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ABSTRACT

Ultrasonic fatigue tests (UFT) are used to study the fatigue life behavior of metallic components
undergoing a very high number of cycles (typically ≥ 107 − 109 cycles) under relatively low
mechanical loads. By soliciting fatigue specimens at 20 kHz, ultrasonic fatigue machines are
indispensable for monitoring damage growth and fatigue failures in a reasonable amount of time. As
fatigue damage accumulates in the specimen, the specimen’s free-end exhibits a nonlinear dynamic
response. The resulting quasi-stationary, harmonic signals have sinusoidal parameters (frequency
and amplitude) which are slowly time-varying with respect to the excitation frequency. The discrete
Fourier transform (DFT) is typically used to extract these evolving sinusoidal parameters from a
window of finite data of the vibration signal. Alternative spectral estimation methods, specifically
line spectra estimators (LSEs), exploit a priori information of the signal via their modeling basis and
overcome limitations seen by the DFT. Many LSEs are known to have state-of-the-art results when
benchmarked on purely stationary signals with unit amplitudes. However, their performances are
unknown in the context of slowly time-varying signals typical of UFT, leading to a widespread use of
the DFT. Thus, this paper benchmarks classical and modern LSEs against specific synthetic signals
which arise in UFTs. Adequate algorithms are then recommended and made publicly available to
process experimental data coming from ultrasonic fatigue tests depending on performance metrics
and experimental restraints.

Keywords Frequency and amplitude estimation · Ultrasonic fatigue tests · Very high cycle fatigue

1 Introduction

Engineering design of metallic components according to their classical fatigue limit is no longer sufficient when loaded
beyond 107 cycles. Mechanical failure due to fatigue takes place during a significant period of service: e.g., most
load-bearing metallic components in the transportation industry are loaded in 108 − 109 cycles. Characterizing and
modeling fatigue behavior in this very high cycle fatigue (VHCF) regime (107 − 109 cycles) has only been recently
pursued due to experimental data provided by ultrasonic fatigue tests (UFT) [1]. To achieve 109 loading cycles, a
conventional fatigue machine working at 100 Hz will finish in 115 days whereas an ultrasonic fatigue machine working
at 20 kHz will finish in only 14 hours. The principle of action of an ultrasonic fatigue machine is the excitation at
a working frequency which corresponds to the fatigue specimen’s first longitudinal mode. An example of a typical
UFT experimental setup can be seen in Fig. 1. The standing wave formed at this frequency allows for periodic
tension-compression loadings whose maximal stress occurs at the centroid of the fatigue specimen [2]. The local
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microstructural evolution at this centroid is of great interest for VHCF researchers interested in characterization with
respect to the fatigue life of materials.
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Figure 1: Experimental setup of an ultrasonic fatigue test.

Multiple techniques currently exist for the assessment of damage and microstructural characteristics in materials
during UFTs. They rely on measuring multiple sinusoidal parameters, specifically amplitudes and/or frequencies
[3, 4, 5, 6, 7, 8, 9, 10, 11]. During UFTs, fatigue specimen are excited at its first longitudinal eigenfrequency,
nonlinearities can be observed in the vibration’s frequency spectra [12]. The evolution of these parameters can drive a
nonlinear model and consequently infer the microstructural changes and damage within the fatigue specimen. These
techniques would benefit from in-situ, or real-time sinusoidal parameter estimation since it could correspond to a
real-time assessment of microstructural evolution leading to macroscopic damage. Acoustic techniques using ultrasound
for damage and microstructural characterization also utilizes amplitude estimation: the second harmonic generation
(SHG) technique [13], and non-contact nonlinear resonance ultrasound spectroscopy (NRUS) also utilizes frequency
estimation [14]. These techniques are also subject to this study since they both rely on estimates of sinusoidal parameters
of harmonics from transmitted tone bursts. More generally, sinusoidal parameters have also been used in fault detection
and structural health monitoring (SHM) for signal-based methods [15] and as features for data-driven methods [16].

UFT signals can be observed to have harmonics at integer multiples of the working frequency, corresponding to the
fatigue specimen’s longitudinal eigenfrequency, see Fig. 2. However, throughout the UFT, damage and other nonlinear
phenomena can introduce interharmonics which exceeds the scope of algorithms that only estimate fundamental
frequency [17]. Additionally, UFTs that require a large amount of cycles have signals that are nonstationary, but
can be adequately modeled as being locally stationary signal within a finite segment of length N of the data, or
window. We refer to the windowed signal as quasi-stationary, which we define as a trend-stationary sequence by
the Kwiatkowski–Phillips–Schmidt–Shin test [18]. One main concern is the method of estimating such sinusoidal
parameters for a quasi-stationary signal: a choice must be made between choosing algorithms whose basis are either in
spectral analysis or time-frequency analysis.

To date, a sliding window approach has only been coupled with the discrete Fourier transform (DFT) in UFT damage
monitoring. When applied per window, the DFT yields a respective frequency spectrum, and a peak picking algorithm
extracts sinusoidal parameters, i.e. the frequencies and amplitudes. This is one of the most rudimentary forms of a
line spectral estimator (LSE): where sinusoidal parameters correspond to Dirac deltas (lines) in the frequency spectra.
However, a finite period (time length) of the data corresponds to the sinc function convolving with the DFT resulting
in a loss of frequency resolution, see Fig. 3. This directly poses problems for an UFT signal of a damaged fatigue
specimen, where introduced interharmonics can influence the estimation of harmonics. Additional factors can skew the
DFT’s spectra affecting the accuracy of the peak picking: nonstationary sinusoidal components smearing the spectral
envelope, non-periodicity of the data manifesting as spectral leakage, aliasing due to violation of the Nyquist-Shannon
sampling theorem, and noise introducing uncertainty into the measured signal. Due to the difficulties seen by the DFT,
alternative spectral estimators should be considered, such as nonparametric and parametric spectral estimators.

Nonparametric algorithms estimate the entire frequency spectra which include include the DFT-based methods [20, 21]
and filter-bank methods [22, 23]. Filter-bank methods’ frequency resolution depends on the spectra length and can
achieve super-resolution [24], or resolve closely-spaced frequencies beyond the DFT in Fig. 3. Recently, nonparametric
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Figure 2: (Top) Velocity signal from a typical ultrasonic fatigue test with segmented signal windows near the beginning
and end of the fatigue test. Frequency spectra corresponding to an undamaged (center) and damaged (bottom) fatigue
specimen are obtained through a DFT. Harmonics correspond to integer multiples of the fundamental harmonic while
interharmonics correspond to non-integer multiples of the fundamental harmonic.

algorithms have been coupled with a peak picking algorithm to become LSEs, but require a method to estimate the
number of sinusoids [25] or utilize an amplitude/power threshold [26]. On the other hand, parametric algorithms only
estimate parameters for a known number of sinusoids and some are also capable of super-resolution. These parametric
estimators are formulated as sinusoidal frequency estimation problems since the estimation of amplitudes and phases
become least squares solvable when the frequencies are known [27]. Many of the parametric LSE established in the
1980s and beyond are inspired by Prony’s method [28] of converting a non-linear approximation by solving a set of
linear equations and a root-finding problem. One of the most popular parametric LSEs are the subspace methods, which
include MUSIC [29] and ESPRIT [30]. Subspace methods decompose the finite data into signal and noise subspaces
via an eigenvalue decomposition (EVD) and/or singular-value decomposition (SVD). Exploiting the low-rank structure
of the signal’s covariance matrix allows for these methods to achieve super-resolution. A sliding-window approach
[31] is commonly used with a spectral estimator to circumvent the problem of quasi-stationarity, where the signal is
uniformly discretized in time. The sinusoidal parameters in each window are obtained by applying a spectral estimator,
and the window is shifted in time and the process is repeated.

