clearly capz q/(Gk) — 0 when k — oco. Since Gy, is open, its Besov potential
q7

VHGy, .= FCk is larger or equal to 1 on Gy, [1, Theorems 2.5.6, 2.6.7] and there holds

Ve |9, , < Ceaps ,(G),
B q7q

24
for some C'= C(N,q) > 0. Let H be a smooth nondecreasing defined on R function such
that H(t) = 1 for t > 1 and H(t) =t for 0 < ¢t < 1. Then the function ¢, = H o Yk

belongs to Bg’q/(]RN), satisfies 0 < ¢y < 1, ¢, = 1 on Gy, and there exists C' = C'(N, q) >
0 such that ,
||¢k||q 2 o S C/Cang/(Gk‘)a
Ba’ q

We set ¢ =1 — ¢p. Then

llu — T’Z)kuHB%’q, —-0 ask — oo. (5.11)

For k € N, fixed, there exist open balls By, ;; such that

Bk,j,i C Uj UGk and U <Gk UU]> = Gy, U UU]' = U Bk,j,i-
J J 1,j=1
Since K is compact there exists m(k) € N, such that
K C U Bk,j,i-
ij=1

Now we consider functions wy, ;; € C2°(RY) such that

Bk,j,i = {.%' < RN : wk,jﬂ'(.%') > 0},
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and we set
m(k)
Z wkh]?/]/
i=1
U = WG

: : wk7]7l

ji=1

Then ug ; € L°(RN) N Bi? (RV) and

Tg-suppuy ; C <Kﬂ Gi) ﬂ <U Bkm) cU;.

which ends the proof. O
Remark. The construction can be made also in the case 1 < g < 2, but the proof of (5.11)

is still pending.
5.3 Regular sets
5.3.1 The regular initial set

In order to define the precise trace we recall that for any Borel set U € RY, 1y denotes
the characteristic function of U and

1 _le—yf?
Bl1](et) = o [ 0

If w € Uy (Qr) (i-e. a positive solution of (3.13) in Qr), the following dichotomy occurs
for any ¢ € RV:

(i) either there exists a bounded T,-open neighbourhood U = Ug of & such the

T
/ / u? (H[1p])*? dadt < oo, (5.12)
0 JRN
(ii) or for any T -open neighbourhood U of & there holds
T /
/ / u? (H[1y))*? dadt = oo. (5.13)
0 JRN
Definition 5.24 Let u € U (Qr). The set of & € RY such that (i) occurs is Ty-open

and denoted by R,(u). It is called the g-regular set of u. The set Sy(u) := RN \ Ry(u) is
Ty-closed and called the g-singular set of .

Proposition 5.25 Let n € Ba? (RY) N L(RY) with T,-supp(n) in a bounded T,-open
set U, and let v € UL (Qr) satisfy

T
My = /0 /R L (H[1y])* dadt < . (5.14)
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Then there exists the following limit

£(n) —hm/ / u? (H (x,t)dwdt. (5.15)
RN

t—0

Furthermore there exists C = C(My,q,N) > 0 such that
2q' 27
el < € (1™, , + Il ). (5.16)

Proof. Set h = H[n| and ¢(r) = riq,. Since |n| < ||1]| .« 1v], there holds

wio(h dﬂ:dt‘ < |Inll7% / / w (H[1y))% dwdt = ||77||%qolo My < oo.  (5.17)
RN

Note that for 0 < s <t < T,

/ / u(Brb(h) + AG(h)) + uI (k) ddr = / ub(h)(., s)dzx — / ud(h)(., t)d.
RN RN RN
(5.18)
u
0ip(h) + Ap(h) = 2¢'¢(h)h? (2hy Oh + (2¢' — 1)|Vh|?) .
By Holder’s inequality,

u (0yp(h) + Ap(h)) dadr

< ([ t /. uq¢<h)dm)% (/ t (605 o) + Ao(my dsdr )
E<4 (/ /RNU% dmdr>;</:/RN (h+]8th\+!Vh\2)qldxdT>$

t T ’
[ [ o asds < [* [ ot dsdr < el
s JRN 0 RN Ba

t T ! ! ! !
[Vh|*7 dadr < IVh* dadr < C|nllf 1A7]17, = Clnll- lOnl?,
s JRN 0 JRN L L

U=

Since

by Gagliardo-Nirenberg’s inequality and the maximum principle, we obtain

1
t
S RN Ba

u (Op(h) + Ap(h)) dedr
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As a consequence of (5.18) and (5.19), we infer the two following inequalities

t t o
[ oot o ([ [ wodzar) ol ol 5.
s JRY s RN (5.20)
> /]RN uqﬁ(h)(.,s)dm—/RN up(h)(.,t)dz|,
and
t ¢ :
[ [ wsoasar—c ([ [ wotwrasar) " ol .0 o

< /RN ugp(h) (., s)dz — /RN ug(h)(., t)dx

Under the assumption (5.14) the left-hand side of (5.20) tends to zero when s,t — 0,
therefore, we deduce from (5.18) that the function

t— . up(h)(.,t)dx

admits a limit that is denoted by ¢(n) when ¢ — 0. Using again (5.18) we get

/ /R (u(@0(h) + AG(R)) + uto(h)) dudr + / wb(h)(, T)dz = (). (5.22)

o
Since
| ws(. Do) < () Il (523)
we infer from (5.19)
) < Ca % + Conlf 05, < € (Il + Il )" (5.24)
]

This estimate can be improve in order to show that the initial trace holds in the usual
sense.

Proposition 5.26 Let the assumptions of Proposition 5.25 be satisfied, then

lim [ u(z, )n? (z)de = (). (5.25)
t—0 JpN
Proof. Using (5.18) wit t =T and replacing h(z) by hs(z,t) = H[n|(z,t — s) we have
[ @bt + 200 + o) der
+ /RN up(hs)(., T)dx = /RN up(hs)(., s)dz.
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When s — 0, one has by the Lebesgue dominated convergence theorem

/]RN up(hs)(., T)dx — up(h)(.,T)dx

RN

/S ! /R _uI(hs)dwdr — / ' /R _ut(h)dudr.

T—s
/O | o+ 5) = ) @1(h) + Ao(h)) dadr

and

Furthermore

1
T—s i
2q’ / /
SC(/ / ’u(x,t—i—s)—u(x,t)‘th) HanLw HWHng,-
0 RN B

By Proposition 5.25, the right-hand side of the above inequality tends to 0 when s — 0.

Clearly
T

lim ulg(h)dzdr = 0.

s—0 T—s

Combining (5.18) and (5.26) we obtain

lim u(z, s) (p(h)(z,s) — ¢(n)) de =0, (5.27)

s—0 JrN
which ends the proof. O

Combining Proposition 5.25 and Proposition 5.26 one obtain

Corollary 5.27 Assume U C RY is a bounded T q4-open set such that

lim w(z, s)n*d (z)de = oo, (5.28)

s—0 JrN

2 7
for some nonnegative n € L>°(RN) N Ba'? (RN) with T,-supp(n) C U. Then

/ ' / w! (H[n)?* dzdt = oo. (5.29)
0 RN

The next result shows that the g-singular set of w inherits the main properties of the
singular set S(u) of the rough trace of u

Proposition 5.28 Let £ € Sy(u). Then for any T,-open set G containing £, there holds

lim | wu(z,t)dr = oo, (5.30)
t—0 e
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Proof. If £ € S;(u) and if G is a T4-open set containing &, then by Lemma 5.21 there

2
exists n € L(RY) N Ba? (RY) such that 0 <75 < 1, and a T,-open set D C G such that
n=1on D and n =0 in G°. Therefore

T
lim/ / u? (H 2q dzxdt > hm/ / u? (H[lD])Zq dxdt = 0o
s—0 RN s—0 RN

This implies that the left-hand side of (5.21) tends to oo when s — 0. Using again (5.23)
we obtain

lim u (Hn)* (2, s)dz = oo,

s—0 JrN
which implies
lii% o un® (z, s)dx = .
Since n =1 on D the result follows. 0

5.3.2 Moderate solutions

We recall that a solution w of (3.13) in Qr is called moderate if u € LI(K) for any compact
set K C RY x [0,T). Then there exists a Radon measure p on RY such that

lim u(z,t)(z)dx = Cdu(z) for all ¢ € C.(RY). (5.31)
t—0 JrN RN

Equivalently, for any ¢ € & ’Q(RN x [0,T)), there holds

/ / u(0hp + A¢) + |u|?  ug) drdt = / o(z,0)du(x). (5.32)
RN

It is proved in [9] that the measure y vanishes on Borel subsets of RYY with cap2 o-capacity
q b
Zero.

Lemma 5.29 Let u be a nonnegative moderate solution of u of (3.13) in Qr with initial
trace 1 € M (RY). Then for any T,-open bounded set O one has

T
/ / wd(z,t) (H[1p])?? dadt < co. (5.33)
0 JRN
Proof. Let n € C°(RY) be a nonnegative function with value 1 on O. We put h(z,t) =

H[n](z,t) and for 0 < s <t <1, hy(z,t) = H[](z,t — s). We also set ¢(r) = |r|*¢". Using
again the identities in Proposition 5.25 we have that

/OT/RN wtolhe)dedr + [ (uoho))(. Ty
=¢ (/N u(z, 8)p(n)dz + 1] Fo IIU\IZ%@) .
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Because for any Borel set F, one has

limsup/ u(zx, s)dz < oo,
E

s—0

we obtain (5.33) by Fatou’s lemma. O

Definition 5.30 A Radon measure p in RY is reqular with respect to the Tq-topology if
for any Borel set E one has

p(E) =inf{u(D): D D E, D T4-open} = sup{p(K): K C E, K compact}.  (5.34)

Theorem 5.31 Let u be a nonnegative solution of (3.13) in Qr with initial data p. Then
(1) The measure i is a reqular measure with respect to the T,-topology.

(ii) For any quasi continuous function ¢ € L>®(RN) with bounded T,-support in RN | we
have

lim u(z, t)p(x)dr = pdu(z).
t—0 JpN RN

Proof. (i) We recall that a Radon measure is regular with respect to the standard topology.
Moreover, if E C RN is a Borel set and D is open and contains D, then D is open for the
T 4-topology, hence

p(E) <inf{u(D): D D E, D Ts-open} <inf{u(D): D D E, D open} = u(E).

The assertion on compact sets is unchanged and the statement (i) follows.
(ii) The measure p; := u(t,.)dx converges to p in the weak-* topology. Hence we have

limsup i (E) < p(E) for any compact set £ C RY
_t=0 (5'35)
111;11 151f pue(A) > u(A) for any open set A C RV,

—

If E is a T,-closed set, there exists an increasing sequence of closed sets {K,,} such that
capz q/(E N KE) — 0 when m — oo. Then, for any open O containing E, one has
q )

limsup i (E) < limsup p¢(K,y,) + limsup p(E N K;,) < e (O) + limsup (B N Ky).
t—0 t—0 t—0 t—0

We will prove by contradiction that

lim limsup i (ENKy,)) = 0. (5.36)

m—=0o0 ¢ 0

Assume that (5.36) does not hold and let € > 0 be the value of the above limit. For fixed
m € N, let {t,,} be a decreasing sequence converging to 0 such that

lim o Ftrm (Ky) = limsup p(Kp,) = €.

tn,m— t—0
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The sequence {e,,} is decreasing with limit e when m — oco. Let uy, ,, be the sequence of
solutions of (3.13) in Q such that up.m(.,0) = 1enke pit, .- Clearly

Unm (2, t) < u(z,t +tny) forall (z,t) € Qr,

and

Up,m (2, 1) < VE/OT(/ for all (z,t) € Qr,
where VE/[_]\I-(/C is the maximal o-moderate solution of (3.13) in Q. with initial data v
where v € 93?+(RN ) vanishes in N K¢, and is g-admissible (this notion is developped in

the next section). Because
capz ,(ENKf) < Cecap2 g (ENKD) =0 asm — oo,
q’ q’
it follows from Proposition 5.39 that

VE/O\I_(/C —0 as m — oo.

This is a contradiction. Hence (5.36) holds. Thus the proof is complete if E is a T -closed.
If £ is T4-open, then

since  is g-admissible and the proof follows.

Let ¢ be a quasi continuous function. Without loss of generality, we can suppose that
it is nonnegative since ¢ = ¢y — ¢_ and bounded above by 1. If £ € N and m =
2k — 1,28 —2,...,0, we denote by a,, ) a real number in the interval (m2=%, (m + 1)27%
such that

(o7 ({ame}) =0

Set

Ap g = (b*l ((@m s @my1,k]) form=1,2,.., 2k 1 and Ao = ¢71 ((aok,a1kl) -

Since ¢ has compact support, all the above sets are bounded and

lim ,U't(Am,k) = M(Am,k)- (5.37)

t—0
If we denote by ¢ the step function

2k 1

dp=Y m21y .

m=0

Then ¢y, 1 ¢ uniformly, and by (5.37),

lim u(w,t)pp(x / Prdp.

t—0 RN

This implies that (ii) holds. O
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5.4 Localization
5.4.1 Vanishing properties

Definition 5.32 A continuous function u € Uy (Qr) vanishes on a Ty-open set G C RY,
2
if for any n € BT (RN) N L®(RYN) with T,-supp(n) C4 G, there holds

lim u(z, t)niq, (x)dx = 0. (5.38)

t—0 JrN

We write u =g 0. We denote by Ug(Qr) the subset of u € Uy (Qr) which vanish in the
previous sense on G.

The following result is obvious.

Proposition 5.33 Let A ¢ RN be a Tg-open set, and uy,uz € U (Qr). If up =4 0 and
0 < ug < uq, then ug =4 0.

Proposition 5.34 Let G,G' C RY be T -open set such that G ~1 G'. If u € Uz(Qr),
then u € Ug (Qr).

Proof. If n € B (RY) N L°(RY) with T,-supp(n) C? G, then T,-supp(n) C? G’. Since
|G’ N G| = |G NG|, the result follows. O

If G is an open subset, this notion coincides with the usual definition of vanishing,
since we can take a test function 7 € C2°(G). In that case u € C(Qr U (G x {0}).

Lemma 5.35 Assume that u € Ug(Qr). Then for any n € Bg’q,(RN) N L2 RN) with
Ty-supp(n) C? G, there holds

/ [ 0l dnde+ [l T) (L do < Cllle ol - (539)
]RN ]RN Ba’

Proof. Let u and n be as in the statement of the lemma, h = H[n] and ¢(r) : riq/. Then
/ / u (Opp(h) + Ap(h)) + ulp(h)) dedt + / u(z, T)p(h)dz = 0. (5.40)
RN RN
Inequality (5.39) is a consequence of (5.19). O

Lemma 5.36 Let G C RY be a Eq-open set. Then there exists a nondecreasing sequence
{un} C Uc(Qr) which converges to sup{v : v € Uz(Qr)}. In addition, the function
u:=sup{v:v € Ug(Qr)} belongs to Ua(QT).

