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1 Introduction
Consider a nonnegative function (z,t) — u(x,t) satisfying a diffusion equation
Oy — A(u, Vu, D*u) + b(u, Vu) =0 (1.1)

in RY x (0,T), the initial trace problem is two-fold:

1- Is it possible to define in a suitable way the limit value of u(.,t) when ¢ — 0 7 This
limit is called the initial trace of u, noted tr (u).
2- Is it possible to reconstruct the function u in a unique way if tr (u) is given ?

In this formulation A is a real valued Caratheodory function defined in R x RY x M (R)
and B a real valued Caratheodry function defined in R x R.

In this full generality the problem is hard to handle deeply except for the mere diffusion
equation

Oyu — A(u, Vu, D*u) = 0, (1.2)

where the two cases of the porous-media equation (with A(u, Vu, D?u) = Au™) and
the p-Laplace diffusion equation (with A(u, Vu, D?u) = div(|Vu[P=2Vu)) are fairly well



understood. In these cases the initial trace is a nonnegative Radon measure with some
growth at infinity. When there is a perturbation term, the situation is completely changed,
even in the mere case where A(u, Vu, D?u) = Au.

Ow — Au ~+ b(u, Vu) = 0. (1.3)

The sign of the reaction term plays an important role. Surprisingly the question of iden-
tifying the initial trace of a solution of (3.161) is much easier if b(u, Vu) is nonpositive,
e.g. b(u,Vu) = —uf. In that case the function u is super-caloric and it always admits
an initial trace in the class of nonnegative Radon measures in RY. The second question
of reconstructing the solution from its initial trace is more involved, and the associated
question of uniqueness is even deeper. In this paper we will concentrate on the case where
the perturbation term is a superlinear absorption term.

b(u, Vu) = u? (1.4)

where ¢ > 1. In the case 0 < ¢ < 1 it is easy to prove that there exists a nonnegative
Radon measure p = tr (u) such that

lim u(z,t)(z)dr = /RN Cdu(x) for all ¢ € C°(RM). (1.5)

t—=0 JrN

The problems arising from the study of the model case
Ou— Au+ |[u/Tlu=0 in (0,T) x R, (1.6)

is now fairly well understood after the initial work of Marcus and Véron [40] who put
into light that the initial trace has to be understood in the sense of Borel measures and
the exhaustive study of the supercritical case by Marcus and Véron [42] and Gkikas and
Véron [28], [29]. Note that this study followed the very complete analysis of the boundary
trace of positive solutions of

—Au+u?=0 in Q, (1.7)

which was carried on by Marcus and Véron [42], [43] and concluded by Marcus in the
remarkable paper [38] to which the construction of Gkikas and Véron [29] that we will
developed thoroughly in the sequel is much indebted.

Concerning (1.6), Marcus and Véron pointed out the key role of the critical exponent
.= 1+ % and shew that the analysis is very different according to the position of ¢ with
respect to g. Their starting result concerning this equation is the following

Theorem 1 Let ¢ > 1 and u is a positive solution of (1.5) in (0,T) x RN. Then there
exists a closed set S C RN and a nonnegative Radon measure p in R := RV \'S such that

(i) For any ¢ € C°(R) there holds

lim u(z,t)((z)dx = Cdu(x). (1.8)
t—0 JpN RN



(ii) For any y € S and any € > 0, there holds

lim u(z,t)dr = oo. (1.9)
t—0 Be(y)

The set S := Sing(u) (resp. p := p(u)) is called the singular (resp. regular) part
of the initial trace of u. Conversely we have an existence and uniqueness result in the
subcritical case.

Theorem 2 Let 1 < q < q.. Then for any couple (S, ) where S is a closed subset of
RN and p a nonnegative Radon measure in R := RN \ S, there erists a unique positive
solution u of (1.5) in RN x Ry with initial trace (S, ).

When ¢ > g. not every measure is admissible for being the measure part of the initial
trace of a positive solution of (1.5), neither every closed set can be the singular part. To

answer this question it is necessary to introduce the Riesz (%, q')-capacity of a Borel set

E C RV,

Cg,q’

q Nﬁf

RN g — g N

(E):imf{/[R dedy:CECgo(RN),Oggg1,{21}3}. (1.10)

If S € RY is closed and p is a positive Radon measure in S¢ we define
0uS :={y € S: u(Be(y) NS°) = o0, Ve > 0} . (1.11)

St {yGS;C%’q,(BE(y)ﬂS) >0, ve>0}. (1.12)

Theorem 3 Let ¢ > q.. A couple (S,u) where S is a closed subset of RN and u a
nonnegative Radon measure in R := RN\ S, is the initial trace of a positive solution u of

(1.5) in RN x R, if and only if S = 9,8 U S*.

A striking aspect of the super critical case is that there exist infinitely many solutions
when § is not empty and the solution constructed in Theorem 2 is actually the maximal
solution with any initial trace (S,0). This has resulted in a finer definition of the initial
trace called the precise trace. The basic idea of this extension is to replace the Euclidean
topology which served as a basic tool in the definition of the trace process by the thin
T 4-topology associated to the (%,q’ )-capacity. Note that this process was developed by
Marcus and Véron [43] in a similar way for analysing the boundary trace of positive
solutions of

—Au+[uTlu=0 in QcRY. (1.13)

When g > ¢, it is proved in [29] that any nonnegative solution u of (1.5) in RY x (0, 7T)
admits a precise singular initial set S,(u) which is the set of ¢ € RY such that for any
thin-neighbourhood U (for the T, -topology ) of £ there holds

/T/ w! (H[1y))? dzdt = oo (1.14)
0 JRN
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where H[1y/] is the heat potential in R x R, of the characteristic function of U. The set
Rq(u) := Sg(u) is the fine regular set of the initial trace. It is the of £ € RY such that for
there exists a thin-neighbourhood U of £ such that

/T/ w! (H[1y))% dzdt < co. (1.15)
0 JRN

Essentially the precise regular set of the initial trace is carrying a nonnegative Radon
measure iR, (y), absolutely continuous with respect to the Bessel capacity capz ¢ such that
q7

2 7
for any bounded test function 1 belonging to the Besov space Ba'? (RY) with ”support”
in Ry(u) (more precisely T -support in a sense which will be defined in the text), there

holds

. 2q/ . 2q/
%g% ox u(z, t)n de = /RN Ny dpiR ,(u)- (1.16)

This allows to define a solution of (1.5) vg, () corresponding to this measure g, (,) that
is called the regular component of u. For defining the singular component of u we first
denote by Us,(,) the maximal solution of (1.5) with an initial trace vanishing in Sg(u).
Then singular component is [u]s, ) Which is the maximal solution of (1.5) bounded from
above by u and with initial trace vanishing in Sg(u). The couple (ur, (), Sq(u)) is called
the precise initial trace.

The main results of in the supercritical case (¢ > ¢.) are summarised by the following
statement.

Theorem 4 I- If u is a nonnegative solution of (1.5) in RN x (0,T), then the function
VR (u) P [u]gq(u), which is the largest solution dominated by the super-solution vg, () ©
[u]s, () admits for precise initial trace trace (uR,(u)> Sq(w))-

2- The solution vy, () © [u]gq(u) is o-moderate in the sense that it is the increasing limit
of solutions w,,, with initial data ,, which are nonnegative bounded measures belonging to
Bi? (RN). It is the unique o-moderate solution with such a trace.

3- Any positive solution u of (1.5) is o-moderate.

As a consequence there is a one to one correspondence between the set of nonnegative
solutions u of (1.5) and the set of couples (ug,(u), Sg(u))-

2 The rough trace
This section is devoted to the construction of the rough initial trace of positive solution of
du—Au+u? =0 in Qs :=RY xR,. (2.1)

when ¢ > 1. The qualifier of rough will be justified later on in connection with uniqueness
questions.



2.1 The heat equation

We present first the basic approach of the trace problem for the heat equation. Let u be

a positive solution of
du—Au=0 in Qp:=RY x(0,7). (2.2)
If G € RY is any bounded domain, we denote by Ag the first eigenvalue of —A in H}(G)
and by ¢ the corresponding first positive eigenfunction normalized by max ¢g = 1. Then
d

G | ule. ot @i+ 26 /

G

w(w, )6 (z)dz = 2 / (@, )| Ve 2(z)da.
G

Therefore the function

t— e”‘ct/ u(z, )¢5 (x)dx
G

is nondecreasing. It admits a finite nonnegative limit M, (G) when ¢ — 0 and
62)‘07/ u(z, 7) o5 (x)dr — M, (G) = // u(z, t)|Vog|*(x)dzdt < oo,
¢ Q¢

where Q% = G x (0,T). This implies in particular that u € L'(Q%) for any 7 < T. Then,
if ¢ € O°(RY) there exists ¢(¢) with the property that

£(¢) = lim u(z,t)((z) = /RN u(z, 7)¢(x) — /OT /RN u(x, s)A(x)dxds

t—0 RN

The mapping ¢ +— £ is a positive linear functional, hence a Radon measure in RV that
we denote p. The following characterisation of the measures p is proved in [4], [5]
Let u be a nonnegative solution of (2.14) in Qr and p be the initial trace of u, then
1
/ e_a|x|2du(x) <oo foralla < —. (2.3)
RN 4T

Conversely, if ji is a nonnegative Radon measure in RN satisfying (2.17) the function u
defined in Qr by

1 _le—yl?
u(t,x) = (4771‘,)% /RN e du(y) < oo (2.4)

is the unique positive solution of (2.17) with initial trace .

Definition 2.1 If p is a Radon measure in RY, we denote by H[u] the heat potential of
u, defined by

1 _le—y? _ -
) = s [ ) = [ (25)

provided this formula has a meaning, e.g. if u is bounded. The function H(z,y,t) :=

o2
a 1)N e_‘ . 18 called the heat kernel in Q.
mt) 2

This result is the extension to higher dimension of Widder representation theorem
proved in 1-D in [52]



2.2 Proof of Theorem 1

Let u be a nonnegative solution of 2.1 in Qs and y € RY, then the following alternative

holds
(i) either there exists o > 0 such that

// u!(z,t)dzdt < oo, (2.6)
QlBa(y)
(ii) or for any a > 0
// u!(z, t)dzdt = co. (2.7)
QlBa(y)
If (2.23) holds, then u € L*(QF and for any ¢ € C°(B) there holds
d 1
— </ u(zx,t)(dx —l—/ / (uA¢ —uiQ) d.CUdT) = 0. (2.8)
dt \Jp t JB

Then there exists ¢(¢) defined by

1
0¢) :==lim [ wu(z,t)Cdx :/ u(:v,l)(dx—i—/o /B(uAC—qu) dxdr. (2.9)

t—0 B B

The mapping ¢ — £(C) is a positive linear functional on C$°(B), hence a Radon measure
pp in B.

If (2.24) holds let ¢ be the first eigenfunction of —A in H}(B) with maximal value 1
and corresponding eigenfunction Ag. Then

4 u(x,t)qb?ldx + 2q’)\3/ u(:z,t)q%]/dx

=204 =) [ w6 Vo do+ [ w06 ds =0,
B B

where we have set B = B, (y) and ¢’ = q%’l. Since

1
8 q

’_ 04 ’ ’
/u(z,t) %q 2 \V(j)B\de < / uq(x,t)d)%q dx + / |V¢B|2q dx,
B q./)B B

for suitable § > 0 and ¢ > 0,

d 2/ At ; 2q/d 020 Mpt 4yt 2q,d < 200t - 2 4
7 e u(x, )y do | + 5 ul(x, t)py do < ce Vo] .
B B B

Then

/ ! ]. 1 ’ /
e ’\B/ u(z, 1)(]5? dx + / e ’\BT/ uq(x,7)¢? dxdr
B 2J¢ B
(2.10)

1
< qu,ABt/ u(x,t)gb%q dx + c/ 62‘1')‘37/ \V(;SB\Qq dxdr.
B t B

7



Therefore
lim u(a:,t)d)QBf]/dx = 0. (2.11)

t—0 B

The set of point y such that (i) holds is clearly open and its union is the regular set
R. By a partition of unity there exists a unique nonnegative Radon measure y on R such
that for any ¢ € C2°(R) there holds

lim [ w(z,t){de = Cdu(z). (2.12)
RN

t—=0 JpN

For any y € S and any a > 0 we have (2.29), therefore we define a Borel measure v Borel

set £ C RV
() = /Ed,u(x) itECR (2.13)
00 it ENS # 0,

and it is outer regular.

2.3 The a priori estimate
The function ¢, defined on R, by
1 \aT
001~ (1775) .

is the maximal solution of the differential equation u’ + u? = 0 on (0, c0).
For any R > 0, let wr be unique solution of

—Aw+w?=0 1in Bp

lim w(z) = 0.
|z|—R

(2.15)

Existence follows from the universal Keller-Osserman upper construction and uniqueness
from the fact that )
wgr(x) = R aTwi(z/R). (2.16)

For any y € RV, R > 0 and € > 0 the function
Ue,Ry(T,t = doo(t — €) + wr(x —y) (2.17)

is a super solution of (2.1) in Br(y) x (€, 00). Hence it dominates u therein. Letting ¢ — 0
and R — oo, yields

u(z,t) < goo(t) for all (z,t) € RY x (0, 00). (2.18)

This equation admits a localised version of this a priori estimate.



Proposition 2.2 Let ¢ > land R > 0.

1- There ezists a unique nonnegative solution u := uso g of (2.1) in RY x Ry such that

}/in(l) u(z,t) = oo wuniformly in Bp, (2.19)
—>
and
%in% u(x,t)dr =0 locally uniformly in ECR. (2.20)
e
Furthermore
1
1 1 a-1
limteTtue p(z,t) = () locally uniformly in Br (2.21)
t—0 ’ qg—1

and for any a > % there exists Cp > 0 such that

for all (z,t) € Qoo s.t. |2| — R> V1.
(2.22)

— 07 ol )2
U 1 (7,) < Cot 71 (|f”| R> e

Vit

2- There exists a unique nonnegative solution u := oo ge of (2.1) in RN x Ry such that

PI% u(x,t) =0 wuniformly in Bg, (2.23)
%
and B
}in% u(z,t)dz = oo locally uniformly in Bp. (2.24)
—
Furthermore
1
. 1 \e1 ‘ e
}gr(l)tqfluooﬂc(x,t) = <q_1> uniformly in Bf, (2.25)

for any € > 0 and for any 6 € (0,1) and a < 37;’{ there exists Cp 9 > 0 such that

_1 (OR— @ —|a))?
Uco, e (@, 1) < Cq 0t e (R\/EM) e for all (z,1) € Qoo st 2] <OR— V1.
(2.26)

Proof. Step 1-1- There exists a unique C*°(0,00)) function W with positive value satisfying

W — Oy W + W1 =0 in (0, 00)
}:1—% W(z,t) = co for allt >0 (2.27)

lim W (z,t) =0 for all x > 0.
t—0

This function is self-similar and endows the form

Wz, t) =t =T W (i) (2.28)



where W is the unique positive solution of

W”+gﬁf’+q%1W—Wq:0 in (0, c0)
%133} W(n) = oo (2.29)
n]i)rglo 77(1—1W(7’]) = 0.

The construction is as follows. Let & > 1 and ¢ = (; be the solution of

9iC = 02aC + (1 =0 in R

¢(,0)=140 onR (2:30)

The k +— (} is increasing. Since (i is bounded from above by 1, (. converges to (., which
is the unique solution of

8t<_axxg+<q:0 in RXR+

€(,0) =1_sp on R (2.31)

For ¢ > 0 we denote by Ty the scaling transformation which leaves (2.1) equivariant,
Ty[6)(x,t) = €716 (¢, 21). (2.32)

Then Ty[Coo] = Coog is the solution of (2.1) in RN x R with initial data £7-71_.
Again / — (¢ is increasing. Since

1
2 1 —1 _ — =
. < (¢ + )) a z 331 = Cyx qzl for all x >0

(g — 1)
is a solution of
O — Oggv + 171 =0 in Ry x Ry

v(0,t) = o0 in Ry, (2.33)

we have )
Coo(l‘,t) < C’ql'_q_i1 in R+ X R+,

which implies for all £ > 1,

Coo (,8) = Coel,1) < 600 (D)o )(@) + min {Cyl] 7T, 6(D) } Loy (@).  (234)

Thus (¢ converges to some function W when ¢ — oo, and W satisfies (2.1). Because
there holds for any ¢ € C2°((0,00)),

| (6 @0+ 20) + 2 9) dade 0,
0 R

the function W satisfies the same upper bound (2.34) as (¢ and it is a solution of

04¢ — 022C+ (1= 0 in R
¢(,0)=0 on (0,00) (2.35)
}in%C(:c,t) =00 for all z < 0.
—

10



Finally, for any k > 0, T, 0Ty = Tje, hence Tj[Coo ¢ = (oo ke, Which implies that Ty, [W] = W
1 o~

for all £ > 0. Therefore W is self-similar which implies that W (z,t) =¢ «tW (%) and

W satisfies

— — 1 ~
W”+gW’+—1W—W‘1:0 in (0, 00)
q [e—
lim 71 W (1) = 0 (2.36)
n—00 .
lim W(n) = oo
n—0
The behaviour of W can be obtained by matching asymptotic expansion, if we consider
— 2
the function 7 — W, := n®e~ T which is a supersolution (resp. subsolution) when 1 — 0o
if a > % (resp. a < ZL;‘f). Thus for any a > % there exists C, > 0 such that
— 2
W(n) < Can®e~T  for all 5 in [1,00). (2.37)

Inequality (reflI-5) follows from this estimate.
Step 1-2- We claim that there exists a unique positive function us g which satisfies (2.1)

}iH(l) Uso,R (2, 1) = 00 locally uniformly in Bg. (2.38)
e
and
%in(l) Uso,r(z,t) =0 uniformly in By .. (2.39)
%
for any € > 0.

Since the equation and the initial conditions are invariant under the transformation 77,
we can assume that R = 1. If e € 9B; we denote by ve the function defined by

Wz — e, e),t) if ((z—e,e) >0,t>0

ve(, ) = { o0 if ((x —e,e) <0,t>0, (2:40)

and by HZ (resp. HZ) the half space {z : (x —e,e) > 0} (resp. {z : (x — e,e) < 0}).
Then ve satisfies (2.1) in Qo with initial data ve(z,0) =0 if z € HS and ve(z,0) = oo if
xz € Hy. Then

vy = inf{ve : € € 0B} (2.41)

is a supersolution of (2.1) in Qs which satisfies vq(z,0) = 0 if |z| > 1 and v1(z,0) = oo
if x| < 1. For k > 0 let uy be the solution of (2.1) in Qs with initial data kIp,. Then
ur < vp. Since k — wuyg is increasing. Hence there exists a nonnegative function « which is
a solution of of (2.1) in Q such that

limu(z,t) =0 if || >1 and limu(z,t) =00 if x| <1. (2.42)
t—0 t—0

By construction u is a minimal solution and by (2.37), and (2.22) holds.
Let u be another nonnegative function solution of (2.1) in Q« satisfying (2.44). For ¢ < 1
and R > ¢!, there exists €¢,r such that

u(w,t) <wpg(r) forall (2,) € Qoo s.t. £ <|z| < Rand 0 <t < g,

11



where wg is defined in (2.23). Therefore the supersolution (x,t) — Ty[u](x,t—e€ r)+wr(x)
defined in Br X (€g g, 00), is larger than u on 0B x (er,r,00) and for ¢ = ¢, p. Hence

u(z,t) < Tylu)(z,t —e) + wr(x) for all (x,t) € Br x (er,r, 00).
When R — o0, €g, g — 0 and wgr(z) — 0. This implies
u(z,t) < Tplu)(z,t) for all (x,t) € Qoo

Letting £ — 1 yields u < u. Similarly @ < u.
Step 1-3- The function us g satisfies

1
1 1 \et
lim $7-T Uso,R(T,1) = (> ! locally uniformly in BR, (2.43)
t—0 ’ q—1

In order to prove this claim for any R’ < R it is easy to construct a function ¢ € C2(RM)
such that 0 < ¢ < 1,9 =1in Bg, ¥ =0in B; and —A1) < Cy for some C = CR, R') >
0. For any § > 0, the function

(1) = X (1) := (1 = 0)p () Poo(?)

satisfies

HhX —AX + X7 < (1 = 8)poot) <¢OO (1—=08)1t—1) - Af) .

Then there exists € > 0 such that the above expression is negative for 0 < ¢ < €. Therefore
Uso g > X in RY x (0,¢]. This implies

1 1 a=1
lim inf £7-7 inf {ttoo r(x,t) : x € Bpr'} > (1 —-90) <> T (2.44)
t—0 ' qg—1

Since 0 is arbitrary, we obtained the claim from (2.18).

Step2-1- We claim that there exists a unique positive function us re which satisfies (2.1)

%iH(l) Uso,Re(X,1) = 00 uniformly in B, (2.45)
—
and
}ir% Uso,re(x,t) =0 locally uniformly in BR. (2.46)
—

The proof uses the previous constructions. For any k£ > 0 we denote by v the solution of

ov—Av+0vi=0 in Qe

v(.,0) = klge in RV, (2.47)
The sequence {uv;} is increasing and it satisfies
Uk(2, 1) < oo (t) 152 () + inf{doo (), wr () } 1B, (2). (2.48)
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Then it converges to a positive solution of (2.1) in Q that we denote us ge. Therefore
Uso, Re Satisfies

// ((—@C — AQ)tso,re + CUgQRc) dxdt =0 (2.49)

for all ( € C°(BRr). Using (2.45) and (2.49 it implies that us re vanishes on Br. Unique-
ness of such a solution is obtained by the same scaling and shifting argument as in the
Steps 1-2.

Step2-2- Improved estimates. As a subsolution of (2.1) in Qo we take
vo(x,t) = sup{v_e(—x,t) : € € OB }. (2.50)

With the same notations as in Step 1-2, vs is a subsolution, and vy(t,z) — 0 when ¢t — 0
if x € By and va(t,x) — oo when ¢t — 0 and « € Bf. This implies that (2.25) holds. The
construction of the supersolution is more subtle: for 0 < 6 < 1 there exists an integer ng
such that
By C m ijg C By,
1<j<ng
where
Hjg={z eR" :(x —0eje;) <0} withe; € dB.

Hence the function

vag(z,t) = > W((—z+0ej,e;),t), (2.51)

1<j<ng

is a supersolution of (2.1) in Q which dominates uoo, ge. If 2 € By, dist (x, Hfp) < 0—|z|.
Therefore

u(z,t) < ngt_q%lW(e ?/tl‘r‘

), (2.52)

which implies thanks to (2.22),

L (0= x|\ e B
u(z,t) < ngCyt « 7 e 4t for (z,t) € Qoo s.t. |2| <O —Vt.  (2.53)

From this (2.26) follows by rescaling. O

2.4 The subcritical case

For a given ¢ > 1 it not always possible to find a solution of (2.1) belonging to C(Q.,\{0})
vanishing on R x {0} \ {0}. Indeed Brezis and Friedman [16] proved the following results

Theorem 2.3 Let

If ¢ > q. any solution u of (2.1) belonging to C(Q., \{0}) and vanishing on R x {0}\ {0}
is identically 0.
If 1 < q < qc, for any c € R there exists a unique solution u := ucs, of

Ou — Au+ ulTtu =0 in Qoo

u(,0)=cdy  in D'(RN) (2.55)
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where &g is the Dirac mass at 0. Furthermore if {p,} is a sequence of positive integrable
functions which converges weakly to ¢Sy in the sense of distributions in RY, then the
sequence of functions {u,, } which satisfy

0w — Au+ ulTlu =0 in Qoo
u(.,0) = pp in D' (RV) (2.56)
converges to ucs, locally uniformly in Q.

An important consequence of the previous result is the existence of very singular so-
lutions which was first discovered by Brezis, Peletier and Terman in [17].

Theorem 2.4 Suppose 1 < q < q.. Then there exists a unique positive C° function f
defined on [0,00) such that

" N -1 , 1
f +(n+727>f F oo f o 7=0 o (0.00)

(2.57)
F(0)=0 and lim n37f(n)=0.
n—00
Furthermore
2 2 _ 2 2
f(n) = Ae*%nqzl N (1 + q—iql <q_1 — N> n? 4+ 0(772)) asn—oo.  (2.58)

Proof. For any € > 0, u, is bounded from above by the solution us  of (2.1) with initial
data ueo (2,0) = cox1p_(x) which is defined in the proof of Proposition 2.2-Step 1. When
¢ — 00, U, increases and converges to some solution u, wich is a positive solution of (2.1)
and is bounded from above by u . Because of uniqueness there holds Tp[u.] = ucz 2 N

where T} is defined in (2.33). Therefore
Ty[too] = Uuoo for any £ > 0.
Hence u is self-similar and radial because of uniqueness as u, is, thus it endows the form
Uo(,t) = 7T f (%) : (2.59)

and f satisfies the ODE (2.58). Because uoo(x,t) — 0 for x # 0 when ¢t — 0, it implies

that le nq%l f(n) = 0. The function f is a positive radial and bounded solution of
n—00

1 1 .
~Agf =g Vi = f+ P =0 iRV {0},
Hence the singularity at 1 = 0 is removable. Thus f is C* in RY and f’(0) = 0. Similarly

Toltoo,e] = Uso g1 Therefore uq, . decreases and converges when € — 0 to the function
Uso,0 Which is a positive self-similar solution of (2.1), say

toeo(z,t) =t T f (B, (2.60)
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and fis a positive solution of (2.55). Since oo < Uso 0, One has f < ]7 Actually, f (resp.
f) is the minimal (resp. maximal) solution of (2.57). Estimate (2.58) is obtained by the
classical method of matching asymptotic expansion. N

For uniqueness, it follows from the fact that 0 < f(0) < f(0) combined to the expansion
(2.58) that there exists A > 1 such that

f(m) < f(n) < Af(n) foralln>0. (2.61)

Actually, only the truncated expansion

_n? 2 _ N
Ae” tna1 7 (14 0(1)) asn— oo,

which is easily obtained as in Proposition 2.2-step 2 is needed. If f # ]?, then f < fby
the maximum principle. We set
1

W=f-o(F= 1

1 1 1 +\? 1 ~
(+ax) = ((2a) - 2a7) +aa”

1 1
—AgW = Sn.VW — q_—lw+ W? >0 inRY.

By convexity

Hence W satisfies

Since W = (% + ﬁ) f is smaller than W and satisfies
1 1
~ AW — 5n.vw — —1W +WP <0 inRV,
q—

there exists a positive and radial function f* satisfying

1 1
CALf SV e [P T =0 i RY,
2 qg—1
and such that 0 < f* < f, which contradicts the minimality of f. .

The following result is fundamental in the study of the singlar points of the initial
trace of a solution u of (2.1) in the subcritical case.

Lemma 2.5 Suppose 1 < q < q. and u is a positive solution of (2.1) and y € RN is such
that

lim sup/ u(x,t)dr = 0o  for all € > 0. (2.62)
t=0  JBc(y)

Then

w(a,t) >t a1 f (’i;;’) . (2.63)
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Proof. for any € > 0, there exists a sequence {t,} decreasing to 0 such that
/ u(z,ty)dx = M(e,n) — oo as n — oo.
Be(y)

Let ¢ > 0, then for n > ny = ng(e,¢), M(e,n) > ¢, hence there exist €, and k, > 0, both
depending on ¢ such that

/ min{u(zx,t,), k, }dz = c.
BEn (y)

Let u, be the solution of (2.1) with initial data wu,(x,0) = min{u(z,t,), kn}1p, (). By
the maximum principle

u(z,t +tn) > up(z,t) for (z,t) € Quo-
By Theorem 2.3 wy,, converges to ucs, when n — oo. Hence
u(x,t) > ues, (z,t)  for (z,t) € Qoo.

Since ¢ > 0 is arbitrary, the claim follows from the fact that lim wucs, (2,t) — (2 —y, 1)
Cc— 00
by Theorem 2.4

Proposition 2.6 Suppose 1 < ¢ < q.. Then for any closed set S C RYN there exists a
unique positive solution of (2.1) with initial trace (S,0).

Proof. Step 1- Construction of the minimal solution ugo. Let {a,} C S be a sequence
n
of points dense in S and p, = nZéaj. Then the sequence u,,, of solutions of (2.1) is

j=1
increasing. By Lemma 2.5

Upy > Sup{umga]_ 1< j<n} (2.64)

Furthermore, by (2.8), for any y € §¢ and R = dist (y, S) there holds

_ [z —y|\Y _®-lz-wD?
up, (z,t) < Ct™ a1 7 e 1 for all (z,t) € Br(y) x (0,00), (2.65)

where C' = C(o,q) > 0 and a > 2%{', and classicaly, u,,(z,t) < ¢oo(t). Therefore
the sequence {u,,, } increases and converges to some function denoted by ug  which is a
positive solution of (2.1) and satisfies the same estimate from above (2.65) as u,,. By
2.63) and 2.64) there holds
_ 2 [z —ay|
ugso(w,t) >t a1 f <> for all (z,t) € Br(y) x (0,00) and n € N. (2.66)

Vi

Because {a,} is dense in S, this last inequality implies that for any y € S and € > 0,

/ ugo(w,t)dr — o0 as t — 0. (2.67)
Be(y)
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Step 2- We claim that the function ug is the minimal solution with initial trace (S,0).
Let u be such a solution. For n € N* we consider a double sequence of real numbers {¢, ¢}
such that

ene <minfla; —a;|: 1 <4,5 <mn,i#j} forall /e N

and since the set {a;};cy is dense in S, for any ¢ there holds
lim €,, = 0.
n—oo

We assume also
lim €,y =0 for all n € N*.
{—o00

For any n € N*, £ € N* and j = 1, ..., n, there holds
/ u(z,t)de — oo ast— 0.
Bén,g (aj)
Then for fixed n € N* there exists t,, o > 0 such that

/ w(x,tye)de > 2n forall j=1,..n.
Bemz(aj)

Since €, ¢ — 0 when ¢ — oo, it follows that ¢, , — 0 under the same condition. Conse-
quently there exist positive numbers m;, ¢ for j = 1,...,n such that

/ min{u(z,t, ), mjnetdr = n.
Bemg (aj)

We set "
pn,g(l‘) = Z min{u(m, tn’g), m]}nyf}lBen’[(aj) ({L‘) (2.68)
j=1
Then
n
lim pp ¢ = pp := nz 0q, in the sense of distributions in RY. (2.69)
{—00 = J

Since u(x,tne) > pne(x) we have that u(z,t 4+ t,0) > upe(x,t) in Qoo where uy ¢ is the
solution of (2.1) with initial data p, . By Theorem 2.3 u, ¢ converges to u,, defined in
Step 1. Hence u > u,,. Letting n — oo implies u > ug .

Step 3- Construction of the mazximal solution us . For € > 0 set
Se = {z e RN : dist (z,S) < €}.

For R > 0 we also define S p = Sc N Bp. Let u = ue,r,n be the solution of (2.1) with
initial data nls, .. The mapping (R,n) + ue Ry is increasing and bounded from above
by ¢, hence there exists

Ue = lim U Ry.

n — oo
R — oo
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The mapping R — u. g is increasing therefore there exists a limit ue when R — oo
which satisfies

1 1 =
limtaTuc(z,t) = <> (2.70)

t—0 qg—1

uniformly on any ball By interior to S, and

_ (| —y|\Y _®-lz-uD?
ue(z,t) < Ct a1 < 7 > e it for all (z,t) € Br(y) x (0,00),  (2.71)
for all y € 8¢ where R = dist (y,Se). This implies that the initial trace of u is (S, 0).
It is a consequence of the construction of u. as the limit when (n, R) — (00, 00) that the
mapping o > u, is decreasing with limit %s. Furthermore %is > ug . Using (2.71) applied
with y € §¢ and R = dist (y,S) we deduce that us has initial trace (S,0), and from now
it is denoted us o.

Step 4- We claim that the function s is the mazimal solution with initial trace (S,0).
Assume u is any positive solution of (2.1) with initial trace (S,0) and for R > 0 let wg be
the solution of (2.23). For € > 0 the function u. + wg is a supersolution ofthe equation in
Bpr x (0,00), thus for any 6 > 0 the function (1 + 0)(u. + wg) is also a supersolution of
the equation in Bg X (0, 00). Since u(xz,t) — 0 when ¢t — 0 uniformly in Bg \ S¢ we obtain
that v < (1 + §)(ue + wg) in Br x (0,00). Letting successively 6 — 0, R — oo, here we
use (?7?) and € — 0 we infer that u < g .

Step 5- We claim that there exists K > 1 such that uso < Kug . If y € S there holds by
(2.18) and (2.63) that

O T < usp(y,) < Tsoly ) < (1> T (2.7)

Thus the claim follows with K = <qi71> ot (f(0))~%

If y € 8¢ let z € S such that |z — y| = dist (y,S) := dy,. Then by (2.63) and (2.24),

1 B dy 1 (d,\©
F(4) 7 <usolid) STsan < Ce BT (L)L ey

where o > 2=4. For o > 0 we set

—
Po = {(y,t) : zl/yi SU}-

If (y,t) € Py there exists K, > 0 such that

ﬁJSa',O(yat) S KU@S,O(Z/vt)' (274)

Next we prove that for any ¢ > 1 there exists 0. such that for any o > o, there holds

ﬂS,O(yat) < KUQS,O(ya Ct) for all (l‘,t) € Qoo \Pcr- (275)
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It follows from expansion (2.58) that we have

et a1 (%) < f () (e, (276)

which implies (2.75).
Next, for 7 > 0, let u; » and ug ; be the solutions of (2.1) with respective initial data
urr = Kolp, (2, T)ug o(z,7)
50 (2.77)
uzr = (1= 1p,(z,7))ug oz, CT).

It is known and easy to prove that the solutions of (2.1) are uniquely determined by their
initial data ([15]). The function u; r + ug ; is a supersolution and

(u1,r +u2.)(7,0) = Kolp, (7, T)ug o(2, 7) + (1 = 1p, (2, 7))us o(x, CT)
> uso(z, 7).
Since Koug o(w,7) > u1,(x,0) it follows that
Koug o(x, 7 +1t) > up(x,t) forall (2,t) € Quo-
Similarly ug o(z,CT) > ug (7, 0), therefore
us (7, CT +1t) > ug r(x,t) for all (z,t) € Quo-
Combining these two inequalities we have that
Uso(w,t +7) Sugr(w,t) +ur-(2,t) < Koug oz, 7+ 1) + ug o(x, C7 +1). (2.78)
Letting 7 — 0 yields
uspo(z,t) < (1+ Ks)ugo(z,t) for all (7,t) € Q. (2.79)

Next we set K =1+ K, and

1
W=uso— 57 (Ts0 — usp) -

If uso # ug g, then s > ugy and W is a supersolution of (2.1) by the same convexity
argument used in the proof of Theorem 2.4. Note also that (% + ﬁ) Ug o 1s a subsolution
of (2.1) smaller than W. Hence there exists a solution u of (2.1) satisfying

1 1
— 4+ — <u<W. 2.
<2+2K>&5‘70’U/W (2.80)
This implies that the initial trace of u is also (S,0). Since W < ug(, we have a contra-
diction with the minimality of ug . O

The next result shows that the initial trace provides a one to one correspondence
between the set of nonnegative solutions of (2.1) and the set of couples (S, i) where S is
a closed subset of RY and u a nonnegative Radon measure on R := RV \ S.