Other dominant parametric LSEs are derived from the maximum likelihood principle of estimators [32], where estimated
the sinusoidal parameters are the most likely to explain the finite data. Two classes exist: deterministic maximum
likelihood [33] and stochastic maximum likelihood [34] which have criterion derived in the case the sinusoidal
parameters are unknown deterministic and stochastic, respectively. Deterministic maximum likelihood has been most
often referred to as the nonlinear least squares method in literature [20] since it estimates parameters by minimizing
`2-norm of the difference between the finite data and signal model. Some deterministic maximum likelihood methods
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Figure 3: Demonstration of the frequency resolution of a signal with a fixed sampling frequency, with respect to
the Rayleigh limit 1/N seen by the DFT, adapted from [19]. A multi-sinusoidal signal (dashed blue line) and its
Nyquist-Shannon samples (blue circles) are depicted on the top row. The bottom row shows the DFT’s frequency
resolution (purple line) and the true line spectra (dashed red line). For a finite N , the DFT’s frequency resolution is
equal to the convolution between the DFT of the signal and the sinc function.

separate the full multidimensional minimization into iterative searches in lower-dimensional parameter subspaces: these
include Expectation-Maximization [35] and RELAX [36]. Stochastic maximum likelihood methods, until most recently,
are generally only found in direction of arrival literature, e.g., [37].

New LSEs have been introduced due to innovations in data science domains, specifically those relating to compressed
sensing, sparse regularization, and deep learning. LSEs that use compressed sensing for sparse regularization [38] are
sometimes referenced as semi-parametric since they sometimes rely on model order or on other signal parameters a
priori, such as its noise covariance. One issue arises when specializing the compressed sensing problem onto LSE, since
it normally assumes a discrete basis for signal recovery, whereas a sparse signal is continuous in frequency space. Thus
grid-based approaches divide the frequency spectra into finite discrete grid points and build bases from these grid points.
Popular solutions to this approach can be through convex optimization algorithms like basis pursuit [39] or LASSO
[40]. However, the true frequency parameters are not guaranteed to lie within the frequency grid, a problem commonly
referred to as basis or grid mismatch [41]. Attempts to remediate grid mismatch include iterative grid refinement [42],
using a dense grid and iteratively optimize sparse solutions [43], generalizing the `1-norm as continuous in frequency
space via an Atomic Norm minimization problem [44, 45], or Bayesian approaches which iteratively refine the grid
[46, 47]. Artificial neural networks for LSE have been used for LSEs in the early 1990s [48], whereas recent deep
neural network approaches have provided state-of-the-art performance through adopting convolutional neural network
(CNN) [49, 19].

The current research is motivated by the tradeoffs between finite window lengths and accuracy when dealing with
quasi-stationarity and the Rayleigh limit. Despite the loss of information which affects estimation performance, a small
time window is sought for many reasons:

• Smaller window lengths along the entire fatigue vibration signal will be more locally stationary compared to
larger windows.

• Parameter estimation algorithms are quicker for smaller data lengths, meaning that a computationally complex
algorithm can still be used in real-time.

• A smaller window length about the entire fatigue vibration signal will yield more discrete parameters, which is
attractive for data-driven models. While using window overlap [31] can also increase the number of discrete
parameter estimates, this would carry over for all spectral estimators. Within the context of ultrasonic fatigue
experiments, more discrete parameters would allow for conditional-based rules for stopping a fatigue test
before crack failure, and for deterministic models, a prediction of damage evolution.

Thus the merits of potential algorithms have to weigh between window length and parameter accuracy, noise robustness,
and computational performance.
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Our contribution lies in the study of sinusoidal parameter estimation accuracy on quasi-stationary signals, with a focus
on signals found in VHCF vibration. Specifically, we establish two compounding influences that are at play when
using a windowed approach to the real-time estimation of sinusoidal parameters: (1) estimators face a frequency and
time uncertainty dictated by the Rayleigh limit, and (2) the usage of estimators who assume a stationary signal model
being used on a quasi-stationary signal. Minimizing the window length negatively influences the frequency resolution,
as mentioned in (1), but increases time resolution and has positive contributions stated in the bullets previously.
Additionally, the statistical performance and accuracy of estimators are numerous in literature but generally utilize
synthetic signals that are purely stationary, whose results cannot be said for quasi-stationary signals, mentioned in (2).
Therefore, we choose to investigate five LSEs, specifically Unitary ESPRIT [50], RELAX [36], CFH [25], NOMP
[42], and DeepFreq [19] with respect to the problems aforementioned. These five algorithms were chosen since their
theoretical basis are a diverse (subspace-based, maximum likelihood-based, DFT peak interpolation-based, greedy
algorithm for grid refinement-based, and deep neural network-based, respectively) representation of the many LSE that
exist in the literature, and most are considered to be state-of-the-art LSE for the purely stationary case. We choose not
to use fast versions of these algorithms (for example ESPRIT with partial SVDs [51]) since they trade computational
complexity for accuracy; this study assumes the original algorithms provide their best asymptotic performance. It
should be noted that except for the former two algorithms listed, the original authors provide open access to their
algorithms. The remaining part of the paper is organized as follows. Section 2 outlines the theory of each implemented
LSE algorithm. The methodology is described in Section 3. Results and discussions are presented in Section 4 and the
conclusions are drawn in Section 5.

Algorithms Main principle Advantages Disadvantages Tunable parameters

Unitary ESPRIT∗ [50] Rotational invariance of signal’s
subspaces

Forward-backwards averaging of signal’s
covariance, faster than ESPRIT

Computation complexity
dictated by SVD Sub-vector length

RELAX [36] Frequency domain (zero-padding)
interpolation, iterative refinement Conceptually easy to implement Asymptotic gains in performance

tuning large zero-padding Zero-padding length

CFH [25] Frequency domain (peak)
interpolation, iterative refinement One of the fastest parametric estimators Algorithm is not tunable -

NOMP [42] Greedy algorithm,
iterative refinement

Newton refinements alleviates
restriction to DFT basis

Unknown performance in the
case of basis mismatch

Number of refinements,
zero-padding length†

DeepFreq [19] Deep convolution neural network Fully-automatic frequency estimates‡ Expensive offline training Training data, CNN
architecture

Table 1: Summary of LSE algorithms in implemented.
∗: The line spectrum can be computed after the estimation of frequencies, using the LS estimate Eq. (21).
†: In this paper, the zero-padding is removed to further differentiate NOMP from RELAX.
‡: DeepFreq, as published, features a frequency representation module, which is used in this paper, but also a component
counting module which estimates the model order, making the algorithm fully-automatic compared to other LSEs.

2 Implemented algorithms

In this section, the mathematical formulation of the implemented LSE algorithms is described. A practical summary
of the algorithms used in this work exists in Table 1. The estimation of frequencies and amplitudes for P complex
sinusoids of x(n) can be written as the signal model:

x(n) =

P∑
i=1

βie
j2πωin + ε(n) (1)

where n ∈ Z is a discrete index and ε(n) represents additive white Gaussian noise (AWGN) with variance σ. The
sinusoidal parameter βi is the complex amplitude such that its modulus |βi| is the amplitude, and {ωi ∈ [0, 1);ωi 6= ωj :
∀i 6= j} is the normalized frequency (units of cycles per sample) whose set is distinct. It is assumed that a uniformly
sampled noisy signal has been segmented into windows. Each local window x with sample length N can be written in
matrix-vector notation:

x(n) = Aβ(n) + ε(n) (2)
where x(n), ε(n) ∈ CN :

x(n) = [x(n) · · · x(n+N − 1)]
T

ε(n) = [ε(n) · · · ε(n+N − 1)]
T

the complex amplitudes for P complex sinusoids β(n) ∈ CP :

β(n) =
[
β1e

j2πω1n · · · βP e
j2πωPn

]T
5
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and the matrixA ∈ CN×P is a Vandermonde matrix of P complex sinusoids:

A =


1 · · · 1

ej(2π)ω1 · · · ej(2π)ωP

ej(2)(2π)ω1 · · · ej(2)(2π)ωP

...
. . .