Proof. We recall that by definition, u = sup{v : v € Ug(Q7)} is defined by

u(z,t) = sup{v : v € Ug(Qr)}(x,t) :=sup{v(z,t) : v € Us(Qr)} for all (z,t) € Q7.
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If uy and uy belong to Ug(Qr), then uy + usy is a supersolution of (3.13) which vanishes
on G. Hence u; V ug is a solution smaller than u; + ug, hence uy V us € Ug(Qr). By
Proposition 5.6, there exists an increasing sequence {u,} C Ug(Q7) which converges to
u. Then

T
/ / (—un (Orp(h) + Ap(h)) + ulp(h)) dedt + / U (z, T)p(h)dx = 0. (5.41)
0 JRN RN
As in (5.21) {ufo(h)} and {u,(x, T)é(h)} are uniformly bounded in L'(Qr) and L'(RY)
respectively, and by Fatou’s theorem up¢(h) 1 ui¢(h) in LY (Qr) and wu,(z,T)p(h) 1
u(z, T)p(h) in LY(RN). Furthermore, if E is any Borel subset of Qr, we have from (5.19)
and Holder’s inequality

[ @rot0) + 2000 o] < o) ([ [ aotmaadt) Il bl .

and the right-hand side tends to 0 as |E| — 0 since ufo(h) < ul¢(h) € L'(Qr). By
Vitali’s convergence theorem, we infer that

/ / u (Opp(h) + Ap(h)) + ulp(h)) dedt + / u(z, T)p(h)dz = 0. (5.42)
RN RN

Thus u € Ug(QT). ]

Definition 5.37 (i) Let v € U (Q7) and let A denote the union of all T,-open sets on
which w vanishes. Then u € Ua(Qr) and A€ is called the precise initial support of u,
denoted by T,-supp(u).

(i) Let F C RN be a Borel set, we denote by Ur the mazimal element of Uz.(QT).

Note that by definition
Ur =Ug. (5.43)

5.4.2 Maximal solutions

If p is a g-admissible measure, i.e. p is absolutely continuous with respect to cap 2.q Uy,

denote the solution of (3.13) in Qs with initial data .

Definition 5.38 If E is a Borel set with positive capz o -capacity, we set
q7

Vioa(E) = {uy : pr € 4 (RY) 1 B-09(RY)}, pu(B) = 0}

and
VE = sup{uy : Uy € Vimod(E)} = sup Vped(E).
We recall that we have proved in Section 3 the following result due to Marcus and Véron

[47). If F C RY is a closed set Up = V.
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Proposition 5.39 If {A,} is a collection of Borel sets such that capz ,(An) — 0 as
q7
n — 0o, then Uy, — 0.

Proof. Let O,, be an open set such that A, C O, and capz q,(On) < capz q,(An) -+ % By
q’ q’
the Kellogg’s result in Proposition 5.9,

capg,q,(an) = capg,q,(én) < écapgg/(On).
q q q
Therefore cap: (On) — 0 when n — co. Since
q7

Ua, <Up ,
and the result follows. O

Corollary 5.40 If E C RY is a Borel set such that cap: o (E) =0 then Up. = {0}.
q?

Proposition 5.41 Let E and F be Borel sets.
(i) If E and F are T -closed, then Ug AN Up = UgnF.
(i1) If E and F are T-closed, then

Up <Up <= EC'F and cap: ,(F\ E) > 0.
q7

(5.44)
Ugp=Up <= FE~1F.

(iii) If {F,} is a decreasing sequence of T,-closed subset of RN, then

lim UFn == Uan.

n—oo
(iv) Let A be a Ty-closed subset of RN and u € Uy (Qr). Assume that for any o € A there
exists a Ty-open subset A, of RY containing o and contained in A such that

u~a_ 0.

o

Then u vanishes on A. In particular any v € U+ (Qr) vanishes on the complement of the
T4 support of u.

Proof. (i) Ug A Up is the largest solution below inf{Ug,Ur}. Hence it is the largest
solution which vanishes outside £ N F.

(ii) By construction, E ~4 F implies Ug = Up, and Ugp < Up <= E C? F. Furthermore,
if capz ,(F'\ E) > 0 there exists a compact set K C F'\ E with cap: ,(K) > 0. Hence
0< U;( < Upg. Consequently, up = Up implies £ ~9 F. !

(iii) Let V = nlgrolo Ur,. Since F' C F,, we have F' C9 F, hence Ur < Up, which implies
Ur < V. But the T -support of V is included in F;,, therefore is is alsoe included in
F = n,F,, which implies v < Up, and finally V = Up.

(iv) First we assume that A = U, A,, where A,, is Tj-open and u ~ 4, 0 for every n. Then,
for every k € N,, u vanishes on UszoAk, and we can assume that the sequence {Ay} is
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increasing. Set Fy, = Aj. Then u < Upc and by (i) U Fe 4 Up, thus u < Up. Equivalently
u =4 0.

In the general case, we use the quasi-Lindelof property which is satisfied by the T,-topology.
From the covering of A by the family of ¥,-open subsets of A indexed by the o € A, we can
extract a countable subcovering A,, such that capz o (A\U,A,,) = 0. Since u =y, 4,, 0,

the claim follows. O

Proposition 5.42 (i) Let E be a T,-closed set. Then
Ug=inf{Up: E C D,D open } =sup{Uk : K C E, K closed } (5.45)
(ii) Let E, F be Borel sets. Then
Ug = Upng © UpnEge.

(iti) Let E,{F,} be a countable family of Borel sets. Assume either capz , (EAF,) — 0,
q7

or ﬁ’n¢E~3 Then
Up, - Ug asn — oo.

Proof. (i) Let {D;} be the decreasing sequence of open sets containing F already used in
Lemma 5.18 and satisfying

ﬂij = ﬂij =F ~1F.

Then, by Proposition 5.41, there holds Up, — Ug, which implies the first equality in (i).

For the second equality, let {F,,} be a nondecreasing sequence of compact subsets of E

such that cap: ,(E\ F,) — 0. If {D;} is the decreasing sequence used above, then
q7

capz g (D;j \ E) = 0. Because E C F,, U (D, N FS) we have
Ur, <Ug <Up, +Up,\F,-

But
capg,q,(Dn \ Fp) < capz g (E\ F,) + capz g (D, \E) >0 asn— oo.

By Proposition 5.39 Up,\r, — 0. This implies the claim.
(ii) Using (5.45) we have

U < Ugnr +Ugnpe hence Ug < Ugar ® Ugape.

S~ince Ugnr and Ugnpe vanish outside E, it follows that Ugnp @ Ugnpe vanishes outside
FE, hence
Ug =Ug > Upnr ® Upnpe.

which is the claim.
(iii) Using (ii) we have

Ur < Ugnre + Ugnr, and Up, < Up,npe + Up,nE-

If cap: o (EAF,) — 0, then Ugar, — 0 by Proposition 5.39.
~ q ’
If F,, | E, the result follows by (iii). O
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Theorem 5.43 If E is a T,-closed set, then Vg and Ug satisfy the same capacitary
estimates as if E were a closed set. Hence Vg = Ug and therefore Ug is o-moderate.

Proof. The proof follows [46, Theorem 3.10] If {Ex} is a proper g-stratification of E and

2
p is a bounded nonnegative measure belonging to B~ «'?(R™)} and satisfying u(E¢) = 0,
then

wy, = sup{uy, @ pr = 1 p}

Therefore Vi = sup, Vg,. By Marcus-Véron’s theorem (Section 3), Vg, = Ug,, and by
Proposition 5.42-(iii), Ug, — Ug. Hence Ug = Vg.
Note also that if W, is the capacitary potential defined by (4.6) with F replaced by Ej.

Hence
E.NF,(x,t ENF,(x,t
caps , By 0 Fa(z,1) s capa EN0Fy(z,1) as b — 00,
a t(n+1) a t(n+1)

Then by the Lebesgue convergence theorem (applied to series) Wg, (x,t) — Wg(z,t).
Hence if F is just T,-closed set Ug satisfies the same capacitary quasi-representation as if
it were closed and given in Theorem 4.8 and Theorem 4.21. O

5.4.3 The local restrictions

The local restrictions are key processes compatible with the supercritical range. They
roughly consist in truncating a solution u of (3.13) outside a Borel set A°. More precisely,

Definition 5.44 Let A be a Borel subset of RV, We denote by [u]a the supremum of the
v € U4 (Q1) which are smaller than u and vanish on A°. Equivalently [u]a = u AUy, that
is the largest solution smaller than the subsolution inf{u,Ux}.

The following result is an immediate consequence of the fact that Uy = Uj; and
[u] A=uANUyy.

Lemma 5.45 For any Borel set A C RY, [u]a = [u] ;.

Lemma 5.46 If G C RY isa Ty-open set and u € Ug(Qr), then
u = sup {v € Ua(Qr) : v < u, v vanishes in some open neighbourhood of é} . (5.46)

Proof. Set A = G¢ and {A,} be a nondecreasing sequence of closed subsets of A such that
capz (AN A7) — 0 as n — oco. By Proposition 5.42, there holds
q b

Ua <Ua, +Usnac.

Hence
u:u/\UASu/\UAn—i—u/\UAmA%.

By Proposition 5.39, Uanae — 0 as n — oo. Therefore u A Uanac converges also to 0, and

u= lim uAUsa,,
n—oo
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which implies the claim. ]

In the next result we analyse the regularity of the correspondence E — [u]g.

Proposition 5.47 Let u € U (QT).
(1) If E is T4-closed, then,

[ulp = inf{[u]lp : E C D, D open} = inf{[u]lp : F C E, F closed}. (5.47)
(i1) If E and F are two %4-closed sets then

e < [ulpne + [u]EnFe, (5.48)

and
[WElr = [[u]r]lE = [ulFpaE. (5.49)
(i1i) Let E and F,,, n = 1,2,... be Borel sets. If either cap%q,(EAFn) — 0, or F, | E,
then
[, — [ulE-

Proof. Mutatis mutandis the arguments we use are very similar to the ones in [46], but we
keep them for the sake of completeness.

(i) Let D = {D} be the family of all open sets containing E as in (5.47). Using the first
equality of (5.45), we have

inf {u, Ug} = inf {u, inf UD} = inf inf {u,Up} > inf [u]p. (5.50)
DeD DeD DeD
Clearly
[ulp, A lulpy = [u]DinDs

then it is a consequence of Proposition 5.6 that v = l%n%[u]D is a solution of (3.13). It
€

follows from (5.50) that [u]g > v. The reverse inequality is clear.

For the second equality, let {F,,} be a nondecreasing sequence of compact subsets of E

such that cap: ,(E\ F,) — 0. If {D;} is the decreasing sequence used above, then
q7

capz g (D;j \ E) = 0. Because E C F,, U (D, N Ff) we have

Up, <Ug <Up, + Up,\F,-

But
cap%q,(Dn \ Fp) < capz (E\ Fy,) + capz (D, \E) =0 asn— .

By Proposition 5.39 Up,\r, — 0. This implies the claim.
(i) Let v € Uy (Qr), dominated by u with ¥, support in E and let D and D" be open

—~—~— e~

sets such that ENF C D and EN F¢ C D'. For any integer j > %, let vjl» be the solution

of (3.13) in RY x (%,T) satisfying vjl»(., %) = o(., %)ID. We also denote by v]2~ and v?

the solution of (3.13) in RY x (3, T) with respective initial data v3(., 1) = v(., 3)1pr and
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=v(., %)1( pupr)e- Since v vanishes outside F, it vanishes in (DUD’)¢, consequently

)
-)1(puprye — 0 when j — oo, which implies v? when j — oco. Therefore

v < liminf(v} + 0]2) < [u]p + [u]pr.
j—o0

Since ENF ¢ D and ENFe C D', it follows from (5.47)

v < [u s + (U] o = [u]Er + [WEnFe.

This implies (5.48).
For proving (5.49), we just have to notice that

[[U]E]F = [U]E\/UF = (u\/UE)\/UF = [max{u,UE,UF}]T = [[U]F]E

(iii) By (5.48) there holds

[ulg < [ulF,ne + [ulpnre  and [u]g, < [u]r,nE + [U]F,nEe-

if capz q,(EAFn) — 0, then by Proposition 5.39 Ugafr, — 0. Since
q?

max{[u|gnre, [u]F,nEc} < UpAF,,

we~11ave~that Ugar, — 0 when n — oo.
If F, | E, then Ug, — Ug by Proposition 5.39. Therefore

[ulp < lim Ug, = lim vV Ug, < lim {u,Ug,} < inf{u,Ug}.

Since [u]g is the largest solution dominated by inf{u,Ug} and the function v = le [u]p,

is a solution, there holds U < v. Thus (iii) follows. O

Definition 5.48 Let u be a nonnegative Radon measure which is absolutely continuous
with respect to the capz o ~capacity.
q7

(i) The T4-support of p, denoted by Tq-supp(p) is the intersection of all the T4-closed sets
F such that p(F°) = 0.
(i) We say that p is concentrated on a Borel set E if pn(E¢) = 0.

Proposition 5.49 Let u be a Radon measure as in Definition 5.48. Then

Ty -supp (1) ~1 Ty -supp (uy).
Proof. Set F' = %, -supp(u,). By Proposition 5.41-(iv), w, vanishes on F€¢, and by
Lemma 5.46 there exists an increasing sequence of positive solutions {u,} vanishing out-

side a closed subset F, and converging to u. Set S, := T¢-supp (up). Then S, C F,
and S,, C Sy41. Thus {S,} is an increasing sequence of closed subsets of F. If we set
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pn = 1g_p, we have that u, < wuy,, < u,. Hence the increasing sequence {uy, } converges
to u, as n — oco. Consequently

pn T and Ty -supp (p) C? Ugn C F.
n=1

If D is open and pu(D) = 0, then u, vanishes in D. Therefore u,, vanishes outside S,
and consequently it vanishes outside ¥, -supp (1). Hence u,, vanishes outside T, -supp (u).
This means F' C? %, -supp (1). O

Definition 5.50 Let uw € Uy (Qr) and A be a Borel set. Then
[u] := sup {[u]p : F C? A, F T,-closed} .

Remark. Note that since [u]p = [u] 5, if A is T4-closed, we have [u]4 = [u]. In the general
case, we have only [u]4 < [u]4.