19



Theorem 2.7 Suppose 1 < ¢ < q.. Then for any closed set S C RN and any positive
Radon measure p on R := RN \'S there exists a unique positive solution of (2.1) with
initial trace (S, p).

Proof. Step 1- Construction of the minimal solution. The principle is standard. We set
Se = {r € RV : dist (z,S) < €}. For R > 0 we define

te,R = 1senBp 14

and denote by wu,,, 1. , the solution of (2.1) with initial data j, + pie, g Where p, has been
defined in the proof of Proposition 2.6-Step 1. Clearly (e, R,n) > wy, 4, 5 is increasing
in n and R and decreasing with respect to € and we have

Max{ Uy, , Upe g} < Upptpie g < Upiyy + Ups, g (2.81)
If we set
U, = lim U 2.82
=S e—0,n—00,R—00 Hnthe,R) ( )
then

max{u(s o), Uu} < Us,, < US,0) T Uy (2.83)

Note that we have used Brezis'uniqueness result to assert that w, is uniquely determined
by . Inequality (2.83) implies that the initial trace of ug , is (S, p).

Let u be any positive solution of (2.1) with initial trace (S,u). If & > R we denote by
wy, the solution of (2.23) in Bg. Then u + wy, is a supersolution of (2.1) in Q5B+, Then
By, = (Br, NSe) U (B NSE). There holds

lim (Upptpe g — )4dr = lim (up, —u)ydz =0,
t—0 BrNSe t—0 BiNSe
and
lim (Upptpe g — )4dr = lim (Up, p —u)4dz = 0.
t—0 B,NS¢ t—0 B,NS¢

Then the subsolution (u,, 4, , —u—wy)+ has zero initial data and vanishes on 9;(Q5r) :=
0By, x (0,00). Then it is identically zero. Therefore

Upi+pe g < U— W in QEx. (2.84)
Letting k£ — o0, € = 0 and n — oo yields
us, <u in Q. (2.85)

Step 2- Construction of the mazximal solution. For n,e > 0 we set pre = lsep and p =
lsep + nlg. dx. Let upe = ug, - When n — oo, the sequence {uy e} increases and
converges to a solution with initial trace (S, pte) denoted by us, .-

Let k,6 > 0, then ug ¢ :== (14 6)us, ;. +wy is a supersolution of (2.1) in Q. By (2.38),
the function (u — ug )+ satisfies

lim (v —ug,ep)+ (@, t)dz = 0.
t—0 ScNBy,
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In the cylinder QF the function ug  is a supersolution of (2.1) with initial data (1+0)u
and infinite boundary data. Hence it dominates u therein. Consequently

lim (u—ugep)+(z,t)de = 0.
t—0 S¢NBy,
which yields

lim [ (u—uger)+(z,t)de =0.
t—0 By T

Because ug ¢ has infinite value on 0,QB* we deduce that Ugel = U in QBk. Letting
successively k — 0o, § — 0 and € — 0 we obtain that

US e = U N Qoo

When € = 0, us, . is decreasing and it converges to a solution %s ,, of (2.1) in Qs with
initial trace (S, p) and is larger than any positive solution u with the same initial trace.

Step 3- End of the proof. With the notations of Steps 1,2, we set

Zevﬂe = uSE7N€ - u#n+#e and ZE,O = uSEaO - u.u

n

Then
_ _ _ q .4 o B BN
8,5(267“6 Zeo) A(ZWE ZQO) + Ug, e~ Yyt pe (uSQO uun) =0.
Now . .
u?g o uq N . use,ﬂe - u:u'n+.“6 Z
; Hntpe — € fber
e " ‘ uSe“Ufe - u#n+ﬂe
and . .
U —u
Se,0 Hn
uge 0= “Zn = 7.
' usevo - u#n
Since

us, pe > Max {uy, +u,us.0f  and wy,, < min{us, 0, Up,+pu.}
the convexity of the function r — r? on R implies that

q _ 1
uSe,Me u#n"’lJe >

uSe7Ne - uﬂn+ﬂe a u8670 - ulln

¢ .4
uSE,O Wpay, > 0.

Therefore
ug570 - uZn
at(Zgue - Ze,O) - A(Ze,ue - Ze,O) + (Ze,ue - Ze, ) < 0.
U’Seyo - ulln
Since

lim (Ze e — Zeo)+(x,t) =0,

t—o0 RN
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it follows by the maximum principle that Z. , < Z . Letting n — oo and € — 0 implies
Us,y —Us ,;, < US0 — Us -
Uniqueness follows by Proposition 2.6. O

Extensions and comments. The initial trace of positive solutions of (2.1) in the cylinder
QS can be defined similarly. If u is such a solution, it admits an initial trace in Q which
consists in a closed subset S C 2 and a Radon measure p defined in 2\ S. Furthermore
the value of u on the parabolic boundary GEQ& has to be taken into account in order to
prove results of existence and uniqueness. This theory is developed in [40] in the following
framework:

(i)  C R¥ is a smooth domain.

(ii) ulg,00 = f € L'(0QL).

(iii) p is a positive Radon measure in € which is bounded in a neighbourhood of 9f2.
(iv)1<g<1l+ 3.

Under these conditions and the subcriticality assumption, the initial trace provides a
one to one correspondence between the sets of positive solutions u of

Ou—Au+u? =0 in Q%

w=f on 9,Q%, (2:86)

and the set of ouples (X, 1) where S is a closed subset of 2 and p a nonnegative Radon
measure 4 in R := Q \ § which are bounded in a neighbourhood of 9.

2.5 The supercritical case

The next lemma shows that no it cannot exist any very singular solution of (2.1) if ¢ > ¢.

Lemma 2.8 Let g > q., then problem (2.57) admits no positive solution.

2
Proof. Let f be such a solution. Since f(n) = o(n 1) as n — oo, by matching asymptotic
expansion we obtain that for any o > qz—l — N there exists ¢, > 0 such that

N

n

F(n) < can®e™ 5 forall n > 1. (2.87)

Then it follows from the equation that
f'(n) < c’an”‘“e—é for all n > 1. (2.88)
Set ¢1(n) = e_é, then
(nN‘lefaﬁ’l(n)), = 50" o1 ()
We write 2.57) under the form

<?7N16"42¢’1(n)) FoNlen <1f_fq) =0
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Multiplying by ¢; and integrating on (0, 00), which is justified by (2.87) and (2.101), we

infer that
> 1 q N 1 n’
7q—1_7 f—=1f et ¢rdn = 0.
0

L - % < 0 we get a contradiction. 0

Because —
q—1

The following result proved by Brezis and Friedman [16] points out the role of the
exponent ¢, the study of singularities of solutions of (2.1).

Theorem 2.9 Let ¢ > q., Q@ C RN be a domain containing 0 and u € C(Q7¥\ {(0,0)}) be
a solution of (2.1) in Q% vanishing at t = 0 except at x = 0. Then u can be extended as

a continuous function in C’(Qi,%)

Proof. We can assume that B C  and we first assume that u, vanishes on 9Bg x (0, 7).
Then for any ¢ > 0 uy is bounded from above by the function ue o, which satisfies (2.1)
in Qs and has initial trace (B.,0). By scaling

Tyte,c0] = Up-1¢ 00  for all £ >0,

and since € — U is increasing, there exists upoo = lim ueoo. Furthermore ug oo is
e—0

selfsimilar and u4 < ug,00. By Lemma 2.8 ug o = 0, thus uy = 0.
In the general case we denote by ¢ the boundary value of u on 8@@?3, and by v the

solution of
o — Ap =0 in QD"

=6y  on 9QL"
P(.,0) =0 in Bp.

Then (u — )4 is a subsolution of (2.1) in Q?R. By the previous argument, (u — )4 =

Hence u4 is bounded from above. Similarly u_ is bounded, this implies that u remains
bounded in Q?R. Standard regularity results imply that w vanishes on Br x {0} and the
claim follows. 0

When g > ¢, there exists no solution of (2.1) in Q» with a Dirac measure as an
initial data. This phenomenon is general and the next result proved in [8] shows that if
p € M(RN) the problem with measure initial data

Ou — Au + [u|7lu =0 in Qo

u(.,0) = p in RY, (2:89)

can be solved provided the measure is not too concentrated.

Definition 2.10 Let € M(RY). A function u € L (Q) N C(Qu) is a weak solution
of (2.89) if for all for all ¢ € C?(Qy,) there holds

/ / u(0i¢ + AQ) + [u)|? M uC) dedt = / C(z,0)du(z). (2.90)
RN

A measure p for which (2.89) is solvable is called q-admissible.
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Theorem 2.11 A measure p € M(RY) is g-admissible if and only if
cap%q,(F) =0= |u|(F)=0, (2.91)
for all Borel set F C RN,

Before proving this result we give an equivalence of norms estimate which will be used in
the sequel.

Lemma 2.12 Assume q > q.. Then for any T > 0 there ezists ¢ = c¢(n,q,T) > 0 such
that for any bounded measure p € B~ q’q(RN) there holds

-1
il gy < WAy < Ml 3. (2.92)
Furthermore, if ¢ > q., there holds
-1
il gy < oy < ¢ (Il gy + Wil ) 299

Proof. Tf y € B=%/44(RN), there exists a unique w € B>~/¢4(RN) such that y = (I —A)w,
and ||pl| g-2/¢.0 = ||w|| g2-2/4.¢- Applying standard interpolation methods to the analytic
semi-group et =2) = ¢~te!A (see e.g. 9], [51]) we obtain,

(/ ] e —A>H[w1\qdwe_qttdt>l/q: </ | i \tl/qH[uJ!que_q;dty/q

~ ||lwl p2-2/4.0 (2.94)

~ HMHB*Q/q»q'

Clearly

tl/qH[ dx<// tl/qH " 4z tdt,

-,

—qt
// ‘tl/qH[u]’q $e dt _ //

oo Qr4n+1\QT+n
—Z// 1] (s +n)|2e” 1+ g
< Ze_qn // ]th

n=0 T

and (2.92) follows. Furthermore, ||[H[u](.,t)[||%, < ct=N@=D/2||u||., thus H{u] € LY(Quo)
if ¢ > q. (but this does not hold if ¢ = ¢.). If ¢ > g, (equivalently N(q —1)/2 > 1),

and

e~ qtdt
t

Y IH [ }) dz
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// tl/qH dx— Z// tl/qH[ ]‘ daﬂ
QT+7L+1\QT+TL
:// Y/ H[ 4] da:— // Z]H (s +n)|? deds
T
// ‘tl/qH dﬂc—l—C(Z —N<q—1>/2> |y -

n=1

Thus we obtain (2.93). O
Proof of Theorem 2.11 We present there an abridged proof. We first notice that if 1 <

2 7
q < qc any function in Ba? (R) coincides with a continuous function. Hence only the
empty set has zero capz ,-capacity. Therefore any measure in RY is g-admissible. From
q7

now on we assume that ¢ > g.. Let F' be a compact set with zero capa q,—capacity and
q7
{¢u} a sequence as in the previous theorem. We take ¢, = ¢HI[(,] for test functions,

where now ¢ € C°(RY x [0,00)) is nonnegative, takes value in [0, 1] and is equal to 1 in
a neighbourhood of F'. Then (2.107) is replaced by

/000 /RN <“q‘;" - (atgn - Agn)) dxdt = /R N@H[Cn])(-, 0)du(z) > w(F).  (2.95)

Since ¢, — 0and 0 < ¢, < 1, ¢y — 0 a.e. and dyopn + Ay, — 0 in L?OC
Thus the left-hand side of 2.95) converges to 0, which implies p(F') = 0.

Conversely, if p is a nonnegative measure which vanishes on Borel sets with zero
cap: ,~capacity, it can be proved by the Hahn-Banach theorem (see [30]) that there exists
q7

(RN x [0,00))).

2
an increasing sequence {y,,} of nonnegative bounded measures belonging to B~ a(R™)
which converges to u. We first prove that a nonnegative bounded measure p belonging

2
to B~ ¢*!(RY) is g-admissible. By the previous lemma, H[u] belongs to L (RN x [0, 00)).
Next, for k > 0, we set gi(r) =sign(u) min{|ulP, kP} and we denote by uy the solution of

Oru — Au+ gi(u) =0 in Qo

u(.,0=p in RV, (2.96)

For 0 < k < ¢ one has 0 < uy < up < H[u]. We denote by u the limit of the uj. Since for
any ¢ € C(RY x [0,00)) there holds

/ / (gr(ug)C — (0:C + AQ) ug) dadt = x ¢(.,0)dp, (2.97)

and gg(uy) < (H{u))? € L} (RN x [0,00)) we deduce by the Lebesgue dominated conver-
gence theorem that

/00/ (uP¢ — (0:¢ + AQ) u) dedt = / ¢(.,0)dp, (2.98)
0 RN RN
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This prove that u is a nonnegative solution of (2.89) and p is g-admissible. Finally if u is a
nonnegative measure satisfying (2.91), there exists an increasing sequence of g-admissible
measures {i,} converging to u. For each n, let u,, be the solution of (2.89) with initial
data p,. Then the sequence {u,} is nondecreasing. For any nonnegative ( € C%(Q
there holds

)

| a0+ 80 +usg dode = [ ¢l 0)dpnfe) (2.99)
0 RN RN

Let u be the limit of the increasing sequence {u,, }. By the Beppo-Levi convergence theorem
one has

/ / u (0:¢ + AQ) + ui() dedt = / C(z,0)du(z). (2.100)

This implies in particular that u € L] (Q.). If ¢ is nolonger nonnegative then

lim// ulldxdt,
n—0o0 0 RN

by the dominated convergence theorem. Since

Jim /0 - /R (DG + AQ) dardt = /0 - /R u(@¢ + AQ) duds

it follows that u is a weak solution of (2.89) and p is g-admissible.
For general measure p satisfying (2.91), we write the Jordan decomposition y = py — pu—
and the proof follows. O

Baras and Pierre proved in [8] a general removability result which involves the Bessel
capacities of a set (see e.g. [1] for the definition and the properties of Bessel capacities
caps , which are associated to the Besov space B*P and the Bessel kernel Gy).

Theorem 2.13 Let ¢ > 1 and F C RY a closed set. A function u € C(Q., \ F) solution
of (2.1) in Qo can be extended continuously to a function in C(QL) if and only if

capz o (F) =0 where ¢' = 7%, (2.101)

Proof. We give an abridged proof in order to point out the duality method introduced in
[8]. We recall that the heat potential of a measure w is

1 _le— y\2
i) = g [ et = [ A 0det) (2102)

Without loss of generality, we can assume that F' is a compact subset of Br. Since
capz ,(F) = 0, there exists a sequence {(n} C C®(RN) such that ¢, =1on F,0< ¢, <1
q7

and
HCHHB%,q’ —0 asn— oo.
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We can assume that the support of ¢, is included into Bri1. Let 6 € C2°(RY) such that
0<6<1,0=1in Bgy1 and § = 0 in By, ,. We set n, := 0H[1 — ¢,] and take 7y for
test function where o > 0.

By a straightforward computation based on Hdélder’s inequality we get

/ /RNuq St < ca/ / (19emal +18ma]7) + (961 [V

(2.103)
iy (V) dade+ [ () (. 1)

We fix a = 2¢’. Replacing 7, by its value,
ne [0l < 07 10HIG]|T < [OH[C]|7

At this point we use the interpolation results associated to the analytic semigroup in
L7 (RN) generated by —A, see e.g. [51, Section 1.14.5]. We get

/ / ~7 M| dt < ¢ |nnl? s . (2.104)
B
Similarly
1
/ / M AN | dt < clmal? 5, - (2.105)
0 JRN B¢

For the last term, we use Triebel’s result combined with Gagliardo-Nirenberg inequality
/ L e < il ol <l (2.106)

2 7
Letting n — oo and using the fact that 1, — 0 in B«’? | we infer that u € LI(RY x (0, 1)).
In order to prove that w is a solution, we take ¢, = ¢H[1 — (,] for test function where
¢ € CX (RN x [0,00)). Then

/ (uén) (., 0)da = / /R (00— (@1 + D)) ddt (2.107)
By computation,
(Oepn + Ady) = H[1 — ()01 — dOH[Cn] + H[1 — (n]Ad — 9AHICn] — 2V . VH[(,].
When 1 — o0, we have that
H[1 — o] (019 + Ap) — Orp + Ag

x
in Ly,

(RN x [0,00)), and

PO H(Cn] + GAH[Cn] + 2V).VH[(¢n] — 0
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in LP(RY x [0,00)). Hence, we infer

/]R (ue)(,0)dz = /O /]R (U — u (0 + Ag)) dedt (2.108)

from (2.107).

The converse is a consequence of the fact that any compact set with positive cap% 7"
capacity is the support of a nonnegative measure (the capacitary measure) p belonging
to the space Bfg’q(]RN ) see [1]. By Theorem 2.11 any nonnegative bounded measure
belonging to B (R™) is g-admissible. The result follows. O

In order to prove some analogue of Theorem 2.7 in the case g > ¢, there are conditions
both on the measure p which has to satisfy a non-concentration condition such as (2.91)
and the singular set S which cannot be locally removable. Furthermore the singular set &
can locally be created because the measure y is unbounded.

Definition 2.14 Assume ¢ > 1. Let S C RN be a closed set and ju a nonnegative Radon
measure on R := RN \ S satisfying (2.91) for all Borel sets F C S. We denote

0uS ={x €S : pu(B(r) NS = oo for all e > 0}, (2.109)

and
S = {ZL‘ €S: capz (Be(z)NS) >0 for all e > 0} . (2.110)
q7

The next result is proved in [40].

Theorem 2.15 Let ¢ > q.. There exists a maximal positive solution u of (2.1) in Qo
with initial trace (S, p) if and only if p satisfies (2.91) or all Borel set F C S and

S=0,8US8". (2.111)

Proof. Step 1: Construction ofw,. Let {K,} be an increasing sequence of compact subsets
of R := RN\ S such that U,K, = R, p, = 1g, p. Since p, < p, it follows from
Theorem 2.11 that there exists a unique solution u, to (2.89) with initial data u = p,.
The sequence {u,} is increasing and it converges to some nonnegative solution ,, of (2.1)
in Quo. By Proposition 2.2-2, @,(.,t) converges to 0 when ¢t — 0 locally uniformly in the
interior of S. For any y € R and R > 0 such that Br(y) C R, u, is bounded from
. B . . . B
above in QooR(y) by wr(y —.) + Ui, p Where uy, . is the solution of (2.1) in QOOR(Z/)
with initial data 1p,,)p and vanishing on 8gQOBOR(y), and wp is defined in (2.23). Since
wr(y =) +u1, ,u is bounded in LYQE" ™) for any T > 0 and R’ < R it follows that
u,, satisfies (2.100) for any ¢ € C2°( Brlw)y,

Step 2: Characterization of 0,S. For any x € 0,5, € > 0 and n € N, 7, is bounded from
below by the solution uy, . of (2.1) in Q with initial data 1, p, (y)i, Farthermore for
any ¢ € C°(Be(y)), ¢ 2 0,

lim inf /Bs(y)u(x,t)g(x)dm > lim Un,e(z,t)((x)dx :/ C(x)dp(x). (2.112)

t—0 t—0 Be(v) KnNBe(y)
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We can take ¢ such that { =1 on By (y) for some 0 < ¢ < e. When n — oo, we have

limint | o Cle)dp) = [ @) =,

n—oo B6 (y)mSC

hence y belongs the singular set of the initial trace of %, that we denote by Sing(u,).
Therefore
0uS C Sing(uy,).

Conversely, if y ¢ 0,5 there exists 6 > 0 such that p(Bs(y) N S¢) = ms, < oo. Then for
any ¢ € C2*(By(y)). ¢ > 0, one has

lim Uy (z,t)¢(z)dx = ((z)dp(x) < oo.
t—0 JrN RN

This implies that y ¢ Sing(w,). Thus
0uS = Sing(uy,). (2.113)

Step 3: Construction of Ts. By thickening S into S. = {x € RV : dist (z,S) < €} we
construct an increasing sequence of solutions {us, } with initial trace (Se,0). When € | 0,
{us.} decreases and converges to some nonnegative solution us of (2.1) in Qoo. Let y € S*.
Then for any € > 0 the set Be(y) MR has positive cap% g/ -capacity. Hence there exists

2

a positive measure fi., in the dual space B~ «'(RY) with support in B(y) N R. For
n € Ny let up,,, be the solution of (2.1) in QoBoe(y) with initial data npu., and vanishing
on GKQOBOE(y). Then Us > upy, ,, in Qfg(y). Hence
liminf/ us(z,t)dx > n/ dtc y.
=0 JBw) Be(y)

Since n is arbitrary this implies that

lim us(z,t)dx = oo, (2.114)

t—0 B.(y)

hence y belongs the singular set of the initial trace of us that we denote by Sing(us).
Thus
S§* C Sing(us).
Conversely, if y € S\ S*, there exists § > 0 such that cap: q,(Bg(y) NS) = 0. For
q7
0 < €< <6 we denote by uj ¢ (resp. ug) the solution of (2.1) in Qe Wwith initial trace
Se N By (y) (resp Se N B§,(y)). Then

us, < UL e + Ue.

When € — 0, uie | w1 (resp. wuge | uzp) where ujg is a solution of (2.1) in Qo
with Sing(ui9) C SN By (y) (resp Sing(uzp) C SN BS(y)) and no regular part. By
Theorem 2.9 u; 9 = 0. Since

us < uyo+ u2,0 = Uz,
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we have for any 0 < 6" < ¢’

lim us(z,t)dr < lim ug,0(z,t)dx =0,
=0 Bs(y) =0 Bsu (y)

hence y ¢ Sing(us). We conclude that
S§* = Sing(us). (2.115)

Step 4: Construction of a solution u with initial trace (S, p). Since max{us,u,} is a
subsolution of (2.1) and us + u,, and max{tus,u,} < Us + Uy, there exists a solution u
such that
max{us,u,} < u < Us + Uy. (2.116)
Then
Sing(u) = Sing(us) U Sing(u,) = S* U IusS. (2.117)

Therefore Sing(u) = S if and only if (2.111) holds.
As in the proof of Theorem 2.7-Step 2, the fonction constructed above is the maximal
solution of (2.1) with initial trace (S, p). O

We end this section with a non uniqueness result which asserts that in the supercritical
case there could exist many positive solutions of (2.1) with the same initial trace with a
non-empty singular set. This was proved first by Le Gall [36] in the framework of the
Brownian Snake, with ¢ = 2 and N > 3.

Theorem 2.16 If ¢ > q., there exist infinitely many solutions with initial trace (RN ,0).

Proof. Let {a,} be a dense sequence in RV, {¢,} a sequence of positive numbers such that
the series ), €, is convergent and {u,} the sequence of maximal solutions of (2.1) in Q

with initial trace (B, (an),0). We have
un(z,t) = Un(|lz — an|,t).

The function @, is radial and radially decreasing. Furthermore ¢ — @, (X,t) is decreasing.
We set
Nn = sup{t,(z,t) : (z,t) € RY x [1,00)} = 1, (0,1).

Since ¢ > g, Uy — 0 uniformly on RY x [¢,00) when n — oo, for any ¢ > 0. For any
E > 0 we can choose the ¢, such that the series

> mm <E.

n>0

Since |uy, (z,t)]97! < ﬁ it follows by the parabolic Harnack inequality that the series
Y n>0 Un is normally converging on any compact subset of RN x (0, 00) and we denote by
U its sum. Since (a + b)? > a? + b? for any a,b > 0, U is a supersolution of (2.1). We set

U = sup{u, : n € N}.
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Then U is a subsolution of (2.1) and it is smaller than U. Therefore there exists a positive
solution U of (2.1) in Qo such that

U<u<U. (2.118)
For any y € RY and € > 0 there exist infinitely many a,, such that B, (a,) C Be(y), for
such an n

lim un(x, t)dr = co.
t—0 B, (an)

Hence y € Sing(u). Since the sequence {¢,} can be chosen such that ) - n, < E, we

obtain
0<U(0,1) <E. (2.119)

This ends the proof. O
This result can be improved in the following way, ([40, Proposition 4.14]).

Theorem 2.17 If ¢ > q., for any € > 0 there ezists a positive solution u of (2.1) in Qo
with initial trace (R™V,0) and a Borel set F C RN shuch that

/ 1pdx <,
RN

limu(z,t) =0 for allz e RN\ E.

t—0

and

Starting from this result it appeared clear that the definition of the initial trace per-
formed by an averaging of the function u(., ) in an Euclidean neighborhood of a point y is
not suitable to distinguish between the different solutions of (2.1). The idea of using the
fine topolgy associated to the cap 2, q,—topology is due to S. Kuznetsov. It was first used in

[27] in the framework of the study of the boundary trace of positive solutions of
—Au+u?=0 (2.120)

in a domain Q C RY. In [42, 43], a sharper definition, suitable for all the supercritical
exponents in the semilinear elliptic problem (1.15), was introduced and developed. This
is this method, adapted to the parabolic case in [29] that we present in the next section.
It will apply to all the exponents ¢ > q..

3 The capacitary representation

3.1 o-moderate solutions

If p is a g-admissible measure, we denote by u,, the solution of (2.89).

Definition 3.1 A positive solution u of (2.1) in Q is called o-moderate if there exists

2
an increasing sequence {ji,} C B~ a7 (RN)NINE_ (RN) such that the corresponding solution
u = uy, of (2.89) converges to u locally uniformly in Qu.

If F is a closed subset of RY we set

up = maxf{u, : p€ B-o? (RY) nom (RN), u(F°) = 0}. (3.1)
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3.1.1 Besov and Bessel capacitary potentials

The main goal of this section is to prove that up coincides with the maximal solution up
of (2.1) in Qo with initial trace (F,0). We introduce several tools linked to Bessel and
Besov capacities relative to a domain Q ¢ RY. If K is a compact subset of the domain
Q C RY, we set

Ta(K)={neCX(Q),0<n<1l,np=1on K}. (3.2)

Definition 3.2 Let s € (0,1), p > 1 such that sp < N and Q@ C RN be a domain. The
Besov capacity Rgp of a compact set K C () is

RE,(K) = it {|lg|?, :6 € TalK) (3.3)

where B&p is the Aronszajn-Slobodeckij norm defined by

19l g, , = </Q A dedy> " (3.4)

The Bessel capacity capgp relative to ) is defined by
cap?, (K) = inf {6l & € To(K) } (3.5)

RN _
and capg,, = capsp.

In the sequel we will see that the capacity Rz ¢ (K) is more suitable for the computa-
q b

tions in our problem than the Bessel capacity capz e
>

Definition 3.3 Letq > 1. If F C RY is a closed set we denote forn € N and (z,t) € Quo
F, =F,(z,t)={y € F:d, <|r—y| <dnt1} where d, = Vnt,
The Bessel-capacitary potential of F is defined by

F,
dnJrl

1 o N-—-2 .,
Weg(x,t) = — d e 1capz , <
( ) t% nzz;) n+1 79

) for all (x,t) € Quo- (3.6)

The Besov capacitary potential of F' is defined by is defined by

> for all (z,t) € Quo- (3.7)

—~ 1 & N—-2 ., F,
We(z,t)=—> d " 'e iR, ( n
( ’ ) t% nz:() ntl %’q dn+1

The Besov capacitary potential of F' is invariant by the scaling Ty in the sense that for
any ¢ > 0,
(T We(VEx, 0t) == To[We)(z, 1) = W% (z,8) for all (z,4) € Qu. (3.8)
14

The Besov capacity is linked to the Bessel capacity through the following directional
Poincaré inequality [40].
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Lemma 3.4 Letb > a > 0 and Q be a domain in RN such that Q C Hyyp := {x = (21,2') :
a <z <b}. If s€(0,1) and p > 1 verify sp < N, there exists A = A\(N, s, p, g) > 0 such
that

//ng |z — |N+8)|pd dy = A(b— “)s”/g In(z)|Pdz for all € C(Q).  (3.9)

It is noticeable that the above domain 2 is not necessarily bounded, in which case the
standard Poincaré inequality is easy to prove, but it is only contained in a strip of finite
thickness. The Aronszajn-Slobodeckij norm in C2°(2) is smaller than the standard B*P-

norm associated to the Bessel potential G := F[((1 + \§|2)*%] (see [1]) and defined by

10l s = 0l 5, , + ¢l for all g € CZ()

However, thanks to Lemma 3.4 there holds

Lemma 3.5 Let b > a > 0 and Q be a domain in RN such that Q C Lop = By \ B,. If
s €(0,1) and p > 1 verify sp < N, there exists A = A(N, s, p, %) > 0 such that

10l gor < NQllgew < (1+Cb=a)’) Qe for all n € CZ(K). (3.10)

The following properties of Bessel capacities capgp relative to 2 and Besov capacities
relative to RV are classical and easy to establish.

Lemma 3.6 For any 7 > 0 and any Borel set K C Q there holds
R2,(K) = mN"PRT ‘(7 K). (3.11)

Ifb>a and Q C By \ B, there exists ¢ = c(b — N,s,p) > 0 such that

7a7

1
Ecapgp(K) < Rgp(K) < ccapgp(K). (3.12)

Finally if K C ) C 0 c Q, there exists ¢ = c(dist (2,Q°, )N, s,p) > 0 such that

1
Ecapgp(K) < capgp(K) < ccaps p(K). (3.13)

3.1.2 Heat potential and Besov space
If 2 is a bounded domain in RY, p > 1 and s € (0, 1), we extend any n € C2°(Q) by zero

in Q¢ and set
. dt\ 7
il = ([ [ 10 tompras)” .19

It is proved in [9] that the following equivalence of norms holds for the Besov space B*P({2),

CH nllgew = CF (Inll o + 10l o) < I0ll%, + 10l 5os < € (Inllze + 10l o) (3.15)
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for all n € C°(Q) for some C = C(s,p, N) > 0. Actually it is easy to see by scaling that
the two norms |.|| g, and [|.|| 5., are universally equivalent in the sense that there exists
C = C(s,p,N) > 0 such that for any domain Q and any n € C2°(Q),

CH Ml gew < Mll e < Cllnll o - (3.16)
If K is a compact subset of Q and n € To(K) we set
R[n] = |0:H[n]| + |VH[n]|*. (3.17)

Lemma 3.7 There exists C = C(N,q) > 0 such that for every n € To(K) there holds
ol < IR, = [ / ) dedt < C o), (3.18)

Proof. Using the Gagliardo-Nirenberg inequality in RY, an elementary elliptic estimate
and the fact that 0 < H[n| < 1,we see that

| IVEBICO P b < D0 B Ol

< C|AH)(, DI,
for all ¢ > 0. Since 0:H[n] = AH][z], (3.18) follows. O

3.2 Estimate from above
The main result that we prove in this section is the following upper estimate

Theorem 3.8 Let q > q.. There exists a positive constant ¢ = ¢(N,q) such that for any
closed subset F C RN any nonnegative function u € C*(Quo) NC(Qu \ F x {0}) verifying

ou—Au+u’ =0 in Qoo

PH(I) u(z,t) =0  locally uniformly in F©, (3.19)
—

satisfies
u(x,t) < CWg(x,t) for all (z,t) € Qo, (3.20)
where W is the capacitary potential defined in (3.6).

We will first consider the case where F' = K is a compact set.

3.2.1 Global L? estimates
Let K ¢ B, C B, C B, , where r,p > 0 be a compact set. We set
Tr,p(K) ={ne Ccoo(Br+p)a 0<n<1,n=1o0n K}.

If n € Trp(K we set

!

n*=1-n and ¢= (H[n)*.
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Lemma 3.9 If u is a positive function satisfying (3.19), there exists C = C(N,q) > 0
such that for every T > 0 and every compact set K C By,

// wi( da dt+/RN(ug)(x,T)dx <CIRMY, Vi€ Tr(K). (3.21)

Proof. By assumption n* vanishes in an open neighbourhood N7 of K, for any open set
Ny such that K C Ny C Ng C N there exists Chy,, cn,, > 0 such that

c

* _ Ny N
Hn*|(z,t) < Cprre™ ¢ for all (z,t) € Q52.

By Proposition 2.2-2, this implies

lim (u¢)(zx,t)dt = 0.

t—0 RN

Taking ¢ as a test function, we obtain

//Tqud:L‘dth/RN(uC)(fv,T)dx = //T (0¢¢ + AC) udzdt (3.22)

Since
’ , 2
¢+ AC = 2¢'H[* 1?7~ (8, H[n] + AH[n]) + 24/ (24 — 1)H[n«]* _Q‘VHW :

we deduce

‘//T (¢ + AQ) udacdt‘ < c(q) <//Tuq(dxdt>; <//TR[77]Q’dxdt> "

where R[n] is defined in (3.17). The proof follows from Lemma 3.7. O

=

Proposition 3.10 Under the assumptions of Lemma 3.9, let r,p >0, T > (r + p)?,
Erip = 1(5,8) € Qoo o +1 < (r+ )2},

and Qripr = Qr \ Ergp. Then there exists C = C(N,q,T) > 0 such that

// uldxdt +/ u(z, T)dx < C ||R[77]||(£/q, for all m €Ty p. (3.23)
QT+p,T RN

Proof. In view of the previous lemma we have to show that under the above assumptions
on T and 7, there exists some C' = C(N, ¢, T) > 0 such that

¢=HpyP > C.
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Since, by assumption K C B, n* = 1 outside B4, and 0 < n* < 1, we have

* 1 \ac |2
Bl (e t) > H1 - 15, |(z.t) = —— / - dy
(4mt)2 |y|>r+ﬂ

1 J/ \z m2
dy.
(4mt) ¥ Iy\§r+p

If (z,t) € Qrypr, We write x = (r+p)&, y = (r +p)v and t = (r + p)?7. Then
(5 )6Q1 and

(r+ P)2

1 |z—yl? 1 lg—v]?
¥ / e” dy = ~ / e 4 dv.
(4mt)= Jlyl<r+e (4rr)=z Jvl<t

It is therefore easy to verify that

-1

1 —v|?
max / e ST du - (&71) €@y =/, (3.24)
(4rr) % Joisa (G
and ¢ = ((N, (HTP)Q) (0,1). Actually ¢ is independent of G + (=D if this quantity is larger
than 1. Putting C' = (1 — £)~! we deduce (3.23). O

3.2.2 Pointwise upper estimates
In this section the assumptions of Lemma 3.9 are fulfilled.

Lemma 3.11 There exists a constant C = C(N,q) > 0 such that, for any n € T, ,(K)

u(z, (r+ p)?) < CMWLQ/N for all z € RV, (3.25)
i+ )%

Proof. Integrating the equation

T
/ / uldzdr + / u(z, T)dx = / u(z, s) for all T's > 0, (3.26)
s JRN R R

and by Proposition 3.10 we have that

/ u(x, s)dr < C’// ) dxdt for all T > s > (r + p)°. (3.27)
RN T
Since )
u(z, s + 1) < Hlu(s,.)](xz,7) < ~ / u(y, s)dy,
(4mr)2 JRN
we obtain (3.25) from (3.27) with s = (r + p)? and 7 = (r +2p)2 — (r + p)? = r(r + p) if
p =o(r). O

In the next result we show an integral estimate of the u on the lateral boundary of

Q"

36



Lemma 3.12 Let v > r 4+ 2p and ¢ > 0, and either N =1,2 and 0 <t < 072, or N >3
and t > 0. Then, for any n € Ty ,(K), there holds

t /
/ / u(z, 7)dSdr < C ||R[77]||(iq/ , (3.28)
o Jos,

where C' > 0 depends on N, q and ¢ if N =1,2 or N and q if N > 3.