...
ej(N−1)(2π)ω1 · · · ej(N−1)(2π)ωP


= [a(ω1) · · · a(ωP )]

(3)

Lastly, it should be reminded real-valued signals can be represented using the complex notation in Eq. (1) through two
methods: the use of the (downsampled) analytic signal [52], provided that there is no spectral content in the real-valued
signal near zero and Nyquist frequencies [53]; or simply realizing real-valued sinusoidal signals can be represented as
complex-valued and applying the algorithms. The latter case is preferred in this work because of its simplicity and to
prevent issues seen in computing the analytic signal.

2.1 Unitary ESPRIT

The Unitary ESPRIT algorithm is used since it is one of the most economical and accurate among all ESPRIT
implementations [50]. First, Eq. (1) is converted into the necessary matrix notation with overlapping segments such
that:

X(n) =


x(n) x(n+ 1) · · · x(n+M)

x(n+ 1) x(n+ 2) · · · x(n+M + 1)
...

...
. . .

...
x(n+ L− 1) x(n+ L) · · · x(n+N)

 (4)

whereX(n) ∈ CM×L is a Hankel matrix, M is a chosen sub-vector size such that P < M < N , and L = N −M is
the remaining length. Unitary ESPRIT, as opposed to the standard ESPRIT algorithm, inherently includes forward-
backward smoothing [30]. A forward-backward observation matrix Y ′ is estimated and converted to real-values by the
unitary transformation ofX:

Y ′ =
[
<
{
QH
MX

}
=
{
QH
MX

}]
∈ RM×2L (5)

where�′ indicates a unitary transformed component,�M indicates the square matrix dimension of size M ×M ,
and�H indicates the Hermitian (complex conjugate) transpose. This processing steps has been shown to improve
parametric and nonparametric estimators that rely on covariance estimates [54]. The even- and odd-dimensioned unitary
matrices are given, for an arbitrary D:

Q2D =
1√
2

[
ID jID
ΠD −jΠD

]

Q2D+1 =
1√
2

 ID 0 jID
0

√
2 0

ΠD 0 −jΠD

 (6)

where ID and ΠD are the identity matrix and the antidiagonal identity matrix (ones along the antidiagonal) of size
D ×D, respectively. To obtain the signal subspace U ′s , a SVD is performed on Y ′ to yield:

Y ′ = [U ′s U ′n]

[
Σ′s 0
0 Σ′n

] [
V ′Hs

V ′Hn

]
= U ′Σ′V ′H (7)

where Σ′ corresponds to a diagonal matrix which contains the singular values on the main diagonal in descending order,
and V ′ is an identity matrix orthogonal to U ′. The signal subspace is extracted via a priori knowledge of the left P
column singular vectors:

U ′s = [u′(1) · · · u′(P )] (8)

To exploit the signal subspace, selection matrices are introduced corresponding to a time shift of one sample value:

J1 = [IN | 0N ]

J2 = [0N | IN ]
(9)

where 0N is a zero matrix of size N ×N . Since the signal model of Eq. (1) has distinct frequencies, the rotational
invariance of Eq. (9) allows one to form:

J1AΦ = J2A (10)

6
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where Φ = diag
(
ej2πω1 , . . . , ej2πωP

)
is the diagonal matrix of signal poles. The steering matrix A spans the

P -dimensional signal subspace Us, such that a transformation matrix T has the property:

A = UsT (11)

Eq. (10) can thus be expressed as a function of the eigenvectors of the signal subspace:

J1UsTΦ = J2UsT (12)

which is equivalent to:
J1UsΨ = J2Us where Ψ = TΦT−1 (13)

Eq. (13) is also equivalent to its real-valued counterpart through unitary transformation:

J ′1U
′
sΨ
′ = J ′2U

′
s where Ψ′ = T ′Φ′T ′

−1 (14)

with the respective unitary transformed selection matrices:

J ′1 = <
{
QH
M−1J2QM

}
J ′2 = =

{
QH
M−1J2QM

} (15)

This representation results in an overdetermined system of equations for calculating the eigenvalues of which correspond
to the diagonal elements of the matrix Φ, i.e., the signal poles with the frequency parameters ωi. The LS approach is
taken over the total LS approach [50] to reduce computational complexity with negligible accuracy loss for uniformly
sampled signals:

Ψ′ ≈ (J ′1U
′
s)
−1
J ′2U

′
s (16)

The right hand of Eq. (14) is the EVD of Ψ′ since Φ′ is diagonal, such that:

ejωi = λi(Ψ
′) for i = 1, . . . , P (17)

where λi(Ψ′) is the eigenvalue of the ith entry of Ψ′. When the signal is consistent with the model of Eq. (1), then the
signal poles will lie close to the unit circle. Finally, the unwrapped frequency estimates can be obtained by:

ω̂i = tan−1 (λi) /π for i = 1, . . . , P (18)

where �̂ indicates a consistent estimate. The amplitude estimate vector β̂ is then LS solvable using the frequency
estimate vector ω̂ through Eq. (21).

2.2 RELAX

The RELAX algorithm attempts to estimate the maximum likelihood estimate by decoupling the nonlinear least squares
problem into iterative one-dimensional minimizations. This idea will be introduced by a description of the nonlinear
least squares problem for frequency estimation:

{̂β, ω̂} = arg min
{β,ω}

C1(β,ω)

with:
C1(β,ω) = ‖x− βA‖22 (19)

where ‖�‖2 is the `2-norm. Eq. (19) minimized with respect to ω yields the estimate:

ω̂ = arg max
ω

[
xHA

(
AHA

)−1
AHx

]
(20)

and with respect to β, the least squares error can be minimized through the pseudoinverse:

β̂ =
(
AHA

)−1
AHx

∣∣∣
ω=ω̂

(21)

Eq. (20) is a multimodal function and its maximization corresponds to searching for its sharp global maxima. The
RELAX algorithm is based on the relaxation of Eq. (19) to minimize the squared error between the observation and the
parameterized signal model. A minimization of Eq. (19) with respect to both ω and β through a cyclic minimization
approach is detailed [36]. The subsequent minimization can be solved to yield the estimate of {̂βj , ω̂j}:

{̂βj , ω̂j} = arg min
{βj ,ωj}

C2(βj , ωj)

7
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with:
C2(βj , ωj) = ‖̂xj − βja(ωj)‖22 (22)

where x̂j is defined in Eq. (25). Eq. (22) minimized similarly to before with respect to ωj will yield:

ω̂j = arg min
ωj

∥∥∥∥[I− a(ωj)a
H(ωj)

N

]
x̂j

∥∥∥∥2

2

= arg max
ωj

∣∣∣∣aH(ωj )̂xj
N

∣∣∣∣2
(23)

and with respect to βj :

β̂j =
aH(ωj )̂xj

N

∣∣∣∣
ωj=̂ωj

(24)

Note Eq. (23) is the definition of the periodogram
∣∣aH(ωj)x

∣∣2 /N whose estimate β̂j corresponds to the maximum
peak. This corresponds to a maximum likelihood estimate [55] when the signal only contains a single sinusoid. Eqs. (23)
and (24) are interpolated through using a zero-padding [36], appending zeros to the signal:

x(n) =

{
x(n), n ≤ N
0, N < n ≤ Zp

where Zp is the new signal length such that x(n) ∈ CZp .

The RELAX algorithm starts from the strongest signal component to determine {̂β1, ω̂1} using Eqs. (23) and (24).
Then the successive separation of the signal is performed:

x̂j = x−
j∑

i=1,i6=j

β̂ia(̂ωi) for j = 1, . . . , P (25)

where Eq. (25) is used to obtain {̂βj , ω̂j} from Eqs. (23) and (24), and {̂βi, ω̂i}j−1
i=1 are re-estimated in a sub-iteration:

x̂k = x−
j∑

i=1,i6=j

β̂ia(̂ωi) for k = 1, . . . , j − 1 (26)

until C2 < ε, where ε is a tolerance. This cyclic iterative procedure helps remove bias made from initial estimates done
before successive separation of the signal.