Definition 5.51 Let 3 >0 and u € C(Qr), u > 0. For any Borel set A C RN, we denote
by u? the solution of

O — Av + |v|97 v =0 in RNV x (B, 00)
v(., B) = Lau(.,B) in RN,

Proposition 5.52 Let u € U (Qr) and E be T, -supp (u).
(1) If D is a T,-open set such that E C9 D, then

D _ yi D
=1 = = . 5.51
[ = lim ug = [ulp = u (5.51)
(i1) If A is a T4-open set, then
ump 0= u = éir% ug =0 for all T4-open set s.t. Q c? A. (5.52)
—
(i1i) Finally,
Um0 [u! =0. (5.53)

Proof. Case 1: Assume first that E is closed. Since u vanishes on E¢ and is continuous
in Qr U E€ x {0}, we have that u = 0 on E° hence u € C(Qr U E€ x {0}. If D is an open
neighbourhood of E, then for all ¢ € C.(E€) there holds

lim [ wu(x,t)p(z)dz = 0.
t—=0 Jpe

Therefore

lim ugc =0.
B—0
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But
ug(x,t) < wu(z,t) < ug(x,t) + ugc(x,t) for all (z,t)) € RY x [B,T).

From this relation we deduce that

— T D
u= gli% ug - (5.54)

If we assume now that D is T4-open and E C9 D, then for avery € > 0 there exists an
open set O, such that D C O, E C O, and capz q/(O6 N D¢) < e. Therefore
q7

uge(x,t) - ug(x,t) <Uop(z,t —p) forallt>p,

where O = O. N D°. We observe that lin% Uo: (z,t — ) = 0 uniformly w.r. to . Since
e— €
éii]% ug)e (x,t) = u(z,t) for all (z,t) € Qr, it follows that ég% ug(x,t) = u(z,t). The same
argument shows that éimo ué) “(z,t) = 0 for all (x,t) € Qr. Combining all these results we
_)

obtain

lim v} < <

lim b < [ulp < u
hence [u]p = u. By Proposition 5.19 there exists a T;-open set @ such that £ C¢C Q C
Q C D, therefore u = [u]g < [u]”, hence u = [u]P.

In addition there holds E C? A¢ C? Q°. If we replace D by Q€ in the above argument,

we have that u ~4 0 which implies u® = limg_,o ug = 0. For the opposite implication in
equivalence (5.52) we use the fact that for any £ € A there exists a T,-open neighbourhood

c c

~ O @
O¢ of £ such that O C? A. By (i) we have that lim uﬁg. Finally, since uﬁ5 ~o, 0 for

B—0
all 8 > 0, we deduce that u ~p, 0 by Proposition 5.39. Using Proposition 5.41 (iv) we
deduce (5.52) in the case where E is closed.
Case 2: Assume next that E is T4-closed. Let {E,} be a T -stratification of E such that
cap%q/(E NES) — 0asn — oo. If Disa T -open set such that £ C9 D, then by Case 1,

gig}]([u]En)g = [ulg, - (5.55)

By Proposition 5.47-(ii), using the definition of ug and the fact that [u]p = u,

uf = (up)f < (Weae,)s + (Uene:) = (ue,)f + (ulenes)5 - (5.56)

Let {8k} be a sequence decreasing to 0 such that there exists

— T D — 1 D —
w = 51;§0u6k and wy, = Bl):r_r)lo([u]EmEg)ﬁk for n=1,2,...

Then, using the two previous inequalities

[ulp, <w < [|u]g, +wn < [ulg, + Upnes.
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Using (5.46) and the fact that Ugng: — 0 and Ug, — Ug, we deduce that w = u. This
implies (i).

In order to prove (ii), we apply (5.56) with D replaced by @ and get
([ulp)f < ([wls)§ + (ulzns)§
From Case 1 we have already proved that

li Q@ _ .
ﬁg%([U]En)g

There exists a decreasing sequence {3} such that {ugk} and {([u]gn Ez)fi} admit a limit
when 8 — 0, for any n = 1,2, .... Therefore

Qs Q
Jim g, < Jim (fuleneg)g, < Usng,:

Since Ugng, — 0 as n — oo, this implies the implication = in (5.52). The implication
<= in (5.52) is proved as in Case 1.

Proof of (iii). We assume first that u ~4 0. If F' is a T -closed set such that F' C? A,

then, by Lemma 5.17 there exists a Tj-open set Q such that F' C?Q C @ C? A. Applying
(5.51) to v := [u|F and using (5.52) we obtain

V= limvg2 < limugzo.
B—0 B—0

It is thus a consequence of the definition of [u]‘i that [u]? = 0.

If [u]* = 0, then for any Tgopen set Q C Q C? A, there holds [u]g = 0. Because
Tq—supp(ug) C? @, there exists a subsequence S decreasing to 0 such that

lim u¥ < = 0.
dim ug, < [ulg

Therefore u ~g 0 by (5.52). Applying again Lemma 5.17 and Proposition 5.41-(iv), we
infer that u ~4 0. O

Definition 5.53 Let u,v € U (Qr) and A be a Ty-open set. We say that w =v on A if
both u © v and v & u vanish on A. This relation is denoted by u =~ v.

Proposition 5.54 Let u,v € U (Qr) and A be a T4-open set. Then,
(i)

g v == li —0@ =0 5.57
URAV 61;%!10 vlg =0, (5.57)

for every T,-open set Q) such that @ c? A.
(ii)

ury V<= [ulp = [vlF, (5.58)

for every T,-closed set ' such that ' C? A.
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Proof. The idea of the proof is the adaptation to the parabolic framework of the construc-
tion in the elliptic case performed in [46]. If u ~4 v, then u© v ~4 0 and v S u ~4 0.
Hence, by (5.52), we have that wg := (u © v)g —0as 3 — 0. Weset fg = ((u— v)+)g
and consider the truncated problem in B; x (3,00) for j = 1,2, ...,

Ow — Aw + |w|?tw =0 in Bj x (8,00)
w=0 on 0B; x (3,00)
w(,ﬁ) :¢ n Bj,
and denote by w; and f; respectively the solutions with initial data 1g(u © v)(.,3) and
1g(u—v)4+(., ). By the maximum principle, the sequences {w;} and {f;} are increasing.

Since u © v is the smallest solution which dominates the subsolution (u — v)4, we have
w; > f; for all j € Ny,. When j — oo, w; — wg and f; — fg. Then wg > fg. This implies

((u— v)+)g as 3 — 0.
Similarly

((v— u)+)§ as 3 — 0.
This yields the implication = in (5.57).

For the reverse implication we introduce the problem

Ow — Aw + |w|9 tw = 0 in Bj x (f8,00)
w=h on 0Bj X (f,00)
w(.,B)=0¢ in B;.

Let Q C @ C? A be a Tj-open. Denote by w; the solution of the above problem with h =
1g|u—v|[aB,x(8,00) and ¢ = 1g|u —v|, and f; the solution with h = 1ge[u —v[[5B;x (8,00)
and ¢ = 1ge|u — v|. Then

u —v| < wj + fj.

Up to some subsequence, w; and f; converge respectively to w and f which are solutions
of (3.13) in RN x (B, 00) with respective initial data w(., 8) = 1g|u—v|(.,8) and f(.,3) =
1ge|u — vl|(., B). because of uniqueness and the definition Definition 5.51 , w = |u — v\g

and f = |u— v\gc. When 8 — 0 we have by assumption

lim |u — 0|9 = 0.
lim o~ o]
Let {8} be a subsequence decreasing to 0 such that there exists ﬁhmo lu — v|gc. Then
k>

|lu —v| < lim |u—v|§c.
6]@*)0 k

But |u — v\gc ~@ 0, hence lim |u — vlgc ~@ 0. Since u © v is the smallest solution which
k Br—0 k
dominates the subsolution (u — v)4 there holds

< lim |u—o|5 .
max{u@v,v@u}_ﬁ;r_%m vlg,
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The proof follows from Lemma 5.46 and Proposition 5.41-(i).

(ii) Let us assume that u ~4 v, then
ut(u—v)y <v+(u—v)r <v+uow. (5.59)
If F'is a T4 -closed set and @ a T4-open set such that F' C? @, we claim that
[ulp < [v]g + [u e v]g. (5.60)
This can be proved as follows: we first have
u = [ugy < [ulg + [ulge
by (5.48). Using (5.59) it infers
[ulp < lulpy <v+uSv <[olg+ [vlge + [uO Vg +[uc g

The subsolution w := ([u]r — ([v]q + [u © v]g)), is dominated by [u © v]ge + [v]ge Which
is a supersolution. From the definition we have

w < [wls < [uvlge ® [olge < [ue vlge + [tlgr.

Therefore [w]; ~g 0. Since w < [u]r we deduce [w]; < [u]F, which means Tg-supp([w];) C?
F Cc?Q. As [w]; =g 0 we obtain that w = [w]; = 0 and (5.60) follows.

Let @ be a T -open set such that F' C?Q C @ C? A, and because u & v =4 0 implies
[u S v]r =0 by (5.53) and (5.60), we deduce that

[u]F < [v]q-

By Lemma 5.18-I, there exists a decreasing sequence {Q;} of open sets such that N;Q; ~4
F'. Then by Proposition 5.42-(iii) there holds

J

[ulp < jli_{go [v]q

Similarly [v]r < [u]F.
To prove the reverse implication, we assume that [v]p = [u]p for any T ,-closed set
F c?A. If Q is a Tj-open set such that /' C? Q C?Q C A, we notice that

uov < [ulg ® [ulge © [v]g,
since (for the last inequality)
u=[upy < [ulg + [ulge = u < [u]g @ [u]ge < [u]g + [u]qe.

Because ([u]g @ [u]ge) © [v]g is the smallest solution dominating (([u]g @ [u]ge) S [v]Q)+,
we have, using the assumption that [u]g = [v]g,

([ulg ® [ulge) © vlg) . < (([ulg + [ulge) © [v]g), = [ulg + [ulge — [vlg = [ulqe.
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Therefore
[uevlr <uswv < [u)ge.

Hence Tg-supp(ju © v]p) C? F and [u © v]p ~ Q0. This in turn implies that [u ©
v]p = 0. Using (5.53) in Proposition 5.52 we obtain u & v ~4 0. Similarly v & u ~4 0.
g

As an immediate consequence of (5.57), we have
Corollary 5.55 If A C RV is a Tq-open set, the relation ~4 is an equivalence relation
in U (Qr).
5.5 The regular initial trace
5.5.1 The local test

2
Lemma 5.56 Let u € U (Qr) and Q be a T,-open set. Then for any n € Bv* (RN) N
L®(RN) with T,-support in Q°, we have

T
/ / (u A UQ)? (Hln]4)* (t, )dzdt < oo. (5.61)
o JRN
Proof. By Proposition 5.33, there holds

lim [ (uAUg) (z,t)ns(x)dz =0,
t—0 Q

and the result follows by estimate (5.39) in Lemma 5.35. O

Proposition 5.57 Letu € U (Q1) and Q be a Ty-open set such that uAUq is a moderate
solution with initial data p. Then for any § € Q there ewists a T4-open set O C Q such
that

/T/ u? (H[ng])Qq/ (x,t)dzdt < . (5.62)
0o JrN

2
Furthermore, for any n € Bo® (RV) N L2 (RN) with Tq-support in Q, we have

lim u(m,t)niq/dm:/nzq,du. (5.63)
Q Q

t—0
Proof. 1f n is as above, the function 77_2;1, is quasi-continuous and there holds by Theo-
rem 5.31,

lim [ uA UQ(x,t)nf_ql(x)dx = / nf_qld,u,
t—0 Q Q

and, by the properties of Uge,

I . 2 —0.
lim Qu/\UQ (@, t)n (x)dx =0
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Since u AUg <u <uAUg+uAUge, we get

/ uAUg(a, )i do < / u(e, ! de < / u N Uq(a, ! da +/ u A Uge(, tn}? da.
Q Q Q Q

This implies

li O de = [ 0°C due.
lim QU(% )iy da /Qm 1Q

By Proposition 5.25 and Proposition 5.26,
T /
/ / (u A Ug)? (H[n]+)? (¢, x)dzdt < oo, (5.64)
0 JRN

for any n € B (RY) N L= (RY) with T,-support in Q. By Lemma 5.21, we can assume
that the above function 7 has its values in [0, 1], with T -support in @ and value 1 on a
T4-open neighbourhood O of . Then (5.64) implies

/OT/RN (uAUg)? (H[log])qu(t,x)dxdt < 00. (5.65)
([l

Definition 5.58 If E C RY) is a Borel set, we denote by Bi’q/(E) the closure for the

2
norm of Ba'? of the set of C™ functions with compact support in E.

, 2
If E is an open set, Bt (E) coincides with B ! (E).

Proposition 5.59 Let u € U (Qr) and Q be a bounded Z,-open set such that

/ ' / w? (H[Lo)? (x, 6)dadt < oc. (5.66)
0 RN

(i) There exists an increasing sequence of Tq-open set {Qn} satisfying Q, C Q, @n c1
Qn+1 and Qo = Uy Qp ~1 Q such that the solution v, := uAUg, is moderate, vy, T [u]g
and there exists a nonnegative measure pg on @ such that tr (v,) = pg as n — oo.

(ii) For any n € Bg’q,(Q) N L*(Q), we have

lim u(m,t)niq, (x)dx = / nf_qld,uQ. (5.67)
t—0 Q Q
Proof. Let z € Q. By Lemma 5.21 there exist a T,-open set V such that z € V C VC Q

and a function ¢ € Ba? (R™) such that 1) = 1 q.a.e. onV, 1 = 0 outside Q and 0 < ¢ < 1.
By Lemma 5.17 there exists a T4-open neighbourhood O, of z such that O, C O, C V.

We claim that the function
v, =uANUo,, (5.68)
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is a moderate solution. Actually, let R > 0 such that Q C Q C Bg and let n € C°(Bapg)

2 7
with value 1 on Br and 0 < 7 < 1. Then the function ¢ = (1—1)n belongs to B* RM)N
L>®(RY) and has compact support in Bar N V. Therefore

/ /RN H[Lp,))*" (o )dadt < / /]R ol ()™ (x, t)dwdt

o[ v o

<[] vres o asa

T
g 2" (3,t)dx 00
[0 e (e et < .

because the first integral in the last inequality is finite by assumption and the second
integral is finite by Lemma 5.56. As R is arbitrary, u A Up, is a moderate solution.

By the quasi-Lindelof property there exists a non decreasing sequence of T,-open sets
{O,} such that U,0, ~? @Q and, using the construction above, the solution u A Up,, is
moderate for any n € N,. By Proposition 5.42-(II), for any n there exists a sequence
{A,;} of T4-open sets such that gn,j c? Ay j+1 C1E, and U?‘;lAn,j ~4 E,. Put

U Ap.

k+j=n
Then B N
U Ap,; Cf U Ak j+1 = Qn+1-
k+j=n k+j=n
Therefore
Qo:=J@n~1Q
n

Next we prove that v, = u A Ug, — u A Ug. By Proposition 5.42-(ii),
v =uAUg, SuNUg <uAUg, +uNUgnqe -
Since Q N Q% | F and cap%,q,(F) = 0, we infer from Proposition 5.42-(iii)
uANUgnge =0 asn — oo.