Proof. Assume first that N = 1,2 and set G7 := B x (—00,0) and 0,G" := 9B x (—00,0).
Let hy be the function

~
h'Y(x) =1- m7
and 1, the solution of
Oy + Arpy =0 in G7
Py =0 in 0,G7 (3.29)

¥y(,0) =h,  in BE.
Then the function ¥ (z,7) = Yy (y2,727) satisfies

O + A =0 in G
=0 in 9,G* (3.30)
¢(,0)=h;  in B¢

By the maximum principle 1; < 1 and by Hopf lemma

ol
_a%ale[—c,O] >0>0, (3.31)
where 6 = 0(N, ¢). Thus
oY 0
—ainvanx[—q?,o] =5 (3.32)

*
v

Multiplying the equation by . (x,7 —t) = ¢
¢ ou
h t)dx — —pXdSd
(uhy)(w, t)da /O /BBW O s dsiir

t
// qu,’fda:dT—}—/
0 JBg B ) o
——// —Tudodr.
0 Jop, On

Since 0 < ¢ < 1, we derive (3.28) from (3.32) and Proposition 3.10 since BS x (0,1) C &5,
first by taking t = T = 42 > (r + 2p)?, and then for any ¢ < 4%t If N > 3, we proceed as
above except that we take a new function

ho(z) =1— (;)N_z.

This function is harmonic, thus the solution v~ of (3.29) coincides with h,, and § = N —2
is independent of the length of the time interval. This ends the proof. O

(z,7) and integrating on BS x (0,¢) implies

c
~

(3.33)

The following estimates concerning solution of the heat equation are easy to obtain
from the Gaussian integral representation and left to the reader.
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Lemma 3.13 I- Let M, a > 0 and n € L=(R") such that

0<n(x)< Me—all a.e. in RY, (3.34)
Then, for anyt > 0,
M alz|? N
0 <Hnl(z,t) < ———F€ FatfT for all x € R™. (3.35)
(dat +1)=2

II- Let M, a, b> 0 and n € L®(R"N) such that

0<n(z) < MemaZI=0% a.e. in RY. (3.36)
Then, for anyt > 0,
a(lz|—b)
Me™ Fatti
0 <Hn|(x,t Seiw for all z € RY. 3.37
(dat +1)2
a

Lemma 3.14 There exists a constant C = C(N,q) > 0 such that, for any n € Ty ,(K),
there holds

—r—9 _ (o|=(r+2p))
u(x,(r+2p)2)§0max{ rEp il p}e

4(r+2p)2 R .,
(|x‘ —7’—2,0)N+1’ (T+p)N+1 ” [ ]HLq

(3.38)
for any x € RN\ B,3,.

Proof. The heat kernel in B{ x (0, 00) with Dirichlet data on 0Bf x (0, c0) satisfies

/ /2

="~y

HB (2! 2/t s') < O — 5')_%_1(|x| —1)e 1@=" fort > 5. (3.39)
If we denote & = (r + 2p)z" and t = (r + 2p)*t’ for (z,t) € B 5, x (0,T), then

Jo—y|?

w(z,t) < (o] — 7 — 2p) / /a i S (y)ds. (3.40)

BT‘+p t_ S

The right-hand side term in (3.40) is bounded from above by

—r—_92 _ (z|=r—2 )2
max { CUEI =T = 20) L= 0. / / u(y, s)do(y)ds.  (3.41)
(t )1+2 8B7‘+2p

We fix t = (r + 2p)? and |z| > r + 3p. Since

_ (zl=r—2p)*
(&} 4s 2
max{ —————: s € (0,(r +2p)9)
1T

-4 T+ 2p 2
= — — 2 —2-N e 4o . O < < 9
(] =7 —2p) max{aégﬂ g (lz] =7 —2p)
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a direct technical computation shows that

)2
e_(\x\ r—2) ) oy (lw\77-72p)2
max TN iSE€ (0,(r+2p)°) p <C(N)p e\ 2rFip (3.42)
st T2
Combining this estimate with (3.40), (3.41) and Lemma 3.12, one gets (3.38). O
Remark. Since there exists C' > 0 such that
|lz|—r—2 2 2 _(lz]=7r=38 2
(‘x| —r — 2p)e( 2T+4/’p> < C(T‘_Fpp)e ( 2“"4/’/)) for all z € B;,C-.+3p7 (343)
the following variant of (3.38) holds for all z € By 5,
. (r +p)° ! ()’
u(z, (r+2p)°) < C’max{pOx’ = 25 o 1 )V e ( 2r+dp > ”R[U]H%q' )
(3.44)

Next, we give a sharp pointwise upper bound of u(x,t) when ¢ is bounded from below.

Lemma 3.15 There exists a constant C = C(N,q) > 0 such that for any n € Try,(K)
the following estimate holds,

i _Uel=r=3p)3
4t /
u(z,t) < =y IRMINY,  for all (z.t) € RN x [(r+ p)%,00),  (3.45)
t2
where
N
(1+g)2 if 2] <r+3p
A — AT _ o) N3 ) .
M= M0 = Sl ifr+sp< ol <cy(rr20) (G40
1+ if 2] > iy (r +2p)

with ¢y =1+ v4+2N.
Proof. By the maximum principle
w(a, ) < Hlu(, (r + 202 (z,t — (r +20)2) for any ¢ > (r + 20)2,

By Lemma 3.11 and (3.44),

u(e, (r +20)?) < ORI,
where
(r(r—l—p)_% if |z] <r+3p
MT = Mi(w,r,p) = it r+3p < 2| < & (r + 2p)
e if Jol > ey (r + 29)
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Applying Lemma 3.13 with a = (2r +4p)~2, b = r + 3p and ¢ replaced by ¢t — (r + 2r)?
implies

fr42p)V _ (zl=r—3p)?

M :
u(z,t) <C em Rl (3.47)

N
t2
for |z| > 7+ 3p and t > (r + 2r)2, which implies (3.45). O

Finally we obtain an upper bound of u(x,t) when ¢ is not bounded from below.

Lemma 3.16 There exists a constant C = C(N,q) > 0 such that for any n € Try,(K)
the following estimate holds when 0 <t < (r + 2p)?,

1 1 _ (z|-r=3p)? /
u(z,t) < C(r+p) maX{(m Y ET tN}e @ |[RM)1, (3.48)
p 2

for any (z,t) € (RV \ Byy3,) x (0, (r + 2p)?].

Proof. By Lemma 3.12 we deduce by a simple modification of (3.38) that for any |z| >
r + 2p, there holds

_ (a|=r=2p)*
4s !
u(z,t) < C(|lz| —r —2p)(r + 2p) max P 0<s<t HR[?ﬂHqu, . (3.49)
s 2
Next,
_ Uzl=r=2p)°
max = 0<s<t
S+

2N +4) 2 (|2 —r —2p) V273" i 0 < || <7+ 20+ /24N + 2)

= _ (z[=r—2p)2

4
% if |z > 7+ 2p+ /2N + 2).
t- T2

When x € B¢ we have that

r+3p>
_02 . 9
(elr20?  _(elrse? | PET if 2t < p
(]a:\ —7“—2,0)6 4t <e At 9t 2
et wm if p? <2t <2(r + 2p)2.
p
However, since
2
Pt <2
t p
we derive
_al=r—2p%  Ct _(z|-r-3p)2
(|| = —2p)e 1 < e W
p
and (3.48) follows. 0
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3.2.3 The upper Wiener test estimate
Definition 3.17 We denote by 62 and 0o the two parabolic distances

(Z) 52[(113,t),(y, S)] = \/($—y>2—|— ‘t—S‘

(1) Jso[(2,1), (y, 8)] = max{|z — y|, /]t — [} (3.50)
IfK CcRY andi=2,00
V/dist2(z, K) + |¢] ifi=2

51'[(‘7:’1;)’[{] = inf{éi[(x’t)v (y,O)] YRS K} = { max{dist (l‘ K) \/i} ifi = oo

For 8 > 0 and i = 2, oo, we denote by Bg the parabolic ball with center m = (z,t) and
radius § in the metric §;.

If K ¢ RY is any compact we denote by T the maximal solution of (2.1) with initial
trace (K, 0).

If m = (x,t) € Qp we set dx = dist(x,K), Dx = max{|zx —y| : y € K} and

A =/d% +t = 62(m,K). We define the slicing of K by setting d,, = d,,(K,t) := v/nt
+_ Vi
n €N, d; = (Wi \/ﬁ)-i- and
Ty = Ediﬂ(x) \Bd; (z), Tn = Ba, ., () \ Bq,(z) forall n €N,
thus T = B, 4(x), To = B 4(x), and set
K, =K,(z,t)=KNT, and Q,:= Q,(x,t) = KNT,.

The main result of this section is the following upper estimate

Theorem 3.18 Assume q > q., then there exists a constant C = C(N,q,T) > 0 such
that

C < N--2 K

Ug < —§ Zdnﬂq’lcapg g <n> for all (z,t) € Qr, (3.51)
tz o o \dnt1

where aj is the largest integer such that K; # 0.

We can assume that x = 0. Furthermore, in considering the scaling transformation 7, with

£ > 0 we can assume ¢t = 1. Thus the new compact singular set of the initial trace becomes

%K that we still denote by K. For n € N, set 6, = dj,+1 — d,, then ﬁ <o, < ﬁ

By convention dp = 1. It is possible to exhibit a collection ©,, of points a, ; with center
on the sphere 3, = {y € RV : |y| = (dyy1 + dy)/2}, such that

T, C U B5n (an,j)7 ’an,j - an,k‘ > 571 and #Gn < CnN_17
an,jeen

for some constant C' = C(N). If K,, ; = K,, N Bs,, (an,j), there holds

K= |J U K

0<n<a; an, ;€O

41



The first intermediate step is based on the quasi-additivity property of capacities de-
veloped in [2].

Lemma 3.19 Let g > q.. There exists a constant C' = C(N,q) such that

Bas, (an, ) N_% Kn
Z R2/2;q J n,j) < Cdan 1cap%7q, <dn+1 Vn € N,. (3.52)

Gn,; €O

Proof. The following result is proved in [2, Th 3]: if the spheres B e(b ), 0=1-— (q s

are disjoint in RY and G is a Borel (more generally an analytic) subset of U By, (bj) where

the p; are positive numbers smaller than some p* > 0, there holds

capz 4 /(G) < anpg (GN By, (b)) < Acap%q,(G), (3.53)

for some A depending on N, ¢ and p*. This property is called quasi-additivity. We define
for n € N, B B B
Ty =dn1Th, Kp=dp1K, and Q, = dyy1Qn.

Since K, j C Bs, (an,j), it follows that
Kpj = dn1Kpj C Ba,, 6, (@n,;)-

Note that by Lemma 3.6

B n( n,') -N BQSn n (dn+1an )
R2/257q/a ’ (K ) = d7q7'+11 R2/qq i ’ (an.])
—N  Baspa, ., (dntian,;), ~
d;;;l capy """ (K ) (3.54)

q—-1 -N %
~dn+1 capz o (Knj)

where kmj = dp4+1Ky, ;. For a fixed n > 0 and each repartition A of points a,, j = dp41 an,j
such that the balls Bye(ay ;) are disjoint, the quasi-additivity property holds: if we set

nA— U K,]a nA—dn+1KnA— U Kn] and Kn—dn—i-lKnu

an jEA an,jEA

then

Z capgﬂ,(f(n,j) 2 capg,q,(f(n,/\). (3.55)
q q

The maximal cardinal of any such repartition A is of the order of Cn™¥ ! for some positive
constant C' = C'(N), therefore the number of repartitions needed for a full covering of the
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set Tn is of finite order depending upon the dimension. Because IN(n is the union of the
Kn,Ay

Z caps 4 A Z Z capz g Nn])wcap%q,(f?n). (3.56)

G, ;€O A anEA

By Lemma 3.6,

1

ca (Ky) < ca "+1(K )~ d T eqpB2 ﬁ NdN_q%ca 2 ﬁ
pz g (Kn pg/ n) Ry Pojaa \ G, )~ Poa \dpr )7

we obtain (3.52) by combining this last inequality with (3.54) and (3.56). O
Proof of Theorem 3.18. Step 1. We first notice that

g <Yy g, (3.57)

0<n<a a, €O,

Actually, since K = |, Uanj K, j, there holds K. C |, Uanj K, je forany 0 < € < e.
Because a finite sum of positive solutions of (2.1) is a super solution,

Uk, < Y Y Uk,,.. (3.58)

0<n<a, an, ;€O

Letting successively € and e go to 0 implies (3.57).

Step 2. Let n € N. Since K, ; C Bs, (an;) and |z — ay ;| = (dy + dny1)/2, we can apply
the previous lemmas with r = é,, and p = r. For n > ny, there holds t =1 > (r + 2p)2 =
9/(n+1) and |z —ap ;| = (Vn+1—+n)/2> (2+ Cn)(3/v/n + 1) (notice that ny > 8).
Thus

2 i a
urg,.,(0,1) < CelVr3/VaFI) /4 glasln) (jg, 1y < Ce¥l2e Ry 2™ (K, ). (3.59)

Using Lemma 3.19 we obtain, with d,, = d,(1) = vn+1,

aK aK N__2_ 2 Kn
> uk,,0,1)<C dho e 4cap27q . (3.60)

’I’L:’VLN an,jeen n:nN n+1

Finally, we apply Lemma 3.11 if 1 <n < n, and get
55 om0y, (R
Un,;€EOn n+1
(3.61)
K
<C/Zd _e4cap2,(dn>.
+1
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For n = 0, we proceed similarly, in splitting K in a finite number of sets K1 ;, depending
only on the dimension, such that diam K ; < 1/3. Combining (3.60) and (3.61), we derive

KNz, K,
ui(0,1) <C d, e 1 2 Ermnll I 3.62
(01) 03 e ey () (3.62)

In order to derive the same result for any ¢ > 0, we notice that

EK(:Z%t) = tiﬁﬁK/ﬁ(y/\/ga ]-)

Going back to the definition of d,, = d,,(K,t) = v/nt = d,(K+/t,1), we derive from (3.62)

and the fact that ey = Gy

- N < N-27 _n K,

ug(0,t) < Ct™ 2 nz:;)dnﬂq le feapz g <dn+1) , (3.63)
with dp, = dp(t) = \/t(n+1). This is (3.51) with z = 0, and a space translation leads to
the final result. O

Proof of Theorem 3.8. Let m > 0 and F,, = F'N B,,. We denote by Upe, the maximal
solution of (2.1) in Q the initial trace of which vanishes on B,,. It is straightforward by
scaling to verify that such a solution is actually the unique positive solution of (2.1) which
satisfies

limu(z,t) = 0o
t—0

uniformly on B¢, for any m’ > m. Furthermore

lim Upe (y,t) = n}grlwm‘ﬁUBg(y/m,t/mz) =0,

m—0o0

uniformly on any compact subset of Q... Since U, + Upe, is a super-solution, it is larger
that up and therefore up,, T up. Because Wg, (z,t) < Wg(z,t) and up,, < CiWg, (x,t),
the result follows. 0

Remark. It is clear that Theorem 3.8 still holds if w is a positive subsolution of (2.1)
satisfying the initial trace condition (3.19).

The Bessel capacitary potential admits an integral form. The next result is a variant
of Theorem 3.8.

Theorem 3.20 Assume q > q.. Then there exists a positive constant CF = C}(N,q,T
such for any closed subset F C RYN there holds for all (z,t) € Qr,

up(x,t) <

CT /\/t(at—i—Q 2 N2

_sZ N—-2Z 1
KT e as " a1 capz o <sB N Bl(aj)> sds, (3.64)

where a; = min {n eN:FCB (n+1)t(x)}.
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Proof. We use the inequality
capz <capz2 , | —NDB1 |,
2. <dn+1 a7 \dniq

F
¢(s) = cap:z , (s N Bl> for all s > 0. (3.65)
q’

Step 1. By [1], [42], there exists ¢ = ¢(N, q) > 0 such that

and we set

%(b(ozs) < ¢(s) < cop(Bs) forall s >0 and % <a<1<p<2 (3.66)
Actually, if 8 € [1,2],
= L 1FﬂB ~ 1FOB > L
0(99) = cap ¢ (5 (30 By ) ) meams (TP Bp(0)) 2 1000,
and if o € [$,1],
p(as) = capz (Olé (iF N Ba(x))> N capz <1F N Ba(x)> < ed(s),

Step 2. By (3.66)

F F
capz g (d N Bl(x)) < ccap: (s N Bl(x)) for all s € [dpt1,dn12],
n+1 q

and n < a;. Then
dn+2 9 2 F
c/ s Te T eaps < N Bl(:n)> sds
a7 S
dn+1

F dnt2 v 2 2
> capz o < N Bl(x)> / sV Te i sds.
q’ dn+1 dni1

Because N — q_% >0 as q > q., we obtain

~
ISH
9
-
®
|
|3

dn+2 2 2 2
N——2_ _s° _n+2 N——=5
/ s ale asds>e 4 d, Ydpyo — dpy1) > —
dn+1 €

which implies (3.64). O

3.3 Estimate from below

If 1 is a bounded nonnegative g-admissible measure, we recall that u, is the solution of
(2.89). The maximal o-modertae solution of (2.1) with an initial trace vanishing outside
a closed set F' C RY is denoted by u; and defined by

up =sup{u, : p € sm’;, and ¢-admissible s.t. u(F°) = 0}. (3.68)

The main result of this section is
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Theorem 3.21 Letq > q. andT > 0 Then there exists a positive constant C' = C(N,q,T)
such that for any closed set F C RV,

up(z,t) > CWg(z,t) for all (z,t) € Q. (3.69)

We first assume that F' is compact and we denote it by K. If y is ¢- admissible and
nonnegative, u, < Hfu]. Since
uy = Hip] — Gluf],

where G is the Green parabolic heat potential, defined by

_lz—y

t t 1 77? ) .
G[f](x,t):/o H[f(.,s)](x,t—s)ds:/o /RN m@ =) f(y,s)dyds (3.70)

for all (z,t) € Qoo, there holds

up(w, ) > Hlp](, t) — G[(H[p))!](z, t)

S (L JQV/ ezl (y)
“\ant)  Jan© HY (3.71)

t 1 layl? 1 2 I
0 JRN (4m(t —s))2 (4ws)2 JRN

for all (z,t) € Q. The main idea of the proof is as follows: for any (z,t) € Qr construct
a ¢ -admissible bounded measure p = p, + such that

up(z,t) > CWg(z,t) for all (z,t) € Qr, (3.72)

and
Gl(H[ptz,e])") < CH[pize]  in Qoo, (3.73)

with constants C' depending only on N, ¢ and T. From this first estimate to replace jiz ¢
i
by €py ¢ with e = (2C) «=1 in order to obtain

1
Uepy, > iH[eum] > —Wk.
If such an estimate holds, it will follow that
C
ug 2 5 Wk (3.74)

3.3.1 Estimate from below of the solution of the heat equation

The slicing of RV used in the previous section is the intersection with RY x {0} of an
extended slicing of Q7 that we construct as follows: if K is a compact subset of RY,
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= (z,t), we define dg, A, d,, as in Definition 3.17 and a; as in Theorem 3.20.
Let a € (0,1) to be fixed later on. For n € Z we set

BQT (m )\B2 —(m) ifn>1
T"_{B? HE \B2_ . (m) ifn<0
=i al=ny/t =

and
ﬁ:%ﬂQt if n € Z.
For any n € N, and m = (z,t) € Qr, we recall that

Q,=Kn Bi/m(m) = KN By,,,(2),

and
K, =KNTy1=KnN(Ba,,, (x)\ Bq,(z)) .

Let v, € ML (RY) N B Y (RY) be the capacitary measure of the set d |, K, (see [1,
Section 2.2]). Then v, vanishes outside dn}rlK and satisfies

1
vo(d 1 K,) = cap%q,(d;}rlf(n) and HVnH 2 = <cap%,q,(d;}r1Kn)) . (3.75)

n+1 (RN)

Let u,, be defined on any Borel set A C K, by

2

N-Zo
/-LH(A) = dn+1q71 Vn(dn—ll—lA) (376)
We set .
HeK = fn,
n=0
and

MtK ZH/-’LTL

Proposition 3.22 Let g > q., then there holds

]_ at _n+41 N** (dn+1>
> e 1d_""ca ¢ or all (x,t) € . 3.77
a2 g 2 ey (et ) Prall @ €Qr G
Proof. We have
1 _lz—yl?
Bal(e.0) = o [ )
7 n

Furthermore

z—y|? 2
/ 67‘ 4ty| dlu,n(y) < <max{e a1y e Kn}) Mn(Kn)

2

2 N—_2_
< <max{e iy € Kn}> d, """ cap: q/(d;}rlKn),
q’
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by (3.75) and (3.76). Thus

_lz—y|? n+1

/ e 1 dun(y) <e 1 d

q

—1 —1
n+1 Cap%,q’(dn—‘rlKn)?

by the definition of K,, and d,,, and (3.77) follows by the definition of p k. O

3.3.2 Estimate from above of the nonlinear term

We write (3.71) under the form

q

up(, t) > Hlp)(x, t) —/0 A @yt =) > Hlual(y,s) | dyds (3.78)

ne”L
=1 —I.

neAg

We recall that p, =01if n ¢ Ax = NN[1,a¢. Then

q

1 t _le=yl?
b= [ [ -9t T[S Hunl) | dyds
(4m)= Jo JrN nEAx (3.79)
201
S N (']5 + Jé)a
(4m)%
where
q
_lz—yl
Jp = Z// (t — 3>%6 pTe=) Z Hipn](y, s) | dyds,
pez? 7 Tp n<p+e
and
, q
_lz—yl
B=Y [ [ 9¥e T (S wpuls) | s,
PEZL Ty n>p+~
in which expression ¢ € N will be fixed later on.
Lemma 3.23 Let 0 <a <b andt > 0, then
o =t if 2> 1
max{a26£a:0§0§t,at§p2+a§bt}: IN 5 N
<) e 2 if oy <1
at
(3.80)
Proof. Set
2
j(p> U) = 0_%6_%’a
and

Kabt = {(p,0) €[0,00) x (0] : at < p* + o < bt}.
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We notice that, for fixed o, the maximum of J (., o) is achieved for p minimal. If o € [at, bt],
the minimal value of p is zero, while if o € (0, at), the minimal value is v/at — s.

N a
- Assume first @ > 1, then J (at —o,0) = eto te 4 . Thusif1 < 577+ the minimal value
- N a
of J(Vat —o,0) is e i (%) *, while if 55 < 1, this minimum is eit"2e d.
- Assume now a < 1, then

max{J(p,0) : (p,0) € Kaps} = max{ max J(0,0), max J(vat — 0’,0’)}

o€(at,t o€(0,at

N
N _1-2nv (2N 2
=max< (at)"2,e & | —
at
_1-2nv (2N 2
=e 4 — )
at

From these two estimates, (3.80) follows. O

2

Remark. The following variant of Lemma 3.23 will be useful in the sequel: For any 6 > ﬁ,
there holds

N
2

max {7 (p,0) : (p,0) € Kaps} < €7 <2]ja> ed if fa > 1. (3.81)

Lemma 3.24 There ezists a positive constant C = C(N,q,¢,T) such that

Gt ON__2 1i(n—b) K
Jo<CEE Y dy e T aape (d> - (3.82)
n=1 ! n+1

Proof. The set of the indices p for the summation in J; is reduced to ZN|[—¢+2,00), thus
there holds Jy = Jy ¢ + Joy where

q

0 2
e—y|
Jie= // (t—s) Fe i D Hipal(y,s) | dyds
p=2—0" Ty n<p-+e
and
[o@) 2 q
eyl
Jz,z:Z// (t—s)"Fe a0 > Hlunl(y, s) | dyds.
p=1 P n<p+<

Ifp=2—p,..,0,
(y,8) €T = ta> ® < |z —y|* +t— s < ta™ 2,
while if p > 1,

(y,8) €Ty = pt<|z—y>+t—s< (p+ 1)t.
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By Lemma 3.23 and (3.81), there exists a positive constant C' = C'(N, ¢, «) such that

N ey N a2
max§ (t—s) 2e @) i (y,s) €T, p <Ct 2e 1, (3.83)
whenever p =2 —¢,...,0, and
_lz—yl?
max {(t — s)_%e i (y,s) € 7;*} < Ct_%e_%, (3.84)

when p > 1.
Whenp=2-1¢,...,0

p——1 4
( > Hlual(y, ) Z Y, )5 (3.85)

n=

—

where C' = C(gq,¢) > 0, therefore

p—L£—1

a2-p
J1Z<Ct Z e Z HHUn ”L‘IQT
p—2 4
0 e
<t ZHH pallfaon D €7 (3.86)
p=n—_(+1
_N
<Ct ze ZHH/M HLq (Qr)

When the set of indices p is not upper bounded, we introduce some extra parameter to be
made precise later on. Then

p—0—1 q p—L—1 qd p—L—1
(ZHW ) (Ze4> Z pn])? (Y, 9)- (3.87)

n=1

Remembering thet p, = 0 if n > a4, we obtain that there exists C' > 0 depending also on
0 such that

00 p—~L—1
_N 8(p+e—1)g—p q5n
Jag < Ot Ze * Z e 1 ||Hlun] HLq (Qr)
N x - > S(p+e—1)

_N _gon S(p+e—1)g—p

< Ct Z E 7798 [ S (3.88)
p=n—{(+1V1

<Ct 2 Ze ||H[Mn”|Lq (Qr)°

We chose 0 such that 6/g < 1. Combining (3.86) and (3.88) and using Lemma 2.12 and
(3.75) and (3.76) we obtain (3.82). O
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The set of indices p such that the term p, is not zero in the summation J; is Z N
(—o0,a; — £]. We write
Jp=Ji0+ Joy

with
P= lo—y[? ad !
Te=Y [ [ =9 5 @5 S By
—00 P n=1Vp+¢
and
q
atfé N 7‘17“2 o0
YYEDD // (t—s)"ze @ | " Hlun|(y, s)
p=1 Y n=p+~£
Lemma 3.25 There ezists a positive constant C = C(N,q,l) such that
a
1_&2 _(1+ﬁ0)<”*h)+ Na—2d' K
']{,K <Ct s Ze : dn—gl ! Cap%q#]' <dn—7:1 ) (3.89)
n=0
_q-1 — 2q(¢+1)
where By = 4= and h = e
Proof. Since
(y,s) € T, and (2,0) € K, = |y — 2| > (Vn — a PV, (3.90)
there holds by Lemma 3.23,
1 _ (Wn—a=P)% _N _(Yn—aTP)?
Hpn](y, s) < —e s pn(K,) <Ct z2e T un(KG).
(4ms)=z
Let {e,} be a sequence of positive numbers such that
o
A = Z €n < 00,
n=0
then
N B e Nt
Jie < CA t Z // (t—s) 2e 49 Z €, %e 1 (un(Kp))? dyds
p=—00 3 n=1Vp+{
PN o) 0An—¢ q(\/ﬁ 0 P2 la—y[?
SCAJ’t*TZe Z e // (t—s)” 26 A=) dyds
n=1 p=—00 3
7 Ny & atvi-n? _le-yl?
<CAft 2 Z en (pn(Kyp)) e // (t—s) Ye AT dyds
n=1 UP<0T
L Ng a(v/i-1)?
SCASH ™2 ) g% 1 (un(Kn))".
n=1

(3.91)
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Set h = F5) and Q = 2, then g(y/n — 1)? > Q(n — h)y for n > 1. Then

(a=1)(n—h)4 a(v/r—1)2 (¢+3)(n—h)L
€, =€  16q —¢€,9e7 1 <e 1w .
Therefore -
N _ (14Bg)(n—h)
Jo< 0TS0 e IR (1)1
n=1
This implies (3.89) from the properties of p,. O

The estimate of the term J} , is more involved. In order to help the reader to follow
the idea, we first give a proof in dimension 1.

Lemma 3.26 Assume N =1, ¢ > 3 and { is an integer larger than 1. Then there exists
a positive constant C = C(q, ) such that

K,
JQ@ < Ct 2 de 4dn+1cap2 / (dn+1> . (392)

Proof. If p>1,n>p={and if y,s) € T} and z € K,, there holds |z — y| > V/t,/p and
\y—z|>\f(\f—\/p—|— I). Therefore

v at 1 _ (a2 !
n—+p
Jos <C\[Z / T —e 4s tn(Ky) | ds.
NG
n= p+€
Let € € (0,q) be some parameter to be made more precise later on, then
q
Il ey VS
Z ﬁe fin (Kp)
n=p+~{
a
X (/% b (VA—y/FD2t
€q P n—+/p
<| X e s~ He ORIy, (K)1
n=p+{ n=p+~{
By comparison between series and integrals we have
2t _ed (Vr—vpTD)?%t e (VE—vBFD2t
Z e is < e is dx
n=p+~ p+e
o0 _€qzt th
§2/ e s (v++/p+1)dz
Vp+i—/p+1
2 2
475 —Eq/ WpHl—vp+1)7t Vp+1>t 00 Eq zt
< i€ B +2Vp+ 1) B e dx

(VpFI—/pFD) %t
<C 7(;04;1)5 el S
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Set ge = q — ¢, then

, 0
_4 q1_4g _ ., (Wn—vpFD)7t \/p+)
Jé,ZSCG Ttz E g /\/ (t—s)e ) S)e e ds,
n:Z+1

where C' = C(¢,q) > 0. Since

>2

_ (VAa—VpFD3t /Fr f\/er
/\/ t—se4(f Tea /\/ 1—364“ e ds,

we can apply Lemma 3.34 with a = 3, b= 3, A= \/p, B = /¢(\/n — /b + 1). For such

a choice,
(-1 e
Bzwqiwpw—mmz(\/%f:»m:(z—wqi,
and
\/ A \/ B <x4/23 vn—/p
A+BVA+B ~ vn '
Therefore

__pt _ /pET)2

/t e 4<i*5>6—q(\f 4f+1) td < C’W Vin—/p _ (P Vae(Va—y/p i)

s < e 4 .
0 s4(t — s) Vn

This implies

at

Jhy < O3 Z z_:

n=¢+1

(VT (Va—/pF1)?
T V- e T (3.03)

where C'= C(e,q,¢) > 0. Then, by Lemma 3.35,

n

Ty, < CtE n'T e (pn(Kp))". (3.94)
n=0+1

q—3

Replacing p,(K,) by its value dﬁcap 24 (dK—L>, the expression when N = 1 and since
q n

diam <dK—"> < 1 we obtain
n+1

— n?

q=3 q=3

t\ z t\ z =2 Kn

Gt < (1) " )= (L) T afean, (1) @9
n a? dn—l—l

and the proof follows. O

Next we give the proof for N > 2. For this task we will use again the quasi-additivity
property.
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Lemma 3.27 Assume N > 2 and £ is an integer larger than 1. There exists a positive
constant C; = C1(N, q, ) such that

K
b < Ot E 1 q — . .
oy < Ch e id et capi’q <dn+l> (3.96)

Proof. As in the prof Theorem 3.18 there exists a finite number J depending only on the

dimension N of separated sub-partitions {G)Zn};{:l of the rescaled sets T}, = "T“Tn

by the N-dimensional balls B (@, ;) where dp; = /" an . |an;| = 3(dn + dny1) and

|an,j—ank| > n4—$1. Furthermore #0},, < Cn™¥"'. We denote K,, ; = K,NB ﬁ(a”’j)'
J J

We can write p, = Z MZ and accordingly Jé,lz ungfg where ,uz = Z fin; and the
h=1 h=1 jeer

fn,j are the capacitary measures of K, ; relative to By, j := Bst (ay, j, which means
5
1
Bhn,j e
Vnj(Kng) = capy” (K and (vl = (Capz ; (Kn,j) : (3.97)
77 Y(By,;) PR

Thus

at—¥4

2 0o J
=3 / / (o Ee T [ S Y H s | dyds. (3.99)

n=p+Lh=1jeGth} ,

We denote

Z// T Z S Hiny(y, )] | dyds.

n=p+{ j GGthh,n

Since J depends only on N and g,

J

! th

Jop < CZ Jos
h=1

If n and p are such that n > £+ 1, we set
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Then

Z/ _lusf? dul(2) = Z Z H(pn,;(2)]

n=p+£ n=p+£ jthhf,n

S5

n=p+{jeGihl,,

x Z N T T (g (K g))?

n=p+£ jeGth} tn
>y e

< C\ / P (3.99)
—p+€gthhh

where C' = C(e,q,N) > 0. If y € T),, let 2z, € T}, such that |y — z| = dist (y, 7)) hence
VIV —Vp+1) <ly— 2 < ViV - Vp+1).

t(p+1 .
Let Y = ‘(; )y, e = % and, for integers k € [—n,n|, by = k—\/*/ge. We denote by

H, j the domain in RY limited by the hyperplanes orthogonal to e going through the
points L\}%ﬂe and L\}%ﬁe, and by G, ;. the spherical shell obtained by intersecting the
spherical shell T,, with H,, ;.. The number of points a, ; belonging to G, j is smaller than
C(n+1—|k[)N=2 where C = C(N) > 0. Let A, be the set of indices j € O, such that
anj € Gy . Note that in a,; € Gy, it is a consequence of Pythagora’s theorem that
A2 . is larger than t(n +p+1-— 2l<:p+1). Therfore

n,J,y
€q ! (n4p+1-2k/pTI)t

Z > e e Z Z (n+1— k)Y vn . (3.100)

n=p+{ jEO¢n n=p+L k=—n

‘ =

Q=

where € > 0 will be made precise later on.
Step 1. We claim that

Case N = 2. Summing a geometric series and using the inequality f— <1 —|— = on (0, 00),
we obtain

eq/\/\;}?t 9

ed'ky/pFIt e/ VpFit e 2sVn eq’ V/pTIt Sv/M

Z e QSf < [ . 21\; W S e . 21; <1 /t\/\/;l> (3101)
k=—n e 2svn ! “ Pt

Therefore using comparison between series and integrals,

i Z o—cd' My<o Z ( )e—eq'W—{;W

n=p+¢ jeGthl, n=p+¢{

P VY Ve Cs [*° i (a—vpiD%e
< C/ e L5 d:):—i—/ Vrwe s dx.
+1 t\/ﬁ p+1

(3.102)
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Next

oo _ 2 00 B 2
/ efeq/(f \/45-&-1) tdx _ 2/ eieq/ (y \/f:-l) tydy
p+1 vp+1

o0 ’L% & /th
=2 /0 e U5 ydy +24/p+ 1 /0 e 5 dy (3.103)

2 oo 2
_ % ’qu%zdz +1/ (pt1s / e~ 1T dz,
t Jo t 0

and
& cq' WE=VBED?t ¢p+ )2t e =vPED?
e~ Vaxdr =2 e sy dy
p+1 Vp+1

oo , 2t
2/ e (y+\/p+1)dy
0

o0 /y2t 2 o0 /y2t
4/ e U ydy+4(p+1) / e Ui dy
0

3
52 —eq' 5 2 ot
4(t) /0 4zdz+4p+ \/>/ 4dZ

(3.104)

IN

IN

Combined with (3.102), this inequalities imply

Z > e i Z? (3.105)

n=p+L jE€EOn

Case N > 2. The value of the right-hand side of (3.100) is clearly an increasing function
of N, hence it is sufficient to prove (3.100) when N = 2 + 2d with d € N,. There holds

n

eq ket /pF1 eq/k:tx/p+1

ST (n+1- ke =i <2 n+1—k)de 2oV (3.106)
k=—n k=0
We set
itvp+1 - d_ka
a=egd VLT~ Y/ andId:l;)(n—i-l—k’)e .
Since
rar e(k—l—l)a — ek
€ = T 7 1
e® —1
we use the Abel’s transform and obtain
1 n
- (n+l)a d A _ ko
Id—ea_1<e (n+1) —|—;<(n—|—2 k)= (n+1 k:)d)e )

< ! ((1—d)e<"+1>a—(n+1)d+dea2(n+1—k)>eka).

k=1
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Therefore the following induction relation holds
de

I; <

et (3.107)

We use again the fact that

de §C<1+S\/ﬁ>
e*—1 t\/p

I;<C (1 e, <‘Z\‘/g>d+l> Io.