2.3 CFH

The coarse-to-fine HAQSE (CFH) algorithm also exploits the idea of the maximum likelihood estimator. Many
estimators exist which attempt to refine a frequency estimate via interpolation of the DFT grid via zero-padding [21],
parabolic fitting [56], and iteratively [57]. However, most have not been extended to the multiple sinusoidal case and
thus require a posteriori knowledge of frequencies to interpolate via peak picking. CFH utilizes the HAQSE interpolator
[58] which shifts the DFT coefficients by ±q with:

|q| ≤ N−1/3 (27)

where it was shown that it obtains better accuracy compared to parabolic interpolators. CFH begins by finding the
dominant signal component:

ω̃j = arg max
ωj

∣∣∣∣aH(ωj )̂xj
N

∣∣∣∣2 (28)

where �̃ is a coarse estimate. [57] is used to iterate to the fractional residual components:

δ1 =
N

2π
sin−1

(
sin
( π
N

)
<
{
S0.5 + S−0.5

S0.5 − S−0.5

})
(29)

and refined residual component:

δ2 =
1

c(q)
<
{
S+q − S−q
S+q + S−q

}
+ δ1 (30)
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where S are the interpolation functions:

S±0.5 = aH(ω̃j ± 0.5)̂xj

S±q = aH(ω̃j + δ1 ± q)̂xj
(31)

and c is the bias correction:

c(q) =
1− πq cot(πq)

q cos2(πq)
(32)

The coarse frequency estimate is composed of an integer and a residual component, which can be expressed as:

ω̂j =
ω̃j + δ2
Fs

N (33)

where Fs is the sampling frequency, and the respective complex amplitude:

β̂j =
aH (ωj) x̂j

N

∣∣∣∣
ωj=̂ωj

(34)

It then uses a similar procedure of RELAX, obtaining {̂βj , ω̂j} from Eqs. (33) and (34), and successfully separates the
signal:

x̂j = x−
j∑

i=1,i6=j

β̂ia(̂ωi) for j = 1, . . . , P (35)

where Eq. (35) is used to obtain {̂βj , ω̂j} by repeating Eqs. (28) to (34) until the P components are coarsely interpolated.
The coarsely estimated signal components are all subtracted from the signal:

x̂k = x−
P∑

i=1,i6=k

β̂ia(̂ωi) for for k = 1, . . . , P (36)

where Eq. (36) is used to obtain {̂βj , ω̂j} by repeating Eqs. (28) to (34) until the P components are finely interpolated.
The fine step corrects for selection bias due to estimation from strongest to weakest signal component in the coarse step
of the algorithm.

2.4 NOMP

Newtonized orthogonal matching pursuit (NOMP) algorithm is built upon orthogonal matching pursuit, which is based
on the greedy algorithm that iterates a sparse selection of the best fitting basis of matrix A. An LS optimization is
then performed in the subspace spanned by all previously selected bases. The grid mismatch is mitigated through
the Newton-Raphson method, which iteratively refines the DFT grid. We describe this algorithm with complete
measurements (sensing matrix is an identity matrix) first by rewriting nonlinear least squares problem Eq. (19) as a
maximization:

{β̃j , ω̃j} = arg max
{βj ,ωj}

C3(βj , ωj)

with:
C3(βj , ωj) = 2<

{
xHβja(ωj)

}
− |βj |2‖a(ωj)‖22 (37)

Eq. (37) maximized with respect to ωj will yield:

ω̃j = arg max
ωj

ζ(ωj)

N
(38)

where ζ is the power of the spectra:

ζ(ωj) =
∣∣aH(ωj )̂xj

∣∣2 (39)

and Eq. (37) maximized with respect to βj :

β̃j =
aH(ωj )̂xj

N

∣∣∣∣
ωj=ω̃j

(40)
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The DFT grid of Eqs. (38) and (40) can be densely defined through zero-padding as indicated by [42]. To improve a
coarse estimate of {β̃j , ω̃j}, the Newton-Raphson method is used for refine the frequency estimate:

ω̂j = ω̃j −
Ċ3(βj , ωj)

C̈3(βj , ωj)
(41)

where the derivatives are defined:

Ċ3(βj , ωj) = <
{(̂
xj − β̃ja(ω̃j)

)H

β̃j
da(ω̃j)

dω̃j

}
(42)

and:

C̈3(βj , ωj) = <

{(̂
xj − β̃ja(ω̃j)

)H

β̃j
d2a(ω̃j)

dω̃2
j

}
− |β̃j |2

∥∥∥∥da(ω̃j)

dω̃j

∥∥∥∥2

2

(43)

The NOMP algorithm first estimates {β̃j , ω̃j} using Eqs. (38) and (40) and successively separates the signal:

x̂j = x−
j∑

i=1,i6=j

β̂ia(̂ωi) for j = 1, 2, . . . (44)

until ζ(ω̃j) < τ , where Eq. (44) is used to obtain {̂βj , ω̂j} from Eqs. (40) and (41) and τ represents a sparsity promoting
`0-norm regularization, which implicitly determines the model order P :

τ = σ2 log(N)− σ2 log log

(
1

1− %

)
(45)

where σ is the noise variance and % is the probability of a false alarm. For the jth estimate, an initial refinement
is performed through the Newton step of Eq. (41). The refinement is conditionally accepted only if it serves to
maximize C3, i.e. locally concave C̈3(βj , µj) < 0, and if the refinement globally reduces the residual energy such
that ζ (̂ωj) > ζ(ω̃j). After each singular refinement, the sub-iteration of cyclic refinement is performed Rc times to
reestimate {̂βj , ω̂j}:

x̂k = x−
k∑

i=1,i6=k

β̂ia(̂ωi) for k = 1, . . . , j − 1 (46)

At the end of the jth estimate, the least square procedure of Eq. (40) is performed to refine complex amplitudes {̂βi}ji .
Performing this step just prior to detecting a new sinusoid increases the rate of convergence of NOMP by mirroring
arguments used to establish matching pursuit convergence [59].

2.5 DeepFreq

A fully connected neural network trained on the signal model of Eq. (1) is unlikely to converge to the maximum
likelihood solution of the cost function Eq. (19). In general, the nonlinear least squares problem of Eq. (19) has many
local minima, and training generally iterates to some local minimum (or a point near a local minimum). This is opposed
to converging to the sought global minimum, which can depend on the initialization conditions and loss function
optimization. DeepFreq differs from this direct problem in that it is schematized into different deep neural networks. A
pseudospectrum is generated in a data-driven manner, training the frequency representation neural network to produce
superimposed Gaussian kernels directly from the measurements. The representation is fed into a second frequency
counting neural network that estimates the number of sinusoids. Frequency estimation is then carried out through
selection of the P th most prominent peaks of the frequency representation, see Fig. 4.

While this yields a fast, fully-automatic method for frequency and model estimation, we are interested only in the
frequency representation module. The pseudospectrum FR is defined as the convolution of the P frequencies of the
signal with Gaussian kernels K : R→ R:

FR(n) ,
P∑
i=1

K (n− ωi) (47)

This frequency representation is continuously differentiable and features smooth peaks at the true frequencies for the
signal model of Eq. (1). Despite not including amplitude and/or phase information into the CNN, this pseudo-spectra
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Layer Features Filter Stride Padding Output
Input - - - - 1× 2N

Linear* - - - - 1× 8000

20×

{ Conv*
BatchNorm
ReLU

64 3 - 1, Circ 1× 64× 125
64 - - - 1× 64× 125
- - - - 1× 64× 125

ConvTrans* 64 17+Stride 2log2(N)−3 9 1× 125
8 N

Table 2: Layer summary of frequency representation module with respect to input size N , where layers notated by ∗
have no bias. The set of convolution, batch normalization, and ReLU layers are repeated for a depth of 20.

serves as the regression that the CNN weights are tasked to learn from a noisy and finite signal. I.e., this is achieved by
the loss function that penalizes the `2-norm between the output of the CNN and the true pseudo-spectra for a large
number of training data.