Hence v, 1 u A Ug. Again, by Proposition 5.42-(ii), v, = [vn+k]Q,. Therefore, with
pn = 1@, 1@,

,U'n(Qn) = ,U'nJrk(Qn) = ,U'Q(Qn) < oo = tr (Un) — HQ- (5-69)

2 7
(iii) We assume at first that the function n € B<'? (Q) N L*°(Q) is nonnegative (which is
not a restriction) and has compact support in ). By Lemma 5.23 there exists a function
N, with T, support included in @ such that 0 < n, <1, M1 < M,

1
I =mell 2.0 < 7, (5.70)
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and, for k large enough,

/

/OT/RN u? (Hln — Wk])zq, (x,t)dxdt < <%>2q )

li Omede = | n°9d d i / 24 ::/ 24
lim Qutu )kdx /g”k po and lim va 1Q Q77 Lo,

Since

by a standard limit theorem

liminf lim u(x,t)niq/dx = liminf/ u(x,t)anldm
Q

t—0 k—oo Q t—0

> lim lim u(x,t)nzq/dm = / 7 dug
Q

T k—oot—0 Q

By (5.69) and Proposition 5.57 and Holder’s inequality

1
2" 2q’
< ([ wtotf )™ €l =m0 b=l

1

+C<Ai4NWWJMHM_WDM>W
c

< /u(m,t)nk dz +—.

0 k
27 w O
lim sup (/ U(ﬂf,t)n2q/d$> 1 < (/ an'dﬂQ> a4 + —,
t—0 Q Q k

which implies, by letting k£ — oo,

1 a1
’ 2q’ ’ 2q’
lim sup </ u(z, t)n* dw) ! < </ n* d,uQ> "
t—0 Q Q

Combining (5.71) and (5.73) we obtain (5.67).

Hence

(5.71)

(5.72)

(5.73)

In the general case, by Netrusov’s approximation theorem [1, Theorem 10.1.1] there
exists a function 7 with compact support in @ such that 0 < n, < n and (5.70) holds.

The end of the proof is as above.

0

The Proposition 5.59 admits the following easy extension to the case where the set @

is non-necessarily bounded. An overview of the proof is given in Proposition 5.64.
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Corollary 5.60 Let Q be T,-open set and u € U (Qr) satisfying (5.66) for any Tq-open
and bounded subset of Q.

(i) There exists an increasing sequence of Tq-open set {Qn} satisfying Q, C Q, @n c1
Qn+1 and Qp = Up 1 Qp ~1 O such that the solution vy, := uA Uq, is moderate, vy, T [u]g
and there exists a nonnegative measure g on Q such that tr (vy,) — 1o as n — 0.

(ii) For any n € Bg’q,(Qn) N L>(Qy for some n € N, we have

lim u(x,t)niq/(x)dx:/ niq/d,ug. (5.74)
Q

t—0 o)

Proposition 5.61 Let Q be a T,-open set and u € U (Q1) satisfying (5.66). Then
(1)
[ulg = sup{[u]r : F C? Q, F %,-closed}. (5.75)

(i1) For every T,-open set O C O C4 Q such that [u]o is a moderate solution, we have

Lsnq = tr (([[ulglo) - (5.76)

Furthermore the measure juq defined in Proposition 5.59-(1) is T4-locally finite on Q and
o-finite on Q' := U, Q,, where the sets @, form an increasing sequence {Q,} of T4-open
subsets of Q satisfying Q, C4 Qni1 and Q' ~1 Q as in Proposition 5.59-(i).

(111) If {wn} C UL(Qr) is a nondecreasing sequence of moderate solutions of (3.13) such
that T4-supp.(wy) C?1 Q and wy, 1 [u]g, then tr (wy) T pg.

Proof. (i) Let u* denote the right-hand side of (5.75). By Proposition 5.6 there exists a
nonndecreasing sequence {[u]f, } such that F,, is T-closed and [u]p, T u*. By Proposi-
tion 5.47 we have

], < [WlFun@m + [U]Fngg,
Notice that F;, NQY, is T4-closed and Ny,_ F,, NQ;, = A, and capz, o (An) = 0. Therefore,

by Proposition 5.42 we have that Up,ng: — 0 as m — oo, hence [u]p,ng:, — 0 as
m — oo. Therefore [u]p, < limy, yo0[u]r,, = ug. Letting n — oo we infer u* < ug. By
the definition of u* we have ug < u*.

(ii) Set po = tr ([ulo). If F'is T4-closed such that F' C? O, then by Proposition 5.47-(ii),
tr ([ulp) = tr ([[u]é]p) =1ppo =1p po. (5.77)
IfO cO clqQis Tg-open such that [u]eor is a moderate solution, then clearly
ponor = 1610 = 155 1o (5.78)
Since [u]p is moderate,
[lou)r = [ulgun T fuls a5 n - oo. (5.79)
In addition, [ug]r > nl;rrgo[[u]Qn]F = [u]p, jointly with ug < u, leads to

up = [uglr. (5.80)
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By (5.77) and (5.79), if F' is a T4-closed subset of Ry(u), and [u]r is moderate

tr(fulp) = lim tr({[ulg,]r) = 1rir, ), (5.81)

n—o0

and (5.76) follows.

Since Q' = Up,Qy and pug(Qn) < oo, pg is o-finite on Q' ~4 Q. Since for any
§ € @ there exists a T4-open neighbourhood O of £ included in @ with the property
that pg(O¢) < 00, ug is Ty-locally finite on Q.

iii) If w is a moderate solution dominated by ug, with T -supp (w) C? Q, then tr(w) < u
Q q Q
since

[wlq, < ulg, and [wlg, Tw= tr(lwlg,) T tr(w) < lim ir([ulq,) = 1o

Let {wy, } be an increasing sequence of moderate solutions with F,, := T,-supp (w) C? Q
and wy, T ug. We claim that if v, := tr(wy,), then

v:= lim v, = pg. (5.82)

n—o0
Clearly v < ug. To prove the reverse inequality, let D be a T;-open set such that [u]p is
moderate and K C D a compact set such that cap: ,(K) > 0. Then
q K

wy, < [wp]p + [wp]pe — ug = lim w, < lim [wy,]p + Upe.
n—oo n—oo

Since [u]p is moderate, the sequence {[w,|p} which is dominated by [u]p has an initial
trace tr (w,]p) := 15V, which increases and converges to 15v. Hence, 15v is a Radon
measure which vanishes on sets with zero capz o-Ccapacity. Hence

q7

[wn]D /]\ ulﬁu
where uq ,, is the moderate solution with initial trace 15zv. Therefore
ug = lim wy <wyyy + Upe.
This implies
<[UQ]K - ulf,y)+ < inf {Upe, Uk } .

Notice that the left-hand side of the above inequality is a subsolution while the right-hand
side is a supersolution. This implies

([UQ]K _UI5V>+ < Upe NUg = [[U]DC]K =0.

Therefore ug|x < U1y which implies 1xug < 1zv. Moreover, if O is a T4-open set such
that O 4 D, then, using the fact that

150 = sup{lkug : K C O, K compact},
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we obtain
15nq < 1pv. (5.83)

Applying this series of inequalities to the sets @, @m+1, ..., we infer
1g,. 1m0 < 1ém+1y < 1@,V

Letting m — oo we deduce that ug = v. O

5.5.2 T, -perfect measures

Definition 5.62 Let i be a positive Borel measure on RN .
(i) We say that u is essentially absolutely continuous with respect to the capz o -capacity
q?

if the following condition holds:
If Q is a Ty-open set and A a Borel subset such that capz q,(A) =0, then
q?

w(Q) = p(@QnN A°).

This relation is denoted by
p =< capz .
q7

(11) We say that p is reqular with respect to the T,-topology if, for every Borel set E, there
holds

p(E) =inf{u(D): EC D, D %,-open } =sup{u(K): K C E, K compact }, (5.84)
and p is outer reqular with respect to the Ty-topology if there only holds
pu(E) =inf{u(D): EC D, D%, -open }. (5.85)

(111) A positive Borel measure is called T,-perfect if it is essentially absolutely continuous
with respect to the capz ¢ and outer reqular with respect to the %,-topology. The space of
q7

T,-perfect Borel measures is denoted by M, (RY).

Proposition 5.63 If u € ?J)TQ(RN) and A is a non-empty Borel subset of RN such that
capz ,(A) = 0. Then
q7

(5.86)

00 if n(Q@NA®) =00 for all T4-open neighbourhood Q of A
0 otherwise.

If po is an essentially absolutely continuous positive measure in RY and Q is a $q4-open
set such that po(Q) < oo, then polg is absolutely continuous with respect to the cap: o
q?

capacity in the strong sense, that is for any sequence of Borel subsets {A,} of RV,

cap%q/(An) - 0= 1p(QNA) —0 asn— 0.
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If po is an essentially absolutely continuous positive Borel measure on RN and if for every
Borel subset of RN we denote

w(E) =inf {po(D) : EC D D %,-open}, (5.87)
then p is a Borel measure and

@) mo<p mo(Q) = w(Q) for all Ty-open set Q

(i1) plo= polg for all Ty-open set Q s.t. po(Q) < . (5.88)

Proof. The first assertion follows from the definition of M, (RY). Next, if uq is essentially
absolutely continuous and 19(Q) < oo where @ is T,-open, then 1gug is a bounded Borel
measure which vanishes on Borel sets with zero cap2 q,—capacity. If {A,} is a sequence of
q )
Borel sets that we can assume to be decreasing, such that capz q,(An) — 0 when n — oo,
q k)
and p, = 1gna,to, then by [43, Lemma 2.8] there exists a unique moderate solution
uy,,, with initial trace p,. There holds w,, < Ugna,. Since cap: ,(Q N An) — 0, Ugna,
q ’
converges to 0 when n — oo, and so does u,,,. Then p,, — 0 in the weak topology of Radon
measures, which implies that u,,, — 0 locally uniformly in Q7. Therefore p(Q N A,) — 0
which implies that pg|g is absolutely continuous with respect to the cap2 o -capacity in
q k)

the usual sense.

Assertion (5.88)-(i) follows from the definition (5.87). If @ is a T,-open set such that
po(Q) < oo then p(Q) < oo. Since pglg and p|g are regular Borel measures which
coincide on open sets, they coincide on all Borel sets. This implies (5.88)-(ii).

At end, if A is a Borel set such that capz ,(A4) = 0, then cap:z ,(A) = 0. If Q is a
- q’ q’
T ,-open set, then @ N A° is T -open. Therefore

Q) = 1o(Q) = po(Q N A) = p(Q N A°).

Hence p is essentially absolutely continuous. Using (5.88)-(i) and the definition of p we
infer that p is outer regular with respect to the capacity cap: o Hence p € mtq(RN ).
q7

0

5.5.3 The initial trace on the regular set

In the next propositions we study the initial trace of a positive solution u of (3.13) on
the regular initial set Ry(u) given in Definition 5.58 and we study the properties of the
measure fir,(y) constructed by Proposition 5.59, Corollary 5.60 and Proposition 5.61.

Proposition 5.64 Let u € U (Qr).
(1) There exists an increasing sequence of Ty-open sets {Qn} with the following properties:

Qn C Ry(u), Qn C4 Qi1 and Rgo(u) :=Upg@pn ~1 Ry(u), such

vy = uAUg, is moderate vy, T vg () and tr(vn) T g, (u)- (5.89)
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(ii) There holds
VR, (u) = Sup{[u]r : F CTRy(u), F T, -closed} . (5.90)

Thus vg, () s o-moderate.

(111) If [u]p is moderate and F' C? Ry(u), there exists a T,-open set Q C Ry(u) such that
F c?Q, [u]g is moderate.

(iv) For every T -open set Q@ such that [u]g is a moderate solution, we have

1R, w) = tr ([ulg) = tr ([vr,w)]) - (5.91)

Finally pr, ) is Tq-locally finite on Ry(u) and o-finite on Ry o(u).
(v) If {w,} is a sequence of moderate solutions such that w, 1 UR, (u)s then

IRy (wy = Hm tr (wy) = lm tr(vn). (5.92)

n—o0 n—o0

(vi) The regularised measure AR, (u) defined for Borel sets B2 C RY by

iy (B) = it {pig, 0 (Q) : B C Q, Q, -open) (5.93)
is Tq-perfect.
(vii) There holds
u %Rq(u) URq(u)-
(viii) For every T,-closed set F' C1Ry(u),

[ulp = [qu(u)] P (5.94)

Furthermore, if ug ) (F N K) < oo for every compact subset K C RN, then [u]r is
moderate and

tr(lulr) = 1rpug,(u)- (5.95)

(ix) If F' is a T4-closed set with positive capz2 o -capacity, whe have
q?

LRy ) (F' N K) < oo for all compact set K C RY <= [u]p is moderate. (5.96)

Proof. (i) For every z € Ry(u) there exists a T;,-bounded open set O, C R,(u) such that
[u]o, is moderate. With the previous notations and the construction of the sequence {Q,,}
in Proposition 5.59, we recall that v, = [u]g, = u A Ug, satisfies v, = [v,44]g, for any
k € N and

,U'n(Qn) = ,U'nJrk(Qn) = ,U'Rq(u)(Qn)' (5'97)
(ii) The proof has already been made in Proposition 5.61.

(iii) We assume firstly that F is bounded. Using the definition and (i), every point in R4 (u)
possesses a Tg-open neighbourhood A such that [u]4 is moderate. By Proposition 5.19-
, Tor any € > 0 there exists a %,-open set () such that capz ,(F N < € and |u
II), f 0 th i Ty h th mea ¢ d |u]g.

q
is moderate. Since F' is bounded, we can assume that so is Q.. Let O, be an open set
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containing F' N Q¢ and such that capz q,((’)E) < 2¢e. We define a T4-closed set Fe included
q )
in Q¢ by
F.=FnNnO,, (5.98)
and F, C F with cap%q,(F NFE) < 2e.

Claim 1: Let E be a T4-closed set, D a Ty-open set such that [u]p is moderate and E C? D.
There ezists a decreasing sequence of T,-open sets {Gy} such that

E C9Gpyy C Gryy C1G, C1D, (5.99)
and o
[ulg. = [ulg in LY(K) for every compact set K C Qrp. (5.100)

By Lemma 5.18 and Proposition 5.25-(iii), there exists a decreasing sequence of T,-open
sets {G,,} satisfying (5.99) and such that [u]g, | [u]g locally uniformly in Q7. Since
[u]g, < [u]p which is a moderate solution, we deduce (5.100).