Therefore (3.102) is replaced by

i Z feq <C Z < Sf)dJr . €q,(\/ﬁ—47\/§m)2f

n=p+{ jeGth},, n=p+t (3.108)
A d+1
) _ B2 ) _JpTT)2t
SC’/ i dx + <Cs> / o e T g
p+1 tvp p+1

Using the estimate of the first integral of the right-hand side of (3.108) that we have
obtained in (3.103), we can concentrate on the second integral,

o0 1 (VE—vPFD“t \/T) t o0 12
/ o F e e = / (y +/p + D205 dy
p 0

+1

as in (3.101), and

/yt

/y2t 1 d 0
<C’/ e U dy+ Cp +2/ e s dy
0
Q > 122
<C<) 2/ e “UTdz
t 0
S % d o0 r 22
—l—C’(g) p1+2/ e 9 Tdz.
0

We obtain (3.99) from (3.104), (3.108) and (3.109).
Step 2. Since T, C I'p x [0,t], where we recall it I'y = Byy1(x) \ Bqg, (), the fact that
(y,s) € T, implies |x — y[* > (p — 1)t. Therefore Jé’fz satisfies

oo t 2

1—¢q q—1 N —q(N 1)+1 4\zfyl

Jih, < Ct™2 E p 2 / / (t—s) 2s e At=s
Y Fp

(3.109)

p=1 0
¢ 7‘1(176))‘%]',3/
X Y > e w o (hng(Kay))! dyds
n*p—i—ﬁje@h

(3.110)

<Ct Z Z ,und

n= p—i-Z]g@hm

n—L .t 2
_N —q(N—1)+1 4|z yl a(l- €)>‘n 23,y
XE //(t—s) rs 2 at-s e dyds,
p=1 0 FP
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where C'= C(N, q,€) > 0. Next we set ¢c = (1 — €)q. If we write

Y — anj* = [ =y + |z — an i[> = 2{y — x,an,; — )
>pt+ |z — an,j|2 -2y —x,an; — ),

we deduce
_qé\yfanyjﬁ _\zfun1j|2 Vi(p+1 ger? (y—z,ap j—z)
/ e & dy=ce is / e ds / e 2s ds,(y)dr.
Ty Vip 9B (x)
Since the value of the spherical integral is invariant by rotations in RY, we can assume
that a,; —z = (0,0,0,...,|as; — z|. We then use the spherical coordinates in RY with

center x and the representation of SV ! = {(sin¢.0,¢) : ¢ € SV 2,4 € [0,7]}. With this
representation (y — z,apn; — x) = |y — x||an; — x| cos ¢. This yields

(y—z,ay j—x K lay, j—z|rcos¢
/ i dS,(y) = N_1|SN_2/ el m sinV 2 gdg.
OBr(x) 0

By Lemma 3.36

|n] il

<y “’/’aan,j_m> N lquT
et dS(y) <O N1
0B, (z)

n,j— T2
<1 o Hemsel xl) (3.111)

N—-1

N1 T R
o ()
’an,j —

| 2 N, (Jap, j—=|—/t(p+1))2

_ely—an N-1 N-38§ 2 e 1¢ 4s

/ e 4s dy < Ct 4 p 4 ~T . (3112)
Tp

Therfore

Qn,j — x| 2

Since |an j — x| > v/tn we obtain
2

N a@-1+1 _Jz—yl? An
// (t—s)” s T e s e % dyds
Fp

Vip T LN _eNeuw __p o (Eey/GEDD?
Vi T / (t— )% 15 ity o I g )
n 4 0
1—-g(N-2) 1 (V1) o )2
2 N _gN-D+1 _ _ P _ g Wn=vpthH)"
SCNl/ (1*7’)_27' 2 e A(1-7) g e ir dr.
n 4 0

We apply Lemma 3.34 with A = \/p, B = \/gc(v/n —/p+1), b= W, a = %
and Kk = %, as in the case N = 1. For these specific values

1-(g=D(N=-1)

Al—aBl—b(A + B)a+b—2 :p¥ (\/Cﬁ (f - m))
(Vieva (va-verD)) T

+
e(p) ()
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where C'= C(N, q, k) > 0. Hence

t 2
E‘I7|
//(t—s)_gs_ge_q T dyds
0 JT,

vy N N- gDV 1)
<Ct1 ol A <n> T <\f—\/ﬁ) 2 R VE? (3.114)
R . _— e
- nLZI P \/ﬁ
N1 1 (D012
zopan 1 (V- b)

Then we deduce from (3.110), (3.114)

1=(g=1(N=-1))
2

_ (VBHVEae(Vr—vpTI)?
4 .

< Ct e

ag
_ N =)W -1)-2
Jy<otttE Y Y o a (b, (K j))?
n=~(+1 je(—)ﬁn

.y (3.115)
2¢-3 1=(@=DIN=1) _ (/F+/Fe(vr—vpFI)?
S (g e g
p=1
By Lemma 3.35 with o = 2‘1;3, b= 17(‘17;(]\771), o= i and v = ¢., we obtain
n—~_
2¢—3 1—(¢g—1)(N-1) (VP+v/@e(Vi—v/pF1))> N(g-1)+q—3 n
p T (Va—yp) eI T <O et q, (3.116)
p=1
thus
Ng ot N(g—-1) 1
h _Nag N(g=1)_ 1 _n
<t Y nm oz e Y (g (K ) (3.117)
n=~0+1 je@?’n
Because

By,

q

we use the rescaling procedure of Lemma 3.19 except that the scale factor is /(N + 1)t
instead of v/ /N 4 1, so that the sets T,, K, K, ; and Q,, remain unchanged. Using the

J
quasi-additivity and the fact that Jé}z = Z Jé{;, we deduce
h=1
N—-2. K
Ty <Ct T N ad, " eaps <”> , (3.118)
’ - a’ dn+1
n=~(+1

which implies (3.96). O

The proof of Theorem 3.21 follows from the previous estimates on J; and Js.

In the same way as for Theorem 3.8, the estimate in Theorem 3.21 admits an integral
form. Fortunately it yields the same form as for Theorem 3.20
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Theorem 3.28 Assume q > q.. Then there exists a positive constant C5 = C5(N,q,T
such for any closed subset F C RN there holds for all (z,t) € Qr,

cr  [Vtat2 oo 5 1
wp(z,t) > —2 / e s a-Lcap: <B ﬂBl(:c)) sds, (3.119)
Vi q’ S

where a; is the smallest integer j such that F' C B ().

Proof. We distinguish according ¢ = ¢., or ¢ > ¢, and for simplicity we denote B, = B,(x)
for the various values of r.

Case 1: ¢ = q. <= N — q% = 0. Because F;, = F'N (By,,, \ Ba,) there holds

F, . F o5 F N By,
it ) = o N 7)) TP \ i)

Furthermore, since d,+1 > d,,

cap:z —— | =capz — 2 ) <cap2 , | —NB |,
7 dnt1 7 dnt1 dp, - 7 \ d,

F, F F
/ > / 7HB - / 7OB 5
e (dn+1> = <dn+1 1) e (dn 1)

F
) Ze 4cap2q ( ﬂBl> Ze 4cap2q ( ﬂBl>
) 7'L+1 b}

atl

F F
>Ze 4cap2 ,( +1I’WBl>—e 426 4capzq, <d+1ﬂBl>
n mn
F F
l—e 4 Ze 4cap2 /(d 1ﬂBl>—e_zltcap§7q, (\/EﬁBl).
TL

thus

it follows

Ze 4capz7q, <

Since, by (3.66),

F F F
capz o <, ﬂB1> > capz 7 < ﬂBl) > capz ¢ ( ﬂBl) ,
q’ S q’ dn+1 q’ S

for any s’ € [dy11,dp12] and s € [dy,, dj41], there holds

n F F dn41
te” 4capz , ( N B1> > capz < N B1> / e /4 g ds
a7 \dpi1 0 \dpi1 ’

dn+1 F
> / e eap, ( N Bl> sds.
n a2 S
This implies

Viay F
Wg(z,t) > (1 — ei)t(Hg)/ e M cap, o < N Bl) sds.
0 q’ S
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Case 2: ¢ > q. <= N — q% > 0. In that case it follows from Lemma 3.6 that

F, 2N
capz (dn—H) ~di capz g (F) .

Thus

Since
capz o (Fn) > capz o (FNBy,,,) — capz g (FNBy,),

we obtain, using again Abel’s transform,

at a;,—1

_N _n _1 _N _n

t™2 Eoe feapz o (Fp)>(1—e 1)t 2 Eoe feapz o (FNBg,,,)
n= n=

Via
> (1- e_i)t_(Hg)/ e tcapz , (F N Bs)sds.
0 e’

2

Because capz , (F'N Bs) ~ s Teap g (s7'F N By), (3.119) follows. O
q’ q’

3.4 Applications
The main result of this section is the following,
Theorem 3.29 Let N > 1, ¢ > 1 and F be a closed subset of RY. Then tp = up.

Proof. When 1 < g < g, this is proved in Proposition 2.6. The principle of the proof uses
convexity and the integral forms of Theorem 3.8 and Theorem 3.21. The technique is an
adaptation that we recall for the sake of completeness of the proof in the subcritical case.
By Theorem 3.20 and Theorem 3.28 there exists a positive constant C, depending on NV,
q and T such that

up <up < Cup in Q7. (3.120)

Let us assume that up # up. By the strong maximum principle ur > up. By convexity
U=TUp— %(ﬂp —up) is a super-solution, which is smaller than up. If we set 6 := (% + %),
then 0 < 6 < 1 and fuy is a subsolution smaller than uz. There exists a solution u* of
(2.1) which satisfies

Qup <u* <u<up in Q.

Hence u* is a solution of (3.28). If i is an admissible measure vanishing outside F', then
ug,, is the smallest solution above the subsolution fu,. Thus uy, < u* < up. Since p is
arbitrary, we deduce up < u* < up, which is a contradiction. g

Another consequence of the uniqueness result is the following equivalence of the discrete
and integral capacitary potentials.
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Proposition 3.30 Assume g > q.. Then there exist two positive constants C’I, C’g, de-
pending only on N, q and T such that

2

Vitag < F
C;t_(Hg)/ SN*%e_Ecapg ¢ ( N Bl(x)) sds < Wp(z,t)
0 q’ S

V t(at +2) N 2 2

2 _s F
s ale atcapz < N Bl(l')> sds
q’ S

(3.121)

< i) /
Vvt

for any (x,t) € Qp.

Definition 3.31 If F is a closed subset of RY, we define the (%,q’)—integml parabolic
capacitary potential Wg by

s2

Dp(z) ) F
Wr(x,t — % sNﬁ%e*ﬂcapg | —NBi(x) | sds V(x,t) € Qu, (3.122
0 q7q 8

where Dp(z) = max{|z —y| :y € F}.

By an easy computation we obtain that

Viae 2 F
0 < Weg(x,t) — t_(l‘*'g)/ SN_%G_EC(IPQ y < N Bl(;z:)) sds
0 q’ S
(3.123)
t(a=3)/2(¢=1)  p2()
< C— e =& ,
Dr(x)
and
t(at+2) 2 F
0< t(1+]2v)/ sNiz%lefﬂcapqu, ( N Bl(x)> sds — Wrp(x,t)
0 NS (3.124)
t(a=3)/2(¢=1)  pZ(a)
<C—r—F—e @
Dp(x)
for some C' = C(N, q) > 0. Furthermore
e Drp(z)/Vt Ne_2 _s2 F
Wr(x,t) =t a1 s ale atcapz , < N Bl(x)> sds. (3.125)
0 o \ syt

The following result gives a sufficient condition in order that ur has a strong blow-up
(i.e. of the maximal order t~1/(¢=1)) at a point z.

Proposition 3.32 Assume q > q. and F is a closed subset of RN. If there exists v €
[0, 00) such that
F
lim cap: ( N Bl(a:)> =7, (3.126)
q’ T

7—0

then )
limta-tup(z,t) = Cy, (3.127)
t—0

for some C = C(N,q) > 0.
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Proof. Clearly, condition (3.126) implies

) F

}51(1) capz g <\/{5 N Bl(:p)> =
for any s > 0. Then (3.127) follows by Lebesgue’s theorem. Notice also that the set of
is bounded from above by a constant depending on N and gq. O

In the next result we give a condition in order that the solution remains bounded at a
point z. The proof is similar to the previous one.

Proposition 3.33 Assume ¢ > q. and F is a closed subset of RN. If

_2 F
lim sup 7 = capz . ( ﬂBl(x)) < 00, (3.128)
T

7—0 a’
then up(x,t) remains bounded when t — 0.
Remark. If we assume that f is a convex function on RT satisfying

cor? < f(r) <eprf Yr >0 (3.129)

for some 0 < ¢ < ¢ we can construct in the same way as for (2.1) the solutions uy and
up for equation
Ou — Au+ f(u) =0 in Qp. (3.130)

The bilateral estimate estimate (3.120) is still valid (up to change of the C;). Since only
convexity of f is used in the proof of Theorem 3.29, there still holds ur = wp. Similar
extensions of Proposition 3.32 and Proposition 3.33 are also clear.

3.5 Appendix

We present here some highly technical computations which are not of particularly interest
for the trace theory but are usefull in the proof of the results.

3.5.1 Generalized beta integrals

Lemma 3.34 Let a and b be two real numbers, a > 0 and x > 0. Then there exists a
constant C = C(a,b,k) > 0 such that for any A >0, B > k/A there holds

1
/ (1 _ CL')_aﬁl?_be_A2/4(1_z)€_B2/4zd$ S Ce—(A+B)2/4A1—aBl—b(A + B)a+b—2. (3131)
0

Proof. We first notice that

max {6_A2/4(1_z)6_32/4r 0<x < 1} = ¢ (B4, (3.132)

and it is achieved for 2o = B/(A + B). Set ¢(z) = (1 — z) %z be A*/41-)=B*/1z_{}yg
1 0 1
[ oz = [“o@dn+ [ owids = Loy -+ s
0 0 o
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Put
A2 B2

== 4= 1
R TE e (3:133)
then
4uz? — (4u+ B*> — A*)z + B> =0. (3.134)
If 0 < & < x( this equation admits the solution
1
r=z(u) = Su <4u + B? — A% — \/16u2 — 8u(A2 4 B2) + (A2 — BQ)Q)
u
o 00
/ (1 — z)~agbe=A*/A(1-2)=B/4v g, — —/ (1 — z(u) "% (u)"be "2 (u)du
0 (A+B)2/4
Putting 2/ = 2/(u) and differentiating (3.134),
4z(1 — x)
2 / 2 2\, _ I _
4”4+ 8uzxr’ — (du+ B —A%)r' —do =0 = —2' = WL B — A —suz’
Thus +1 b+1
o 9] 1— —a — —u
/ o(z)dz = 4/ ( x(“))2 xg“) ¢ tdu (3.135)
0 (A+B)2/a  4u+ B? — A? — 8ux(u)

Using the explicit value of the root x(u), we finally get

o Y (1 — z(u) " Ha(u) e du
/0 d(a)dr =4 /( a+B)y2/a /1602 — 8u(A2 + B2) + (A2 — B2)2’ (8.136)

and the factorization below holds
16u® — Su(A% + B?) + (A% — B?)?2 = 16(u — (A+ B)?/4)(u — (A — B)?/4).
We set u = v + (A + B)?/4 and obtain

v+ (AB + B%) /2 — \/v(v+ AB)
2(v+ (A+ B)2/4) :

|~ () = + (A2 4+ AB)/2 + /v v—I—AB
2(v+ (A+ B)?/4)
We introduce the relation ~ linking two positive quantities depending on A and B. It
means that the two sided-inequalities up to multiplicative constants independent of A and
B. Therefore

z(u) =

and

/ d(z)dx = 20~b—4e—(A+B)? /4/ ¢(v)dv  where

~ (v+(AB+B2)/2— v(v—l—AB)) (v+(A2+AB/2+\/ v+AB)
o) = e (v + (A+ B)2/4)> " \/u(v + AB)

(3.137)
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Case 1: a> 1, b > 1. First

(v+ (A + B)2/4)*0? CRACE: B)2/4) A GE By (3.139)
v(v+ AB) v(v+ k) v(v+ k)
sincea+b—2>0and AB > k. Next
(v+ (424 AB)/2+ oo T AB)) (v + A(A+ B (3.139)

Furthermore

v 2 — v/o(v — B2 U+(A+B)2/4
+(AB+ B%/2—\/v(v+ AB) =B v+ B(A+ B)/2+ +\/v(v+ AB) (3.140)
mB2“+(A+B)2

v+ B(A+ B)
Then
_ b—1
(v +(AB+ B?)/2 — \/v(v + AB))1 " ~ B2-2 (%) (3.141)
It follows “ - - ( " ))b )
~ 9 op (V+(A+ B > v+ B(A+ B))”
$(v) < CB <U TAALD) g 51
cop (DAY Ay
- v+ A(A+ B) v(v + K)

where C depends on a, b and x. The function v — (v + (A + B)?)/(v + A(A + B)) is
decreasing on (0, 00). If we set

 pb=le=vdy e Vdu
C1 = ———— and Oy = -
0 Vv +k) 0 Vu(v+k)

then
C1 < K(B*+ AB)""'Cy

with K = C1x'~?/Cy. Therefore
@
/ d(z)dx < Ce~(ATB)?/AB1-bgl-a( 4 4 B)at+b=2 (3.143)
0

The estimate of J, 4 is obtained by exchanging (A, a) with (B, b) and replacing = by 1 —x.
Mutadis mutandis, this yields directely to the same expression as in 3.143 and finally

1
/ d(x)dx < Ce™ATBP/Agl-apl=b(q | pyatb=2, (3.144)
0
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Case 2: a > 1, b < 1. Estimates (3.137), (3.138), (3.139), (3.140) and (3.141) are valid.
Because v + (v + B(A + B))’! is decreasing, (3.142) has to be replaced by

v+ (A+ B)? )“—1 (AB + B?)"™
)

v+ A(A+ B v(v+ k) (8.145)

$v) < OB (

This implies (3.143) directly. The estimate of J, 5 is performed by the change of variable
rz—1—xz. If z1 =1 — 2y, there holds

1 1
Jap = / x (1 — x)’be’A2/4xe’BQ/4(l’x)daf = / U(z)dx.
0 0

Then
1 1 __
/ U(x)dr = 2b_a_4e_(A+B)2/4/ U(v)dv where
0
- <v+(AB+A2)/2— v(v+AB)) <v+(B2+AB/2+\/ v+AB>
V(o) =
ev (v+ (A+ B)2/4)**" \Ju(v+ AB)
(3.146)
Equivalence (3.138) is unchanged; (3.139) is replaced by
(v+ (B2 + AB)/2 + /o v+AB) ~ (v+B(A+ B)"~ (3.147)
(3.140) by
2)/2 — 5 U+ (A+ B)? 14
+(AB+ A%)/2 — Jv(v+ AB) = A—+A(A+B) (3.148)
and (3.141) by
l-a o (v+AA+B)\*!
2)/2 — ~ AT 3.149
(v+(AB+A)/2 U(U+AB)) A <v+<A+B>2> (3.149)

Because a > 1, (3.142) turns into

v+ A%+ AB)* (v + B? + AB)'7?

= _ i (
U(v) < CAZ2(y A+ B)?)b-1
(v) < CAY (0 + (A+ B)) .

< Ce*(A+B)2/4A2*2b(A + B)2b72
Ua—b_|_(A2+AB)a—1U1—b+(B2_|_AB)1—bUa—1 +Aa—lBl—b(A+B)a—b

v(v+ k)

(3.150)
Because AB > k, there exists a positive constant C, depending on «, such that

e Udv

/oo ,Ua—b + (A2 + AB)a—l,Ul—b + (BQ + AB)l—b,Ua—l
0 v(v+ k)
e Ydv
v(v+K)
(3.151)

< CAalelfb(A 4 B)ab/
0
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Combining (3.150) and (3.151) yields to
1
/ U(z)de < Ce(A+B)* /4 gl-apl=b( A | pB)atb=2 (3.152)
0
This, again, implies that (3.131) holds.

Case 3: max{a,b} < 1. Inequalities (3.137)-(3.141) hold, but (3.142) has to be replaced
by

d(v) < CB22 < v+ (A+ B)? )al (v+ B2+ 4B)"!

v+ A(A+ Blia ; v(v —sz) (3.153)
< CBl_b(A + B)2a+b—3v + (A + AB)
v(v+ k)
Noticing that .
v dv 9 < e Vdv
OET <C(A +AB) At
it follows that (3.143) holds. Finally (3.144) holds by exchanging (A,a) and (B, b). O

3.5.2 Discrete generalized beta series

Lemma 3.35 . Let a, 3, v, 0 be real numbers and £ an integer. We assume v > 1,6 >0
and £ > 2. Then there exists a positive constant C' such that, for any integer n > ¢

n—~_
S (Vi — p) e M WVPEVIVIVIED) < opaBf2emon, (3.154)
p_

Proof. The function z — (vz + /7(v/n — Vo +1))? is decreasing on [(y — 1)7!, 00).
Furthermore there exists C' > 0 depending on ¢, « and § such that p*(y/n — \/ﬁ)ﬁ <

Cx®(y/n — x4 1)P for x € [p,p + 1] If we denote by pg the smallest integer larger than
(v — 1)1, we derive

n—~_

S:Zpa(f_\/ﬁ)ﬁe*(\/ﬂﬁ(\/ﬁ*vpﬂ)ﬁﬂ
=1
II;O 1 n-t
_Z+Zp (vn— /p)°e =3(vpHVA(Vr—vpFD))?
Po 1
<Zp f—\f) =0(ypHyA(Vr—ptT))?
Pt n+1—¢
+C 2(/n — z )Pe 0 WVERVAIVA—VETD)) g

Po

(notice that /n — /x =~ /n — vz + 1 for x <n —¢). Clearly
po—1
S p (Vi — p) et WPEVIVEEVIFDR < Con®(y/n — Vi = £)%e™ (3.155)
p=1
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for some Cp independent of n. We set y = y(x) = & + 1 — /z/,/7. Obviously

1 1 1
"(z) == — Va > po,
and their exists € = €(6,7) > 0 such that v2yx > y(z) > e/z and ¥/(x) > ¢/ /.
Furthermore
(y+\/’vy +1- >
VI =
v—1
vty =1) ==V +1—y
V=i = c_lf

n(y —1) +v — 2y n — vy’
Vi(y =1) = Ay +avry?r + 11—y
n(y —1) +v =2y /A — 9

N

~

since y(z) < y/n. Furthermore

n(y —1)+v =2y n — v’ =1v(Vn+1+n/A+y)Vn+1—-n/y7—y)
%\/ﬁ(\/n—i_ _\/ﬁ/ﬂ_y)v

because y ranges between vn +2 — £ —v/n + 1 — (/7 = y/nand \/pg +1—/po/7. Thus
(Vi —vE)P ~ (Va+T—vn/y7—y)’

This implies
n+1-—¢
/ 29/ — /3 )Pe—dWERWA—VEFD gy

y(n+1-2)
C/ 2a+1 W*\/»/\f ) 6—76(\/ﬁ—y)2dy

1—y(po)/v/n )
< C’n0‘+5/2+1/ (1—2)2t 24+ /1+1/n—1— 1/\ﬁ)56_75m dz.
1—y(n+1-£)/v/n
(3.156)
Moreover
y(po) 1 ( \/170>
1— =1-— (Vo +1-Y2),
NG NN N
1_y(n—€+1)_1_\/n—5+2 Vn—0+1
vn vn VY , ,
1 0—2)—/¢+1 -2 - (-1
=—— 1+*ﬁ( ) +ﬁ( )"~ ( ) +0(n=3).
VY 2n 8n?
(3.157)
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yn—t+1) oy

Let 0 fixed such that 1 — NG Jn

for any n > pg. Then

1=y(po)/v/n )
/ (1—2)22 (24 /1+1/n—1-1/,/7) e 1" dz
[4

(1 o Z)2a+le—'y6n22dz

1—-y(po)/v/n
< Ce/

, [1-y(po)/vn
< Ce effyén@ / (1 _ z)2a+1dz
0
< C e max{1,n~o"1/2},
Because v0% > 1 we derive
1—y(po)/v/n )
/ (1—2)22t (2 4+ /1+1/n—1-1/,/7)Pe 7" dz < Cn=Pe=om,  (3.158)
6
for some constant C > 0. On the other hand

0
/ (122t (z 4+ T+ 1/n—1-1//7)Pe 1 dz
L=y(n+1-0)/yn

0
< Cg)/ (z+ 1+ 1/n—1-1/ /7).
1-y(n+1-0)/v/n

The minimum of z — (2 4+ y/1+1/n —1—1/,/7)" is achieved at 1 — y(n + 1 — ¢) with

value
VIU+1) +1-¢
Qnﬂ

and the maximum of the exponential term is achieved at the same point with value

+0(n™?),

e MOHEEDVIHLI=O/2(1 4 6(1)) = Ce ™ (1 4 o(1)).

We denote
0

%m:LHAﬁ_¢iHm,wdh:/’ (5 — 2 )P
I—y(n+1-6)/v/n

Since 1 —y(n+1—4¢) > 1/4/2v for n large enough,

[4
Ig < /2y (z — z%n)ﬂze_w"%dz
1—y(n+1-0)/vn

— /o~ 0
= 3 [(Z ka n)Pemom="
2n~yo ’ 1—y(n+1—0)/v/n
0
ﬁv 27 (Z o Z%n)ﬁflzef'yénfdz
2090 J1_y(my1-0/vn
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But 1 —y(n+1—2)/v/n—2y,=—1)(1—-1/,/7)/2n, therefore
Ig < Cin =P~ te™ 4 BCIn g 4. (3.159)
If 6 <0, we derive
Iﬁ < Cln_ﬁ_le_dn,

which inequality, combined with (3.156) and (3.158), yields to (3.154). If 5 > 0, we iterate
and get
Ig < Cin~ P le™m 4 O~ (CinPe ™ + (B — DCin 5 )

If 5 —1 <0 we derive
Iz < Cyn B-le=om 4 ClC{n_l_’Be_‘s" = C’Qn_ﬁ_le_é",

which again yields to (3.154). If 3 —1 > 0, we continue up we find a positive integer k
such that § — k < 0, which again yields to

Iﬁ < Cknfﬂfleién

and to (3.154). O

3.5.3 Generalised Wallis integrals

Lemma 3.36 For any integer N > 2 there exists a constant cy > 0 such that

T mecosf _:. N—2 e
< -
/O emeost ginN=29 49 < N Ym > 0. (3.160)

™ ™
Proof. Put Iy(m) = / emes0sinN=20dp. Then Th(m) = / €™ cos 0 df and
0 0

TV (m) = / emeost cos? 0 df = Ty(m) — / emeost in2 g 4o
0 0

1 s

=To(m) — — [ e™%coshdh
mJo
1

= Ts(m) — Elé(m)

Thus Z; satisfies a Bessel equation of order 0. Since Z3(0) = m and Z5(0) = 0, 7175 is
the modified Bessel function of index 0 (usually denoted by 1) the asymptotic behaviour
of which is well known, thus (3.160) holds. If N =3

™ ___mcosfT 2sinh
I3(m)=/ emcosgsin9d9:[ ¢ ] — ZSImAm
0 m 0 m
For N > 3 arbitrary
T-1d N — i
In(m) = ; H@(em"s@)sm“%cze: 73 i €m0 cosfsinV 10 dh.  (3.161)
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Therefore,
1 s
Zy(m) = / e cos0 df = Th(m),
m.Jjo

and, again (3.160) holds since I)(m) has the same behaviour as Ip(m) at infinity. For
N2>5

_3-N

Tn(m) = N -3

m?2

lis ™ d
"0 cog 9 ginV P 0} + / emeost = (cos 0 sin’V —? 0) do.
0 0 do

m2
Differentiating cos #sin™ = # and using (3.161), we obtain

4 sinhm  4sinhm

Zs(m) = e e
while
Tn(m) = UV__ilgv__S)(IN_40n)—-IN_2@n», (3.162)
for N > 6. Since the estimate (3.160) for Zs, Z3, Z4 and Z5 has already been obtained, a
straigthforward induction yields to the general result. O

Remark. Although it does not has any importance for our use, it must be noticed that Zy
can be expressed either with hyperbolic functions if NV is odd, or with Bessel functions if
N is even.

4 The precise trace

In the supercritical case ¢ > g.,Theorem 2.16 has pointed out the necessity to introduce a
finer definition of the initial trace which could distinguish among solutions of (2.1) which
have the same initial trace in the sense defined previously.

4.1 Lattice structure of the set of positive solutions of (2.1)

The idea of analysing the algebraic structure of the set of positive solutions of the semilin-
ear elliptic equation (1.15) is due to Dynkin [24]. It was intensively used by Marcus and
Véron [43] in the construction of the precise boundary trace for such equations.

Definition 4.1 We denote by U (Qr) the set of nonnegative solutions of (2.1). All the
elements of Uy (Qr) belong to C*1(Qr).

By a subsolution (resp. supersolution) of (2.1) in Q7 we mean a function u € L] _ satisfying

// (—(0¢ + AQu + u|"Mu¢) dedt <0 (resp. >0) for all ( € C(Qr), ¢ > 0.

Q

' (4.1)
Lemma 4.2 Let u be a subsolution of (2.1) in Qr, then

lu(z, t)] < (t(qll)> o for almost all (x,t) € Q7. (4.2)
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Proof. Because of Kato’s inequality, the function |u| is a subsolution of (2.1). Hence we can
assume that u is nonnegative. Let {p.,} (e, > 0) be a sequence of C°(RV*1!) nonnegative
functions with support in B, and total mass equal to 1. We assume that €, — 0, hence
Pe, — 0o is the sense of distributrions. Such a sequence is called a sequence of mollifiers.
If €, < € the distribution u, := u * p., is well defined and is C* in RY x (¢, T') where, by
convexity, it satisfies

Oy, — Auy +ul < 0.

As in the proof of (2.14), for any y € RY, the function (z,t) — ¢oo(t — €) + wr(z — )
where wg is defined in (2.23) is a supersolution of (2.1) in RY x (e, T') which dominates wu,
at t = € and for |z — y| — R. Hence it is larger than w, in this domain. Letting R — oo
and € — 0 yields

Un(x,t) < Ppoo(t) for all (z,t) € Qr.

When €, — 0, u,, converges to u a.e. in Q7 and in L} (Qr). This implies (4.2). O

loc

Proposition 4.3 Let T > 0 and v € L] _(Qr) be nonnegative.

(i) If w is a subsolution of (2.1) there exists a minimal solution v above u, that if U is any
solution larger than u, then u < v < U.

(i) If u is a continuous supersolution of (2.1) there exists a mazimal solution w dominated
by wu, that is if U is any solution smaller than u, then U < w < u.

All the above inequalities hold both a.e and in the sense of distributions.

Proof. (i) We use again the subsolutions u, := u * p.,, and for ¢, R > 0 we denote by
Up = Ve, ¢,g De the solution of

Ovy, — Avp, + vk =0 in Br x (¢,T)
Up = Up on BR x (¢,T) (4.3)
Un(.y8) =up(.,s) in Bp

Then v, > u, by the comparison principle. Furthermore v,, satisfies
Un(m7t) < Qboo(t - 6) + wn(x)

where wg is the large solution in Bp defined in (2.23). Hence it is locally bounded in
Bpr x (¢,T) for any € > 0 and R > 0. Hence up to a subsequence {R;} such that R; — oo,
the sequence {ve, e r,} converges locally in C*'(RY x (¢,T)) to a nonnegative solution
v =,  of (2.1) in RN x (¢,T). Furthermore

Ve (T, 1) > up(z,t) for all (z,t) € RY x (¢,T).

Since v,  satisfies the uniform parabolic a priori estimates and the associated compactness
properties, we infer that, up to a subsequence v, . — ve locally in C*>Y (RN x (¢, T)) when
€, — 0. As for u, it converges to u a.e. and in L (RV x (¢,T)) for any p < oo.
Furthermore

ve(x,t) > u(x,t) for all (z,t) € RN x (¢, T).

By letting ¢ — 0 using again the local compactness of {v.} in C*!(Q7), we obtain that
up to a subsequence, v, converges locally to a nonnegative solution v of (2.1) in Q7 which
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dominates u therein. By construction v is smaller than any element of U4 (Qr) which
dominates u.