Fig. 5 shows the proposed architecture for the frequency representation neural network. First, the input layer maps
the complex signal to a real-valued feature space. Then, the features are processed in the hidden layers which contain
a series of convolutional layers with localized filters of length three and batch normalization [22], interleaved with
rectified linear activation unit (ReLUs). The dimension of the input is preserved using circular padding. No pooling
layers are used since frequency sensitivity is prioritized over invariance. Finally, the output utilizes a decoder which
produces the estimate FR applying a transposed convolution. The original network described in [19] is slightly modified
to accept signals N > 50. This and all technical details are detailed in Table 2.

3 Experimental methodology

The performance of the implemented LSEs was analyzed using five benchmarks, each using relevant performance
metrics defined below. All chosen algorithms were subjected to the same signal model shown in Eq. (1). Additionally,
estimation of the number of sinusoidal components P is given a priori. This is because LSEs are parametric and
the algorithms typically used for estimation of the number of sinusoidal components within a signal is a separate

Frequency
representation

DeepFreq's
FR module

Real-portion
of signal

Imaginary-portion
of signal
(optional)

Figure 4: Algorithm flowchart of DeepFreq’s frequency representation module. The assumed complex input of the
DeepFreq is split into its real and imaginary parts before input. For real-valued signals, the imaginary-valued portion is
supplied with zeros of equal length. The frequency representation generates a pseudospectrum (purple line) subject to a
peak-picking algorithm.
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Input data Parallel linear
transformer Concatenation

Input layer

Transposed
Convolution

Convolution
Batch Normalization
Activation function

Hidden layers Output layer

Figure 5: Architecture of the DeepFreq frequency representation module.

problem, see [20] for a brief introduction on model order estimation. The normalized frequencies are wrapped on
the bounds [0, 1). The AWGN variance σ is defined such that a desired signal-to-noise ratio (SNR) can be obtained,
SNR , ‖A(ω)β‖22/σ2. A Raspberry Pi 4b, which is an affordable option for control of ultrasonic fatigue tests, is
utilized for all benchmarks using Python 3.8.8 via the Anaconda distribution. We readily make available our algorithms
and synthetic data [60].

This section aims to define multiple benchmarks for LSEs which are lacking in the literature. Specifically, the first test
aims to demonstrate the degeneration of LSEs when exposed to quasi-stationarity within each window: this corresponds
to the effects of the Rayleigh limit (if the signal was stationary) compounded with signal noise. The following three
tests aim to benchmark in the stationary signal case when LSEs are subject to less favorable conditions, e.g., non unit
amplitudes, interharmonics, and order mismatch. The last test looks at the asymptotic computational costs and the
algorithm runtimes for a Raspberry Pi 4b.

3.1 Test signals

For usage in the first two tests, a synthetic real-valued signal is generated from an experimental UFT signal. The discrete
UFT velocity signal has a sampling frequency Fs = 106 Hz which was performed on a pure copper fatigue specimen in
a setup similar to Fig. 1. The time-evolving amplitude and frequencies are extracted from the signal per window via the
DFT for the first three harmonics. Then cubic polynomial fits are evaluated on a quasi-stationary basis for each ith
window along the entire experimental signal seen in Fig. 6. These averaged sinusoidal parameters can be quantified as:

ai =
1

N

∫ N

0

ai(n) dn

and:

ωi =
1

NFs

∫ N

0

fi(n) dn

where ai and ωi are quantized (window-averaged) amplitude and normalized frequencies, respectively. The frequencies
in Section 3 are normalized to cycles per sample corresponding to the wrapped bounds [0, 1). This achieves a similar
signal model defined in Eq. (1) with a model order of P = 6 complex sinusoids, but has a symmetrical frequency
component about ω = 0.5. The real-valued synthetic signal is created with a sampling frequency Fs = 250 kHz
which is compared with the experimentally obtained signal in Fig. 6. The time evolving sinusoidal parameters cubic
polynomial fits can be found in A. For all tests except the first, the synthetic signal excludes the last 10 seconds of the
data, where the formation of a large crack manifests large nonstationary components unsuitable for the LSEs.

For the next 3 tests, we test the sensitivity to amplitude variability, interharmonics, and order mismatch for
randomly generated stationary test signals. The set of true normalized frequencies representing harmonics
are generated in these signals in two steps. First, a fundamental harmonic is generated randomly, such that
{ω1 ∈ [2/N, 1/P − 2/N)}. Second, the remaining higher harmonics (i > 1) are simply integer multiples of ω1

creating a set {ωi ∈ [0, 1) : |ωi − ωj | > 2/N, ∀j 6= i}. Note, a minimum frequency separation below the Rayleigh
limit of 1/N makes the estimation problem ill-posed [24]. The complex amplitudes of the signal components in β are
generated with independent and identically distributed uniformly random phases from [0, 2π). The complex amplitudes’
magnitudes |βi| in are generated in ratio descending manner. The fundamental harmonic i = 1 has a unit complex
magnitude, with subsequent harmonics (i > 1) being scaled such that {|βi| ∈ (0, 1] : |βi+1| = |βi|/α, ∀i}.
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Figure 6: Copper specimen ultrasonic fatigue test excited at 20 kHz with vibration signal sampled at 200 kHz (left). A
synthetic signal (center) is created from the first 3 harmonics’ amplitudes and frequencies fits (right). The frequency f1

is only shown, where it should be understood that higher harmonic frequencies occur at integer multiples, e.g. f2 = 2f1.
Near the end of the ultrasonic fatigue test, the signal becomes increasingly nonstationary, where the last 20 seconds
(shaded) are excluded from evaluation.

3.2 Configuration of algorithms

We compare the five algorithms Unitary ESPRIT [50], RELAX [36], CFH [25], NOMP [42], and DeepFreq [19] with
configurations:

• Unitary ESPRIT requires an estimate of the measurement matrix and the model order. The former is estimated
from the signal vector with size M = N/2 since this sub-vector length was shown to be optimal by [61]. After
obtaining the frequency estimates ω̂, the complex amplitude estimates β̂ are LS solvable using Eq. (21).

• RELAX utilizes a zero-padded DFT and iterates over the model order. We select this zero-padding length
such that its grid size is interpolated over Zp = 4N . This was chosen since it corresponded to a computational
speed similar to other iterative LSEs, see Fig. 15.

• CFH requires only a model order and a minimum separation parameter which is already set by default to the
Rayleigh limit and is considered optimal by [25].

• NOMP requires a cyclic refinement parameter Rc and the sparsity promoting parameter τ which implicitly
determines the model order. We set Rc = 3 since it was shown by [42] that beyond number of cycles of
Newton refinement has diminishing returns in estimation accuracy. We modify the NOMP algorithm to
terminate on model order P , bypassing the regularization Eq. (45) to put it on par with other LSEs, especially
when trying to test model order robustness. We also remove the zero-padding from its DFT operation to further
distinguish it from RELAX.

• DeepFreq is inherently input data length-dependent so that separate frequency representation neural net-
works are trained per input length. We specifically use Table 2 and a standard deviation of the Gaussian
kernel to 0.3/N . It was found that for all input sizes, DeepFreq was able to generalize for all SNR when
its frequency representation neural network was trained on AWGN with SNR = 1 dB. The training data
consists of the generating signals with the following sets on uniformly distributed bounds: {P ∈ [1, 10]},
{ω ∈ [0, 1) : |ωi − ωj | > 2/N, ∀j 6= i}, and {|β| ∈ [0.001, 1]}. For other training data parameters, we used
the defaults described in the original paper [19]. The amplitude estimates are obtained from its frequency
representation through peak-picking via amplitude prominence with a minimum separation of 2/N , when
appropriate.

We also include the DFT, utilizing the Fast Fourier Transform algorithm, as a baseline which determines the P sinusoidal
parameters through peak-picking via amplitude prominence. with a minimum separation of 2/N , when appropriate.