Next we assume that F' is a non-necessarily bounded T -closed set. If x € F' we set
B, = B,(z) N F, n € N, and

n
En = U (F'0 Bp)y-m

m=1

where (F'N By,)y-m is the set defined in (5.98) with F' replaced by F'N B,, and € replaced
by 27™. We can also assume that the sequence {E,} is increasing. We set Q" _, =
(FNBy),,-1 and

Qn=J Qr.
m=1

and as for {F,} we can assume that the sequence {Q,} is increasing. Therefore, we
have that E, C E, Q, is T4-open, [u]g, is moderate and E, C¢ @Q,. Furthermore
UnE,, = E' ~% F since for any n € N, there holds

o0 n o o
capz g F\UE] chap%q, (FﬂBk)\UEj + Z cap%q,((FﬂBk)\Ek)
j=1 k=1 j=1 k=n+1

1 =1 1
Smt 2 o
k=n+1
Thus, by Assertion 1, we can choose a sequence of T,-open sets {V},} such that
B C'V, C Vo C1Qn and |[ulv, — [Wlg,ll pogs, 0)x 0y < 27" (5.101)

Notice that since E, and @, are bounded sets, the functions [u]y, and [u]g, which are
moderate belong to LI(RY x (0,7)).

Because [u]r is moderate, there exists a Radon measure up = tr ([u]r) and [u|p = [u]p
since F' ~% E'. At end, using (5.49) and the fact that E, C? F, we have

g, = [ulrne, = [[ulE,]F
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Because [u]p is moderate we have tr ([u]lg,) = 1g,pur. Since E, T E' ~9 F we deduce
that [u]g, 1 [ulp in LL (Qp). Hence, we have from (5.101) that [u]y, — [u]p in L] _(Qr)
as n — 0.

Let {V},, } be a subsequence such that

(Al

If K ¢ RY is compact, it is included in By, for k > ko. We set W = U2 Va,, then

< [ulv,,-
=1

I [U]F‘q> "<k (5.102)

Therefore

([ =) < ([ f o)
+Z<//m o)

k=ko+1
k
) S
k=ko+1

([ f, o

< Q.

Because F' C9 W, W is T -open, [u]r is moderate and K is arbitrary it follows from the
above inequality that [u]y is moderate, therefore W C R4(u) by Proposition 5.57.

(iv) Let @ be a T,-open set such that [u]g is a moderate solution, and pg = tr ([u]g). If
F is a T -closed set such that F' C? @), then by Proposition 5.25-(ii),

tr([ulp) = tr ([[ulg]p) = Lrug- (5.103)

In particular, if Q and @Q’ are regular sets in the sense of Definition 5.24, then

MQOQ/ = 1@0@"U’Q = 1@0@““@" (5104)
Using the notations of (i), we have [v,4]g, = vr and hence 1Q~k,un+k = uyg for every
integer k.

Let F be a T,-closed regular subset of R,(u). Since [u]p is moderate we have by
(5.104)
[vnlF = [u)png, T [ulp (5.105)

Furthermore, since we have

[vry)] e > Jim o] = [,
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and vg, (y) < u, we infer
[ulr = [vR,w)] - (5.106)

It follows from (5.103) and (5.105) that if F' is a T, -closed subset of R,(u) and [u]p is
moderate that

tr ([ulp) = lim tr ([v,]r) = nlLHgO 1ppn = 1ppR, (u), (5.107)

n—oo

which yields (5.91).

Finally, since R,(u) has a regular decomposition, iz, () is o-finite on Ry 2<(u). As for
the claim that ug, () is T¢-locally finite on R, (u) it is a consequence of the fact that every
point § € Ry(u) is contained in a T-open set O¢ C R,(u) such that [u]o, is moderate
and thus g, ,)(Of) < oco.

(v) If w is a moderate solution dominated by vg, () and the Tj-supp(w) C? Ry(u) then

7i=tr(w) < PR, (u)-
Now, let {w,} be an increasing sequence of moderate solutions such that F,, := T, -
supp(wy) C? Ry(u) and wy, T vg, (). We claim that

vi= lim v, = lim tr(w,) = pg,(u)- (5.108)

n—oo n—oo

By the previous argument, v < ug_¢,). In order to prove the opposite inequality, we
proceed as follows: Let D be a T -open set such that [u]p is moderate and let K be a
compact subset of D with positive capz o -capacity. Then

q7

wy, < (wy]p + [wn]pe <= VR, () = lim w, < lim [wn]p + Upe.
n—oo n—oo

The sequence {[w,]p} is dominated by the moderate solution [vg (,y]p. In addition

tr (wa]p) = 1pvn T 15v < 150, (w)- Hence 15v is a Radon measure which vanishes

onBorel sets with zero cap: o -capacity. Also [wy]p T U1 v, with the usual notation.
q7

Consequently

VRy(u) i= 7}1—?30 Wy, < U15y + Upe.

This implies
<[URq(u)]K - u15u>+ < inf{Upe,Uk}.

By the same argument as in the proof of Proposition 5.61-(ii) this yields
(loryl = w10) | < [Upelic} =0.

Hence [qu(u)]K < u1, and hence 1xpug, ) << 1zv. Next, if @ is a T,-open set such
that @ C? D, we use the fact that

sup{lg pr, () : K C Q, K compact} = 1our, ()

to obtain that
]-Q:u"Rq(u) S ]_f)V. (5109)
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Applying this inequality to the couple of sets (Qm, @m+1) we deduce that
10 bRy w) < 15, ¥ < 1Qn oV

Letting m — oo implies g (uy < v. This completes the proof of the claim (5.109) and
assertion (v).

(vi) Since the measure KR,(w) is essentially absolutely continuous with respect to the
capz ,-capacity, the claim follows from Proposition 5.63.
q7
(vii) For any n € N, we have
u < [ulq, + [ulqg -
Since Qy, is Ty-closed and N, Q5, = Ry o(u), we have by Proposition 5.47-(iii)

[ulQg ¥ [ulre  (u)-

Therefore

i (0= o, == v 0 < bl 0

It follows that uSvg, (u) R, o(u) 0- Because vg, (4) < u, this is equivalent to the statement
u %quo(u) URq(U)'

(viii) The fact that [u]r = [vg,()|F for every T -closed subset F' C? Ry(u) follows from
assertion (vii). Next we assume that pg ) (F' N K) < oo for any compact set K and we

set F, = F N Q,. By relation (5.48) we have
[ulF, < [ulr < [ulp, + [ulparg = [u]p, + [l page < [UlR, + [ulFngg.-

Since F'N Qf is Tg-closed and M, F' N Q5 = G with cap: ,(G) = 0, we deduce from
q7
Proposition 5.47-(iii) that [u]pnge — [u]lg = 0 as n — co. Hence [u]p, T [u]r and

tr ([U]Fn) = 1Fn:u'7€q(u) T 1F0M73q(u) = ]-F:U"Rq(u) as n — 0o,

since 1p iR, () = 1FpRr, () if Fo = Npky. Because 1pug,(y) is a Radon measure es-
sentially absolutely continuous with respect to the cap: o -capacity, [u]p is moderate and
q7

(5.95) is verified.

(ix) If pg,)(F N K) < oo for any compact set K, then by (viii) [u]r is moderate.
Conversely, if [u]r is moderate, then by (iv), there holds ug ,)(F N K) < oo for any
compact set K C RY. O

Example There exist functions u € Uy (Q7) such that Ry(u) = RY which are not mod-
erate solutions. We construct one of them as follows. Let 1 : [0,00) — [0,00) be a smooth
function which is positive on (0,00), 7¥(0) = 0 for all k € N (e.g. n(r) = e ). We
define the closed set K ¢ RN by

K={z=(z,zny) e RV xR, : |2/| < n(zn)}.
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Then K is T4-thin at 0 for the capacity capz e We set
q b

-N i
f(””):{g o) iiig]{{jN\K,

and define the measure
= fdx.
Then the following properties hold:
1- p is Ty-locally finite.
2- M(Qn) < 0 if @ = Bop \Fl and U, Qp ~1 RV,
3- u(F') = 0 for any Borel set F such that cap%,q,(F) = 0.

4- There exists a non-decreasing sequence of bounded nonnegative Radon measures {p, }
absolutely continuous with respect to the capz q,—capacity such that
q b

(i) Ty-supp (tin) C Qs fin(A) = pnir(A) for any A € Q, and any n,k € N,.
(i) lim py, = p.
n—oo
5- We can construct a solution u of (3.13) such that R,(u) = RY and PRy () =
We will prove later on that this solution is actually the unique one towhich has this

initial trace since it is o-moderate.

Lemma 5.65 Let i satisfy the conditions 1-4 above. Then there exists an open set Ry ~14
RN such that the measure p is a Radon measure on R,,.

Proof. By [46, Lemma 2.5] for any R > 1 and € > 0 there exist a sequence of open sets
{0} and n(m) € N, such that capz ,(Om) < €27™ and
q7

Br\ O, C U Q; where Q; = Bs; \ B1. (5.110)
J
7=1
Since O,,, C O
capg o (6m) < capg o <(5> < écapg y (Op) < ce27™.
If v € Br\ oy Om there exist v, > 0 and k € N such that

k
B,, CBR ﬂ

Jointly with (5.110) it implies that

We set
={z¢€ RY : 3r, > 0 such that u(B,, (z)) < 00} .

The set R, is open and by letting R — oo and € — 0, we obtain that R, ~9 RY. By the
definition of R, for any compact set K C R, there holds p(K) < co. Hence p is a Radon
measure in R,. O
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5.6 The precise initial trace
5.6.1 Definition and first properties

We can now define the precise initial trace of an element of U, (Qr) in the supercritical
case.

Definition 5.66 Let ¢ > q. and u € U (Q7).

1- The function vg, () defined in (5.90) is called the regular component of u and will be
denoted by Upreg.

2- Let {v,} be an increasing sequence of moderate solutions satisfying condition (5.89)
and put iR, (u) = nlgr(; tr(vy). Then, the reqularised measure AR, (u): defined by (5.93), is

called the regular initial trace of u. It will be denoted by trg, () (u).
3- The couple (trg,w)(u),Sq(u)) is called the precise initial trace of u and will be denoted

by tre(u).
4- Let v be the Borel measure on RY given by

v(E) = { () EC éjzf];; @ (5.111)

for every Borel set E C RY. Then v is the measure representation of the precise trace of
u and it is denoted by tr(u).

Remark. In the definitions of ¢tr¢(u) and t¢r(u), the exponent ¢ stands forcouple, but the
two objects are the same in their respective classes. Thanks to Proposition 5.64 the mea-
sure pg, () is independent of the choice of the sequence {vn}.

The next fundamental result is the parabolic version of the construction given in [46].

Theorem 5.67 Assume that uw € U (Qr) is a o-moderate solution, and more precisely
that there exists an increasing sequence {uy} of positive moderate solutions such that u, 1 u
and tr(u,) = pin. Set po = lim p, and define p on Borel sets E C RN by

n—o0

p(E) =1inf {po(Q) : E C Q, Q T4-open}. (5.112)

Then:

(1) p is the precise initial trace of u and p is Ty-perfect. In particular p is independent of
the sequence {uy} which appears in its definition.

(ii) If A is a Borel set such that 1(A) < oo, then u(A) = po(A).

(i1i) A solution u € Uy (Qr) is o-moderate if and only if

u=sup{v € Uy (Qr), v < u, v moderate} . (5.113)

This statement is equivalent to
u = sup {uT EUL(Qr): 7B IRY)nmb (RY), 7 < tr(u)} . (5.114)
(i) If w and w are o-moderate solutions,

tr(w) < tr(u) <= w < u. (5.115)
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Proof. (i) Since the p,, are Radon measures absolutely continuous with respect to capz ¢
q b
to which is the limit of the u,, shares this property. By Proposition 5.63, i is €,-perfect.

Let {Q,} be the family of T -open sets of Proposition 5.64-(i). Set @), = Rq(u) \ Qn.
Since Up @y, = limy, 000, ~? Rq(u), then @, | E and cap: q,(E) = 0. Consequently, for
q7
any n € N, we have
rr}gnoo ulQ/mM” =0.

Therefore, there exists a subsequence still denoted by {@},} such that

1

T q q 1
</0 /]RN ulQ%Mndxdt> < on-

1R, wykn = 1Q, tin + 1Qg tin,

Since

it follows that

0, [t ugpn = W] = I g =0

Since we have also

Up = Uy, < UL, (uyhin + ULs, (u)hin < ULR (uybin + [U]Sq(u)7

we infer

0<u—[us,@ <w:= nh_{go UlR,(uybn = nh_{go Ulp, pn < Ureg:

This implies u © [u]s, (u) < Ureg and u < Upey @ [u]s, (). For the opposite inequality, we
have by Proposition 5.64-(iv)
[U]Dn ) Ureg-
By relation (5.60) in Proposition 5.54, using the fact that D,, c4 Dypi1 C l~7n+1 CT1Ry(u),
we have that cap: (5n+1 N Sq(u)> =0 and
q7

[u]Dn < [[U]Sq(u)]Dn+1 + [u © [u]Sq(u)]Dn+1 = [u © [u]Sq(u)]Dn+1 Suo [U]Sq(u)'

Letting n — oo, we derive ey < u O [u]s,(u)- Therefore 1i_>m U1y pn, = Ureg- There-
n o

fore the sequence {u1, ,,} satisfies condition (5.89) and by Proposition 5.64-(iv) and
Definition 5.66 we obtain

lim 1p, pin = pr,) and trp () (u) = g, w)- (5.116)

n—oo

Next we show that the g-singular set Sy(u) is singular for the sequences of measures {y, }

in the sense that if £ € S;(u), then for every T, -open neighbourhood @ of &, pn(Q) — o0
when n — oo. Indeed, we can assume that Q) is bounded and we consider a nonnegative

function n € Bg’q/(]RN) N L®(RY) with T,-support included in Q. We put h = Hy)]

121



and ¢(r) = riq/. Then, using Theorem 5.31, Proposition 5.26 and the computations in
Proposition 5.25, we have

/OT /RN (—tin (Bu(h) + A(h)) + ule(h)) drdr + /

RN

(é(h)un) (z, T)dz = / 7 i,

RN

and

T
| [, oz < cw (Hnuz%q,ﬂmuLw / n2qdun).
0 RN Ba’ RN

We can assume that the function 7 has value 1 in some Tj-openset D C Q and 0 <n <1
(see Lemma 5.21). If we let n — oo, we obtain from the above relations

n—oo

T
i [ [t ({10 dedr < Cla) (||n\|2q2q,+\|n||Loo+lim / andun).
0 JRN B n—oo JpN

Then the assertion follows from Proposition 5.28.

In conclusion, we have proved that if £ € S;(u) and Q is a T4-open neighbourhood of
£, then ,uo(@) = oo. By the outer regularity of 1 with respect to the €, -topology, it means
that u(£) = co. Combined with (5.116) this implies that p is the precise trace of w.

(ii) If u(A) < oo, then A is contained in a T -open set D such that po(D) < oo. By
Proposition 5.63 we have that p(A) = uo(A).

(iii) Let u € Uy (Qr) be o-moderate and denote

u* := sup {v : v moderate v < u}. (5.117)
By expression (5.117) u* < u. Since u is o-moderate there exists an increasing sequence
{un} of moderate solutions which converges to u. For any n we have proved in the
beginning of the Section on moderate solutions that given u,, there exists an increasing
sequence {Un,mtmeN = {Upy, ., }men of elements of Uy (Qr) where fin,m € Bfg’q(]RN) N
M (RY) converging to u,. Therefore

Uy < sup {uT ITE Bfg’q(RN) NI (RY), 7 < tr(u)} =u*".