(ii) For €, R > 0 we denote by w := w, r the solution of

Ow — Aw —wl =0 in Br x (¢,7T)
w=u on 0Bg x (¢,T) (4.4)
w(.,€) =u(.,e) in Bp

Note that the boundary values of w are well defined since u is continuous. By the com-
parison principle
0 <wer <wuin Br x (,T).

Furthermore w, r dominates in B x (¢,7") any nonnegative solution U smaller than wu.
Since u is continuous in @7, it is locally bounded therein. As is (i) the set of functions
{we.r} is eventually locally compact in C%H(RY x (0,7)). We conclude as in (i). O

The following result has already been proved but we mention it for the sake of com-
pleteness.

Proposition 4.4 Let u and v be nonnegative, locally bounded functions in Q.

(i) If u and v are subsolutions (resp. supersolutions) then max{u,v} (resp. min{u,v}) is
a subsolution (resp. a supersolution).

(ii) If uw and v are supersolutions then u+ v is a supersolution.

(i5i) If u is a subsolution and v is a supersolution then (u — v)4 is a subsolution.

The following notations have been introduced by Dynkin [24].

Notations Let u and v be nonnegative, locally bounded functions in Q7.

(i) If u is a subsolution, [u]; denotes the smallest solution dominating w.

(ii) If u is a continuous supersolution, [u]" denotes the largest solution dominated by u.
(iii) If u and v are subsolutions then v V v := [max{u, v}];.

(iv) If  and v are continuous supersolutions, then uAv := [min{u, v}]" and u®v = [u+v].
(e) If u is a subsolution and v is a supersolution then u © v := [u — vl;.

Proposition 4.5 The following properties hold
(i) (uVo)Vw=uV(vVw)=[max{u,v,w};,
(i4) (u Av) Aw = u A (v Aw) = [min{u,v, w}]’.

Proposition 4.6 (i) Let {ur} be a sequence of positive, continuous subsolutions of (2.1).
Then U := sup uy is a subsolution. The statement remains valid if subsolution is replaced
by supersolution and sup by inf.

(ii) Let T be a family of positive solutions of (2.1). Suppose that, for every uy and us
belonging to T there exists v € T such that

max{uj,ug} < v (resp. min{uy, ug} > v).
Then there erxists a monotone sequence {u,} C T such that

up T supu, (resp. uy | inf u.)
T T

Therefore supyu (resp. infru ) is a solution.
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Proof. (i) We set
vj = max{ui, ug, ...u; }.

By induction on j v; is a subsolution and the sequence {v;} is non-decreasing. Because
of universal upper bound (2.14) v; converges to some function v when j — oo, and v is a
subsolution which coincides with U. The proof for the min assertion is similar.

(ii) is already proved in [23] and we recall the construction. For every z € Qr, we set
l(x,t) = sup{u(z,t) : w € T}. Let A= {(zn,t,)} be a countable dense subset of Q7. For
every n there exists a sequence {u, ,} C T such that

sup{tmn(Tn,tn)} = M wpyp(zn, ty) = zn, ty).
m m—00

We set Uy, 1 = Um,. Since T is closed with respect to the relation V, wp, = Um,1 V Um2
belongs to 7 and the sequence {u,,} is increasing and it satisfies

lim  wp, (v5,t5) = €(xj,t;) for j=1,2.

m;—r00
By induction we construct an increasing subsequence {u,,, } of T such that

Hm  wp, (Tn, tn) = U(xn, tn) for all n € N,.
My — 00

Let us denote by Ty the countable subset of 7 of functions {u,,,} and set v = sup Tp.
Then v(xy,t,) = l(zp,ty). Using the universel estimate (2.14) and regularity results
for parabolic equations we infer that the set 7y is relatively compact in the C’i’cl(QT)—
topology. Hence, there exists a subsequence sequence of 7y still denoted by {um,, } which
converges in this topology to a function w which is a nonnegative solution of (2.1) and
such that wp,, (Tn,tn) = w(Tn,ty) as my, — co. hence w(xy,ty) = €(Tn,ty). We claim
now that w = supyu. Indeed, if u € T, w(zp,ty) > lxn, tn) > u(zn,ty). By continuity,
w(zx,t) > u(x,t) for all (x,t) € Q. Thus w is an upper bound of 7. It is clearly the least
upper bound because any other upper bound u € Uy (Qr) is larger than wu,,, on A, hence
larger than w on A, hence larger than w by density and continuity.

The proof concerning the existence of the greatest lower bound is similar if 7 is stable

under A.
O

The set U4 (Qr) is partially ordered for the relation <. Since for any u,v € U (QT),
uAv and uV v belong to Uy (Qr), it is a lattice. Since, by Proposition 3.4, any nonempty
subset T of U (Qr) admits both a least upper bound (the supremum) and a greatest lower
bound (the infimum), it is a complete lattice. In the case of semilinear elliptic equations,
the similar result is to be found in [23, Theorem 5.1].

Corollary 4.7 The set U (Qr) is a complete lattice stable for the laws @ and ©.
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4.2 Fine topology and Besov spaces
4.2.1 The % ;-fine topology

It is classical in potential theory that there exists a topology which is naturaly adapted
to the study of subharmonic functions. This topology was initially introduced by Henri
Cartan and its definition is expressed in terms of the Newtonian capacity cap; 2. In the
study of the initial trace the fine topology is the one associated to the capg & capacity. In

this section we assume ¢ > ¢. and we note ¢/ = qiil.

Definition 4.8 A set F C RY is (%,q’)—thin at a € RN if

1 [capz ,(F N Bgla))\ "
/ T % ¢ oo, (4.5)
0 sN_F S

If the above integral is infinite, the set I is (%,q’)-thickz at a.

A set Fis a (%,q’)— fine neighbourhood of one of its points a if F'¢ is thin at a.

A set F is (%,q’)—ﬁnely open, if F€ is thin at any point a € F . It is (%,q’)—ﬁnely closed
if it complement F°€ is (%, q')-finely open.

Notations and vocabulary For simplicity we will denote by T, the cap2 q,—ﬁne topology
q b

associated to these notions (see [1, Chapter 6] for a detailled study of these notions).
Let A, B C RN
a) A is T,-essentially contained in B, denoted by A C? B, if

capz ,(ANB®) =0.

q b

b) The sets A and B are T,-equivalent, denoted by A ~9 B if
capz ,(AAB) where AAB := (AN B°)U(BNA).

c) The closure of a set A in the T, -topology is called the T,-closure and denoted by A.
The T4-interior of A is denoted by A°,
d) If € > 0, we denote by A, the e-neighbourhood of A in the standard Euclidean topology
associated to the distance function.
e) The set of all T,-thick points of A, is denoted by by(A), is the set of points a of A such

that A is (%, ¢')-thick at a. The set of all T,-thin points of A, is denoted by e4(A). The
next result is essentially due to Kellog ([1, Corollary 6. 3.17]).

Proposition 4.9 There holds
A is Ty-open <= A Cey(A°), B is Ty-closed <= by(B) C B.

Therefore B
A=AUby(A) A% = Ane, (A°).

Furthermore the capacity capz g Dossesses the Kellog property
q7

capz o (ANey(A)) = capz o (A\b5(A)) = 0. (4.6)
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Proposition 4.10 (i) If Q C R is T,-open, then e4(Q°) is the largest T,-open set that is
equivalent to Q.
(11) If FF C R is T4-closed, then by(F) is the smallest T,-closed set that is equivalent to F.

It is often easier to use the related notions of quasi open or quasi closed sets although
these notions are not equivalent. All details to be found in [1, Chapter 6].

Definition 4.11 A set F C RV is L q-quast open if for any € > 0 there ewists an open set
G C RY wverifying cap- o (G) < € such that F N G€ is open in the relative topology of G°.
q7

A set F' is Ty-quasi closed if F€ is (%,q’)—quasi open.

A property P holds T4-quasi everywhere in an open set Q C RY if it holds in Q except on

a set with zero capqu,—capacity. Abridged Ty-q.e.

A function f defined Ty-q.e. in an open set Q) C RN s Tq-quasi continuous if for every

€ > 0 there exists an open set G C 2 such that cap2 q/(G) = 0 with the property that f|ge
q?

is continuous in G° for the induced topology.

2
Proposition 4.12 Any function f in Ba'? () is T,-quasi continuous. Thus every el-

2 7
ement of B (Q) admits a T,-quasi continuous representative. Let fi and fo be two
T g-quasi continuous functions which coincide a.e. in ), then they coincide Ty-q.e.

Remark. The notion of (%, ¢')-quasi openedness defines a quasi-topology. It is not a topol-
ogy because an arbitrary union of quasi open sets may not be quasi open. However a
countable union of quasi open sets is quasi open.

The next result is proved in [43, Proposition 2.1]. We list below a series of results
concerning the € ,-topology and T4-quasi topology which are used throughout this section.
Their proofs can be found in [1, Proposition 6.4.13] for assertion (i), , [1, Proposition
6.4.12] for assertion (ii), [1, Proposition 6.4.9] for assertion (iii), [1, Proposition 6.4.11] for
assertion (iv). Assertions (v)-(viii) are classical in the theory of capacities as exposed in
the same book.

Proposition 4.13 Assume ¢ > q..

(1) Every T,-closed set is T4-quasi closed.

(i1) If F is T4-quasi closed set, then E ~1 E.

(1it) A set F is Tq-quasi closed if and only if there exists a sequence of closed set {F,}
such that Cap%q,(F NES) — 0.

(iv) There exists a positive constant C such that for every set F,
capz q,(ﬁ) < Ceap: o ()
q’ q’

(v) If E is T4-quasi closed and F ~1 E, then F is T4-quasi closed.
vi) If {E,} is an increasing sequence of Borel sets of RN, then

capz o (Lnj En> = nh_{)go capz ,(Enp).

q’
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(vii) If {K,} is a decreasing sequence of compacts sets of RY, then

BT I
n
(viii) For every Borel set F C RN (and more generaly for every Suslin set), there holds
capz ,(F) = inf {capg (G, FCG, G open} = sup {capg g K),KCF K compact}.
q’ q’ q’

As a consequence of (iii) there holds:

Corollary 4.14 A set F' is T4-quasi closed if and only if there exists a sequence {Fy,} of
Tq-quast closed subsets of F' such that cap: q,(F NFES) —0 asn— oco.
q’

Definition 4.15 Let I be a T4-quasi closed set.
(1) An increasing sequence {Fy} of closed subsets of F' is called a T4-stratification of F if
capz ,(FNFg) — 0 asn — oo.
q7
(i1) A Tq-stratification {F,} is called a proper Tq-stratification if capz ,(FNEFy) < 21
q7
The sets F,, can be chosen to be compact.
(111) A T4-open set such that cap: q,(F NV =0 is called a T,-quasi neighbourhood of F.
q7

The next separation result is valid in any locally compact Hausdorff space.

Proposition 4.16 Let X be a locally compact Hausdorff space, K C X be a compact set
contained in an open set A. Then there exists an open set G such that

KcGcGcA.

Although the fine topology is not locally compact (even if it is Hausdorff) it admits
some separation results which are the counterpart of Proposition 4.16.

Lemma 4.17 Let F C RY be T -closed. Then:
(i) If D is an open set such that cap: ,(F' N D¢) = 0, then there exists an open set O such
q7

that N
FctOcoc?D. (4.7)

(i1) If D is a T4-open set that verifies ' C9 D, there exists a Tq4-open set O such that
(4.7) holds.

Proof. Since FND ~9 F, FND is T,-quasi closed and there exists a proper € -stratification
{F,} of F N D by compact sets such that F ~% F' := U | F,,.

If E' is closed, the result follows by Proposition 4.16. If it is not the case, we can assume
that F41 \ Fy, # 0 for all integer n. We apply Proposition 4.16 with K = F,, and G = F},
is the open set containing F;, such that its closure F; is contained in D: because

cap%’q,(Fn \ Fr1) < cap%,q,((E ND)\ F,) <27 "1,
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there exists an open set D,, containing F,, \ F},_1 such that capz q,(Dn) < 27", We have
q7
also,
D,NF,CcD,NF,CcD,cCD forallneN.

Since F' = Fy U2, (Fy, \ F,—1) we have that

oo o0
F'=|JD.,nF,c|JD.nF,cD.

n=1 n=1

It is therefore sufficient to prove that |Jo2; D, N F!, is T4-closed. Actually, for any n € N
we have

oo m o (e.)
capz (U D.NF\ | Dnn Fé) < capz ( U Dnn F,g) < Z capz (Dn)

n=1 n=1 n=m+1 n=m+1
[e.e] [ee]
<c Z capz (D) <c Z 27 =27,
n=m+1 n=m-+1
m —_ —
Because U D, N F], is T4-quasi closed the result follows by Corollary 4.14. O

n=1

Lemma 4.18 I- Let F' be a ¥, closed set and {F,,} a proper %,-stratification of F. Then
there exists a decreasing sequence of open sets {Q;} such that UF, := F' C Q; for every
j €N and N
(2) m]QJ = Fl; Qj+1 C Q]7
(it) lim cap: ,(Q;) = capz ,(E).

J—00 q q

II- If A is a T, open set, there exists a decreasing sequence of open sets { A} such that

ACﬂAn::Al, capgq,(An\A/)%O asn — o0, A~T A
q7

Furthermore there exists an increasing sequence of closed sets {E;} such that E; C A" and

(i) UiE; = A', Ej CTEY, |,

(i) capz ,(Ej;) — capz ,(A’) when j — oco.
q’ q’

Proof. Let {D;} be a decreasing sequence of open sets containing F' such that

lim cap:z ,(Dj) = capz ,(F') = capz2 ,(F).
j‘)OO qvq q7q qvq
Case 1: F is closed. We can assume that F,, = F for all n and we set K,, = B,(x) N F

for some x € F. By Proposition 4.16 there exists a decreasing sequence {e; ,,} converging
to 0 such that

€1,n
2

Fc@ :=|JK.* cQ cD,
n=1
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€1,n

where K, = B,(xz) N F and, we recall it, Kp? = {y € RV : dist (y, K,) < S}

By Proposition 4.16 there exists a decreasing sequence {e2,} converging to 0, such that
€a.n < €1, for all n and

€1,
4

oo
FCQy:= UK" C Qy C Dy.
n=1

Note that
_ o fl,n o fln
QQ C U Kn4 C U Kn2 .
n=1 n=1

fln —
Since K,* is closed, we have Q2 C (@ C Q1. By induction we construct a double
sequence {¢;,} decreasing in n and converging to 0, non-increasing in j for any fixed n
such that

o ej,n -
FcQ;=|JK.* cQcD;,
n=1

and B
Qj+1 C Q1 CQ; forallj>1.

Noting that F' C Q; C F?77 we deduce that F' = N;Q;. Finally,

capg’q/(F) < jli)lgocapsyq,(Qj) < jli}rgocapggl(l)j) = capqu,(F).

This yields the result in that case.

Case 2: F is only T, closed. There exists a proper ¥, stratification {F,} of F' such that
F~1F = Upe 1 Fy,. We can also assume that F,,11 N ES # () for all integer n.
As in Case 1, for each n we construct the sets Q;‘ relative to Fj, that were denoted Q;

P

and were related to F'. Because capz ,(Fy \ Fp—1) < ccapz ,(Fn \ Fn-1), we can choose
a’ q’

an open set D} such that cap2 q,(D}l) < 27", In view of Lemma 4.17 the set
q7

[e.e]

Q1= J(DynQy)

n=1

is open and B
F/CQ1CQ1CD1.

Furthermore the set -
UDpiner
n=1
is T4-quasi open. By Lemma 4.17 there exists an open set D? such that

D?c D?c D},
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and by induction we construct a sequence of open sets DY such tht
DIt c DIt c DI and capz o (Di) <27,

By Lemma 4.17 the set
Qj = U = ]_Oc>.D1j1 N Q;L
n

is open and the set

UJ=1°Dlin@Q"
n

is T4-quasi closed. For any n € N, we have

P

DiNQycDiNQrcDLNQy Cc DI NQy .

Therefore
Q;cQ;c|Jphin@rc | D nQ), cD
n=1 n=1
Since the set U D} N Q;‘ is T4-quasi closed, we have
n=1
Q; CQj CQj-1.
Finally,

o0
FccP*’ =TF=()Q;
n=1
Because we have

cap%q/(F) < jlim capz ,(Qj) < jli}r{)locap%q,(Dj) = capqu,(F),

—00 q’
the assertion follows. O

The next results are classical in the framework of the T,-topology.

Proposition 4.19 I- Any family D of T,-open sets contains a countable subfamily D’
whose union differs from the union of the sets of the whole family D by a set with zero
cap:z q,—capacity.
q7
II- Let F be a bounded T,-open set and let D be a covering of F' consisting of Ty-open
sets. Then, for every € > 0 there exists an open subset O¢ of F' such that capz q,(Og) <€
q7

and F N O¢ is covered by a finite subfamily of D.
III- Let F' be a T4-open set. Then for any § € F' there exists a T -open set Q¢ such that

fGQgC@gCF.

Proof. Assertion I is the quasi-Lindelof property, see [1, 6.5.11]. The second assertion is a
consequence of the quasi-Lindel6f property and is proved in [43, Lemma 2.5] and the last
assertion is a consequence of the fact that any point in F' is a €,-thin point of F'° and is
proved in [43, Lemma 2.7] using the definition. O
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4.2.2 Approximations in Besov spaces

Lemma 4.20 Let U C RN be a Tq-open set and z € U. Then there exists a function

in B! (RN with support in U such that f(z) > 0. In particular, there exists a bounded
Eq-open set V' such that V C U.

Proof. The result is clear if z is an interior point of U with respect to the Euclidean
topology. Thus we assume that it is not the case. Since U is T4-open, U€ is thin at z. By

the assumption we have that z € U° \ U. By [1, p. 174] there exists an open set W such
that z € W N W€ and W is thin at z. We recall (see [1, Theorems 2.2.7, 2.5.6]) that for a
Borel set E with positive capzq q,-capacity, we define the Besov nonlinear potential of the

capacitary measure ug by
Fp o= VB = Gy % (G % pup) T,
q q
where G is the Bessel kernel in RY. By [1, Theorem 6.3.9] there holds
q

1
HE —
VIE(2) < 5,

if we take for E the set B,(z) N W for r > 0 small enough. By [1, Theorem 6.3.9] we
have VFE > 1-T -q.e. on B,(z) N W, and by [1, Theorem 2.6.7] V*£ > 1 every where on
B, (z) N W. Therefore

1
VHE (z) < 5 < 1 <VHE(z) forall x € B.(2) NW.
This implies that for » > 0 small enough there holds
1
VHE (z) < 3 <1 <inf{V*?(z):z € B,.(2) N W}.

Now let H be a smooth nondecreasing function defined on R, such that H(t) =0 for ¢t <0
and H(t) =t for t > 1. If n € C°(RY) satisfies 0 < 1 < 1, supp(n) C B,(2) and n(z) = 1,
then the function

f:=nHo(1l-VHE)

satisfies the requirements of the Lemma. O

Lemma 4.21 Let U be a T4- open set and z € U. Then there ewists a Tq4-open set 'V,

such that z € V. C U, and a function ¢ € B%’q(RN) such that 0 < <1,v¢Y =1 g-a.e. on
V and ¢y =0 in U°.

Proof. We keep the notations of Lemma 4.20 and assume that z is not interior to U. Let
u be the capacitary measure of B,(z) N U with (up to changing r),

VHE(z) < and VW(z) =1 forall x € B,.(2) NU".

FN-

81



By [1, Proposition 6.3.10] V¥ is quasi continuous, hence there exists a T,- open set W
which contains z such that

V< q. a.e. on W.

=

Let n € C°(RY) such that 0 < n < 1, supp(n) C B(z) and n(z) = 1 for all z € B,(2).
We set

F(z) = 2n(z)H o <1 CHo <; _ v#(@) - V“(x)) |

Then f € Bg’ql(RN), 0<f<lonBy(z)NU f=1on Bz(z)NW and f = 0 outside of
By (2)NU. O

Definition 4.22 If ¢ is a function defined in RN we denote by Ty-supp(C) the closure in
the T,-topology of the set {x € RN :|((z)| > 0}.

Lemma 4.23 Assume g > 2. Let K be a compact set and U a T4-open set containing K.
Let {U;} be a sequence of Ty- open subsets of U covering U up to a set of zero Z of zero
capz q—capacity.

>

2 7
1- If there exists a nonnegative function u € Ba'? (RN)NL®(RY) with T,-supp(u) included
in K, then for any k € N, there exists an integer m(k) and nonnegative functions uy j €

B (RN) N L°(RY) with Ty-supp(uy, ;) included in U; such that

m(k)
Z up; <u in RY, (4.8)
j=1
and
m(k)
u— Z Uk j —0 ask — oo. (4.9)
j=1 Ba

2 7
2- If u is a signed function, and since q¢ > 2, u™ belongs to B2 (RYN). The existence of
the {uy ;} is replaced by existence of {uy j+}. Estimate (4.8) is replaced by

m(k)
Z Uk j+ < ut in RY, (4.10)
j=1

estimate (4.9) remains valid with uy ; replaced by uy j 4 — g j —.

Proof. We can assume that U and U; are bounded. For any j,k there exists an open
set Gy, ; such that capz ,(Gy,;) < 275 for j > 1, K C Gy, and for j > 1, the sets
q

uj cupGy, ; are open. Furthermore the sets
o0 (o ¢]
U Gr; and |JGiJU;
j=0 j=0 J
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are open, and clearly capz q,(Gk) — 0 when k — oo. Since Gy, is open, its Besov potential
q7
VHGy .= FC is larger or equal to 1 on G, [1, Theorems 2.5.6, 2.6.7] and there holds

, -
[ VHG Hqu,q/ < C’cap%q,(Gk),

for some C = C(N, q) > 0. Let H be a smooth nondecreasing defined on R, function such
that H(t) = 1 for t > 1 and H(t) =t for 0 < ¢t < 1. Then the function ¢y = H o WV

belongs to B (RN), satisfies 0 < ¢ < 1, ¢ = 1 on Gy and there exists ¢’ = C'(N, q) >

0 such that )
o] 5, < Cleapz ,(Gr),
Ba’ q

We set ¥, =1 — ¢pg. Then

Ju— ¢ku||B%7q/ —0 ask — oo.

For k € N, fixed, there exist open balls By, ;; such that

Bk,j,i C UJUGk and U (GkUUj) = GkU UUj = U Bk,j,i-
; -

J t,j=1
Since K is compact there exists m(k) € N, such that

K C U Bk,j,z‘-

1,5=1
Now we consider functions wy, j; € C2°(RY) such that
Byji = {z € RY sy ji(z) > 0},

and we set
m(k)

Z wk,_],l
i=1
m(k)
Z wk)j)i

ji=1

U, = Uy,

Then uy,; € L%(RY) N Bo7 (RV) and

Lg-suppuy; C (KﬂGi) ﬂ (U Bk,j,i) c Uj.

which ends the proof.

(4.11)

g

Remark. The construction can be made also in the case 1 < g < 2, but the proof of (4.11)

is still pending.
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4.3 Regular sets
4.3.1 The regular initial set

In order to define the precise trace we recall that for any Borel set U € RY, 177 denotes
the characteristic function of U and

- 1 o= |e— ul2
81l = o [ 0

If u e U (Qr) (i.e. a positive solution of (2.1) in Qr), the following dichotomy occurs for
any ¢ € RV:
(i) either there exists a bounded T,-open neighbourhood U = Ug of £ such the

/ ' / Wt (H[1))27 dzdt < oo, (4.12)
0 RN

(ii) or for any ¥,-open neighbourhood U of £ there holds

/ ' / w (H[1y))? dadt = oco. (4.13)
0 RN

Definition 4.24 Let u € U (Qr). The set of & € RY such that (i) occurs is Ty-open
and denoted by Ry(u). It is called the q-reqular set of u. The set Sy(u) :== RN \ R, (u) is
T 4-closed and called the q-singular set of u.

Proposition 4.25 Let n € Ba? (RY) N L°(RY) with T,-supp(n) in a bounded T,-open
set U, and let u € Uy (Qr) satisfy

T
My = /0 /IR o (H[1y])* dadt < . (4.14)

Then there exists the following limit

t—0

4(n) —hm/ / u! (H /(x,t)dxdt. (4.15)
RN

Furthermore there exists C = C(My,q, N) > 0 such that
6 < € (1™ , + L ). (4.16)

Proof. Set h = H[n] and ¢(r) = riq,. Since |n| < ||n]| .~ 1v], there holds

ulp(h dmdt‘ < ||7]|| / / u? (H[1y]) 2q dxdt = ||n|| - My < . (4.17)
RN

84



Note that for 0 < s <t < T,

wb(h)(., )dz — / wb(h) (.. t)da.

RN RN
(4.18)

/: /RN (—u (0 (h) + Ad(h)) + ulg(h)) dzdr = /
But

Op(h) + Ag(h) = 2¢'¢(h)h;? (2hy0th + (24 — 1)|VR[?) .
By Holder’s inequality,

/: /RN uw (O (h) + A(h)) dadr

([ [, u%(h)dwdf); ([ [ 00 % 06 + 3617 dwdr)’
<4q (/t /RN uqé(h)dmdrf (/t /RN (hs|uh| + [VR[2)Y d:cdr) i .

t T

// \8th|q/dxd7§// b7 dadr < e,

s JRN 0 JRN Ba1
and

t T
| [ vnasar < [© [ npdnr < €l 180l = © il 10nl,

by Gagliardo-Nirenberg inequality and the maximum principle, we obtain

1
t
5 RN Ba

As a consequence of (4.18) and (4.19), we infer the two following inequalities

|-

Since

/: /RN uw(Opp(h) + Ag(h)) dadr

t ¢ :
| uq¢(h)dmd7'+0<// uq¢(h)dxd7-> Il ol 3.0
s JRY s JRY (4.20)
> /RN uqﬁ(h)(.,s)da:—/RN up(h)(.,t)dz|,
and
t ¢ :
[ [ wowaaar—c ([ [ oz ) ol . o

< /]RN up(h)(.,s)dx — /RN up(h)(.,t)dz.

Under the assumption (4.14) the left-hand side of (4.20) tends to zero when s,t — 0,
therefore, we deduce from (4.18) that the function

t— up(h)(.,t)dx
RN
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admits a limit that is denoted by ¢(n) when ¢ — 0. Using again (4.18) we get

/ / w (Brd(B) + AG(R)) + ulg(R)) dudr + / w(h)(, Tydz = 0().  (4.22)
RN RN

Since

/ up(h)(.,T)dx
RN

< (1) Inl7 (4.23)

we infer from (4.19)

/

2q
<O (Il + Il 2.0 ) - (4:24)

g

2 ! ! !
0 < Crllnlzte + Gz lnlz lInll’

2
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This estimate can be improve in order to show that the initial trace holds in the usual
sense.

Proposition 4.26 Let the assumptions of Proposition 4.25 be satisfied, then

lim u(z, ) (z)dz = (n). (4.25)

t—0 RN

Proof. Using (4.18) wit t = T and replacing h(x) by hs(z,t) = H[n](x,t — s) we have

/ /RN u(0d(hs) + Ad(hs)) + u?d(hs)) dzdr

(4.26)
+ [ usth) (Tt = [ b5

When s — 0, one has by the Lebesgue dominated convergence theorem

/RN wb(hs) (o Tz — [ ud(h)(,T)dz

RN

T T
/S /]RN ulgp(hg)dxdr — /S /]RN ule(h)dzdr.
u(z,t +s) —u(z,t)) (Owp(h) + Ap(h)) dedr

1
T—s 7
2q’ / ’
<C (/ / lu(z,t + s) — u(z,t)|? hf) ||77”qu 9117, ..
0 RN 52

By Proposition 4.25, the right-hand side of the above inequality tends to 0 when s — 0.
Clearly

and

Furthermore

T—s

RN

T
lim ulg(h)dzdr = 0.

s—0 T—s

86



Combining (4.18) and (4.26) we obtain

lim u(zx, s) (p(h)(x,s) — o(n))de =0, (4.27)

s—0 RN
which ends the proof. O

Combining Proposition 4.25 and Proposition 4.26 one obtain

Corollary 4.27 Assume U C RY is a bounded % 4-open set such that

lim u(z, s)n*9 (z)dz = oo, (4.28)

s—0 RN

for some n € L®(RN) N Bg’q/(RN), 1> 0. Then

/T/ w! (H[n)* dadt = oco. (4.29)
o JrN

The next result shows that the g-singular set of u inherits the main properties of the
singular set S(u) of the rough trace of u

Proposition 4.28 Let £ € Sy (u). Then for any T,-open set G containing &, there holds

lim [ w(z,t)dr = oo, (4.30)
t—0 G
Proof. If £ € Sy(u) and if G is a T4-open set containing &, then by Lemma 4.21 there

2 7
exists n € L>(RY) N Ba? (RV) such that 0 <7 < 1, and a T-open set D C G such that
n=1on D and n =0 in G°. Therefore

T T
lim/ / u? (Hn))*¢ dadt > lim/ / u? (H[1p))* dzdt = .
s JRN s JRN

s—0 s—0

This implies that the left-hand side of (4.21) tends to oo when s — 0. Using again (4.23)
we obtain

/

lim w (H[n])*? (z,s)dx = oo,

s—0 JrN
which implies
I 20, s)dz = oc.
lim x un™® (z, s)dr = oo
Since n = 1 on D the result follows. O
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4.3.2 Moderate solutions

We recall that a solution u of (2.1) in Q7 is called moderate if u € L1(K) for any compact
set K C RN x [0,T). Then there exists a Radon measure x4 on R such that

lim u(z,t)((z)de = / Cdp(z) for all ¢ € C,(RYN). (4.31)
t—0 JrN RN

Equivalently, for any ¢ € C¢ ’Q(RN x [0,T)), there holds

T
/ / (—u (O + A) + |u|? T ug) dodt = / ¢(z,0)dp(x). (4.32)
o JrN RN

It is proved in [8] that the measure i vanishes on Borel subsets of RY with cap: o/ -capacity
q K
Z€ro.

Lemma 4.29 Let u be a nonnegative moderate solution of u of (2.1) in Qr with initial
trace p € M4 (RN). Then for any Tq4-open bounded set O one has

/ ' / (. 1) (H[10])? dadt < oc. (4.33)
0 RN

Proof. Let n € C°(RY) be a nonnegative function with value 1 on ©. We put h(z,t) =
H[n](z,t) and for 0 < s <t <1, he(z,t) = Hn](z,t — s). We also set ¢(rr) = |r|?¢". Using
again the identities in Proposition 4.25 we have that

[ [ wotwasac + [ wotna s
<o ([ utesotmds + Il Il ).

Because for any Borel set E, one has

limsup/ u(z, s)dx < oo,
E

s—0

we obtain (4.33) by Fatou’s lemma. O

Definition 4.30 A Radon measure p in RY is reqular with respect to the Tq-topology if
for any Borel set E one has

p(E) =inf{u(D): D D E, D T4-open} =sup{p(K): K C E, K compact}.  (4.34)

Theorem 4.31 Let u be a nonnegative solution of (2.1) in Qr with initial data u. Then
(i) The measure i is a reqular measure with respect to the T,-topology.

(ii) For any quasi continuous function ¢ € LOO(RN) with bounded Ty-support in RN, we
have

lim u(z, t)p(x)dx = pdu(z).
t—=0 JrN RN
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Proof. (i) We recall that a Radon measure is regular with respect to the standard topology.
Moreover, if E C RY is a Borel set and D is open and contains D, then D is open for the
T 4-topology, hence

p(E) <inf{u(D): D D E, D Ts-open} <inf{u(D): D D E, D open} = u(E).

The assertion on compact sets is unchanged and the statement (i) follows.
(ii) The measure p; := u(t,.)dx converges to u in the weak-* topology. Hence we have

limsup i (E) < p(E) for any compact set £ C RY

t—0 (4.35)
1i§n iglf ue(A) > u(A) for any open set A C RV,

—

If E is a T -closed set, there exists an increasing sequence of closed sets {K;,} such that
capz q,(E N KE) — 0 when m — oo. Then, for any open O containing E, one has
o

limsup i (E) < limsup p¢(Ky,) + limsup p(E N K;) < e (O) + limsup g (E N K).
t—0 t—0 t—0 t—0

We will prove by contradiction that

lim limsup i (ENK;,) =0. (4.36)

m—=0o0 {40

Assume that (4.36) does not hold and let € > 0 be the value of the above limit. For fixed
m € N, let {t,,n} be a decreasing sequence converging to 0 such that

lim ONtn,m(Km) = limsup ¢ (Kp) = €.

tn,m— t—0

The sequence {e,,} is decreasing with limit e when m — oco. Let uy, ,, be the sequence of
solutions of (2.1) in Q such that unm(.,0) = 1pnke i, - Clearly

Upm (2, t) < u(z,t+tn,) forall (z,t) € Qr,

and

Un,m (2, 1) < VE/ﬁxK/fn for all (z,t) € Qr,
where VE?K/% is the maximal o-moderate solution of (2.1) in Qs with initial data v where
v € M, (RY) vanishes in £ N K¢, and is g-admissible (this notion is developped in the
next section). Because

—_—~—

capz ,(ENK) < Ceap: g (ENKR) =0 asm — oo,
q’ q’
it follows from Proposition 4.39 that

VE/m\fgn_}O as m — oo.

This is a contradiction. Hence (4.36) holds. Thus the proof is complete if E is a T,-closed.
If £ is T4-open, then



since pu is gq-admissible and the proof follows.

Let ¢ be a quasi continuous function. Without loss of generality, we can suppose that
it is nonnegative since ¢ = ¢ — ¢_ and bounded above by 1. If K € N and m =
2k — 1,28 —2,...,0, we denote by a,, a real number in the interval (m2=%, (m + 1)27%
such that

(67 {ami})) = 0.
Set

Ap i = o1 ((ams @mi1k)) form =1,2,.., 2k _ 1 and Ao = o1 ((aok,a1k]) -

Since ¢ has compact support, all the above sets are bounded and

lim ,ut(Am,k) = M(Am,k:)' (4'37)
t—0

If we denote by ¢ the step function

2k_1

bp = Z m2 "4, ..
m=0
Then ¢, T ¢ uniformly, and by (4.37),

lim u(z, t)pr(x) = /IRN ord.

t—=0 JpN

This implies that (ii) holds. O

4.4 Localization
4.4.1 Vanishing properties

Definition 4.32 A continuous function u € U (Qr) vanishes on a Ty-open set G C RV,
2
if for any n € B (RN) N L®(RYN) with T,-supp(n) C4 G, there holds

lim u(z, t)niql(g:)d:c =0. (4.38)

t—0 RN

We write u =g 0. We denote by Uq(Q1) the subset of u € UL (Qr) which vanish in the
previous sense on G.