3.3 Performance metrics

Five performance metrics are used: matched frequency distance (MFD), matched amplitude distance (MAD), frequency
success rate (FSR), mean-squared frequency error (MSFE), and the mean-squared amplitude error (MSAE). All metrics
are averaged over each window (discretized) of the entire synthetic signal for the first test, and the number of Monte
Carlo trials for the latter 3 tests. To determine the accuracy of the recovered sinusoidal parameters, the MFD is defined
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as:

MFD ,
∑
ω̂i∈ω̂

(
min
ωj∈ω

|̂ωi − ωj |
)

+

∑
ωj∈ω

(
min
ω̂i∈ω̂

|ωj − ω̂i|
) (48)

The MFD aims to match each estimated frequency with its closest window-averaged frequency, and vice versa, and
record a chamfered error. The MAD follows a similar logic, seen in Eq. (49). Note, MAD is normalized by the

MAD ,
∑̂

+
∑

with
∑̂

=
∑
ω̂i∈ω̂

|âi(ω̂i)− āj(ω̄j)|
āj(ω̄j)

, ωj = arg min
ωj∈ω,̂ωi∈ω̂

|̂ωi − ωj |

∑
=
∑
ω̄j∈ω̄

|âi(ω̂i)− āj(ω̄j)|
āj(ω̄j)

, ω̂i = arg min
ωj∈ω,̂ωi∈ω̂

|̂ωi − ωj |

(49)

window-averaged amplitude to remove the scaling bias from amplitudes with larger magnitudes.

The FSR is defined as follows:

FSR ,

∑
ω̂i∈ω̂ S (̂ωi,ω) +

∑
ωj∈ω S (ωj , ω̂)

2P
(50)

with the success function defined as:

S(i, j) , 1
[
min
jk∈j
|i− jk| <

1

2N

]
(51)

where 1[�] denotes the indicator function. An FSR of 1 is achieved if, and only if, all estimated frequencies are in the
vicinity of one or more true frequencies and all true frequencies are in the vicinity of one or more estimated frequencies.
The MSFE and MSAE are also introduced as statistical measures:

MSFE ,
1

P

P∑
j=1

(
min
ω̂i∈ω̂

|̂ωi − ωj |
)2

(52)

and:

MSAE ,
1

P

P∑
j=1

|̂ai(̂ωi)− aj(ωj)|2

with ωi = arg min
ωj∈ω,̂ωi∈ω̂

|̂ωi − ωj |
(53)

The MSFE is juxtaposed with the averaged Cramér-Rao lower bound (CRB) of Eq. (59), which characterizes the
asymptotic performance at large N and/or high SNR, see B. The MSAE metric is compared with an ‘Oracle’ estimator,
which is the LS estimate of the noisy signal given the true frequencies. Lastly, it’s to be understood that all metrics are
subject to the constraint {ωk\ω : ∀ωk+1 ∈ ω}, i.e. no components are repeated for evaluation.

4 Results

4.1 Parameter estimation for synthetic and experimental signals

The differences between an estimator’s ability to extract the first three harmonics of a synthetic and experimental signal
are demonstrated in this test. The vibration signal is distinguished by a large amplitude variability between the first
harmonic and higher harmonics, seen in Fig. 6. Harmonics are extracted through all estimators using the following
methodology: the maximum prominent amplitude is assumed to be the fundamental harmonic, and the following peak at
integer multiples of the fundamental harmonic are searched for within±2/N and extracted. These details are visualized
in Fig. 7 for windows of both the synthetic and experimental signals. The SNR for the experimental signal is estimated
to be 50 dB through a periodogram-based method [21]; the synthetic signal has AWGN applied per window such that
its SNR matches the experimental signal. A signal length of N = 28 is empirically chosen to trade off computational
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Figure 7: Demonstration of the DFT spectra and Unitary ESPRIT line spectra for the synthetic signal (left) and
experimental signal (right). To extract sinusoidal parameters of the first three harmonics: first, a maximum amplitude of
the fundamental is searched for, represented by the green shaded area; second, integer multiples (two and three times)
of the green shaded area are created and represented by the yellow shaded area; lastly the peak is searched within the
yellow shaded area, within a ±2/N tolerance.

time for the LSEs and still allow for peak resolution in the DFT frequency spectra. For the LSEs, the model order
P = 6 and P = 12 are imposed for the synthetic and experimental signals respectively.

In Fig. 8, the estimation of harmonics is plotted against the synthetic signal. For Unitary ESPRIT and NOMP,
the estimation of the amplitudes match most closely to the averaged truth; their frequency estimates are slightly
outperformed by DeepFreq. However, DeepFreq demonstrates that it fails to estimate accurate amplitudes, even for a
strong fundamental harmonic. Due to the small signal length, it can be seen that the DFT struggles to accurately capture
even the fundamental harmonic’s amplitude. It should be reminded that even though zero-padding the DFT would
improve the amplitude results (to a certain extent), its frequency estimation ability would remain the same in resolution.
CFH outperforms RELAX for fundamental harmonic amplitude estimation, despite its fundamental harmonic frequency
estimation being offset more than RELAX. However, both CFH and RELAX struggle to steadily estimate the second
harmonic’s amplitude due to a difference of magnitudes with respect to the fundamental and third harmonic. In general,
Unitary ESPRIT and NOMP show the most stability in parameter estimation for the synthetic signal. DeepFreq is
unique in that it completely fails to provide accurate amplitude estimates for any part of the synthetic signal, however, it
is able to only track the fundamental frequency with success. While not shown, it is unable to extract the frequencies of
the higher harmonics.

In contrast with the synthetic signal, the estimation of harmonics is performed for the experimental signal. A glance
of Fig. 9 reveals a qualitative difference in the behavior of all estimators. For the fundamental harmonic’s amplitude,
Unitary ESPRIT, NOMP, and CFH all closely estimate with one another. For the fundamental harmonic’s frequency,
CFH follows more closely to RELAX, while Unitary ESPRIT and NOMP overlap one another. All LSEs struggle with
stability more than compared with the synthetic signal, e.g. Unitary ESPRIT and NOMP demonstrate a large oscillation
at the beginning of the experimental signal before being stabilizing for the second harmonic’s amplitude. This might be
because of the presence of more harmonics within the real experimental signal, which presents more difficult estimation
problem for the LSEs. Similar to the synthetic test, DeepFreq has a subpar performance for extraction of amplitudes,
but can capture the fundamental harmonic only. If the LSEs’ behavior on the synthetic signal test is to be indicative of
its behavior on the experimental signal, one may conclude that the general results of the LSEs can be carried over. For
example, the wide spread and oscillatory nature of amplitude estimation should be understood to be an uncertainty of
the estimator instead of a detectable very small vibratory oscillation. Lastly, it can be noted that during the nonstationary
evolution of sinusoidal parameters near fatigue failure, i.e., the end of the synthetic signal, the LSEs provide frequency
estimates which diverge from truth, but still maintain accurate amplitude estimates.

4.2 Tolerance to noise, sensitivity to signal length

In this test, we opt study the quasi-stationary synthetic signal of three well-separated sinusoids, with large amplitude
variability between the first harmonic and higher harmonics, seen in Fig. 6. Grid-based simulations with respect to
(windowed) signal lengths and AWGN levels are applied per window along the entire signal. For purely stationary
signals, it’s well known that an increase of signal length and/or a decrease in noise variance increases the performance
of LSEs. A specific quality of the synthetic signal is the unknown interaction between frequency resolution and
non-stationarity with respect to signal length.