By letting n — oo we infer u < u**.

However, if u is o-moderate, 7 € B_%’q(RN) N MY (RY) and 7 < tr(u), then we have
that tr(u; ©u,) = (7 — py)+ and the corresponding sequence decreases to 0 when n — oo.
Therefore u, © u, J 0 which implies v, < u and thus «** < u. Consequently, (5.113)
implies (5.114). This shows that the two identities which define o-moderate solutions are
equivalent.

(iv) The implication = follows from (5.114). For proving the opposite implication, it
is sufficient to show that if u is o-moderate, w is moderate and w < wu, then tr(w) <
tr(u). For this task, we consider an increasing sequence of moderate solutions {u,,} which
converges to u. Then u, A w < u and consequently u, < u, A w T w.. This implies
tr(u, Aw) 1t p' <tr(u). Hence tr(w) < tr(u). O

This results extends Proposition 5.64 which deals with the regular initial trace.
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Theorem 5.68 Let u € U (Qr) and v = tr(u).
(i) Ureg is o-moderate and tr(ureg) = trg, ) (w).

(i1) If v € U (QT), then
v <u=tr(v) <tr(u), (5.118)

and if F' is a T4-closed set, then
tr(julr) < 1pv. (5.119)
(iii) A singular point of the trace can be characterized in terms of the measure v as follows:
e S(u) = v(Q) =00 for all T;-open set containing &. (5.120)
() If Q is a Ty-open set then:

[ulg moderate <= 3 Borel set A s.t. cap%,q,(A) =0 and v(ANQ\ K) < oo, (5.121)

for any compact set K C RV,
(v) The singular set of ureq may not be empty. Actually

e~ —

Sq(u) \ bg(Sq(u)) C Sy(ureg) C Sq(u) N Ry(u), (5.122)

where by(Sy(u)) is the set of thick points of Sq(u) for the Ty-topology.
(vi) Put

Sgo(u) = {€ e RY 1 v(Q\ Sy(u)) = 00 for all Ty-neighbourhood of £} . (5.123)

Then
Sqltreg) \ bg(Sg(u)) C Sqo(u) C Sg(treg) U bq(Sq(u))- (5.124)

Remark. We will prove later on that any element of U, (Qr) is o-moderate. Hence impli-
cation (5.118) is actually an equivalence.

Proof. The first part of assertion (i) is proved in Proposition 5.64-(i) and the fact that
Ureg = VR, (u)- Lhe second part follows from Definition 5.66 and Theorem 5.67-(i).

(ii) If v < w, then Ry(u) C Ry(v) and by definition vyeq < treg. By Theorem 5.67-(iv) we
have tr(vyeg) < tr(treg). This implies tr(v) < tr(u). Inequality (5.119) is a consequence
of (5.118).

(iii) If £ is a regular point, there exists a T -open neighbourhood of £, say @, such that
[u]g. Therefore v(Q) = trr, ) (u)(Q) < oo. Conversely, if § € Sy(u), it follows from the
definition of the precise trace that v(Q) = oo for all T,;-open neighbourhood @ of .

(iv) If Q is T4-open and [u]g is moderate, then Q C R4(u). By Proposition 5.64-(ix) we
obtain the implication = in (5.121). Conversely,

V(QN K\ A) < oo, for all compact set K ¢ RN = Q Ry(u),
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and uRq(u)(@ﬂK) = uRq(u)(@ﬂK\A) < o0. It follows by Proposition 5.64-(ix) that [u]g
is moderate. o
(v) Because Tg-supp (ureg) C Rq(u) and Ry(u) C Ry(urey), we have

Sy(treg) C Sq(u) N Rq(u).
Next we prove that Sy(u) \ bg(Sg(u)) C Sg(treg)-
If £ € Sy(u) \ bg(Sy(u)), then Ry(u) U {£} is a T4-open neighbourhood of £. By (i) tyeq is
o-moderate and thus its trace is T,-perfect (see Theorem 5.67)-(i)). Therefore if Q) is a
T -open neighbourhood of £ and @ = Qo N ({{} U Ry(u)), then

tr(ureg)(Q) = tr(ureg) (@ \ {€}) = tr(w)(Q \ {¢}),

where, it the last inequality, we have used the fact that Q \ {{} C R4(u). Now, let D be
a Tg-open set such that £ € D C D c Q. If tr(u)(Q \ {£}) < oo, then, by (iv), [u]p is
moderate and £ € R, (u, contrary to our assumption. Therefore tr(u)(Q\ {€}) = oo which
implies tr(ureq)(Qo \ {{}) = oo for every bounded Tg-open neighbourhood Qg of £, and
consequently & € Sq(ureg), which ends the proof of (v).

(vi) If € ¢ by(Sq(u)) there exists a Ty-open neighbourhood D of ¢ such that (D \ {{}) N
Sy(u) =0, and thus

tr(treg) (D \{€} = tr(treg) (D \ Sq(u)) = tr(u)(D \ Sq(u)). (5.125)

Furthermore, if we assume that £ € Sy o(u), then
tr(u)(D \ Sq(u)) = tr(treg) (D \ Sq(u)) = oo.

If @ is an arbitrary ¥, -open neighbourhood of ¢, then the same relation holds if D is
replaced by D N Q. Therefore tr(uyeq)(Q \ {{} = oo for any such Q. This implies that
£ € Sy(ureg) and Sqo(u) \ bg(Sq(u)) C Sq(Ureg)-

On the other hand, if £ € Sg(ureg) \ bg(Sq(u)), there exists a T,-open neighbourhood
D of £ such that (5.125) holds and t7(ureq)(D) = o0o. Since uyey is o-moderate tr(tyeq)
is Ty-perfect, which infers t7(ureq) (D) = tr(ureg) (D \ {£}) = 00. Using (5.125) we obtain
that tr(u)(D \ Sy(u)) = co. At end, if @) is T4-open neighbourhood of &, then D can be
replaced by D N Q, which yields tr(u)(Q \ Sy(u)) = oo. This proves that £ € S;0(u) and
ends the proof of (5.125). O

Proposition 5.69 Let F' be a T4-closed set. Then Sy(Up) = by(F).

Proof. Let &€ € RY such that F is T4-thin at £. Let @ be a T;-open neighbourhood of ¢
such that @ C? F. Then [Up|q = Upng = 0. Then § € Rq(u).
Conversely, if £ € FNR,(Ur) there exists a T,-open neighbourhood @ of £ such that

[Ur]q is moderate. But the relation [Up]g = Up5, combined with the previous assertion,

implies that cap%,q,(F N Q) = 0 and therefore Q C R,(u). Since

cap: ,(F) < cap2 ,(F N Q) + cap2 ,(Q°),
q’ q’ q’

we conclude that F'is €,-thin at . O
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5.6.2 The initial value problem

We introduce below some definitions and notations which will be useful in the sequel.

Definition 5.70 I- M, (RY) is the space of positive outer reqular Borel measure in RY .
II- C,(RY) is the space of couples (1, F) such that F is a T,-closed subset of RY, 7 €
M, (RY) with T,-supp (1) C F¢ and Lpet is Ty-locally finite.

II- T denotes the mapping from Cy(RY) into M, (RY) defined by v = T (1, F) where v

is defined as in (5.111) with Ry(u) and Sy(u) replaced respectively by F¢ and F'. In this
setting v is the measure representation of the couple (1, F).

IV-If (1, F) € Cy(RY), the set
E,={¢cRY :7(Q\ F) =00 for all T,-open neighbourhood of ¢}, (5.126)

1s called the set of explosion points of T.

Remark. Since 1peT is locally finite, F, C F. If F; is not included in FA’E, there would exist
a Tg-open neighbourhood @ of £ with an empty intersection with F'°, hence included in
F,thus Q\ F =0 and 7(Q \ F) = 0, contradiction. Therefore F; C F¢ and consequently

F.CcFenF= <FU bq(FC)) NF =b,(F)NF. (5.127)

This result has to be compared with Theorem 3.14 which deals with a necessary and
sufficient conditions for the existence of a maximal solution u of (3.13) with a rough initial
trace (S, p).

The next result points out the crucial role of the set 90,(RY) defined in Definition 5.62
for describing the link between U (Qr) and Cy(RY).

Proposition 5.71 Let v be a positive Borel measure in RN .
(i) The initial value problem

Ou—Au+[uTlu=0  in Qu
w>0  in Qu (5.128)

tr(u) =v

possesses a solution if and only if v € M,(RY).
(i) Let (1, F) € Co(RN) and set v :=T(r,F). Then v € M (RY) if and only if

7€ My(RY) and F =by(F)| | F-. (5.129)
(iii) Let v € M (RN) and set

&, :={E: E T-closed sets s.t. v(ENK) < oo for all compact K C RN} ( )
~ 5.130
D, :={D: D T, -open sets s.t. D ~1 E for some E € &,}.
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Then a solution of (5.128) is given by uw = v ® Up where

G := U D, F:=G° v:=sup{uiy, :Feé&}. (5.131)
DeD,
(iv) The solution u = v & Up is o-moderate and it is the unique solution of problem

(5.128) in the class of o-moderate solutions. Furthermore u is the largest solution of this
problem.

Remark. 1- We recall that if £ € F, then 1gv is a locally bounded Borel measure which
does not charge sets of capz ,/-capacity zero. Recall also that if p is a positive measure
q?

possessing these properties, then u, denotes the moderate solution with initial trace pu.
2- We will see later on that u := v@® U is the only solution to problem (5.128) since every
solution happens to be o-moderate.

Proof. (I) If u € U (Q7),
tr(u) = v = v € M,(RY). (5.132)
By Proposition 5.64, 4 is o-moderate and u RRg(u) Ureg- Therefore
1g, wtr(u) = qu(u)tr(ureg).
By Theorem 5.67 fig, = tr(ureg) € My(RY). If v is defined by (5.130), then
v=sup{[u]lp : F T4 closed, FF C! Ry(u)} = tpeg, (5.133)

where the second equality holds by definition. Actually, by Theorem 5.68, for every T,-
open set @ [u]g is moderate if and only if V(K N Q \ A) < oo for some set A with
capz q/(A) = 0 and for every compact set K C RY. Hence, by Proposition 5.64-(ix),
~ q7
E is regular, in the sense that there exists a T -open regular set such that £ C9 Q.
Hence u1,, < [u]g. This implies that v < w4, which proves (5.133). Furthermore, if
ENS;(u) # 0, then v(E) = oo by Definition 5.66. Therefore v is outer regular with
respect to the T ,-topology.

Next we prove that v is essentially absolutely continuous (cf. Definition 5.62-(iii)). Let
Q@ be a T -open set and A a non-empty T,-closed subset of @) such that capz q,(A) =0.

q7
either v(Q \ A) = oo in which case v(Q \ A) = v(Q) = oo, or v(Q \ A) < co. In that case
Q\ACRy(u) and
v(Q\A) =@\ A) =n(Q)
since cap: ,(A) = 0= p(A) = 0.
q’ "

Let £ € A and D be a T -open subset of @ such that £ € D c D C9 ). Consider
now a sequence {B,} of T,open neighbourhoods of A N D such that B, C? D and
capz ,(By) <27". If we set E, = D\ By, we have

q7

[ulp < [ulg, + [u]B,.
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Since limy, o0 [u] B, = 0, it follows that [u]p < liminflu]g,. Because E,, C R4(u), v(E,) <
n—oo

v(Q\ A) < oo, we have by the definition of v and Proposition 5.64-(ix) that [u]g, is
moderate. Using Lemma 5.18, Lemma 5.17-(ii) and [43] there holds

/T/ [u]g, dedt < Cv(E,) < Cr(Q\ A) < oo,
0 JK

for any compact set K C R™. Therefore
T
/ / (|4, dzdt < Cv(E,) < Cv(Q\ A) < oo for all compact set K C RY.
0 JK

This implies that [u]p is moderate and thus D C R,(u). Therefore, since every point

A has a neighbourhood D as above, we conclude that A C R,(u) and hence v(A) =

trR,(u)(u)(A) = 0. If A is any a non-empty Borel subset of @ such that capz ,(A) =0, we
q7

use the inequality capz q,(g) < Ceap: ¢ (A) to conclude that v is absolutely continuous
q’ q’
and hence v € M, (RY).

Next we prove:
(I1) Suppose that (1, F) € Cy(RYN) satisfies (5.129) and put v = T(7, F). Then the solution
u = v ® Ur with v as in (5.131) satisfies tr(u) = v. Notice that implies v € M,(RY) by
(5.11).

The solution v is o-moderate by construction. Since 7 is locally T -finite in F*° and
essentially absolutely continuous with respect to cap% g e have that

G:=F°CRy(u) and 1lgtr(v) = 1q. (5.134)

Therefore, it follows from the definition of v that F. C Sy(v). By Proposition 5.69 and
Theorem 5.68-(iv) we have that

F =by(F)| JFr C S(v)| JSq(Ur) € Sy(u) C F. (5.135)

Hence F' = Sy(u), v = tpeg and T = tr(Uyeg). In turn, this implies ¢tr(u) = (7, F'), which is
equivalent to 7 = tr(u).

Then we prove:
(I1T) Suppose that (1, F) € Cy(RY) and that there exists a solution u such that tr¢(u) =
(1, F) (see Definition 5.66 for the definition of tr¢). Then

T =trr, () (W) = tr(ureg) and F = Sy(u). (5.136)

If U := tpeg ® Up, then tr(U) = tr(u) and w < U. U is the only o-moderate solution of
(5.128) and (1, F) satisfies (5.129). Assertion (5.136) follows by Proposition 5.64-(i). and
Definition 5.66. Since u,¢, is o-moderate, we have that 7 € 9, (RY) by Theorem 5.67.
By Proposition 5.64-(vi) there holds u ARy (u) Ureg- Therefore the function w 1= uSu,4
which vanishes on R4(u) is dominated by U. Note that u — g < w and therefore

U < Upeg ®w < UL (5.137)
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By defintion, Sy 0(u) = Fr and by Theorem 5.68(vi) and Proposition 5.69 we have
Sq(u) = Sg(ureg) USq(UF) = Sg(Ureg) U be(Ur)
= Sg0(u) U be(Ur) = F- U be(Ur).

On the other-hand R, (U) D Ry(ur,w)) = Rq(u). As u < U we have Ry(U) C Ry(u).
Hence Ry(U) = Ry(u) and Sy (U) = Sy(u). Therefore, by (5.135), (5.137),

(5.138)

F =8,(U) = F, Uby(Ur).

This implies that (7, F) satisfies (5.129) and tr(u) = (7,F). That U is the maximal
solution with this trace follows from (5.137).

The solution U is o-moderate because u,.4 and U are o-moderate (see Theorem 5.43).