The following result is obvious.

Proposition 4.33 Let A ¢ RN be a Ty-open set, and ui,us € Uy (Qr). If uy =4 0 and
0 < ug < uq, then ug =4 0.

Proposition 4.34 Let G,G' C RN be T,-open set such that G ~4 G'. If u € Ug(Qr),
then u € U(;/(QT).
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Proof. If n € Ba? (RY) N L=®(RN) with T,-supp(n) C¢ G, then T,-supp(n) C? G'. Since
|G’ N G°| = |G NG|, the result follows. O

If G is an open subset, this notion coincides with the usual definition of vanishing,
since we can take a test function 7 € C°(G). In that case u € C(Qr U (G x {0}).

Lemma 4.35 Assume that w € Ug(Qr). Then for any n € B (RM) N L=®(RY) with
Tq-supp(n) C? G, there holds

/ / ut (Bl )*" dodt + / u(z, T) (H[))* do < C lnllfe )%, . (4.39)
RN RN B

24

Proof. Let u and n be as in the statement of the lemma, h = H[n] and ¢(r) : riq/. Then

/ /]R (—u(@(h) + Ad(h)) +uté(h)) dadt + / u(z, T)é(h)dz = 0. (4.40)

RN
Inequality (4.39) is a consequence of (4.19). O
Lemma 4.36 Let G C RY be a T q4-open set. Then there exists a nondecreasing sequence

{un} C Ua(Qr) which converges to sup{v : v € Ua(Qr)}. In addition, the function
u:=sup{v: v € Ug(QT)} belongs to Ua(QT).

Proof. We recall that by definition, u = sup{v : v € Ug(Qr)} is defined by

u(z,t) = sup{v : v € Ug(Qr)}(z,t) ;== sup{v(x,t) : v € Ua(Qr)} for all (z,t) € Qr.

If u; and wug belong to Ug(Qr), then uy 4+ ug is a supersolution of (2.1) which vanishes
on G. Hence uj V ug is a solution smaller than u; + wug, hence u; V uy € Ug(Qr). By
Proposition 4.6, there exists an increasing sequence {u,} C Ug(Qr) which converges to
u. Then

T
/O /R (o (DUd(h) + AO(R)) + s o(h)) dadt + / nl, T)p(R)r =0 (441)

As in (4.21) {uf¢(h)} and {u,(x,T)¢(h)} are uniformly bounded in L'(Qr) and L*(RY)
respectively, and by Fatou’s theorem up¢(h) 1 ui¢(h) in LY(Qr) and wu,(z,T)¢ ( ) 1T
u(z, T)¢(h) in L'(RY). Furthermore, if F is any Borel subset of Q7, we have from (4.19)
and Holder’s inequality

[ @uott) + 2ot doat| < o) ([ [ agotn dxdt) Il Nl 2.

and the right-hand side tends to 0 as |E| — 0 since ugo(h) < ul¢(h) € L'(Qr). B
Vitali’s convergence theorem, we infer that

/ /R (u (@) + AG(R)) + ut(h)) deds + / e, T)o(h)ds = 0. (4.42)

RN

Thus u € Uz (QT). O
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Definition 4.37 (i) Let u € U (Q1) and let A denote the union of all T,-open sets on
which u vanishes. Then u € Us(Qr) and AC is called the precise initial support of u,
denoted by Ty-supp(u).

(i) Let F C RN be a Borel set, we denote by Ur the mazimal element of Uz.(QT).

Note that by definition
Up =Ug. (4.43)
4.4.2 Maximal solutions

We recall that ZDTZ(RN ) denote the set of nonnegative bounded Radon measures, and if
u is a g-admissible measure, i.e. p is absolutely continuous with respect to capz ¢ Uu
q7

denote the solution of (2.1) in @ with initial data p.

Definition 4.38 If E is a Borel set with positive capz ¢ ~capacity, we set
q7

Viod(E) = {w, - p € ML (RY) 1 B4RV}, p(B¥) = 0}
and
Ve = sup{uu tuy € Vmod(E)} = sup Vmod(E)-

We recall that we have proved in Section 3 the following result due to Marcus and Véron
[44]. If F C RN is a closed set Up = V.

Proposition 4.39 If {A,} is a collection of Borel sets such that capz q,(An) — 0 as
q7
n — 0o, then Uy, — 0.

Proof. Let Oy, be an open set such that A, C O, and cap: ,(On) < capz ,(An) + 1 By
q’ q’
the Kellogg’s result in Proposition 4.9,

A(On) = cap%’q,(On) < Ccap%q,(On).
Therefore capz (On) — 0 when n — oco. Since
q7

Ua, <Up ,
and the result follows. O

Corollary 4.40 If E C RY is a Borel set such that capz ,(E) =0 then Ug. = {0}.

Proposition 4.41 Let E and F be Borel sets.
(1) If E and F are T -closed, then Ug N Up = Ugnr.
(i1) If E and F are T-closed, then

Up <Up <= EC?F and cap: ,(F'\ E)> 0.

(4.44)
Ugp=Up <= FE~MF.
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(iii) If {F,} is a decreasing sequence of T,-closed subset of R, then
lim Up, = Ung,.
n—oo

(iv) Let A be a T,-closed subset of RY and u € Uy (Qr). Assume that for any o € A there
exists a Ty-open subset A, of RN containing o and contained in A such that

U <A 0.

o

Then u vanishes on A. In particular any u € U4 (Qr) vanishes on the complement of the
T4 support of u.

Proof. (i) Ug A Up is the largest solution below inf{Ug,Ur}. Hence it is the largest
solution which vanishes outside £ N F.

(ii) By construction, £ ~? F implies Ug = Up, and Ug < Up <= E C? F. Furthermore,
if capz ,(F \ E) > 0 there exists a compact set K C I\ E with capz ,(K) > 0. Hence
0< U;( < Up. Consequently, up = Up implies F ~4 F'. !

(iii) Let V = nh_}rrgo Up,. Since F C F,, we have F' C? F, hence Ur < Up, which implies
Ur < V. But the T4-support of V is included in F},, therefore is is alsoe included in
F =nN,F,, which implies v < Up, and finally V = Up.

(iv) First we assume that A = U, A,, where A,, is T,-open and u ~4, 0 for every n. Then,
for every k € N,, u vanishes on UZ:OAka and we can assume that the sequence {Ay} is
increasing. Set F;, = Aj,. Then u < Upe and by (iii) Urc | U, thus v < Up. Equivalently
U A 0.

In the general case, we use the quasi-Lindelof property which is satisfied by the € ,-topology.
From the covering of A by the family of T ,-open subsets of A indexed by the o € A, we can
extract a countable subcovering A, such that capz g (A\UpAg,) = 0. Since u ~y, 4,, 0

it implies the claim. O
Proposition 4.42 (i) Let E be a T-closed set. Then
Ug=inf{Up: EC D,D open } =sup{Uk : K C E, K closed } (4.45)
(ii) Let E, F be Borel sets. Then
Ug = Urne © Urnge.

(ii) Let E,{F,} be a countable family of Borel sets. Assume either cap: , (EAF,) — 0,
q7

or ﬁn iE. Then
Ur, - Ug asn— oo.

Proof. (i) Let {D;} be the decreasing sequence of open sets containing F already used in
Lemma 4.18 and satisfying

ﬂij = ﬂij =F ~1F.

Then, by Proposition 4.41, there holds Up, — Ug, which implies the first equality in (i).
For the second equality, let {F,} be a nondecreasing sequence of compact subsets of E
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such that cap: , (E'\ F,) — 0. If {D;} is the decreasing sequence used above, then
q’
capz , (Dj \ E) = 0. Because E C F,, U (Dy, N Fy) we have
q7

Up, <Ugrp <Up, + UDn\Fn'

But
cap%q/(Dn \ Fp) < capz (E\ F,) + capz g (D, \E) =0 asn— .

By Proposition 4.39 Up,\r, — 0. This implies the claim.
(ii) Using (4.45) we have

Ug < Ugnr + Ugnpe hence Ug < Ugnr ® Ugnpe.

Svince Ugnr and Ugqpe vanish outside E, it follows that Ugng ® Ugnpe vanishes outside
FE, hence
Up =Ug =2 Upnr © Ugnpe.

which is the claim.
(iii) Using (ii) we have

Ug < Ugnre + Ugnr, and Ug, < Up,npe + Ur,nE-

If cap: (EAF,) — 0, then Ugap, — 0 by Proposition 4.39.
~ q’
If F,, | E, the result follows by (iii). O

Theorem 4.43 If E is a T4-closed set, then Vg and Ug satisfy the same capacitary
estimates as if E were a closed set. Hence Vg = Ug and therefore Ug is o-moderate.

Proof. The proof follows [43, Theorem 3.10] If {E}} is a proper g¢-stratification of E and

2
 is a bounded nonnegative measure belonging to B~ «'?(R™)} and satisfying u(E¢) = 0,
then

wy, = sup{uy, : pr = 1, p}
Therefore Vg = sup,, Vg,. By Marcus-Véron’s theorem (Section 3), Vg, = Ug,, and by
Proposition 4.42-(iii), Ug, — Ug. Hence Ug = V.
Note also that if W, is the capacitary potential defined by (3.6) with F' replaced by Ej.

Hence
EL.NE, t ENE, t
capz (kn@,)) — capz ¢ (t(n(—::i))> as k — oo.
n

Then by the Lebesgue convergence theorem (applied to series) Wg, (x,t) — Wg(x,t).
Hence if I is just T 4-closed set Ug satisfies the same capacitary quasi-representation as if
it were closed and given in Theorem 3.8 and Theorem 3.21. O
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4.4.3 The local restrictions

The local restrictions are key processes compatible with the supercritical range. They
roughly consist in truncating a solution u of (2.1) outside a Borel set A°. More precisely,

Definition 4.44 Let A be a Borel subset of RYV. We denote by [u]a the supremum of the
v € U (Qr) which are smaller than u and vanish on A€. Equivalently [ula = u AUy, that
is the largest solution smaller than the subsolution inf{u,Ux}.

The following result is an immediate consequence of the fact that Ux = Uz and
[ula=uAU,.

Lemma 4.45 For any Borel set A C RY, [u]a = [u] ;.

Lemma 4.46 If G C RY is a T,-open set and u € U (Qr), then
u = sup {U € Uz (Qr) : v < u, v vanishes in some open neighbourhood of é} . (4.46)

Proof. Set A = G and {4, } be a nondecreasing sequence of closed subsets of A such that
capz (AN AS) — 0 as n — oo. By Proposition 4.42, there holds
2

Ua <Ua, +Usnag.

Hence
’U,:u/\UASU/\UAn—i-u/\UAmA%.

By Proposition 4.39, Uanac — 0 as n — oco. Therefore u AUanac converges also to 0, and

u= lim uAUy,,,
n—oo

which implies the claim. O

In the next result we analyse the regularity of the correspondence E — [u]pg.

Proposition 4.47 Let u € U4 (Qr).
(1) If E is T4-closed, then,

[u]g = inf{[u]lp : E C D, D open} = inf{[u]p : F C E, F closed}. (4.47)
(it) If E and F are two T4-closed sets then
[ulg < [u]lFnE + [ulBAFe, (4.48)

and
[[u]e]r = [[ulr]E = [u]FnE. (4.49)
(iii) Let E and F,, n = 1,2,... be Borel sets. If either cap%q,(EAFn) —~ 0, or F, | E,
then
[ulF, = [u]e.
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Proof. Mutatis mutandis the arguments we use are very similar to the ones in [43], but we
keep them for the sake of completeness.

(i) Let D = {D} be the family of all open sets containing E as in (4.47). Using the first
equality of (4.45), we have

inf {u, Ug} = inf {u,[l)léfl‘) UD} = mf[l)ré% {u,Up} > 52%[u]p. (4.50)

Clearly
[U]Dl A [U]DQ = [U]D1OD27

then it is a consequence of Proposition 4.6 that v = 511% [u]p is a solution of (2.1). It
€

follows from (4.50) that [u]g > v. The reverse inequality is clear.

For the second equality, let {F,,} be a nondecreasing sequence of compact subsets of F

such that cap: , (E'\ F,) — 0. If {D;} is the decreasing sequence used above, then
q’

capz , (Dj \ E) — 0. Because E C F,, U (Dy, N Fy) we have
q7

Up, <Ug <Up, +Up,\F,-

But
capz ,(Dy \ Fp) < capz , (E\ Fy) +capz (D \ E) =0 asn — oo.
q’ q’ q’

By Proposition 4.39 Up,\r, — 0. This implies the claim.
(ii) Let v € U4 (Qr), dominated by w with T, support in E and let D and D" be open

—_—

sets such that ENF C D and ENF¢ C D'. For any integer j > %, let vjl- be the
solution of (2.1) in RV x (%,T) satisfying vjl»(., %) =(., %)117. We also denote by 0]2- and

1)5-’ the solution of (2.1) in RY x (%, T') with respective initial data sz(., %) =o(., %)ID/ and

;’(., %) =(., %)1(DuD/)c. Since v vanishes outside F, it vanishes in (DUD’)¢, consequently
(., %)1(DuDl)c — 0 when j — oo, which implies v? when j — 0o. Therefore

v

v

v < hminf(vjl- + v?) < [u]p + [u]pr.
J]—00

Since ENF C D and E N Fe C D', it follows from (4.47)

v < [ulpng + [l gnz = [ulenr + [ulenre.

This implies (4.48).
For proving (4.49), we just have to notice that

[[U]E]F = [U]E VUr = (u V UE) VU = [max{u, Ug, UF}]T = [[U}F]E
(iii) By (4.48) there holds

[ulg < [u]lp,nE + [U]lpnre  and [u]r, < [u]lp,nE + [U]F.nEe
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if cap2 g (EAF,) — 0, then by Proposition 4.39 Ugap, — 0. Since
q7

max{[u] pnre, [u]F,nEe} < UpaF,,

WeNhaveNthat Ugar, — 0 when n — oo.
If £, | E, then Ug, — Ug by Proposition 4.39. Therefore

[ulp < lim Ug, = li_}In uVUg, < li_}rn {u,Ug, } < inf{u,Ug}.

n—o0

Since [u]g is the largest solution dominated by inf{u,Ug} and the function v = li_>m [u] F,
n o

is a solution, there holds Ug < v. Thus (iii) follows. O
Definition 4.48 Let p be a nonnegative Radon measure which is absolutely continuous
with respect to the capz q,—capacity.

q7

(1) The T4-support of p, denoted by Tq-supp(p) is the intersection of all the Tq-closed sets
F such that pu(F°¢) = 0.
(i) We say that p is concentrated on a Borel set E if u(E€) = 0.

Proposition 4.49 Let pu be a Radon measure as in Definition 4.48. Then
Tq -supp (p) ~T Tq -supp (uy).

Proof. Set F' = %, -supp(u,). By Proposition 4.41-(iv), w, vanishes on F€¢, and by
Lemma 4.46 there exists an increasing sequence of positive solutions {u,} vanishing out-
side a closed subset F), and converging to u. Set S, := T,-supp (u,). Then S, C F,
and S, C Spi1. Thus {S,} is an increasing sequence of closed subsets of F. If we set
pn = 1g_p, we have that u, < uy, < u,. Hence the increasing sequence {uy,, } converges
to u, as n — oco. Consequently

—_~—

pn T o and Ty-supp (p) C? U?n C F.

n=1

If D is open and u(D) = 0, then u, vanishes in D. Therefore u,, vanishes outside S,
and consequently it vanishes outside T, -supp (©). Hence u,, vanishes outside T, -supp (u).
This means F' C? T, -supp (). O

Definition 4.50 Let u € U (Qr) and A be a Borel set. Then
[u] :=sup {[u]p : F C? A, F %,-closed} .

Remark. Note that since [u]p = [u]z, if A is T4-closed, we have [u]4 = [u]”'. In the general

case, we have only [u]? < [u]4.

Definition 4.51 Let 8> 0 andu € C(Qr), u > 0. For any Borel set A C RN, we denote
by ué the solution of

O — Av + |[v|97 v =0 in RN x (8, 00)
v(.,8) = Lau(.,B) in RN,
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Proposition 4.52 Let u € U (Qr) and E be T, -supp (u).
(1) If D is a T4-open set such that E C9 D, then

D . D
=1 = = . 4.51
[u] Jinmy v [ulp = u (4.51)
(i1) If A is a T4-open set, then
urg 0= u? = éin%) ug =0 for all T,-open set s.t. Q C? A. (4.52)
—
(iii) Finally,
umy 0= [u]! =0. (4.53)

Proof. Case 1: Assume first that E is closed. Since u vanishes on E° and is continuous
in Qr U E¢ x {0}, we have u = 0 on E° hence u € C(Qr U E° x {0}. If D is an open
neighbourhood of E, then for all ¢ € C.(E€) there holds

lim [ wu(x,t)p(x)dz = 0.

t—0 Ec
Therefore
lim ug ‘=0.
B—0
But

uf (@,t) < ulw,t) <uf (x,t) +uf (x,t) forall (z,t)) € RN x [3,T).

From this relation we deduce that

— 1 D
u = %13%) ug . (4.54)

If we assume now that D is Tj,-open and E C? D, then for avery € > 0 there exists an
open set O, such that D C O,, E C O, and cap:2 q,((’)E N D°) < e. Therefore
o

ug‘(x,t) - uBD(:U,t) <Uo:(z,t — ) forallt>p,

where O = O. N D°. We observe that liH(l) Uo:(z,t — 3) = 0 uniformly w.r. to 8. Since
€E—
lim ugé (x,t) = u(z,t) for all (z,t) € Qr, it follows that éin% ug(a:,t) = u(z,t). The same
%

B—0
argument shows that éirr%) ug “(z,t) = 0 for all (x,t) € Qp. Combining all these results we
—

obtain

lim v® < <
Jim g < [ulp < u,

hence [u]p = u. By Proposition 4.19 there exists a T,-open set @ such that £ C¢C Q C
Q C D, therefore u = [ulg < [u]P, hence u = [u]P.

In addition there holds F C? A¢ C¢ @C. If we replace D by @C in the above argument,
we have that u ~4 0 which implies u® = limg_,o ug = 0. For the opposite implication in
equivalence (4.52) we use the fact that for any £ € A there exists a T,-open neighbourhood
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~ o¢ O¢
O¢ of £ such that O c? A. By (i) we have that lim uﬂg. Finally, since uﬁ€ ~o, 0 for

B—0
all B > 0, we deduce that u ~p, 0 by Proposition 4.39. Using Proposition 4.41 (iv) we
deduce (4.52) in the case where E is closed.
Case 2: Assume next that E is T4-closed. Let {E,} be a T -stratification of E such that
cap%q,(E NES) — 0asn — oo. If Disa T -open set such that £ C9 D, then by Case 1,

lim([u],)5 = [u]5, (4.55)

By Proposition 4.47-(ii), using the definition of ué) and the fact that [u]p = u,

uf = (ulp)f < ([Wene,)s + (Wenes) = (ule,)f + ([ulenes)5 - (4.56)

Let {fk} be a sequence decreasing to 0 such that there exists

R F D — i D —
w = Blklg[)uﬁk and w,, 1= Bll:glo([u]EﬂEﬁ)Bk for n=1,2,...

Then, using the two previous inequalities
[ulg, <w < [ulg, +w, < [u]g, + Upng:.
Using (4.46) and the fact that Ugnge — 0 and Ug, — Ug, we deduce that w = u. This

implies (i).

In order to prove (ii), we apply (4.56) with D replaced by @ and get
([u)g < (We)§ + (Wenes)g-
From Case 1 we have already proved that

li @—0,
BIL%([U]En)ﬁ 0

There exists a decreasing sequence {f} such that {ugk} and {([u]gn Eﬁ)gk} admits a limit
when B — 0, for any n =1,2,.... Therefore

: Q : Q
Jim g, < Jim ([w]ens;)s, < Uene,-
Since Ugng, — 0 as n — oo, this implies the implication = in (4.52). The implication
<= in (4.52) is proved as in Case 1.
Proof of (iii). We assume first that u ~4 0. If F'is a T4-closed set such that F' C9 A,
then, by Lemma 4.17 there exists a T4-open set ) such that ' C?Q C Q C? A. Applying
(4.51) to v := [u]F and using (4.52) we obtain

V= limvé2 < limugz().
£—0 £—0
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It is thus a consequence of the definition of [u]* that [u]* = 0.
If [u]* = 0, then for any T,-open set Q@ C Q C? A, there holds [u]g = 0. Because
Tq—supp(ug) C? @, there exists a subsequence [; decreasing to 0 such that

lim u9 < = 0.
dim ug, < [ulg

Therefore u ~g 0 by (4.52). Applying again Lemma 4.17 and Proposition 4.41-(iv), we
infer that v ~4 0. O

Definition 4.53 Let u,v € U (Qr) and A be a Ty-open set. We say that u=v on A if
both u &S v and v & u vanish on A. This relation is denoted by u =~ v.

Proposition 4.54 Let u,v € U (Qr) and A be a T;-open set. Then,
(i)

~ li — )@ = 4.
u Av<:>61£%|u vl =0, (4.57)

for every T4-open set Q@ such that @ Cc?A.
(ii)
urAv <= [ulr = [v]F, (4.58)

for every T,-closed set ' such that I C? A.

Proof. The idea of the proof is the adaptation to the parabolic framework of the construc-
tion in the elliptic case performed in [43]. If u ~4 v, then u© v ~4 0 and v S u ~4 0.
Hence, by (4.52), we have that wg := (v © v);}2 —0as 3 —0. Weset fg = ((u— U)+)§
and consider the truncated problem in B; x (5, 00) for j = 1,2, ...,

Orw — Aw + |w|?tw = 0 in B; x (8,00)
w =70 on 0B; x (,00)
w(.,B)=¢ in B
and denote by w; and f; respectively the solutions with initial data 1g(u & v)(., 5) and
1g(u—v)4(., ). By the maximum principle, the sequences {w;} and {f;} are increasing.

Since u & v is the smallest solution which dominates the subsolution (v — v)4, we have
w; > fj for all j € Ny. When j — oo, w; — wg and f; — fg. Then wg > fg. This implies

((u—v)4)

2O

as 8 — 0.

Similarly
((v— u)+)§ as 8 — 0.

This yields the implication = in (4.57).
For the reverse implication we introduce the problem
Ow — Aw + w7 tw =0 in Bj x (f,00)
w=nh on 0B; x (B, 00)
’LU(,B) :gb in Bj.
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Let Q C @ C? A be a Tj-open. Denote by w; the solution of the above problem with h =
1g|u—v||aB,x(8,00) and ¢ = 1g|u —v|, and f; the solution with h = 1ge[u —v[[5B;x (8,00)
and ¢ = 1ge|u — v|. Then

u— v <wj+ fj.

Up to some subsequence, w; and f; converge respectively to w and f which are solutions
of (2.1) in RY x (B, 00) with respective initial data w(., 8) = 1g|u — v|(., ) and f(.,8) =
1ge|lu — v|(.,B). because of uniqueness and the definition rdefL6 , w = |u — v|§ and

f=lu— v|gc. When 5 — 0 we have by assumption
lim |u —v|§ = 0.
tim fu — 0]
Let {8} be a subsequence decreasing to 0 such that there exists ,mao lu — v|§c. Then
k—
lu—v| < lim |u— fu]gc.
,Bk—>0 k
But |u — v]g: ~q 0, hence ﬁlkiglo lu — v|gkc ~@ 0. Since u © v is the smallest solution which
dominates the subsolution (u — v)4 there holds
max{u ©v,v S u} < Blkiglo lu — v|g‘)}:
The proof follows from Lemma 4.46 and Proposition 4.41-(i).
(ii) Let us assume that u ~4 v, then
ut+(u—v)y <v+(u—v)r <v+uow. (4.59)
If Fis a T4-closed set and @ a T4-open set such that F' C? @, we claim that
[ulp < [v]g + [uev]g. (4.60)
This can be proved as follows: we first have
u = [y < [uo + [ule:
by (4.48). Using (4.59) it infers
[ulp < [ulgy Sv+ucv<|olg+ [vlge +[uSv]g +[us g

The subsolution w := ([u]r — ([v]q + [u S v]g)) . is dominated by [u © v]ge + [v]qe Which
is a supersolution. From the definition we have

w < July < [u6 vlgr @ [elgr < [ue vlge + [lge-

Therefore [w]; =g 0. Since w < [u]r we deduce [w]

+ < [u]p, which means T -supp([w]t) C?
F C?@Q. As [w]; =g 0 we obtain that w = [w]; =0 a

nd (4.60) follows.
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Let @ be a T,-open set such that F' C?Q C @ C? A, and because u & v ~4 0 implies
[u©v]p =0 by (4.53) and (4.60), we deduce that

[u]F < [v]e-

By Lemma 4.18-1, there exists a decreasing sequence {Q;} of open sets such that N;Q; ~4
F. Then by Proposition 4.42-(iii) there holds

[u]p < lim [v]g; < [v]F.

Jj—o0

Similarly [v]r < [u]p.
To prove the reverse implication, we assume that [v]p = [u]p for any T -closed set
F Cc? A If Q is a T4-open set such that FF C?Q C?(Q C A, we notice that

uwov < [ulg @ [ulge © [v]g,
since (for the last inequality)
u=[upy < [ulg + [uge == u < [ulg @ [u]ge < [u]g + [ulqe-

Because ([u]g ® [u]ge) © [v]g is the smallest solution dominating (([u]g & [u]ge) © [v]Q)+,
we have, using the assumption that [u]g = [v]g,

((lulg @ [ulge) © [v]Q)4 < (([ulg + [ulge) © [vlQ) ;. = [ulq + [ulge — [v]q = [ulq--

Therefore
uwevlr <uov < [ulge.

Hence Ty -supp(ju © v]p) C¢ F and [u © v]p ~ Q0. This in turn implies that [u &
v]p = 0. Using (4.53) in Proposition 4.52 we obtain u © v &4 0. Similarly v © u =4 0.
U

As an immediate consequence of (4.57), we have

Corollary 4.55 If A C RN isa T 4-open set, the relation =4 is an equivalence relation

in U (Qr).

4.5 The regular initial trace
4.5.1 The local test

Lemma 4.56 Let u € U, (Qr) and Q be a Ty-open set. Then for any n € B RM) N
L®(RN) with T,-support in Q°, we have

T
/O /R (A UQ)" (Il )27 (h, )t < . (4.61)
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Proof. By Proposition 4.33, we have

%g% 0 (uAUg) (z,t)n4(x)dz =0

and the result follows by estimate (4.39) in Lemma 4.35. O

Proposition 4.57 Let u € U (Qr) and Q be a Ty-open set such that uNUg is a moderate
solution with initial data p. Then for any & € Q there exists a Ty-open set O C Q such
that

/ ' / u? (H[1o,])™ (2, t)dwdt < oc. (4.62)
0 RN

2 7
Furthermore, for any n € Ba? (RN) N L>®(RN) with Tg-support in Q, we have

lim u(w,t)niq/dx:/ i (4.63)
t—0 Q Q

Proof. 1f n is as above, the function niql is quasi-continuous and we have by Theorem 4.31,

. 2q’' o 2q’
%E}I(l) Qu/\UQ(:z:,t)n+ (:z:)dx-/@m_ du,

. 2q/ l :‘

Since u AUg <u <uAUg+uAUge, we get
/ u A UQ(x,t)niq/d:c < / u(a:,t)niq/dx < / u A UQ(x,t)niq/da: +/ u A UQc(x,t)niq/dx.
Q Q Q Q

This implies

t—0

lim u(x,t)niqldx:/ niq/duQ.
Q Q

By Proposition 4.25 and Proposition 4.26,

T
/0 /]RN (uAUg)? (H[n]4)%7 (¢, z)dadt < oo, (4.64)

2 ~
for any n € Ba’? (RV) N L®(RY) with T,-support in Q. By Lemma 4.21, we can assume
that the above function 7 has its values in [0, 1], with Tg-support in @ and value 1 on a
Tg-open neighbourhood O of . Then (4.64) implies

/O ' /R (AU (H[10,])* (¢, )drdt < oo (4.65)
O
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Definition 4.58 If E C RY) is a Borel set, we denote by B%’q/(E) the closure of the set

2 7
of C* functions with compact support in E for the norm of Ba'? .

2 7
54

If E is an open set, Bi? (E) coincides with By = (E).

Proposition 4.59 Let u € U (Qr) and Q be a bounded Z,-open set such that

/ ' / u? (H[1o)? (x, t)dadt < oc. (4.66)
0 RN

(i) There exists an increasing sequence of Tq-open set {Qn} satisfying Qn C Q, @n ct
Qn+1 and Qo := Up21Qp ~? Q such that the solution vy, == uAUg, is moderate, vy, T [u]g
and there ezists a nonnegative measure pg on Q such that tr (v,) — pg as n — oco.

(11) For any n € Bg’ql(Q) N L>®(Q), we have

t—0

lim Qu(m,t)niQ’(x)d:U: /Q 2 dug. (4.67)

Proof. Let z € ). By Lemma 4.21 there exist a T,-open set V such that z € V' C VC Q

and a function ¢ € Ba? (R™) such that 1) = 1 q.a.e. on V', 1 = 0 outside Q and 0 < ¢ < 1.
By Lemma 4.17 there exists a T4-open neighbourhood O, of z such that O, C O, C V.

We claim that the function
v, =uAUo,, (4.68)

is a moderate solution. Actually, let R > 0 such that Q C Q C Bg and let n € C2°(Bag)

with value 1 on B and 0 <7 < 1. Then the function { = (1—1)n belongs to B! (RM)N
LOO(RN ) and has compact support in Bag N V€. Therefore

[ e @ g < [ [ @) e
T . B o
+/0 /RN o? (H[1 — ))? (2, £)dadt
<[] v o asa

T
2 (0 P .
+/0 /RN v? (H[¢])* (z,t)dwdt < oo,

because the first integral in the last inequality is finite by assumption and the second
integral is finite by Lemma 4.56. As R is arbitrary, u A Up, is a moderate solution.

By the quasi-Lindelof property there exists a non decreasing sequence of T,-open sets
{O,,} such that U,O,, ~? @ and, using the construction above, the solution u A Up,, is
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moderate for any n € N,. By Proposition 4.42-(II), for any n there exists a sequence
{A, ;} of T4-open sets such that A, ; C? A, j11 C? E;, and UjeqAn,j ~9 En. Set

Qn = U Ak,j'
k+j=n
Then B N N
Qn C U Ay, U Ak jr1 = Qny1.
k+j=n k+j=n
Therefore
Qo:=J@n~" Q.

Next we prove that v, = u A Ug, — u A Ug. By Proposition 4.42-(ii),
v =uANUg, SuNUg <uAUg, +uAUgnqe -
Since Q N Q¢ | F and cap%q,(F) = 0, we infer from Proposition 4.42-(iii)
uANUgnge — 0 asn — oo.

Hence v, T u A Ug. Again, by Proposition 4.42-(ii), v, = [vp4k]Q,. Therefore, with
Hn = 1Q, 1Q,

i (@n) = tn+x(Qn) = pQ(Qn) < 00 = tr (vs) — uq- (4.69)

2 7
(iii) We assume at first that the function n € Ba? (Q) N L*°(Q) is nonnegative (which is
not a restriction) and has compact support in (). By Lemma 4.23 there exists a function
n; with €, support included in @y such that 0 < n, < n, M1 < Mg,

1
=l j2.0 = 75 (4.70)

and, for k large enough,

!

/OT/RN ut (Bl —m))*" (o, t)dadt < (/1)2(] |

lim u(:z:,t)r]kdx:/ niqlduQ and lim / niq/duQ:/ an/duQ,
Q Q k=00 Jq Q

Since

t—0

by a standard limit theorem

liminf lim u(a:,t)nquda: = liminf/ u(z, t)n? dx
t=0  k—oo J =0 Jo

/ (4.71)
> lim lim u(z:,t)n,zq dz :/ 772q’duQ
Q

k—oo0 t—0 Q
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By (4.69) and Proposition 4.57 and Holder’s inequality

(/Q u(x,t)nQ‘/dx>21q' < </Q u(x, t)(n — 77k)2qldx>21q’ . </Q u(a:,t)niq’dw)"’lq'

1
2 5\ 2
< ([ ute 0 ar) ™+ Clla=ml .0 I = mlo
9 C(472)

+C (/OT/RN ul(z,t) (H[n — 77k])2"'> 27
: (/Q“(“f’t)nﬁ"'dx);‘l’ -l

1 1
947 f 247 /
lim sup </ u(x,t)n2qldx> b < (/ niq duQ> B + Q,
t—0 Q Q k

which implies, by letting & — oo,

! 2Lq/ ! 2iq,
lim sup </ u(z, t)n* dm) < (/ 7% d,uQ> (4.73)
t—0 Q Q

Combining (4.71) and (4.73) we obtain (4.74).

In the general case, by Netrusov’s approximation theorem [1, Theorem 10.1.1] there
exists a function n, with compact support in @ such that 0 < 7 < n and (4.71) holds.
The end of the proof is as above. O

Hence

The Proposition 4.59 admits the following easy extension to the case where the set )
is non-necessarily bounded. An overview of the proof is given in Proposition 4.64.

Corollary 4.60 Let Q be T,-open set and v € U (Qr) satisfying (4.66) for any T,-open
and bounded subset of Q.

(i) There exists an increasing sequence of Tq4-open set {Qn} satisfying Qn C Q, @n c1
Qn+1 and Qp == Uy 1@y ~? Q such that the solution vy, := uAUg, is moderate, vy, T [u]g
and there exists a nonnegative measure pg on Q such that tr (vy,) — g as n — oo.

(ii) For any n € Bg’q/(Qn) N L>(Qy for some n € N, we have

2ltim u(x,t)niq/(x)dx:/ niqld,ug. (4.74)
—0 Q Q

Proposition 4.61 Let Q be a T,-open set and v € U (Qr) satisfying (4.66). Then
(i)
[ulg = sup{[u]p : F C? Q, F T4-closed}. (4.75)

(i1) For every T,-open set O C O C?Q such that [u]o is a moderate solution, we have
1suq = tr (([[ulQlo) - (4.76)
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Furthermore the measure ug defined in Proposition 4.59-(i) is T4-locally finite on Q and
o-finite on Q' := U,Q,, where the sets @, form an increasing sequence {Qn} of T4-open
subsets of Q) satisfying Qn C4 Qni1 and Q' ~1 Q as in Proposition 4.59-(i).

(iii) If {w,} C U+(Qr) is a nondecreasing sequence of moderate solutions of (2.1) such
that T4-supp.(wyp) C! Q and wy, T [u]g, then tr (wy,) T po.