In Fig. 10, the mean MFD, with outliers outside of five standard deviations removed, is plotted as a heatmap for specific
LSEs with respect to signal length and AWGN. Most notably, Unitary ESPRIT has the largest area of ‘best’ frequency
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for synthetic signal. The legend shown above applies to all plots.
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for experimental signal. The legend shown above applies to all plots.
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Figure 10: Simulation results as heatmaps of the MFD metric for each LSE, whose colorscales are plotted logarithmi-
cally.

estimation performance (in dark blue) compared to other estimators. Additionally, similarities between estimators that
explicitly rely on the DFT are also seen, despite their attempts to refine frequency estimation: the DFT has an area
of ‘best’ frequency estimation which roughly intersects the CFH, RELAX, and NOMP’s areas of ‘best’ frequency
estimation. As mentioned previously, CFH, RELAX, and NOMP all utilize DFT operations in their algorithm, but their
refinements can be characterized as peak parabolic interpolation, zero-padding interpolation, and Newton-Raphson
refinements of the DFT grid, respectively. This is likely due to the limitations of the DFT operation with respect to the
quasi-stationarity in the sinusoidal parameters, whose expression can be seen in the fits in A. The other LSEs’ expanded
area in Fig. 10 compared to the DFT represents their ability to mitigate the quasi-stationarity and AWGN in each signal
segment.

Lastly, it should be mentioned that DeepFreq has errors larger than any of the other LSEs presented; the frequency
representation produced by DeepFreq is unable to compensate for any quasi-stationarity in the signal and creates a
problem for a peak picking algorithm. This is a realistic reminder that this particular data-driven approach cannot be
deployed so easily even if the data is quasi-stationary. Similarly, the average MAD is shown in Fig. 11, with outliers
outside of five standard deviations removed, LSEs show a similar pattern with the MFD. As seen in the previous test,
the LSEs have a better amplitude estimation ability compared to their frequency estimation, indicating amplitude
estimation is more ‘lenient’. The exception is the large difference of amplitude estimation performance for the DFT: the
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Figure 11: Simulation results as heatmaps of the MAD metric for each LSE, whose colorscales are plotted logarithmi-
cally.

corresponding ranges at which the DFT provides excellent frequency estimations (dark blue) provide poor amplitude
estimates with a MAD of approximately one magnitude higher than other LSEs. For all LSEs for this particular
synthetic signal, in the low SNR region (below 20 dB) provides unsatisfactory results for even the best-performing
LSEs.

4.3 Sensitivity to amplitude variability

For randomly generated well-spaced sinusoids, the components whose descending magnitudes vary by the amplitude
magnitude scaling parameter α correspond to a proportionally difficult problem as α increases. We remind the reader
that the complex amplitudes are generated in a ratio descending manner, such that |β1| = 1 and subsequent harmonics
(i > 1) are scaled such that {|βi| ∈ (0, 1] : |βi+1| = |βi|/α, ∀i}. We perform 5000 Monte Carlo simulations on five
complex sinusoids for a signal length N = 27 and an SNR = 40 dB. In Fig. 12, the statistical performance is shown.
At first glance, Unitary ESPRIT performs best or on par with all other LSEs for the three metrics. For the FSR, the DFT
can be seen to be most unsuccessful in estimating frequency components within the defined vicinity of 0.5/N . RELAX,
which is bound by its zero-padding operation, is also expected to plateau in performance. For all other LSEs at unit
amplitude magnitudes (α = 1), their FSR parallel results typically seen in the literature.
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In the plots of MSFE for α > 4, Unitary ESPRIT and NOMP begin to descend towards the CRB. NOMP characteristi-
cally shows an upturn after α = 4 which is not seen by other LSEs. After α = 2, CFH overtakes Unitary ESPRIT in
terms of distance from the CRB. The DFT, RELAX, and DeepFreq can be seen to plateau approaching unit amplitudes.
LSEs in the MSAE plot do not follow the same pattern as their MSFE counterparts. Essentially, ESPRIT is the first to
approach the lower bound at α = 3, and CFH achieve the lower bound at α = 1.5.
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Figure 12: Simulation results for varying amplitude magnitude scaling parameter α. The signal length N = 27, SNR
= 40 dB, and model order P = 5 are pre-determined. The legend shown above applies to all plots, with sub-legends
within the plots applying only to sub-plots.

The Oracle estimator (Oracle knows the true frequencies and performs an LS fit) shows a lower, but realistic bound tied
to the accuracy of the frequency estimation.

4.4 Influence of interharmonics (super-resolution)

When maximizing for the smallest signal length, interharmonics close to harmonics with respect to the Rayleigh limit
can influence measurement accuracy. Interharmonics correspond to non-integer multiples of the fundamental harmonic
where an example that can be seen in Fig. 2. With signal parameters SNR = 40 dB, N = 27, a similar test with three
well-spaced complex sinusoids of magnitude ratios dictated by α = 1.5, is performed for 5000 Monte Carlo simulations.
A single interharmonic is uniformly randomly generated such that its distance is d from at least one harmonic. In
Fig. 13, the FSR of the DFT and RELAX can be seen to already inconsistently predict the well-spaced harmonics, with
an average success rate 63% and 16% respectively. At d = 0.75/N , only the Unitary ESPRIT and CFH can still achieve
a high FSR. Below d = 0.75/N , only Unitary ESPRIT is capable of obtaining a consistent FSR until d = 0.1/N when
its frequency resolution begins to taper. The performance dip seen by some LSEs in the FSR is simply the conflict
between the LSE to predict the interharmonic with another harmonic. The gradual increase despite still decreasing d
indicates that the interharmonic is simply masked by its harmonic.
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For the MSFE, all LSE follow a similar trend, where the order of best performance is Unitary ESPRIT, followed by
CFH, DeepFreq, RELAX, NOMP, and the DFT. Interestingly, DeepFreq is capable of generalizing below d = 1/N
until d = 0.4 despite being trained on randomly generated signals with d = 1/N minimum separation. The MSAE
shows a comparable pattern of performance, except that DeepFreq provides very poor amplitude estimates, similarly
seen in the previous simulation plot of Fig. 12.
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Figure 13: Simulation results for varying interharmonic distance parameter d. The signal length N = 27, SNR = 40
dB, amplitude magnitude ratio α = 1.5, and model order P = 3 + 1 are pre-determined. The legend shown above
applies to all plots, with sub-legends within the plots applying only to sub-plots.

4.5 Robustness against order mismatch

While it is not the main focus of this paper, robustness against model order mismatch is an attractive feature since
algorithms used for order estimation can under/overestimate. Generally, the most commonly used model order
estimation methods are the Akaike information criterion and the minimum description length criterion [20]. In short,
they balance a measure between a goodness of fit with the data while penalizing a higher model order. With signal
parameters SNR = 40 dB, N = 27, 5000 Monte Carlo simulations with P = 5 frequencies drawn uniformly random in
the set {ω ∈ [0, 1) : |ωi − ωj | > 2/N, ∀j 6= i} with amplitude magnitude ratios dictated by α = 1.5 are performed.
The LSEs are given a varying P̂ instead of the true P . In Fig. 14, Unitary ESPRIT can be seen to provide the best
results when the imposed model order P̂ > P for MSFE and MSAE. At P̂ ≤ P , CFH provides the lowest MSFE and
MSAE, and benefit the most when P̂ = P . CFH can be seen to perform best as P̂ → P , whereas Unitary ESPRIT is
very robust when P̂ > P .
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Figure 14: Simulation results for varying imposed model orders P̂ . The signal lengthN = 27, SNR = 40 dB, amplitude
magnitude ratio α = 1.5, and model order P = 5 are pre-determined. The legend shown above applies to all plots.