Finally we prove:
(IV)If v € M, (RYN) then the couple (1, F) defined by

vi=sup{uig, : B €&}, T=1tr(v), F'=Ry(v), (5.139)

(see (5.130) for the definition of E,) satisfies (5.129). This is the only couple belonging to
Cy(RN) satisfying v = T(r, F). The solution v is o-moderate so that T € M,(RY).

We first prove that u := v@® Up is a solution with initial trace tr(u) = (7, F'). Actually
u > v, so that Ry(u) C Ry(v). On the other hand, since 7 is Ty-locally finite in R, (v) =
F¢, it follows that Sy(u) C F. Therefore Ry(v) C R4(u), and finally Ry(u) = Ry(v) and
F = 8,(u). This also implies v = tyeg-
At end
Sqlu) = S4(v) U bg(Sq(Ur)) = bg(F) U F,

which means that (5.129) holds.

That for v € M, (RY) the couple (7, F) defined by (5.129) is the only one couple
belonging to C,(RY) satisfying v = T(r, F) is a mere consequence of their expression in
Definition 5.70.

Finally, statements (i)-(iv) follow from (I)-(IV). O

Remark. If v € M, (RY) then G and v as defined by (5.131) have the following alternative
representation:

G = UE — U Q, v 1= sup {U1Qu tQ € ]:u})v (5.140)
& QEF,
where
F, = {Q : Q Tgopen, v(Q N K) < oo for all compact set K C RN} r. (5.141)
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In order to prove (5.140) we first observe that if A is a T;-open set, then there exists an
increasing sequence of T -quasi closed sets {E), } such that A = U°E,,. This follows from
Lemma 5.18-(Il-i-ii) with E, = F;, \ L where L = A"\ A and capz ,(L) = 0. Thus

q bl

UpclJeclyE=H
D, Fu &y

On the other hand, if £ € £,, then pg, ) (K N E)= PR,y (KN E) =v(ENK) < oo for

any compact set K C R, By Proposition 5.64 (ix), E is regular in the sense that there
exists a T-open regular set @ such that E C? Q, therefore H = (Jp D.

If D is a T,-open regular set, then D = U | E,, where {E,} is an increasing sequence
of T,-quasi closed sets. This implies

ULy = nh_)ngo ULy, v
Hence
sup {ulQl, Q€ D,,} < sup {U1Qu Q€ ]:,,} < sup {ulQl, Q€ 5,,}.

However, if ' € &, there exists a T -open regular set ) such that £ C? ). This implies
the inequality in (5.140).

5.7 Representation of positive solutions of d,u — Au+ Vu =0

In this section we prove a general representation theorem for positive solutions of
Ou—Au+Vu=0 in Qp:=RY x(0,T) (5.142)

where V' : Q7 — R is a Borel function satisfying

0<V(z,t) < for all (x,t) € Qr, (5.143)

for some positive constant. Our results are the parabolic counterpart of Ancona’s results
[3] concerning representation of positive solutions of

—Au+V(z)u=0 in €, (5.144)

by means of a Martin operator when Q C RY is a bounded Lipschitz domain and V a
Borel function defined in 2 satisfying

0<V(x)<

5 for almost all = € Q, (5.145)
(p(x))

with p(x) = dist (z,0Q) and C' > 0.

We recall first some well-known facts concerning weak solutions of (5.142).
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Definition 5.72 Let p € M(RY). We say that u is a weak solution of

ou—Au+Vu=0 in Qr

u(.,0) = p in RN, (5.146)

if u,Vu € L}, .(Qr) and there holds

// u(—0¢ — AC+ V() dedt = /]RN C(z,0)du(x) for all ¢ € X(Qr), (5.147)

where

X(Qr) = {¢ € Cc(RY x [0,T)) : ( + AC € Li5.(Qr)} -

Note that this definition implies that the function u admits the measure p as an initial
trace as described in Section 2. The next result is an easy adaptation of the techniques
developed in Section 2.

Lemma 5.73 Let u € M, (RY) and assume that there exists a positive weak solution u of
problem (5.146) where V' satisfies (5.145). Then for any smooth bounded domain ) there
erists a unique positive weak solution v = vq of problem

ov—Av+Vu=0 in Q%::QX(O,T)
v=0 in 0,Q% =02 x (0,T) (5.148)
v(.,,0) =1qu in Q.

Furthermore 0 < vg < u and the mapping ) — vq s nondecreasing.
Proof. Let €, be a sequence converging to 0 and v, the solution of

ov—Av+Vv=0 in Qx (e, 7)
v=20 in 00 x (€,,T) (5.149)
v(.,€n) = 1ou(., €,) in Q.

Such a solution exists since u(., €,) € LY(Q) and it satisfies 0 < v,, < u in Q x (e,,T). By

classical parabolic regularity estimates we may assume that the sequence {v,} converges
. . . . . 4, =T
locally uniformly in Q% to a nonnegative function v dominated by u. Let ¢ € C111(Qq)

vanish on 9,Q% and for ¢t > T — § for some & > 0. Set (,(z,t) = ((x,t — €,), then from
(5.148), and assuming that ¢, < § we have

T
/ / U (—0iGn — Al + V() dwvdt = / C(.,0)u(., €, )dz. (5.150)
en JQ Q

Because v,V < uV € L} (Qr) we deduce from the dominated convergence theorem that

T
the left-hand side of (5.150) converges to / / v (=0y¢ — A + V(,,) dzdt while the right-
o Ja

hand side converges to / ¢(.,0)du(x). The final assertion on the monotonicity of 2 — v
Q

is a consequence of the maximum principle. This ends the proof. ]
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Lemma 5.74 Let the assumptions on u, V and u of Lemma 5.73 be satisfied and denote
by vgr = vp, the solution of (5.147) with Q = Br. Then

vp Tu as R — oo.

Furthermore this convergence is uniform on compact subsets of Qr.

Proof. Since the mapping R — vp is increasing and vy is dominated by wu, there exists a
function w such that
vpTw<u as R — oo,

and this convergence is locally uniformly in Q%. Because for any ¢ € C.(Qr),

im [ ¢ 0)dp(x) = /R ¢ 0)due),

R—o0 BR

we infer that w is a weak solution of problem (5.146). Therefore the function w = u — w
is nonnegative and satisfies

O — Aw < 0 in Qr
w>0 in Qr (5.151)
w(.,0) =0 in RV,

Moreover @ belongs to L} (Qp). We extend it by 0 in RY x (—=7,0) and the resulting
function w* is a nonnegative sub-caloric function in RY x (=T, T) that we can suppose
to be C> by replacing it by J. * w* where J, is a sequence of mollifiers in RN+, By the
maximum principle J. x w* = 0. Hence w* = 0 which yields u = w. O

The next result is the extension of the initial trace theorem for nonnegative caloric
functions to nonnegative solutions of (5.142).

Lemma 5.75 LetV satisfy (5.143) and u € C*Y(Qr) be a nonnegative function satisfying
(5.142). Assume that for any x € RN there exists a bounded open set U C RN such that

/OT/U“(?/’t)V(y,t)dydt < co.

Then u € L'( x (0,T)) and there exists a nonnegative Radon measure p in RN such that

lim u(z,t)((z)dr = / Cdp for all ¢ € C°(RM).
RN

t—0 RN

Proof. Without loss of generality we can assume that U is smooth and since Vu €
LY (U x (0,T)) it is classical that there exists a solution v to the problem

v —Av=Vu in QY
v=_0 in 9,Q%
v(.,,0) =0 in U.
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The function v is nonnegative and w = u + v is a positive solution of the heat equation.
Hence w admits an initial trace on U which is a nonnegative Radon measure. This implies
that u admits the same initial trace on U. We end the proof by using a partition of
unity. ]

Now we can prove our fundamental Representation Theorem.
We assume that V satisfies (5.143) and let u € C%1(Qr) be a nonnegative solution of
(5.142). If o € C*Y(Q7) we define v € C*1(Qr) by v(x,t) = e ¥@Hy(x, t). then
O — Av — 2V 0.V — V|20 — 20A¢ + (O + AY +V)v =0 in Q7. (5.152)

We choose 1 to be the solution of

-0y —AY =V in Qr

(., T) =0 in RV, (5.153)

Then

=yl

T a(s—t)
v / / V(. s)dyds. (5.154)
R 2

N (47(s —t))

Because of (5.143) the following estimates hold:

(i) 0 < (a,t) < Co(T) In (§) (5.155)
(i) Vip(a,t)] < Co(T) + Co(T) In () . '
With this choice of ¢, equation (5.152) becomes
Opv — Av =2 (e, )e, — [VPPv =0 in Qr. (5.156)

i=1

Because Int € LP(0,1) for all p € [1,00), it follows that for any p € [1,00) there exists
M; = M;(p) >0, j = 1,2 such that

T
(i | su ot e < o

0 zer™ (5.157)
(47) / sup |Vy(x,t)|Pdt < M.

0 xzcRN

Using Aronson’s estimates [4] with A;; = 8,5, A; = 2, B; = 0, C = |[V3|? and p = oo
with the notations of this article, then the condition H therein is satisfied. Therefore there
exists a kernel I'(z,t;y, s) defined in Q7 x Qr satisfying

e —a1 ‘41(3 yw‘f) e —a2 le(s y‘t)
N Sr(xata Y, S) < CZ(Ta Na MQ)
2

(4m(s — 1))

Cy(T, N, My) - (5.158)
2

(4m(s — 1))
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for all (x,t,y,s) € Qr x Qr with a; > ag > 0 depending on 7', N and My, and such that
v admits the following representation

v(x,t) = /RN [(x,t;y,0)du(y), (5.159)

where g is the initial trace of u obtained in Lemma 5.75. Furthermore there holds

lim /RN /RN [(z,t;y,0)((x)du(y)de = /RN Cdp for all ¢ € C°(RY).

t—0

Note that if the initial trace of u is a function ug such that e‘”‘x‘Quo(.) € L?(RY) for some
v > 0 and ug is continuous at some z € RN then

lim [(x,t;y,0)uo(y)dy = up(z). (5.160)
t—=0 JrN

Finally, we have the representation

(e t) = =0 [ Doty 0)duty), (5.161)
RN

5.8 o-moderate solutions

5.8.1 The Marcus approach

In this paragraph we adapt to the parabolic framework the construction in [41] used for
characterising, by mean of their precise boundary trace, all the positive solutions of

—Au+u?=0 inQ (5.162)
in a smooth bounded domain 2.

Proposition 5.76 Let u € U (Qr), then

max {ug, () [Uls,)} <t < ur, ) + [Uls,w)- (5.163)

Proof. From Proposition 5.64-(ii) the function v = u © UR,(u) has it Tg-support included
in S;(u) since its vanishes on R4(u). Furthermore v < u, hence v < [u]s, (). Therefore
U—UR,(u) < v, which implies u < ug_(y) +[uls, (). The left-hand side inequality in (5.163)
follows by the construction of ug_(,) and the definition of [u]s, (- O

Proposition 5.77 Let u € U (Q1) and A, B be two disjoint T4-closed Borel susbets of
RN If the T,-support of u is included in AU B and [u]a and [u]p are o-moderate, then
u is o-moderate. Furthermore

u=[ula ® [ulp=[ulaVulp. (5.164)
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Proof. Because [u]4 and [u]p are o-moderate there exist two increasing sequences {7}
2
and {7/} included in B~ ¢ (RY) n 9% (RY) such that

Ur, T[ula and u; 1T [ulp as n— oo,

and Tg-supp (7,,) C? A while T-supp (77,) C? B (see Proposition 5.49). Thus
capz o (Tg-supp (15) N Tg-supp (17,)) = 0,

and

Ur, N Us! = Up, DUy = U, 417 -

Moreover, by Proposition 5.42-(ii) and Definition 5.50,
max{[u]a, [u]p} < u < [ula + [u]p. (5.165)

Therefore
max{tr, , Urr } < U= Up, 477 < U

On the other hand
U = Ury !, < [ula — ur, + [ulp — Uy -
Since the right-hand side tends to 0 as n — oo we obtain

lim wr, 4 = u, (5.166)

n—oo

which means that u is o-moderate.

By definition of the operations @ and V, identity (5.164) admits the following equivalent
formulation;
(a) w is the largest solution dominated by [u]4 + [u]p,
(b) w is the smallest solution dominating by max{[u]4, [u]g}.
Set w := [u]4 & [u]p, then
u<w< [ula+ [u]B.

Clearly [u]a < [w]a. Since [w]a < w < [u]a+ [u]p implies [w]4 —[u]a < [u]p. This implies

A
=
sy]
¥
4
A
g
>

v = [([wla = [ula)4];
where [([w]a — [u]a)4]t is defined in the notations (e) in Section 4.1. This implies that
Tg-supp (v) C A and Ty -supp(v) C B.

Since AN B = () we obtain v = 0 and [w|4 < [u]4. In a similar way [w]p < [u]p. Using
(5.165) and the fact that for any Borel set £/ we have [u]p < [u]g 4 + [u] 55 We infer

Sy(u) = Sg(w).
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As a consequence any regular T;-open regular subset ) C R4(w) is included into R, (u).
Using now Proposition 5.42-(ii) and the fact that the T ,-support of w is included into
AN B we deduce

[wlo < [wlgny + [Wlgnp = [wlalg + [[w]slg = [lulalg + [[ulBl5,-

Now [w]g and [u]g are moderate solutions. Because AN B = () there also holds [u] Gna ®

[u] an < [u]g, which implies in turn [u]g = [w]g. Therefore, by Proposition 5.64-(ii),
WR,(u) = UR,(u)- Using Proposition 5.71 and the remark hereafter we derive

u<w<ug,w) +Ur,

where F' is defined in (5.131). Since o-moderate solutions are uniquely defined, w and u
coincide. Hence the result follows from (5.165) and (5.166) by letting n — oc. O

5.8.2 Characterization of positive solutions of d,u — Au+u? =10

If u e UL (Qr) we set
V(z,t) =uit, (5.167)

Then u is a solution of
Ou—Au+Vu=0 in Qr, (5.168)

1

where V' satisfies estimate (5.143) with C' = (¢ — 1) ¢=T. The function u belongs to
C?*Y(Qr) and there exists a nonnegative Radon measure x4 in RY such that the following
representation formula holds:

u(z,t) = ew(x’t)/ Iz, t;y,0)du(y) for all (z,t) € Qr, (5.169)
RN

where 9 is the solution of (5.153) expressed by (5.154). The measure p is called the
extended initial trace of u.
If E C RY is a Borel set we put

pup =1pp and (u)g:= ew(x’t)/ [(z,t;y,0)dug(y) in Q7.
RN
The next result is fundamental and points out the importance of the function (u)g.
Lemma 5.78 Let F C RN be compact, then
(we <[uep  inQr. (5.170)
Proof. Let A C RN be a Borel set and 0 < 3 < % We denote by v? the solution of

ov—Av+Vuv=0 in RV x (3,7)

(., B) = Lau(., B) in RN, (5.171)
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and by wgl the one of

ow— Aw+w? =0 in RN x (B,T)

v(.,8) = Lau(., B) in RV, (5.172)

Since u9~! < V, there holds 0 < wg < vgl < wu. For any sequence {f;} decreasing to 0
one can extract a subsequence still denoted by {/x} such that {vg‘k} and {wgk} converges
locally uniformly to v and w? respectively. Clearly w? € U, (Q7) while v* is a solution

of (5.168). Since the T4~ support of wg‘(., B) is included into @ for any open set ) which
contains A, we have

vt <wt < ul. (5.173)

Next we set v, = e_wvg‘k, then v}, satisfies

O — Av — 2V 0.V — [V |20 — 20A% + (Oph + A + Vv =0 in Qr
o) =1 [ TCBn0)dnly) BV,
RN
(5.174)

Using Duhamel’s formula (see [4] in a similar case), we have
RN \JRV
< [ ([, 0@t - s 0 s 0)de ) du).
RN \JRV

Using the estimates on I' (see (5.158)) the continuity and the property (5.160) we can let
k — oo and obtain by the dominated convergence theorem

lim (2.0) < [ ot 0)do ).
RN

k—o0

This implies
vd < (u)g- (5.175)

Then we can proceed in the same way with A°. Extracting a subsequence from the previous
subsequence (and denoting it still by {k}) we obtain limits v4” and w® and they satisfy

v <t < [u]@,vc for all open sets Q' D A°.