Proof. (i) Let u* denote the right-hand side of (4.75). By Proposition 4.6 there exists a
nonndecreasing sequence {[u|f, } such that F,, is T,-closed and [u]p, T u*. By Proposi-
tion 4.47 we have

[u]p, < [WlFun@m + [U]Fngg,
Notice that F,NQY¢, is T4-closed and NJ;_; F,NQy;, = A, and capqu,(An) = 0. Therefore,

by Proposition 4.42 we have Ufp,ng:, — 0 as m — oo, hence [u]F,ng:, — 0 as m — oo.
Hence [u|p, < limy,—o0(u]F,, = ug. Letting n — oo we infer v* < ug. By the definition
of u* we have ug < u*.

(ii) Set po = tr (u]o). If F is T4-closed such that F' C? O, then by Proposition 4.47-(ii),
tr ([ulr) = tr ([lulg]F) = 1r o = 1r pio. (4.77)
IfO' c O ct @ is T4-open such that [u]os is a moderate solution, then clearly
pono = 1ana 00 = 155 Ho' - (4.78)
Since [u]r is moderate,

[ulo.]F = [u]lg.nF T [u]lF asn — oco. (4.79)

In addition, [ug]r > lim [[u]g,|r = [u]F, jointly with ug < u, leads to

up = [uglr. (4.80)

By (4.77) and (4.79), if F' is a T4-closed subset of Ry(u), and [u]r is moderate

tr([ulp) = lim tr ([[ulg,]r) = 1rir, (), (4.81)

n—oo

and (4.76) follows.

Since Q' = UpQy, and pg(Qn) < 00, pg is o-finite on Q' ~? Q. Since for any { € Q
there exists a Tj-open neighbourhood O¢ of £ included in @ and such that pg(O¢) < o0,
pqQ is Ty-locally finite on Q.

iii) If w is a moderate solution dominated by ug, with T,-supp (w) C? @, then tr(w) < u
Y UQ q Q
since

[wlg, <lulg, and [wlg, Tw= tr(lwlg,) T tr(w) < lim ir([ulq,) = ne-
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Let {wy, } be an increasing sequence of moderate solutions with F}, := T-supp (w) C? Q
and wy, T ug. We claim that if v, := tr(w,), then

vi= nlggo Un = J4Q- (4.82)

Clearly v < pg. To prove the reverse inequality, let D be a Tg-open set such that [u]p is
moderate and K C D a compact set such that capz q/(K ) > 0. Then
q’

W, < [Wy]p + [Wp]pe — ug = lim w, < lim [w,]p + Upe.
n—oo n—oo

Since [u|p is moderate, the sequence {[w,]p} which is dominated by [u]p has an initial

trace tr (wy]p) := 15v, which increases and converges to 15v. Hence, 15v is a Radon

measure which vanishes on sets with zero cap:z q,—capacity. Hence
>

[wn]D T ulﬁu
where U1 5y is the moderate solution with initial trace 1 pY- Therefore
== 1 < ~ c.
uQ nl_)Holown <urgy+ Up

This implies
([UQ]K - ulﬁu)+ < inf {Upe, U}

Notice that the left-hand side of the above inequality is a subsolution while the right-hand
side is a supersolution. This implies

([UQ]K - ulﬁ,,>+ < Upe AUk = [[U]pe]i = 0.

Therefore ug|r < U1y which implies 1xpug <1 pv- Moreover, it O is a T4-open set such
that O 4 D, then, using the fact that

15pq =sup{lxpug: K C O, K compact},

we obtain
1pq < 1pv. (4.83)

Applying this series of inequalities to the sets Qn,, @m+1, ..., we infer

19,10 < 1@m+1y <19, V-

Letting m — oo we deduce that pug = v. O

108



4.5.2 %, -perfect measures

Definition 4.62 Let i be a positive Borel measure on RV .
(i) We say that u is essentially absolutely continuous with respect to the capz q,-capacz’ty
q7

if the following condition holds:
If Q is a T4-open set and A a Borel subset such that capz g (A) =0, then
q7

Q) = p(@QnN A°).

This relation is denoted by
B =< cap2 o
o

(i1) We say that p is reqular with respect to the Tq-topology if, for every Borel set E, there
holds

p(E) =inf{u(D): EC D, D%, -open } =sup{u(K): K C E, K compact }, (4.84)
and v is outer regular with respect to the T,-topology if there only holds
p(E) =inf{u(D): EC D, D%, -open }. (4.85)

(1it) A positive Borel measure is called Ty-perfect if it is essentially absolutely continuous
with respect to the capz ¢ and outer reqular with respect to the %4-topology. The space of
q7

T,-perfect Borel measures is denoted by 9, (RY).

Proposition 4.63 If i € M,(RY) and A is a non-empty Borel subset of RN such that
capz ,(A) = 0. Then
q7

B { 00 if n(Q@ N A®) =00 for all T4-open neighbourhood @ of A (4.86)

0 otherwise.

If po is an essentially absolutely continuous positive measure in RN and Q is a <q-open
set such that po(Q) < oo, then polq is absolutely continuous with respect to the cap: a"
q7

capacity in the strong sense, that is for any sequence of Borel subsets {A,} of RN,

capz ,(An) = 0= po(@NA) =0 asn— ooc.
2

If jio is an essentially absolutely continuous positive Borel measure on RN and if for every
Borel subset of RN we denote

w(E) =inf {po(D) : EC D D %,-open}, (4.87)
then p is a Borel measure and

() o< m(Q) = p(Q) for all Ty-open set Q

4.
(i7) prlo=tolg for all Ty-open set Q s.t. pp(Q) < oo. (4.88)

109



Proof. The first assertion follows from the definition of M, (RY). Next, if g is essentially
absolutely continuous and 19(Q) < oo where @ is T4-open, then 1gug is a bounded Borel
measure which vanishes on Borel sets with zero cap: ,-capacity. If {A,} is a sequence of
q b
Borel sets that we can assume to be decreasing, such that capz q,(An) — 0 when n — oo,
q k)
and pn, = 1gna,pto, then by [40, Lemma 2.8] there exists a unique moderate solution
uy,,, with initial trace pi,. There holds w,, < Ugna,. Since cap: ,(Q N An) — 0, Ugna,
q b

converges to 0 when n — oo, and so does u,,,. Then y,, — 0 in the weak topology of Radon

measures, which implies that wu,,, — 0 locally uniformly in Q7. Therefore p(Q N Ay,) — 0

which implies that pg|q is absolutely continuous with respect to the cap2 ,-capacity in
q k)

the usual sense.

Assertion (4.88)-(i) follows from the definition (4.87). If @ is a T4-open set such that
po(Q) < oo then p(Q) < oo. Since uglg and p|g are regular Borel measures which
coincide on open sets, they coincide on all Borel sets. This implies (4.88)-(ii).

At end, if A is a Borel set such that capz q,(A) = 0, then cap: , (A)=0. fQis a
q’ q’
T4-open set, then @ N A° is T4-open. Therefore

1(Q) = po(Q) = po(Q N A°) = pu(Q N A°).

Hence p is essentially absolutely continuous. Using (4.88)-(i) and the definition of u we
infer that p is outer regular with respect to the capacity cap: o Hence pi € SUIQ(RN ).
q7

g

4.5.3 The initial trace on the regular set

In the next propositions we define the initial trace of a positive solution u of (2.1) on
the regular initial set Ry(u) defined in Definition 4.58 and we study the properties of the
measure fig,(y) constructed by Proposition 4.59, Corollary 4.60 and Proposition 4.61.

Proposition 4.64 Let u € U (Qr).
(1) There exists an increasing sequence of Ty-open sets {Qn} with the following properties:

Qn C Ry(u), Qn C? Qi1 and Ryo(u) :=UpgQn ~? Ry(u), such
vy i=u A Ug, is moderate vy T vg (uy and 1 (vn) T pig, (u)- (4.89)
(ii) There holds
VR, () = sup{[u]r : F CTRy(u), F' Ty -closed} . (4.90)

Thus vR,(u) s o-moderate.

(111) If [u]p is moderate and F' C1 Ry(u), there exists a Ty-open set Q C Ry(u) such that
F C?Q, [ulg is moderate.

(iv) For every T,-open set Q) such that [u]g is a moderate solution, we have

Latr,w) = tr([ulg) = tr ([vr,w)]) - (4.91)
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Finally pr ) 18 Tq-locally finite on Ry(u) and o-finite on Ry o(u).
(v) If {wn} is a sequence of moderate solutions such that wy, T ug, (), then

lim tr (wy,) = lim tr(v,). (4.92)

n—oo n—o0

MRQ(U)
(vi) The regularised measure AR, (u) defined for Borel sets E C RN by

iy (E) = inf {7, (Q) : E C Q QT -open) (4.93)
is Tq-perfect.
(vii) There holds
U DR, () VRy(u)-
(viii) For every Tq-closed set F' C? Ry(u),

[ulF = [URq(u)] P (4.94)

Furthermore, if ug, ) (F N K) < oo for every compact subset K C RN, then [u]p is
moderate and

tr ([ulr) = 1ppr,(u)- (4.95)

(ix) If F' is a T4-closed set with positive capz2 o ~capacity, whe have
q7

PR, (u)(F N K) < oo for all compact set K C RY < [u]p is moderate. (4.96)

Proof. (i) For every z € Ry(u) there exists a T,-bounded open set O, C R,(u) such that
[u]o, is moderate. With the previous notations and the construction of the sequence {Q,, }

in Proposition 4.59, we recall that v, = [u]g, = u A Ug, satisfies v, = [vn4]g, for any
k € N and

fin(@n) = pnik(Qn) = MRq(u)(Qn)' (4.97)
(ii) The proof has already been made in Proposition 4.61.

(iii) We assume firstly that F' is bounded. Using the definition and (i), every point in R, (u)
possesses a Tg-open neighbourhood A such that [u]4 is moderate. By Proposition 4.19-
(II), for any € > 0 there exists a T,-open set Q. such that capg’q,(F NQY) < e and [u]g,

is moderate. Since F' is bounded, we can assume that so is (). Let O, be an open set
containing F' N Q¢ and such that cap2 q,((’)e) < 2e. We define a T -closed set F¢ included
q?

in Q¢ by
F.=FnNnOQO,, (4.98)

and Fe C F with cap: ,(F N FY) < 2e.
q7

Claim 1: Let E be a T,-closed set, D a T4-open set such that [u]p is moderate and E C? D.
There exists a decreasing sequence of T4-open sets {Gy} such that

E C9Gpiy C Gryy C1Gp CD, (4.99)

and
[ulg, — [u]g in LY(K) for every compact set K C Q. (4.100)
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By Lemma 4.18 and Proposition 4.25-(iii), there exists a decreasing sequence of T ,-open
sets {G,} satisfying (4.99) and such that [u]g, | [u|g locally uniformly in Qp. Since
[u]g, < [u]p which is a moderate solution, we deduce (4.100).

Next we assume that F' is a non-necessarily bounded Tj-closed set. If x € F' we set
B, = B,(x)NF, n €N, and

n
(FNBp)y-m,
m=1

where (F'N By,)y—m is the set defined in (4.98) with F' replaced by F' N B,, and € replaced
by 27. We can also assume that the sequence {E,} is increasing. We set QI _, =
(FNBy),,—1 and

Qn=J Qn,
m=1

and as for {F,,} we can assume that the sequence {@,} is increasing. Therefore, we
have that E, C E, Q, is T4-open, [u|g, is moderate and E, C? @Q,. Furthermore
UnE, = E' ~% F since for any n € N, there holds

o0 n
capz o F\ U E;| < anpg’q/ (FNBg)\ U E; | + Z capz ((FNBg)\ Ex)
j=1 k=1 k=n+1

Thus, by Assertion 1, we can choose a sequence of T,-open sets {V},} such that
B C1Vo CVo C1Qn and |[uly, — [ulg,ll om0y <2 (4.101)

Notice that since E, and @, are bounded sets, the functions [u]y, and [u]g, which are
moderate belong to LI(RY x (0,T)).

Because [u]r is moderate, there exists a Radon measure up = tr ([u]r) and [u|p = [u]g
since F' ~9 E'. At end, using (4.49) and the fact that F,, C? F, we have

[ulE, = [ulpnE, = [VE.]F

Because [u]p is moderate we have tr ([u]g,) = 1g,pup. Since E, T E' ~% F we deduce
that [u]g, T [u]p in L] _(Qr). Hence, we have from (4.101) that [u]y, — [u]p in L] (Qr)
as n — o00.

Let {V},, } be a subsequence such that

</ /Bk IV, — Fyq>l <27k (4.102)

If K ¢ RY is compact, it is included in K C By, for k > ky. We set W = Uz, Vi, » then
oo

[ulw < ) _lulv,, -
k=1
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Therefore

([ fow-tonn) < ([ o)
s <//| i, ~ lalel?)

k=ko+1
ko
<SS ([ 1w, Fw) R
k=1 WO JBy k=ko+1
< Q0.

Because F' C9 W, W is T -open, [u]r is moderate and K is arbitrary it follows from the
above inequality that [u]y is moderate, therefore W C R4(u) by Proposition 4.57.

(iv) Let @ be a T4-open set such that [u]g is a moderate solution, and pg = tr ([ulg). If
F is a T -closed set such that F' C? @), then by Proposition 4.25-(ii),

tr(fulr) = tr ([lulg] ) = Lrso. (4.103)

In particular, if @ and @Q’ are regular sets in the sense of Definition 4.24, then

HQNnQ' = 1éﬁél’uQ = 1@0@':’“‘(2" (4.104)
Using the notations of (i), we have [v,4x]Q, = vk and hence 1@’“””“ = ug for every
k e N.

Let F be a T,-closed regular subset of R,(u). Since [u]r is moderate we have by
(4.104)

[onlr = [l prg, T ulF (4.105)

Furthermore, since we have

(o] p = lim o] = [l

and vg, (y) < u, we infer
[ulr = [vR,)] 5 - (4.106)

It follows from (4.103) and (4.105) that if F' is a T, -closed subset of R,(u) and [u]r is
moderate that

tr ([ulp) = lim tr ([v,]F) = nh_}ngo 1ppn = 1PpR, (u), (4.107)

n—o0

which yelds (4.91).

Finally, since Ry(u) has a regular decomposition, pg, () is o-finite on Ry (u). As
for the assertion that ug, () is Ty-locally finite on Ry(u) it is a consequence of the fact
that every point € Ry(u) is contained in a Tj-open set O C Ry(u) such that [u]o, is
moderate and thus jig, (,)(O¢) < o0.

113



(v) If w is a moderate solution dominated by vg,(,) and the Ty-supp(w) C? Ry(u) then

T i=tr(w) < pR,(u)-
Now, let {w,} be an increasing sequence of moderate solutions such that F,, := T, -
supp(wy,) C? Ry(u) and wy, T vg, (u)- We claim that

vi= lim v, = lim tr(w,) = pg,(u)- (4.108)

n—oo n—oo

By the previous argument, v < pg, (4)- In order to prove the opposite inequality, we
procede as follows: Let D be a Tg-open set such that [u]p is moderate and let K be a
compact subset of D with positive capz o/ -Capacity. Then

q7

wy, < [wn]p + [wn]pe <= vr () = lim wy, < [wn]p + Upe.

lim
n—oo n—oo

The sequence {[w,|p} is dominated by the moderate solution [vg (,)]p. In addition

tr ((wa]p) = 1pvn T 15v < 150, (v).- Hence 15v is a Radon measure which vanishes

onBorel sets with zero cap: ,-capacity. Also [wy]p T U1y, with the usual notation.
q7

Consequently

vnﬂu)?=ggg}w1§1uﬁu+—UDa

This implies
<[URq(u)]K - U15u>+ <inf{Upe, Uk }.

By the same argument as in the proof of Proposition 4.61-(ii) this yields
(@na@h<—un)+S[Wb4K}=o.

Hence [qu(u)]K < U1y and hence 1Kﬂ7zq(u) << 1pv. Next, if @ is a T,-open set such
that CNQ C? D, we use the fact that
sup{lx pr,(u) : K C Q, K compact} = 1our, (u)
to obtain that
]_Q/,LRq(u) S 151/. (4109)

Applying this inequality to the couple of sets (Q, @m+1) we deduce that

1Qmqu(u) < 1@m+1y < lQm+2V-

Letting m — oo implies ug, (,) < v. This completes the proof of the claim (4.109) and
assertion (v).

(vi) Since the measure KR, (u) is essentially absolutely continuous with respect to the
capz q,—capacity, the claim follows from Proposition 4.63.
o

(vii) For any n € N, we have
u < [uqQ, + [uqQs-
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Since @y, is Ty-closed and N, Q7 = R o(u), we have by Proposition 4.47-(iii)

[ulgg 4 [ulre o (w)-

Therefore

lim (u— [ulg, =u—vr,w) < [ulre ().

It follows that u©vR, (u) R, o(u) 0- Because vg, () < u, this is equivalent to the statement
U SRy 0(u) VRq(w)-

(viii) The fact that [u]r = [vg, (u)]F for every Ty-closed subset F' C? Ry(u) follows from
assertion (vii). Next we assume that pp ) (F N K) < oo for any compact set K and we

set Fl, = F N Q,. By relation (4.48) we have
[ulp, <lulr <[ulp, + ulrorg = [Ulr, + [Ulprge < [ulr, + [ulrngs -

Since F'N Q7 is Tg-closed and M, F' N Q = G with capz ,(G) = 0, we deduce from
q7
Proposition 4.47-(iii) that [u]rng: — [u]lg = 0 as n — co. Hence [u]f, T [u]r and

tr ([ulp,) = 15, bRy w) T LR MR () = LFAR (w) @S M — 00,

since 1ppp, () = 1rpR, ) I Fo = NpFy,. Because 1pup, ) is a Radon measure es-
sentially absolutely continuous with respect to the cap: o -capacity, [u]F is moderate and
q7

(4.95) is verified.

(ix) If pr,)(F N K) < oo for any compact set K, then by (viii) [u]r is moderate.
Conversely, if [u]r is moderate, then by (iv), there holds ug ) (F N K) < oo for any
compact set K C RV, ([l

Example There exist functions u € U (Q7) such that R,(u) = RY but which are not
moderate solutions. We construct one of them as follows. Let n : [0,00) — [0,00) be a
smooth function which is positive on (0,00), 7¥(0) = 0 for all k € N (e.g. n(r) = e ).
We define the closed set K ¢ RN by

K={z=( zy) e RN xR, : |2/| < n(zn)}.

Then K is T,-thin at 0 for the capacity capz e We set
q7

-N i
f(x):{ 0 o iiiggN\K

and define the measure
w= fdx.
Then the following properties hold:
1- p is Ty-locally finite.
2- M(Qn) < o0 if Qn = Bap \Ei and U, Qp ~1 RV,
3- u(F) = 0 for any Borel set F such that cap%’q,(F) =0.
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4- There exists a non-decreasing sequence of bounded nonnegative Radon measures { ., }
absolutely continuous with respect to the cap: q,—capacity such that
q b

(i) Tg=supp (11n) C Qn, n(A) = pink(A) for any A C Q, and any n, k € N,.
(i) lim ji, = .
5- We can construct a solution u of (2.1) such that R,(u) = RY and PRy(w) = K

We will prove later on that this solution is actually unique to have this initial trace
since it is o-moderate.

Lemma 4.65 Let u satisfy the conditions 1-4 above.Then there exists an open set Ry ~4
RN such that the measure p is a Radon measure on R,.

Proof. By [43, Lemma 2.5] for any R > 1 and € > 0 there exists a sequence of open sets
{0} and n(m) € N, such that capz ,(Om) < €27™ and
q7

ER \ O, C U Qj where Qj = ng \E; (4.110)
J
j=1
Since O,,, C 0]
, (Om) < (0) < Ceapz ) (O) < ce2™™.
capg’q (Om) < capz ( ) < Ceapz , (Om) < ce
If x € BR\(y_q Om there exist 7, > 0 and k € N such that

k
B, (x) C Bg\ ﬂ

Jointly with (4.110) it implies that
p(Br, (z)) < o0.

We set
={z ¢ RY : 3r, > 0 such that (B, (z)) < 00} .

The set R, is open and by letting R — oo and € — 0, we obtain that R, ~¢ RY. By the
definition of R, for any compact set K C R, there holds p(K) < co. Hence p is a Radon
measure in R. O
4.6 The precise initial trace

4.6.1 Definition and first properties

We can now define the precise initial trace of an element of U, (Q7) in the supercritical
case.
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Definition 4.66 Let ¢ > q. and u € U (Q7).

1- The function v, () defined in (4.90) is called the regular component of u and will be
denoted by Upeg.

2- Let {v,} be an increasing sequence of moderate solutions satisfying condition (4.89)
and put pig (u) = nh_)rgo tr(vy). Then, the regularised measure AR, (u), defined by (4.93), is
called the regular initial trace of w. It will be denoted by tqu(u)(u).

3- The couple (trg,)(u), Sq(u)) is called the precise initial trace of u and will be denoted
by tre(u).

4- Let v be the Borel measure on RN given by

v(E) = { ZRQ‘“)(E) g gﬁggff;; " (4.111)

for every Borel set E C RN, Then v is the measure representation of the precise trace of
u and it is denoted by tr(u).

Remark. In the definitions of ¢r¢(u) and ¢r(u), the exponent ¢ stands forcouple, but the
two objects are the same in their respective classes. Thanks to Proposition 4.64 the mea-
sure fiR, (y) is independent of the choice of the sequence {vn}.

The next fundamental result is the parabolic version of the construction given in [43].

Theorem 4.67 Assume that u € U+ (Qr) is a o-moderate solution, and more precisely
that there exists an increasing sequence {uy} of positive moderate solutions such that u, 1 u
and tr(uy) = pn. Set pg = H_)m n and define i on Borel sets E C RN by

n o

w(E) =1inf {po(Q) : E C Q, Q T4-open}. (4.112)

Then:

(1) p is the precise initial trace of w and p is Ty-perfect. In particular p is independent of
the sequence {u,} which appears in its definition.

(i) If A is a Borel set such that p(A) < oo, then p(A) = po(A).

(iii) A solution u € Uy (Qr) is o-moderate if and only if

u =sup {v € U4 (Qr), v < u, v moderate} . (4.113)
This statement is equivalent to
u = sup {uT EUL(Qr): T € B_%’Q(RN) N m?i(RN), T < tr(u)} . (4.114)
(iv) If w and w are o-moderate solutions,
tr(w) < tr(u) <= w < u. (4.115)

Proof. (i) Since the u, are Radon measures absolutely continuous with respect to capz ¢
q b

o which is the limit of the u,, shares this property. By Proposition 4.63, i is T,-perfect.

117



Let {Qy} be the family of T -open sets of Proposition 4.64-(i). Set @), = Rq(u) \ Qn.
Since U, Qr = limy, 000, ~? Rq(u), then @), | E and cap2 o (E) = 0. Consequently, for

any n € N, we have

lim u = 0.
m—00 Loy, pn

Therefore, there exists a subsequence still denoted by {@Q/,} such that

! 1 dxdt %< L
0 RN UIQ/mMn t - 2”

1R, (w)Hn = 1Q, tin + 1Qg Hin,

Since

it follows that

30, [t agpn = 1] = I g =0

Since we have also

Up = Up, < uqu(u)#n + ulSq(u):“‘” = uqu(u)“" + [U]S‘I(u)’

we infer

0<u—[us,@ <w:= nh_{go UlR,(uybn = nh_{go Ulp, pn < Ureg:

This implies u © [u]s, (u) < Ureg and u < Ureg @ [u]s, (). For the opposite inequality, we
have by Proposition 4.64-(iv)
[U]Dn T ureg'
By relation (4.60) in Proposition 4.54, using the fact that Dy, C4 Dypyy C Dpyq CY Ry(u),
we have that cap: , (INDnH N Sq(u)) =0 and
q7

[U]Dn < [[U]Sq(u)]Dn+1 + [u © [U]Sq(u)]Dn+l = [u © [U]Sq(u)]Dn-H Suo [U]Sq(u)'

Letting n — oo, we derive upeg < u S [u]sq(u). Therefore nh—>120 Ulp pn = Ureg- There-

fore the sequence {uan“n} satisfies condition (4.89) and by Proposition 4.64-(iv) and
Definition 4.66 we obtain

dim 1p, i = pry)  and trr,)(u) = g, w- (4.116)

Next we show that the g-singular set S;(u) is singular for the sequences of measures {,}
in the sense that if £ € S;(u), then for every T,-open neighbourhood @ of &, un(@) — 00
when n — oco. Indeed, we can assume that @ is bounded and we consider a nonnegative
function n € B%’q/(RN ) N L= (RY) with T,-support included in Q. We put h = Hp)
and ¢(r) = 'riq/. Then, using Theorem 4.31, Proposition 4.26 and the computations in
Proposition 4.25, we have

/OT /R (—un (D16(h) + AG(R)) + ulg(h)) dadr + /

RN

(6(R)un) (. T)dex = / 7 dytm,

RN
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and

T
| L oot < c@ (1%, + ol o+ [ ).
0 RN Ba’ RN

We can assume that the function 7 has value 1 in some Tj-openset D C Q and 0 <7 <1
(see Lemma 4.21). If we let n — oo, we obtain from the above relations

T
i [ [t ({10 dedr < C(o) <||77|!2q2q,+\|n||Loo+1im / andun)
0 JRYN B N0 JRN

n—oo

Then the assertion follows from Proposition 4.28.

In conclusion, we have proved that if £ € S;(u) and @ is a T,-open neighbourhood of
&, then MO(@) = 00. By the outer regularity of ;1 with respect to the T -topology, it means
that p(§) = co. Combined with (4.116) this implies that p is the precise trace of u.
(ii) If p(A) < oo, then A is contained in a Tg-open set D such that po(D) < co. By
Proposition 4.63 we have that p(A) = po(A).

(iii) Let uw € U+ (Qr) be o-moderate and denote

u* :=sup {v : v moderate v < u}. (4.117)
By expression (4.117) u* < u. Since u is o-moderate there exists an increasing sequence
{up} of moderate solutions which converges to u. For any n we have proved in the
beginning of the Section on Moderate solutions that given w, there exists an increasing
sequence {Unm} = {uy, .} of elements of Uy (Qr) where fiy,,, € Bfg’q(RN) N MY (RY).
Therefore

Uy, < Sup {uT 1T € Bfg’q(]RN) NIME(RY), 7 < tr(u)} =u**.

By letting n — oo we infer u < u**.

However, if u is o-moderate, 7 € B_%’Q(RN) N MY (RY) and 7 < tr(u), then we have
that tr(u; ©uy,) = (T — pn)+ and the corresponding sequence decreases to 0 when n — oo.
Therefore u, © u, J 0 which implies v, < u and thus u** < u. Consequently, (4.113)
implies (4.114). This shows that the two identities which define o-moderate solutions are
equivalent.

(iv) The implication = follows from (4.114). For proving the opposite implication, it
is sufficient to show that if u is o-moderate, w is moderate and w < wu, then tr(w) <
tr(u). For this task, we consider an increasing sequence of moderate solutions {uy,} which
converges to u. Then u, A w < u and consequently u, < u, A w T w.. This implies
tr(up Aw) tp' <tr(u). Hence tr(w) < tr(u). O

This results extends Proposition 4.64 which deals with the regular initial trace.
Theorem 4.68 Let u € UL (Qr) and v = tr(u).

(i) Ureg is o-moderate and tr(ureg) = trg, u)(w).

(ii) If v € U+ (QT), then
v <u=tr(v) <tr(u), (4.118)
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and if F' is a T4-closed set, then
tr(fulrp) < 1pv. (4.119)
(iii) A singular point of the trace can be characterized in terms of the measure v as follows:
£ e S(u) = v(Q) =00 for all T4-open set containing &. (4.120)

(v) If Q is a T4-open set then:

2 -
[ulg moderate <= there exists a Borel set A s.t. cap=,q (4) =0 and v(ANQ\K) < oo,
q

(4.121)
for any compact set K C RV,
(v) The singular set of ureq may not be empty. Actually
Sq(u) \ bg(Sq(u)) C Sq(ureg) C Sq(u) N R(u), (4.122)

where by(Sy(u)) is the set of thick points of Sy(u) for the T,-topology.
(vi) Put

Spo(u) == {¢ € RY : v(Q\ Sy(uw)) = 0o for all T,-neighbourhood of £} (4.123)

Then
Sq(treg) \ bg(Sg(w)) C Sgo(u) C Sq(ureg) U bq(Sq(u))- (4.124)

Remark. We will prove later on that any element of U, (Qr) is o-moderate. Hence impli-
cation (4.118) is actually an equivalence.

Proof. The first part of assertion (i) is proved in Proposition 4.64-(i) and the fact that
Ureg = VR, (u)- Lhe second part follows from Definition 4.66 and Theorem 4.67-(i).

(ii) If v < w, then Ry(u) C Ry(v) and by definition vyeg < uyeg. By Theorem 4.67-(iv) we
have tr(vyeg) < tr(treg). This implies tr(v) < tr(u). Inequality (4.119) is a consequence
of (4.118).

(iii) If € is a regular point, there exists a T,-open neighbourhood of &, say @, such that
[u]g. Therefore v(Q) = trr, ) (u)(Q) < oo. Conversely, if § € Sy(u), it follows from the
definition of the precise trace that v(Q) = oo for all T,;-open neighbourhood @ of .

(iv) If @ is T4-open and [u]g is moderate, then @ C R4(u). By Proposition 4.64-(ix) we
obtain the implication = in (4.121). Conversely,

V(QN K\ A) < oo, for all compact set K ¢ RN = Q c? Ry(u),

and uRq(u)(@ﬂK) = uRq(u)(@ﬁK\A) < oo. It follows by Proposition 4.64-(ix) that [u]g
is moderate. o
(v) Because Tg-supp (ureg) C Ry(u) and Ry(u) C Ry(treq), we have

Sqltreg) C Sg(u) N Rq(u).
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Next we prove that Sq(u) \ bg(Sy(u)) C Sq(treg)-

If £ € Sy(u) \ bg(Sy(u)), then Ry(u) U{E} is a Tg-open neighbourhood of £. By (i) treq is
o-moderate and thus its trace is T4-perfect (see Theorem 4.67)-(i)). Therefore if Q) is a
T 4-open neighbourhood of £ and @ = Qo N ({{} U Ry(u)), then

tr(ureg)(Q) = tr(ureg)(Q \{&}) =tr(u)(Q\ {£}),

where, it the last inequality, we have used the fact that Q \ {{} C Ry(u). Now, let D be
a Tg-open set such that € € D ¢ D c Q. If tr(u)(Q \ {€}) < oo, then, by (iv), [u]p is
moderate and £ € R, (u, contrary to our assumption. Therefore tr(u)(Q\ {¢}) = oo which
implies t7(ureq)(Qo \ {£}) = oo for every bounded T,-open neighbourhood Qg of &, and
consequently & € Sy(uyeg), which ends the proof of (v).

(vi) If € ¢ by(Sy(u)) there exists a T,-open neighbourhood D of € such that (D \ {£}) N
Sy(u) = 0, and thus

tr(treg) (D \ {€} = tr(ureg) (D \ Sg(u)) = tr(u)(D\ Sy(u)). (4.125)

Furthermore, if we assume that £ € S;o(u), then
tr(u)(D\ Sq(u)) = tr(ureg) (D \ Sy(u)) = 0.

If @ is an arbitrary ¥, -open neighbourhood of ¢, then the same relation holds if D is
replaced by D N Q. Therefore tr(uyeq)(Q \ {{} = oo for any such . This implies that
§ € Sqlureg) and Sqo(u) \ bg(Sq(u)) C Sqltreg)-

On the other hand, if £ € Sy(ureg) \ bg(Sq(u)), there exists a T,-open neighbourhood
D of ¢ such that (4.125) holds and t7(ureg)(D) = 00. Since uyeq is o-moderate tr(tyeq)
is T,-perfect, which infers t7(uyeg)(D) = tr(ureq)(D \ {{}) = co. Using (4.125) we obtain
that ¢r(u)(D \ Sy(u)) = co. At end, if Q) is T4-open neighbourhood of £, then D can be
replaced by D N Q, which yields tr(u)(Q \ Sy(u)) = oo. This proves that £ € S;o(u) and
ends the proof of (4.125). O

Proposition 4.69 Let F' be a T4-closed set. Then Sy(Up) = by(F).

Proof. Let ¢ € RY such that F is T4-thin at . Let @ be a T4-open neighbourhood of £

such that @ C? F°. Then [Uplq = Upng = 0. Then § € Ry(u).

Conversely, if £ € FNR4(Ur) there exists a T,-open neighbourhood @ of £ such that

[Ur]q is moderate. But the relation [Up|g = U FrO? combined with the previous assertion,

implies that capz g (FN @) = 0 and therefore Q C R4(u). Since

capz o (F) < capz o (F 1 Q)+ capz o (Q°),

we conclude that F'is € ,-thin at . O
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4.6.2 The initial value problem

We introduce below some definitions and notations which will be useful in the sequel.

Definition 4.70 I- 9t (RY) is the space of positive outer regular Borel measure in R,
II- C4(RYN) is the space of couples (1, F) such that F is a T,-closed subset of RN, 7 €
M (RY) with Ty-supp (1) C F¢ and 1pet is Ty-locally finite.

HI- T denotes the mapping from Cy(RY) into M (RN) defined by v = T (7, F) where v

is defined as in (4.111) with Ry(u) and Sy(u) replaced respectively by F'¢ and F. In this
setting v is the measure representation of the couple (1, F).

IV-If (1, F) € Cy(RY), the set
F,={¢cRY :7(Q\ F)=co for all T,-open neighbourhood of £}, (4.126)
is called the set of explosion points of T.

Remark. Since 1peT is locally finite, Fr C F. If F; is not included in Fvc, there would exist
a Tg-open neighbourhood @ of £ with an empty intersection with F'¢, hence included in
F,thus Q\ F =0 and 7(Q \ F) = 0, contradiction. Therefore F; C F¢ and consequently

F.Cc FenF = <FCqu(FC)) NF =by(F)NF. (4.127)

This result has to be compared with Theorem 2.15 which deals with a necessary and
sufficient conditions for the existence of a maximal solution u of (2.1) with a rough initial
trace (S, ).

The next result points out the crucial role of the set M, (R™) defined in Definition 4.62
for describing the link between U (Q7) and Cy(RY).

Proposition 4.71 Let v be a positive Borel measure in RY .
(i) The initial value problem

Ou — Au + [ul7lu =0 in Qo
u>0 in Qoo (4.128)

tr(u) =v

possesses a solution if and only if v € My (RY).
(ii) Let (1, F) € C4(RN) and set v :=T(r,F). Then v € M (RY) if and only if

7€ My(RY) and F =by(F)| J F-. (4.129)
(iii) Let v € M (RY) and set

& ={E: E T -closed sets s.t. v(ENK) < oo for all compact K C RV}

- (4.130)
D, :={D: D %, -open sets s.t. D ~1 E for some E € &,}.
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Then a solution of (4.128) is given by uw = v ® Up where

G = U D, F:=G° v:=sup{ui,, :EFecé&}. (4.131)
DeD,
(iv) The solution uw := v @ Up is o-moderate and it is the unique solution of problem

(4.128) in the class of o-moderate solutions. Furthermore u is the largest solution of this
problem.

Remark. 1- We recall that if £ € F, then 1gv is a locally bounded Borel measure which
does not charge sets of capz o/-capacity zero. Recall also that if u is a positive measure
q’

possessing these properties, then u, denotes the moderate solution with initial trace pu.
2- We will see later on that u := v@® Up is the only solution to problem (4.128) since every
solution happens to be o-moderate.

Proof. (1) If u € U+ (Q7),
tr(u) = v = v € M,(RY). (4.132)
By Proposition 4.64, 1.4 is o-moderate and u AR, (u) Ureg- Therefore
LR, (u)tr(w) = 1R, (u)tr (treg)-
By Theorem 4.67 fig, = tr(ureg) € Me(RY). If v is defined by (4.130), then
v=sup{[ulp: FT4closed , FF C? Ry(u)} = Ureg, (4.133)

where the second equality holds by definition. Actually, by Theorem 4.68, for every ¥,-

open set @ [u]g is moderate if and only if ¥(K N Q \ A) < oo for some set A with
capz q,(A) = 0 and for every compact set K C R™. Hence, by Proposition 4.64-(ix),
=

E is regular, in the sense that there exists a T -open regular set such that £ C? Q.
Hence u1,, < [u]g. This implies that v < wyeq, which proves (4.133). Furthermore, if
ENS,(u) # 0, then v(E) = oo by Definition 4.66. Therefore v is outer regular with
respect to the T -topology.

Next we prove that v is essentially absolutely continuous (cf. Definition 4.62-(iii)). Let
@ be a Tj-open set and A a non-empty T -closed subset of ) such that capz g4 =0.

either (@ \ A) = oo in which case v(Q \ A) = v(Q) = o0, or ¥(Q \ A) < co. In that case
Q\ AC Ry(u) and

v(@\A) =n(Q\A)=7a(Q)
since capgg,(A) =0= u(A)=0.
Let £ € A and D be a T -open subset of @) such that £ € D C D ct Q. Consider
now a sequence {B,} of T,-open neighbourhoods of A N D such that B, C? D and
cap%q,(Bn) < 27" If we set E,, = D\ By, we have

[ulp < [u]g, + [u]B,.
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Since limy, o0 [u] B, = 0, it follows that [u]p < lirginf[u]En. Because E,, C Ry(u), v(E,) <
n—oo

v(Q\ A) < oo, we have by the definition of v and Proposition 4.64-(ix) that [u]g, is
moderate. Using Lemma 4.18, Lemma 4.17-(ii) and [40] there holds

/T/ [u]f, dxdt < Cv(E,) < Cv(Q\ A) < oo,
0o JK

for any compact set K C RY. Therefore
T
/ / (] dzdt < Cv(E,) < Cv(Q\ A) < oo for all compact set K ¢ RY.
0o JK

This implies that [u]p is moderate and thus D C R4(u). Therefore, since every point

A has a neighbourhood D as above, we conclude that A C R,(u) and hence v(A) =

trr, () (w)(A) = 0. If A is any a non-empty Borel subset of @ such that cap: q,(A) =0, we
q7

use the inequality capz q,(g) < Ceaps q,(A) to conclude that v is absolutely continuous
q’ q’

and hence v € M, (RY).

Next we prove :
(II) Suppose that (1, F) € Co(RYN) satisfies (4.129) and put v = T(r, F). Then the solution
u:=v® Up with v as in ({.131) satisfies tr(u) = v. Notice that implies v € M,(RY) by
(4.131).

The solution v is o-moderate by construction. Since 7 is locally T -finite in F*° and
essentially absolutely continuous with respect to capz g We have that
q7

G :=F°CRy(u) and 1lgtr(v) = 1gq. (4.134)

Therefore, it follows from the definition of v that F. C S,(v). By Proposition 4.69 and
Theorem 4.68-(iv) we have that

F =by(F)| JF- C Sy(v) | S4(Ur) C Sy(u) C F. (4.135)

Hence F' = Sq(u), v = Ureg and 7 = t7(ureg). In turn, this implies ¢tr(u) = (7, F'), which is
equivalent to 7 = tr(u).

Next we prove;
(IIT) Suppose that (1,F) € Cy(RN) and that there exists a solution u such that tre(u) =
(1, F) (see Definition 4.66 for the definition of tr¢). Then

T =trr,w)(w) = tr(ureg) and F = Sy(u). (4.136)

If U := tpeg ® Up, then tr(U) = tr(u) and w < U. U is the only o-moderate solution of
(4.128) and (1, F') satisfies (4.129). Assertion (4.136) follows by Proposition 4.64-(i). and
Definition 4.66. Since u,¢, is o-moderate, we have that 7 € 9,(RY) by Theorem 4.67.
By Proposition 4.64-(vi) there holds u AR, (u) Ureg- Therefore the function w := uSu;¢g
which vanishes on R,(u) is dominated by U. Note that v — . < w and therefore

U < Upeg Dw < UL (4.137)
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By defintion, S;0(u) = F; and by Theorem 4.68(vi) and Proposition 4.69 we have

Sq(u) = Sq(ureg) USq(UF) = Sq(treg) U be(Ur)
u) U be(Ur) = F; U be(Ur).

On the other-hand R, (U) D Ry(ur,w)) = Rqe(u). As u < U we have Ry(U) C Rqy(u).
Hence Ry(U) = Ry(u) and S (U) S (u) Therefore, by (4.135), (4.137),

(4.138)

F=38,(U) = F, Uby(Up).

This implies that (, F) satisfies (4.129) and ¢r(u) = (7, F). That U is the maximal
solution with this trace follows from (4.137).

The solution U is o-moderate because .y, and U are o-moderate (see Theorem 4.43).

Finally we prove:
(IV)If v € M (RYN) then the couple (1, F) defined by

vi=sup{uig, : B €&}, T=1r(v), F=Ryv), (4.139)

(see (4.130) for the definition of E,) satisfies (4.129). This is the only couple belonging to
Cy(RY) satisfying v = T(r, F). The solution v is o-moderate so that T € M,(RY).

We first prove that u := v@ U is a solution with initial trace tr(u) = (7, F'). Actually
u > v, so that Ry(u) C Rq(v). On the other hand, since 7 is Ty-locally finite in Ry(v) =
Fe, it follows that Sy(u) C F. Therefore R,(v) C Ry(u), and finally R4(u) = Ry(v) and
F = 8§,(u). This also implies v = tuyeg.

At end
) (Jba(S(Ur)) = by(F) | J F,
which means that (4.129) holds.

That for v € 9, (RY) the couple 7, F defined by (4.129) is the only one couple be-
longing to Cq(RN ) satisfying v = T(7, F') is a mere consequence of their expression in
Definition 4.70.

Finally, statements (i)-(iv) follow from (I)-(IV). O

Remark. If v € M,(RY) then G and v as defined by (4.131) have the following alternative
representation:

G = UE’— U Q, v = sup{ulQ,, :QE}",,}), (4.140)
QeF,
where
= {Q 1 Q Tg-open, v(Q N K) < oo for all compact set K C ]RN} 7. (4.141)

In order to prove (4.140) we first observe that if A is a T-open set, then sequence of there
exists an increasing sequence of T, -quasi closed sets {E,} such that A = U{°E,. This
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follows from Lemma 4.18-(II-i-ii) with E,, = F,, \ L where L = A"\ A and cap: ,(L) = 0.
q7

Thus
UpclJeclyE=H
D, Fu Ev

On the other hand, if E € &£, then ug, () (K N E) = fR,w) (K NE)=v(ENK) < oo for

any compact set K C RY. By Proposition 4.64 (ix), E is regular in the sense that there
exists a Tg-open regular set () such that £ C? @), therefore H = UD,, D.

If D is a T -open regular set, then D = U2 | B, where {E,,} is an increasing sequence
of T4-quasi closed sets. This implies

Ulpy = nangO ULy, v

Hence
sup {ulQV Qe DV} < sup {ulQV N ONS .7-",,} < sup {ulQV N ONS Sl,} .
However, if I/ € &, there exists a T4-open regular set () such that £ C? (). This implies

the inequality in (4.140).

4.7 Representation of positive solutions of d,u — Au+ Vu =20

In this section we prove a general representation theorem for positive solutions of
du—Au+Vu=0 in Qp:=RN x(0,7) (4.142)

where V' : Q7 — R is a Borel function satisfying

0<V(at)<C

" for all (x,t) € Qr, (4.143)

for some positive constant. Our results are the parabolic counterpart of Ancona’s results
[3] concerning representation of positive solutions of

—Au+V(x)u=0  in Q, (4.144)

by means of a Martin operator when Q@ C RY is a bounded Lipschitz domain and V a
nonnegative Borel function defined in 2 satisfying

0<V(x) < for all x € Q, (4.145)

(p(z
with p(x) = dist (z,09Q) and C > 0.

We recall first some well-known facts concerning weak solutions of (4.142).
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Definition 4.72 Let p € M(RY). We say that u is a weak solution of

ou—Au+Vu=0 mn Qr

u(.,0) = p in RN (4.146)

if u,Vu € L}, (Qr) and there holds

// u (=0 — AC+ V() dadt = /]RN C(x,0)dp(z) for all ¢ € X(Qr), (4.147)

where

X(Qr) = {¢ € Co(RY x [0,T)) : ( + AC € Li5.(Qr)} -

Note that this definition implies that the function u admits the measure p as an initial
trace as described in Section 2. The next result is an easy adaptation of the techniques
developed in Section 2.

Lemma 4.73 Let € 9 (RY) and assume that there exists a positive weak solution u of
problem (4.146) where V' satisfies (4.145). Then for any smooth bounded domain ) there
exists a unique positive weak solution v = vq of problem

Oov—Av+Vou=0 in QF :=Qx(0,7T)
v=0 in 0,Q% == 00 x (0,T) (4.148)
v(.,0) =1qu in Q.

Furthermore 0 < v < u and the mapping £ — vq is nondecreasing.
Proof. Let ¢, be a sequence converging to 0 and v, the solution of

ov—Av+Vov=0 in Qx (e, 7T)
v=20 in 9Q x (e,,T) (4.149)
v(.,€n) = 1ou(., ) in Q.

Such a solution exists since u(.,e,) € L'(Q) and it satisfies 0 < v, < uin Q x (e,,T). By

classical parabolic regularity estimates we may assume that the sequence {v,} converges
locally uniformly in Qf to a nonnegative function v dominated by u. Let ¢ € C 171%1@5;)

vanish on 84@% and for t > T — ¢ for some 6 > 0. Set (,(z,t) = {(x,t — €,), then from
(4.148), and assuming that €, < § we have

T
/ / U (—0eG — AG, + V() dadt = / C(.,0)u(., e,)dx. (4.150)
en 40 Q

Because v,V < uV € L} (Qp) we deduce from the dominated convergence theorem

T
that the left-hand side of (4.150) converges to / / v (—0:¢ — AC + V() dxdt while the
0o Jo

right-hand side to / ¢(.,0)du(x). The final assertion on the monotonicity of Q +— vq is a
Q

consequence of the maximum principle. This ends the proof. ]
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Lemma 4.74 Let the assumptions on u, V and u of Lemma 4.73 be satisfied and denote
by vg 1= vp, the solution of (4.148) with Q = Br. Then

vp Tu as R — oo.

Furthermore this convergence is uniform on compact subsets of Q.

Proof. Since the mapping R +— wvg is increasing and vy is dominated by wu, there exists a
function w such that
v Tw<u as R — oo,

and this convergence is locally uniformly in Q% Because for any ¢ € C.(Q7),

im [ (. /c 0)du(s

R—o00

we infer that w is a weak solution of problem (4.146). Therefore the function w = u — w
is nonnegative and satisfies

o — Aw <0 in Qr
w >0 in Qr (4.151)
w(.,0)=0 in RV,

Moreover w belongs to L} (Qr). We extend it by 0 in RY x (=T,0) and the resulting
function w* is a nonnegative sub-caloric function in RV x (=T, T) that we can suppose
to be C* by replacing it by J, * @* where J, is a sequence of mollifiers in RN+, By the
maximum principle J. x w* = 0. Hence w* = 0 which yields u = w. O

The next result is the extension of the initial trace theorem for nonnegative caloric
functions to nonnegative solutions of (4.142).

Lemma 4.75 LetV satisfy (4.143) and u € C*Y(Qr) be a nonnegative function satisfying
(4.142). Assume that for any x € RN there exists a bounded open set U C RYN such that

/OT/U“(%t)V(y,t)dydt < 0.

Then w € LY( x (0,T)) and there exists a nonnegative Radon measure p in RN such that

lim u(z, t)¢(x)de = / Cdp for all ¢ € C°(RY).
RN

t—0 RN

Proof. Without loss of generality we can assume that OU is smooth and since Vu €
LY(U x (0,7)) it is classical that there exists a solution v to the problem

o —Av=Vu in Q%
v=20 in 85@%
v(.,0) =0 in U.
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The function v is nonnegative and w = u + v is a positive solution of the heat equation.
Hence w admits an initial trace on U which is a nonnegative Radon measure. This implies
that u admits the same initial trace on U. We end the proof by using a partition of
unity. O

Now we can prove our fundamental Representation Theorem.
We assume that V satisfies (4.143) and let u € C%1(Q7) be a nonnegative solution of
(4.142). If o € C%(Qr) we define v € C¥1(Qr) by v(x,t) = e ¥@Hy(x, t). then
O — Av — 2Vu.Vi — |V |20 — 20A¢% + (9 + A+ V)v =0 in Q7. (4.152)
We choose V' to be the solution of

—i%d’—wﬁ¢1:‘/ in(QT

(., T) =0 in RV, (4.153)

Then

_lz—y|?

T A(s—t)
¥ () // - ————x V(y,s)dyds. (4.154)
R 2

N (47(s —t))

Because of (4.143) the following estimates hold:

(4) 0 < ¢pa,t) < Co(T)In (%) (4155)
(i) V()| < C1(T) + Co(T) In (L) '
With this choice of 1, equation (4.152) becomes
Ov — Av — 2 Z(waz)mz —|VY*v =0 in Qr. (4.156)

i=1

Because Int € LP(0,1) for all p € [1,00), it follows that for any p € [1,00) there exists
M; = M;(p) >0, j = 1,2 such that

T
(i | sup ot o < o

0 sexd (4.157)
(17) / sup |V(x,t)|Pdt < M.

0 xzeRN

Using Aronson’s estimates [4] with A;; = §;; A; = 2¢,,, B; =0, C = [V4|? and p = o0
with the notations of this article, then the condition H therein is satisfied. Therefore there
exists a kernel I'(z, t;y, s) defined in Q7 x Qr satisfying

|z —y|? |z —y|?
e MiG—0v e *24G-0

<T(z,t;y,5) < Co(T, N, M) ———, (4.158)
2

(dm(s — 1)z (4r(s — 1))

CH(IlfV7A4é)
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for all (z,t,y,s) € Qp x Qp where a3 > ay > 0 depends on 7', N and M, such that v
admits the following representation

v(z,t) = /RN L(z,t;y,0)du(y), (4.159)

where p is the initial trace of u obtained in Lemma 4.75. Furthermore there holds

3 . _ oo (mN
lim /]RN /RN D(z,t;y,0)(z)du(y)de = /]RN Cdp  for all ¢ € C°(R™Y).

t—0

Note that if the initial trace of u is a function ug such that e yg(.) € L2(RY) for some
v > 0 and wug is continuous at some x € RY then

lim [(x,t;y,0)up(y)dy = ugp(x). (4.160)
t—0 RN

Finally, we have the representation

u(w, t) = e’ @D | T(z,t;y,0)dpu(y). (4.161)
RN

4.8 o-moderate solutions

4.8.1 The Marcus approach

In this paragraph we adapt to the parabolic framework the construction in [38] used for
characterising, by mean of their precise boundary trace, all the positive solutions of

—Au+u?i=0 inQ (4.162)
in a smooth bounded domain €.

Proposition 4.76 Let u € U (Qr), then

max {ug, (), [u]s,m) } < v < ur, @ + [Uls,w): (4.163)

Proof. From Proposition 4.64-(ii) the function v = u © UR,(u) has it Tg-support included
in S;(u) since its vanishes on Ry(u). Furthermore v < u, hence v < [u]s, (). Furthermore
U—uR, () < v, which implies u < ug, () +[uls, () The left-hand side inequality in (4.163)
follows by the construction of ug_(,) and the definition of [u]s, (y)- O

Proposition 4.77 Let u € U, (Q7) and A, B be two disjoint T4-closed Borel susbets of
RN If the T,-support of u is included in AU B and [u]a and [u]p are o-moderate, then
u 18 o-moderate. Furthermore

u=[ula® ulp=[ulaVulp. (4.164)
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Proof. Because [u]4 and [u]p are o-moderate there exist two increasing sequence {7,,} and
2
{7/} included in B~ ¢’ (R™Y) N M’ (RY) such that

Ur, T[ula and uy T[ulp as n— oo,

and Tg-supp (7,,) C? A while Ty-supp (7},) C? B (see Proposition 4.49). Thus
cap%ﬂ, (‘Iq—supp (Tn) N Tyg-supp (T,'l)) =0,

and

Ur, N Ut = Up, D Ury = Upp 477
Moreover, by Proposition 4.42-(ii) and Definition 4.50,
max{[u]4, [ulp} <u < [u]a+ [u]B. (4.165)
Therefore
max{ur,, U } < U= Up, 477 < U

On the other hand
U — Ur,, 41/, < [U]A - Ug, + [U]B — Ug,-

Since the right-hand side tends to 0 as n — oo we obtain

nth;O Ury, 47! = Uy (4.166)

which means that « is o-moderate.

By definition of the operations @ and V, identity (4.164) admits the following equivalent
formulation;
(a) u is the largest solution dominated by [u]a + [u]p,
(b) u is the smallest solution dominating by max{[u]4, [u]p}-
Set w := [u]4 @ [u]p, then
u<w < [ulg+ [u]p.

Clearly [u]4 < [w]4. Since [w]a < w < [u]a+ [u]p implies [w]4 — [u]a < [u]p. This implies
vi=[([wla = [u]la))i < [ulp v < [w]a,

where [([w]a — [u]a)+]+ is defined in the notations (e) in Section 4.1. This implies that
Tgsupp (v) C A and T,-supp(v) C B.

Since AN B = () we obtain v = 0 and [w]a < [u]4. In a similar way [w]|p < [u]p. Using
(4.165) and the fact that for any Borel set £ we have [u]p < [u] 5, + [u] 55 we infer

8y(u) = 8,(w).
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As a consequence any regular T,-open regular subset @ C R4(w) is included into Ry (u).
Using now Proposition 4.42-(ii) and the fact that the T ,-support of w is included into
AN B we deduce

[wlg < [wlgna + Wlgnp = llwlalg + [[w]Blg = [[ulalg + [[ulBlg,-

Now [w]g and [u]g are moderate solutions. Because AN B = () there also holds [u] Gna ®
[u] anp < [u]g, which implies in turn [u|g = [w]g. Therefore, by Proposition 4.64-(ii),
WR,(u) = UR,(u)- Using Proposition 4.71 and the remark hereafter we derive

u<w< UR, (u) + Ur,

where F' is defined in (4.131). Since o-moderate solutions are uniquely defined, w and u
coincide. Hence the result follows from (4.165) and (4.166) by letting n — oco. O

4.8.2 Characterization of positive solutions of d;u — Au+u? =0

If u e UL (Qr) we set
V(z,t) =ult. (4.167)

Then v is a solution of
ou—Au+Vu=0 in Qr (4.168)

1
where V' satisfies estimate (4.143) with C = (¢ — 1) 1. The function u belongs to
C%*!(Qr) and there exists a nonnegative Radon measure x in R" such that the following
representation formula holds:

u(x,t) = e¢(x’t)/ I(z,t;y,0)du(y) for all (z,t) € Qr, (4.169)
RN

where ¢ is the solution of (4.153) expressed by (4.154). The measure p is called the
extended initial trace of u.
If E ¢ RY is a Borel set we put

pp=1gp and (u)g = 6w(w’t)/ I(z,t;y,0)dpe(y) in Qr.
RN
The next result is fundamental and points out the importance of the function (u)g.
Lemma 4.78 Let ' C RY be compact, then
(w)p < |ulg in Qr. (4.170)
Proof. Let A C RY be a Borel set and 0 < 8 < % We denote by vg‘ the solution of

ov—Av+Vov=0 in RY x (B,T)

U(., ﬁ) = 1AU(~,5) in RN7 (4.171)
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and by w’g the one of

ow — Aw+wl =0 in RN x (3,7)

v(., B) = 1au(., B) in R, (4.172)

Since u¢~! < V, there holds 0 < w? < v/‘é‘ < w. For any sequence {f} decreasing to 0
one can extract a subsequence still denoted by {3k} such that {vgk} and {wg‘k} converges
locally uniformly to v and w* respectively. Clearly w* € U+ (Qr) while v is a solution

of (4.168). Since the T,- support of wg‘(., 3) is included into Q for any open set @ which
contains A, we have

v <w < [ulg- (4.173)

Next we set v, = e‘wv’gk, then v, satisfies

O — Av — 2Vu. V) — [V |20 — 20A% + (Op) + A+ V)v =0 in Qr
U('v Bk) = ]-A/ F(a 5k79>0)dﬂ(y) in RY.
RN
(4.174)

Using Duhamel’s formula (see [4] in a similar case), we have
5]6('7;7 t) = /RN ]-A('I‘)F('ra t— Br; Y, 0) (/]RN F(Qﬁ, Bk Ys O)du(y)> dzx
= [ (] 1a@r et = 00, s .00 ) dut
RN \JRN
< [ ([, 100t - s 00 s, 0)ds ) du).
RN RN

Using the estimates on I' (see (4.158)) the continuity and and property (4.160) we can let
k — oo and obtain by the dominated convergence theorem

lim vg(z,t) < / I(z, ty;y,0)dug(y).
k—oo RN
This implies
vt < (u)g- (4.175)
Then we can procede in the same way with A°. Extracting a subsequence from the previous

subsequence (and denoting it still by {k}) we obtain limits v and w*® and they satisfy

v < < [u]fQ,vC for all open sets Q' O A°.

Since vg‘k + v‘é‘}: satisfies (2.1) in (B, T) x RY with initial data u(., 3;), we have
A A¢ A A¢
vt vt =u, v° < (u)@, v < (u)@,vp
from what we derive

v =u— 04 > (u)

= (W)gre- (4.176)
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Next, if F is a compact subset of RY, @ an open set such that F C @ C A, we obtain
from (4.176) with Q" = A (and thus AN F = Q' N F =),

v > (u)o.
By (4.175),

v<w< [u]@ for all open set @ D A,

which implies
(uW)r < (wo < [u]é (4.177)

By Lemma 4.18 we can fix a sequence of open sets {Q,,} such that ﬁn@n = B’ ~% F. This
implies [u]g, | [u]F (see Proposition 4.47-(iii))). The result follows from (4.177). O

In the next result we prove that the extended initial trace of a positive solution of (2.1)
is absolutely continuous with respect to the capz g -capacity.
q I

Proposition 4.79 Let u € U (Qr) and p be its extended initial trace as defined in
(4.169). Then u(E) =0 for any Borel set E C RY such that cap: o (E)=0.
q7

Proof. If K is a compact set satisfying capz q,(K ) = 0, then Ux = 0 by Corollary 4.40.
q7

Therefore [u]xg = uV Ug = 0. Consequently, by Lemma 4.78 (u)x = 0 and p(K) = 0.
Since this holds for any such K, it also holds for E by outer regularity. O

We recall that for any v € B_g’q(RN) NG (RY) and any T > 0 C(T) > 0 such that

O 3 gy < B lsaar) < O, 3 (1178)

2
Proposition 4.80 Let u € Uy (Qr), p be its extended initial trace and v € B~ +(RV) N
ME(RN).  Suppose that there exists mo positive solution of (2.1) dominated by v =
inf{u,H[v]}. Then p and v are mutually singular, that we denote p L v.

Proof. Set V! =191, Then v is a supersolution of
Ow—Aw+V'w=0 in Qr. (4.179)

We first prove by contradiction that there exists no positive solution of (4.179) dominated
by v. Indeed, if such a solution w of this equation does exist, there holds

w — Aw + w? < dw — Aw + V'w = 0.

Because of (4.178) the function w is a moderate solution of (2.1) dominated by v, contrary
to the assumption. Next, we have a representation formula valid in (7 where we use
Aronson’s estimates 4.158 and the constants as and C from this inequality,

inf{u, H[v]} = inf {ew /R Dby, O)d,u,(y),H[V]}
> inf { /R Tt y,O)d,u(y),]H[[u]}
> C'inf {H[u] (aix) ,H[u](t,x)}
> Cinf {H[u] (mm)  H[] (mm)}
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We notice that

(t,z) — inf {H[u] (m,x) , H[v] (m,x)} ,

1

is a supersolution of the equation dyw — a1}

Aw = 0, therefore there exists a nonneg-

ative Radon measure 7 in RY such that

. . t t _ >
%g% x (x) inf {H[M] (m,x> , Hlv] <W,x)}da: = Jow o(z)dv(z).
(4.180)
By Lemma 4.74 and Lemma 4.75 there exists a positive solution ¥ < v of the initial value

problem
ow—Aw+Vw=0 in Qr

w(.,,0)=v  in RV,
By the first claim it yields v = 0.
By the Radon-Nikodym theorem there exists a positive measure o and a Borel function

6 ¢ L*(RY, i) such that ¢ L p and v = Ou + 0. Therefore if H is the heat kernel in Qo
we obtain

0= %E}% o (x) inf {H[u] <m,x) , Hv] <m,x) } dx
> lim o(x)H (W, x,y) min{1,0(y)}du(y)dx

T t—0 RN

> lim ¢(y) min{1, 0(y) }du(y)

T t=0 JpN
=0.
Hence 6 =0 and v L p. 0

Lemma 4.81 Let u € Uy (Qr), p its extended initial trace and suppose that for every

v € ML(RY) N B i (RN) there exists no positive solution of (2.1) dominated by v =
inf {u, H[v]}. Then u = 0.

Proof. . As in the previous lemma, the proof is an adaptation to the parabolic framework
of the construction in [38]. By the previous lemma,

p Ly foralwveMm (RY)N Bfg’q/(RN).

Suppose now that g # 0, then by Lemma 4.78 p vanishes on Borel sets £ C RY such
that cap: ,(E) = 0. Therefore, there exists an increasing sequence {v;} C e (RY) N
(17

2 7
B~ a7 (RY) which converges to p. Therefore u L vy and for every k € N there exists a
Borel set A, C RY such that

w(Ar) =0 and vi(Af) =0.
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If we denote A = U, Ay, then
u(A) =0 and for all integer k, v(A°) =0.
But since v < p we have also vix(A) = 0 and thus v, = 0 for all k, contradiction. O

The next result is fundamental.
Proposition 4.82 Let u € Uy (Qr, then [uls, () is o-moderate.

Proof. We simplify the notations in setting us = [u]sq(u) (there will be no ambiguity),
and we denote F' = T -supp (us). Then F' C S;(u). We know that if S;(u) is thin at &,
then Sy(u)® U {&} is T4-open and S;(u)® U {&} ~ Sy(u)¢. Since F' is the T,-support of
us we see that F' consists exactly in the set of capz, ,~thick points of Sy(u), and therefore

Sy(u) \ F is contained in the singular set of ug, (y).-

If v € MY (RV)N B o (R™) and w, is the solution of (2.1) with initial trace v we put
u* 1= sup {uy cve M (RY)N Bfﬁ’q/(RN), Uy < ug} . (4.181)

By the previous lemma, u* exists since some elements wu, of this family exist. Also u*
is o-moderate by Theorem 4.67-(iii). Therefore u* is the largest o-moderate moderate

solution of (2.1) dominated by us. Let {v} C MM (RY) N B (R™) be an increasing
sequence such that u,, T u*.
Let F'* be the T, support of u*, then F™* is T;-closed and included in F'. Let us assume
that
cap%’q,(F \ F*) >0,

then there exists a compact set E' C I\ F* such that cap: ,(E) > 0 and (F")¢ := Q"
q?

is Tg-open and contains E. By Lemma 4.17 there exists a T,-open set @' such that
E Cc?1Q c @ c?Q*. Because Q' C? Ty-supp (us), [Us|gr > 0 and by Proposition 4.79

2 7 ~
there exists a positive bounded measure 7 € B~ a7 (]RN ) with support in @ such that
ur < us. As the T -support of 7 is a Ty-closed set disjoint from F*, the inequality

2 7
u* > u, cannot hold. However since 7 € M8 (RV) N B~ «'? (RY is such that u, < ug, it
follows that v < u*, which is a contradiction. Hence

capz ,(F\ F*) =0.
q7

Since u,, 1T u*, the T, support of v}, is contained into the ¥, support of u* which is
F*. Therefore there exists a T,-closed set F{j contained into F' such that S;(u*) = Fj and
Ry(u*) = (F§)°. Suppose now that

capz ,(F\ Fy) >0,
q’

and let Q' be a T;-open set contained into R, (u*) such that [us|gs is a moderate solution

of (2.1). Then Q' C? Rq(u*) and [u”]s, is a moderate solution too, thus

// [u*]q@qﬁ(x)dxdt < oo forall ¢ € CRY), ¢ > 0.
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On the other hand @’ is a T;-open subset of F which is the T, support of us. Consequently
the initial trace of [u*] & has no regular part, that is

Rq([w']g) =0 and Sy([u’]5) = Tg-support([u]s,).
In such a case we call [u*}@, a purely singular solution of (2.1). It implies that

v=|luslg ~ g,

is a purely singular solution too.

Let v* be defined as in expression (4.181) with ugs replaced by v. Then v* is a singular
o-moderate solution of (2.1). As it is dominated by u and o-moderate, it is smaller than
u*. Now, T,-supp(v*) C? Q ct Ry(u*), therefore u* cannot be larger or equal to v*,
hence (v* — u*)4 is not identically zero. Since both u* and v* are o-moderate, it follows

2 7
that there exists a nonnegative bounded measure 7 € B~ "7 (RY) such that u, < v* and
(ur — u*)4 is not identically zero, and obviously that v* < max{u,,v*}. The function
max{u*,u,} is a nontrivial subsolution of (2.1) and there exists a smallest solution Z
above it, which also strictly larger than u*. However u, < v* < u* and thus u* = Z,
contradiction. As a consequence capz ’q,(Q’ ) = 0 for any T,-open set included in R, (u*)

such that [u*]g is a moderate solution. Hence
capqu,(F \ Fj) =0. (4.182)

In conclusion u* is o-moderate, T,-supp (v*) C F and Fj = Sy(u*) ~? F. Therefore,
by Proposition 4.71 and the remark which follows u* = Up. Since by definition (4.181)
u* <wug < Up it follows that u* = us and thus ugs is o-moderate. O

The following result is the icing on the cake of the precise trace theory.
Theorem 4.83 FEvery positive solution of (2.1) is o-moderate.

Proof. Let u € U4 (Qr). By Proposition 4.64-(i), Rq(u) has a regular decomposition {@Qy,}
and

un = [u]Q, T Uur, ()
Then ug, () is o-moderate and
U O UR, () < [u]s,u)-

Set
Uy, = Up D [u]s, (u)-

By Proposition 4.82 [u]s, () is o-moderate. Using the fact that Qn N Sy(u), it follows by
Proposition 4.77 that w, is o-moderate. The sequence {u,} is increasing and converges
to some 7 of (2.1) which is o-moderate too. Furthermore

Op V [uls,(u) = tun = Un ® [uls, () = max{ug, (), [Uls, )} << up, W) @ [Uls,(w)-
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This implies that S;(u) = S;(w). Now, by construction we have

vn = [ulg, < [{a,.

then, letting n — oo we obtain by Proposition 4.64

URg(u) S URg(u) = URg(u) = URy(u)s

therefore tr(u) = tr(w). But since w < u, it follows by Proposition 4.71 and the uniqueness
of o-moderate solutions that @ = u. O

4.9 Further studies and open problems
4.9.1 Lateral boundary trace

Let  be either a C? open subset or Rf . The problem is to analyse the trace on the lateral
boundary of 2 (0,T) of any positive solution of (2.1). It is proved in [39] that there exists
a lateral trace in the class of outer regular Borel measures in 9, x (0,7") := 92 x (0, 7).
The critical value for ¢q is ¢. = %—ﬁ above this value the boundary isolated singularities
are removable. The geometry of the cylindrical domain makes much more difficult the
study of the supercritical case. A similar study was performed by Kuznetsov [33], [34] in

the framework of superprocesses and with the restriction that 1g < 2.
4.9.2 Equations of general absorption-convection

Ou — Au + uP|Vu|? = 0. (4.183)

Since this is an equation with absorption the construction of an initial trace should be
tractable. To our knowledge the study of the self-similar solutions and isolated singularities
has not yet been done. This study needs a preliminary study of the problem

Oru—Au+uP|Vul?=0 in Qr

u(.,0) =p in D'(RVN); (4.184)
where p is a nonnegative Radon measure.
4.9.3 Equations of Hamilton Jacobi type
Ou — Au+m|Vu|? =0 in Q7. (4.185)
The subcritical case has been treated by Bidaut-Véron-Dao [11]. They prove the existence
of a critical exponent ¢* = %—ﬁ When 1 < g < ¢* they obtain the existence of solutions u

with a Dirac mass as initial data and the existence and uniqueness of a positive very sin-
gular solution. When ¢ > ¢* they prove that isolated singularities at ¢ = 0 are removable.
The detailed analysis of the initial trace in the supercritical case seems open.
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4.9.4 Equations of mixed absorption-reaction-convection
Ou — Au~+ uP — m|Vul? =0, (4.186)

or
0w — Au~+ m|Vul? —uP = 0. (4.187)

For these two types of equations the existence of an initial trace seems open except in
some specific cases. The study has to be put in parallel with the ones dealing with the
boundary value problem and the boundary trace for the elliptic equations

—Au+u’ —m|Vu|?=0  in Q, (4.188)

obtained in [13] or
—Au~+ m|Vul? —uP =0 in Q, (4.189)

obtained in [14]. In these two papers, it is developed a method which associates some
specific supersolutions and subsolutions namely

—Au—m|Vul?=0 in Q@ and —Au+u’=0 in Q (4.190)
for (4.188) in [13] and
—Au—u’ =0 in Q@ and —Au+m|Vu|?=0 in Q (4.191)

for (4.189) in [14]. It appears that this could be adapted to the study of (4.186) and (4.187).
We also refer to the book of Quittner and Souplet [47] which contains an impressive

quantity of results concerning semilinear heat equations with reaction terms of the type
—uP or —|Vu|?.
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