Since vg‘k + vg‘: satisfies (3.13) in (Bg, T) x RY with initial data u(., 81), we have

vA A = u, vd < (u)é, v < (u)@\,;
from what we derive

(5.176)



Next, if F is a compact subset of RV, O an open set such that F € O C A, we obtain
from (5.176) with Q" = A¢ (and thus A°NF =Q' N F = 0),

v > (u)o.
By (5.175),

vA <wA < [u]é for all open set @ D A,

which implies

(Wr < (vo < [ula- (5.177)
By Lemma 5.18 we can fix a sequence of open sets {@,, } such that ﬂnén = FE' ~9 F. This
implies [u]g, | [u]r (see Proposition 5.47-(iii)). The result follows from (5.177). O

In the next result we prove that the extended initial trace of a positive solution of
(3.13) is absolutely continuous with respect to the capz , ~capacity.
q7

Proposition 5.79 Let u € U (Qr) and p be its extended initial trace as defined in
(5.169). Then u(E) =0 for any Borel set E C RN such that capa o (E)=0.
q7

Proof. If K is a compact set satisfying capz q/(K) = 0, then Ux = 0 by Corollary 5.40.
q7

Therefore [u]x = u VvV Ug = 0. Consequently, by Lemma 5.78 (u)g = 0 and p(K) = 0.
Since this holds for any such K, it also holds for FE by outer regularity. 0

We recall that for any v € Bfg’q(RN) NME(RY) and any 7' > 0 C(T') > 0 such that

-1
C N -2 gy < MM Lary < ClIVI -2

B~ a9 2 RNy (5.178)

2
Proposition 5.80 Let u € U, (Qr), p be its extended initial trace and v € B~ +(RY) N
M8 (RN).  Suppose that there exists mo positive solution of (5.13) dominated by v =
inf{u,H[v]}. Then p and v are mutually singular, that we denote p L v.

Proof. Set V! =271, Then v is a supersolution of
Ow—Aw+V'w=0 in Q. (5.179)

We first prove by contradiction that there exists no positive solution of (5.179) dominated
by v. Indeed, if such a solution w of this equation does exist, there holds

Ow — Aw +w? < Ow — Aw + V'w = 0.

Because of (5.178) the function w is a moderate solution of (3.13) dominated by v, contrary
to the assumption. Next, we have a representation formula valid in Q7 where we use
Aronson’s estimates 5.157 and the constants as and C' from this inequality,

inf{u, H[v|} = inf {ew /RN [(x,t;y, O)d,u(y),H[u]}
> inf {/RN T(x, v, O)d,u(y),H[u]}
> Cinf {Hl (&, 2) Pt 2)}
> Cinf{H[u] <mx) JH[Y] (mx)}
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We notice that

(t,x) — inf {H[,u] <m,x) , H[v] <m,x)} ,

1

is a supersolution of the equation dyw — (a1

Aw = 0, therefore there exists a nonneg-

ative Radon measure 7 in RY such that

lim | o{a)int {H[ﬂ] (m :c) JH[Y] (m x) } dr= | o()diz).
(5.180)
By Lemma 5.74 and Lemma 5.75 there exists a positive solution v < v of the initial value

problem
ow— Aw+Vw =0 in Qp

w(.,,0) =7  in RV,
By the first claim it yields v = 0.
By the Radon-Nikodym theorem there exists a positive measure o and a Borel function

6 € L'(RY, i) such that ¢ L p and v = u + o. Therefore if H is the heat kernel in Qo,
we obtain

0=ty | () inf {Blu] (firry ) B (g ) o

> lim | o) H (gafrry @ v) min{1, 0(y)bdu(y)de

T t—0 RN

> lim [ ¢(y) min{1, 0(y) du(y)

T t—0 RN
=0.
Hence # =0 and v L p. U

Lemma 5.81 Let u € Uy (Qr), p its extended initial trace and suppose that for every

v E DJTZ(RN) N B 7 (RN) there exists no positive solution of (3.13) dominated by v =
inf {u,H[v]}. Then u=0.

Proof. . As in the previous lemma, the proof is an adaptation to the parabolic framework
of the construction in [41]. By the previous lemma,

p Ly forallveMm (RV)n B_g’ql(RN).

Suppose now that p # 0, then by Lemma 5.78 1 vanishes on Borel sets £ ¢ RY such
that caps ,(E) = 0. Therefore, there exists an increasing sequence {vy} C e (RY) N
q7

2
B~ 7 (RY) which converges to pu. Therefore 4 L vy and for every k € N there exists a
Borel set A, ¢ RY such that

u(Ag) =0 and vg(Aj) = 0.
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If we denote A = Uy A, then
u(A) =0 and for all integer k, vi(A°) =0.
But since v < p we have also vi(A) = 0 and thus v = 0 for all k, contradiction. ]
The next result is fundamental.
Proposition 5.82 Let u € Uy (Qr, then [u]s, () is o-moderate.

Proof. We simplify the notations in setting us = [u]s, () (there will be no ambiguity),
and we denote F' = T -supp (us). Then F C Sg(u). We know that if S;(u) is thin at &,
then Sy(u)® U {{} is Ty-open and Sy(u)® U {{} ~? Sy(u)¢. Since F' is the T,-support of
us we see that F' consists exactly in the set of cap: ,-thick points of Sy(u), and therefore
q b

Sy(u) \ F is contained in the singular set of ug, (-

If v € ML(RY)N B (RN) and wu, is the solution of (3.13) with initial trace v we
put

2 7
u* 1= sup {uy v e M (RY)N BT (RY), u, < ug} . (5.181)
By the previous lemma, u* do exist since some elements u, of this family exist. Also u*
is o-moderate by Theorem 5.67-(iii). Therefore u* is the largest o-moderate moderate
2 7

solution of (3.13) dominated by us. Let {v;} C M5 (RY) N B~ a7 (RY) be an increasing
sequence such that u,, T u*.

Let F'* be the T, support of v*, then F™* is T -closed and included in F'. Let us assume
that

capz ,(F\ F*) >0,
q7
then there exists a compact set E' C I\ F* such that cap: ,(E) > 0 and (F7)° := Q*
q b
is Tg-open and contains E. By Lemma 5.17 there exists a Tg-open set @' such that
E Cc?Q Cc @ c?Q*". Because Q" C? Ty-supp (us), [Us|gr > 0 and by Proposition 5.79
2 7 ~

there exists a positive bounded measure 7 € B~ 'Y (RY) with support in @’ such that
ur < us. As the T -support of 7 is a Ty-closed set disjoint from F*, the inequality

2 7
u* > u, cannot hold. However since 7 € MY (RV) N B~ ¢ (R is such that u, < ug, it
follows that u < u*, which is a contradiction. Hence

capz ,(F\ F*) = 0.
q7

Since u,, T u*, the T, support of v is contained into the T, support of u* which is
F*. Therefore there exists a T,-closed set F{j contained into F' such that S;(u*) = Fjj and
Rq(u*) = (F§)°. Suppose now that

capz ,(F'\ Fy) >0,
q7

and let Q' be a T;-open set contained into R4(u*) such that [us]gs is a moderate solution

of (3.13). Then Q' C4 Ry(u*) and [U*]@/ is a moderate solution too, thus

// [u*%/(b(x)dxdt < oo forall ¢ € CRY), ¢ > 0.
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On the other hand Q' is a T4-open subset of F' which is the T, support of us. Consequently
the initial trace of [u*] o has no regular part, that is

Rq([u]g) =0 and Sy([u*]5) = Tg-support([u”]

o) o)

In such a case we call [u*]@ a purely singular solution of (3.13). It implies that

v= sl — [0l ),

is a purely singular solution too.

Let v* be defined as in expression (5.181) with ugs replaced by v. Then v* is a singular
o-moderate solution of (3.13). As it is dominated by u and o-moderate, it is smaller than
u*. Now, T -supp(v*) C? Q c1 Ry(u*), therefore u* cannot be larger or equal to v*,
hence (v* — u*)4 is not identically zero. Since both u* and v* are o-moderate, it follows

2
that there exists a nonnegative bounded measure 7 € B~ «'? (RY) such that u, < v* and
(ur — u*)4 is not identically zero, and obviously that u* < max{u,,v*}. The function
max{u*,u,} is a nontrivial subsolution of (3.13) and there exists a smallest solution Z
above it, which also strictly larger than u*. However u, < v* < u* and thus u* = Z,
contradiction. As a consequence capg 7q/(Q') = 0 for any T ,-open set included in R, (u*)

such that [u*]¢/ is a moderate solution. Hence
capg,q,(F \ Fy) = 0. (5.182)

In conclusion u* is o-moderate, T,-supp (uv*) C F' and Fj = Sy(u*) ~? F. Therefore,
by Proposition 5.71 and the remark which follows u* = Up. Since by definition (5.181)
u* <wug < Up it follows that ©* = us and thus ug is o-moderate. O

The following result is the icing on the cake of the precise trace theory.
Theorem 5.83 FEvery positive solution of (3.13) is o-moderate.

Proof. Let u € U (Qr). By Proposition 5.64-(i), R4(u) has a regular decomposition {Q),}
and

Up = [U]Qn T uqu(u).
Then ug,(y) is o-moderate and
U UR, () < [Uls,(u)-

Set
Up = v @ [U]s, (u)-

By Proposition 5.82 [u]s, () is o-moderate. Using the fact that Qn N Sy(u), it follows by
Proposition 5.77 that w, is oc-moderate. The sequence {u,} is increasing and converges
to some u of (3.13) which is o-moderate too. Furthermore

U V U s, () = Un = vn @ [uls, (u) = max{ug, (), [Us,w} << ug, ) © [Uls,w)-
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This implies that S;(u) = S;(@). Now, by construction we have

vn = [ulQ, < [UlQ,-

then, letting n — oo we obtain by Proposition 5.64

URg(w) S URg(u) = URy(u) = URy(u)>

therefore tr(u) = tr(w). But since u < w, it follows by Proposition 5.71 and the uniqueness
of o-moderate solutions that w = u. O

5.9 Further studies and open problems
5.9.1 Lateral boundary trace

Let € be either a C? open subset or Rﬂ\rf . The problem is to analyse the trace on the lateral
boundary of 2 x (0, T") of any positive solution of (3.13). It is proved in [42] that there exists
a lateral trace in the class of outer regular Borel measures in 9, x (0,7") := 9Q x (0,T).
The critical value for ¢ is ¢. = %—ﬁ’ above this value the boundary isolated singularities
are removable. The geometry of the cylindrical domain makes much more difficult the
study of the supercritical case. A similar study was performed by Kuznetsov [36], [37] in

the framework of superprocesses and with the restriction that 1 < g < 2.

5.9.2 Full trace problem

It is an extension of the initial trace problem treated in this survey and the lateral boundary
trace. In the paper [44] the initial trace is considered for solutions in a cylinder Q% and
the existence and uniqueness theorem in the subcritical case is proved provided the lateral
boundary value is integrable in 9 x (0,7") and the initial measure has compact support
in Q, or at least is bounded near 9f). This is due to the fact that for general measure p
in M4 (), the behaviour of p near 9 is fundamental. A general study of the trace of
positive solutions of (3.13) on Q% := (2 x {0}) U(9Q x [0, T)) would be a great interest.
In this direction we can mention the work [33] dealing with the lateral boundary trace of
positive solutions of

% —Au—-u?=0 inRY x(0,7). (5.183)

Extension to general domain are expected.

5.9.3 Equations of general absorption-convection
Ou — Au~+ uP|Vul? = 0. (5.184)

Since this is an equation with absorption the construction of an initial trace should be
tractable. To our knowledge the study of the self-similar solutions and isolated singularities
has not yet been done. This study needs a preliminary analysis of the problem

Ou— Au+uP|Vu|?=0 in Qr

u(.,0) = p in D/(RY), (5.185)

where p is a nonnegative Radon measure.
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5.9.4 Equations of Hamilton Jacobi type

Oru— Au~+m|Vul?! =0 in Qr. (5.186)
The subcritical case has been treated by Bidaut-Véron-Dao [13]. They prove the existence
of a critical exponent ¢* = %—ﬁ When 1 < ¢ < ¢* they obtain the existence of solutions u

with a Dirac mass as initial data and the existence and uniqueness of a positive very sin-
gular solution. When ¢ > ¢* they prove that isolated singularities at ¢ = 0 are removable.
The detailed analysis of the initial trace in the supercritical case seems open.

5.9.5 Equations of mixed absorption-reaction-convection
Ou — Au~+uP — m|Vul? =0, (5.187)

or
Ou — Au~+ m|Vul? —uP = 0. (5.188)

For these two types of equations the existence of an initial trace seems open except in
some specific cases. The study has to be put in parallel with the ones dealing with the
boundary value problem and the boundary trace for the elliptic equations

—Au+uP —m|Vul? =0 in Q, (5.189)

obtained in [15] or
—Au+m|Vul!—u’ =0  in Q, (5.190)

obtained in [16]. In these two papers, it is developed a method which associates some
specific supersolutions and subsolutions namely

—Au—m|Vul!=0 in Q@ and —Au+u’ =0 in Q (5.191)
for (5.189) in [15] and
—Au—u’ =0 in Q@ and —Au+m|Vu[?=0 in Q (5.192)

for (5.190) in [16]. It appears that this could be adapted to the study of (5.187) and (5.188).
We also refer to the book of Quittner and Souplet [50] which contains an impressive
quantity of results concerning semilinear heat equations with reaction terms of the type
—uP or —|Vul?.
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