4.6 Computational effort

The computational time plays a large factor when considering LSE algorithms for real-time usage. In Fig. 15, averaged
computation times are shown with respect to signal lengths. It can be seen that the DFT always achieves the best runtime,
this is due to the usage of the Fast Fourier Transform algorithm, which has the relatively lowest asymptotic complexity
in Table 3. RELAX, CFH, and NOMP can be seen to have similar runtimes as the signal length varies. ESPRIT begins
to diverge at N = 10, having the greatest runtime analogous to its large asymptotic complexity. It and the other LSE’s
asymptotic complexities in Big-O notation can be found in Table 3. Unique to DeepFreq, offline training requires a
considerable amount of computational effort and training data that is a good representation of experimental data. The
GPU training times can be seen at the bottom of Fig. 15 on a specialized computer for offline training with four virtual
Intel Xeon CPUs clocked at 2.00 GHz, 32 Gb of memory, and an NVIDIA Tesla P100 GPU. It should be noted that
Python (versions 3.8 and prior) is known to have poor just-in-time compilation, meaning that LSEs that utilize for-loops,
namely CFH, RELAX, and NOMP, suffer with respect to their theoretical computational complexities. One can expect
the LSEs to perform closer to their asymptotic complexities when programmed in a statically compiled language. A
few options exist to leverage static typing of existing Python code, e.g., using Pythran [62].

5 Conclusions

In the field of fatigue research, VHCF of metallic components is a microstructural-dominated phenomenon that
relies on UFTs for experimental study. Due to the recent abundance of experimental data in the literature, new
modeling attempts will seek to determine the microstructural state from the vibration signal measured from a fatigue
specimen. The real-time estimation of these sinusoidal parameters, specifically frequencies and amplitudes, are of
utmost importance. Similar domains which rely on the estimation of the damage state can be found in SHM, but also
nonlinear acoustics, namely SHG and NRUS. Unique to these ultrasonic vibration signals is the quasi-stationarity of the
sinusoidal parameters, which slowly evolve with respect to many periods of the signal. When real-time usage is sought,
the dichotomy between signal length, i.e., the Rayleigh limit 1/N , and the quasi-stationarity of sinusoidal components
can pose difficulties for estimators whose original formulation relies on the assumption of stationary signals.

This motivates an experimental methodology comparing alternatives to the DFT. LSEs provide direct estimates of
sinusoidal parameters instead of estimating the entire frequency spectra, and can overcome shortcomings of the DFT
given a signal model and model order a priori. Notably, many LSEs are considered to have state-of-the-art results
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Figure 15: Averaged runtimes of LSEs on a Raspberry Pi 4 (top) and offline Tesla P100 GPU training time required
for frequency representation module of DeepFreq (bottom) with respect to signal length N . The legend shown above
applies to all plots.

LSE Asymptotic complexity
DFT O(N log(N) )

Unitary ESPRIT O( (N/2)3 )

RELAX O(PZp log(Zp) )

CFH O(PN log(N) )

NOMP O(PRcN log(N) )

DeepFreq∗ O(LKNR2 +N )

Table 3: Comparison of asymptotic computational complexities of implemented line spectra estimators in big-O
notation. ∗: The notation is defined where L is the layer depth, N is the sequence length, R is the representation
dimension, K is the kernel size of convolutions.

for purely stationary signals with unit amplitudes, which cannot be said for quasi-stationary signals with non-unit
amplitudes.

The benchmarks on a synthetic UFT signal and randomly generated signals with unique estimation challenges seen in
ultrasonic vibration, show the capabilities of the various estimators in terms of their adaptability to quasi-stationary,
amplitude variability, small interharmonic distance (super-resolution), and robustness to model order mismatch (number
of sinusoidal components). In general, Unitary ESPRIT and then NOMP can be seen to offer the best performance with
respect to the quasi-stationarity of a synthetic UFT signal. In the subsequent benchmarks, their statistical performance
on stationary signals further validates their general usage for sinusoidal parameter estimation. A drawback of this study
and current literature, however, is the lack of theory that precisely dictates when a signal is ‘too nonstationary’, thus
prohibiting the use of LSEs.

In the practice of UFT, three algorithms can be recommended depending on usage criteria. When accuracy and precision
are dominating criteria, Unitary ESPRIT is recommended for all cases when the signal length is 26 ≤ N < 29. Beyond
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this signal length, we recommend NOMP2 for its computational simplicity. This is justified by their area of ‘best’
performance when dealing with the nonstationarity of sinusoidal parameters and signal length dichotomy for the
synthetic signal. When computational complexity becomes a constraint, e.g., if using a low powered Arduino, CFH
becomes extremely attractive since it offers the lowest computational complexity of the five algorithms. However,
evident in Figs. 10 and 11, it suffers from an ‘island’ of good performance which is bounded by nonstationarity of
components and the Rayleigh limit (signal length). In terms of flexibility beyond the metrics used in the paper, NOMP
is advised to be used simply because it offers more tunable parameters (specifically zero-padding and refinement
parameters) than Unitary ESPRIT (sub-vector length) and CFH (which has none). Tuning the algorithmic parameters
seen in Table 1 can be done heuristically on synthetic ultrasonic vibration signals representative of a particular fatigue
cycle regime. Lastly, it should be noted that all algorithms presented require a priori knowledge of the signal: e.g., the
number of sinusoids and/or statistical properties of the noise. However, model order estimation is a separate problem;
instead the test of subsection 4.5 examines when the LSEs are given an incorrect model order estimate. A simple
solution is to overestimate the number of sinusoidal parameters and extract the harmonics only, given the robustness of
the parametric algorithms seen in Fig. 14.

Data-driven CNNs remains a hopeful and interesting prospect for LSEs and vibration signals, despite that it requires
a large offline training investment. CNNs have not been limited to parameter estimation, but also been used for
LSEs in denoising stationary signals [63], demonstrating a substantial improvement in estimation accuracy. The poor
estimation performance of DeepFreq for the tested synthetic UFT signal is a notable reminder that a data-dependent
algorithm cannot necessarily generalize beyond its test data in all facets. Interestingly our implementation of DeepFreq
generalized in terms of super-resolution estimation: the training data used in Fig. 13 had an imposed minimum
separation of 1/N , but DeepFreq was able to estimate frequencies with good results up to 0.4/N . Beyond the scope of
the paper, we noticed DeepFreq tended to fail even for stationary signals when amplitudes of the harmonics differed
beyond a magnitude of α ≈ 102. For more practical usage in vibration signals, the use of quasi-stationary signals
instead of stationary signals for training data and the modification of the optimization function to account for the
average frequencies can be a possible remedy to nonstationarity. The poor amplitude estimates created by the frequency
representation can be remedied in one of two ways: including amplitude information into the architecture of the
frequency representation neural network, or simply perform LS fits on its estimated frequencies into the algorithm. It’s
suspected DeepFreq can be improved concerning these benchmarks with the former points explored, in addition to
modifying its CNN architecture e.g., increasing layer depth in conjunction with using residual nets [64].

A Synthetic UFT sinusoidal parameters

In this Appendix, we detail the cubic fits of the time varying sinusoidal parameters seen in right of Fig. 6, specifically
a1(t), a2(t), a3(t) and f1(t). The original signal comes from a pure copper fatigue specimen subject to a UFT. It is
reminded that f2(t) and f3(t) are integer multiples of f1(t), since they correspond to higher harmonics used for the first
test in Section 3. The cubic fits for the amplitudes in meters per second are:

a1(t) = −(7.564× 10−10)t3 + (1.038× 10−6)t2 − (4.818× 10−4)t+ 7.378× 10−1

a2(t) = (6.094× 10−12)t3 − (7.455× 10−9)t2 + (5.791× 10−6)t+ 2.751× 10−3

a3(t) = (2.346× 10−11)t3 − (2.904× 10−8)t2 + (1.09× 10−5)t+ 1.823× 10−2

The cubic fits for the frequencies in cycles per second are:

f1(t) = −(2.859× 10−7)t3 + (4.286× 10−4)t2 − (2.628× 10−1)t+ 2.013× 104

B Averaged Cramér-Rao Bound

In this Appendix, the CRB is reviewed for an unbiased estimator from statistical theory, and then specialized to the line
spectra problem [20]. For a parametric model a ∈ R, with data vector x and parameter vector θ:

Theorem 1 If aT̂θ(x) is an unbiased estimator of aTθ, than the variance of the estimator given by:

Ex|θ
{(
aT̂θ(x)− aTθ

)2
}

(54)

2It should be noted again that the NOMP configuration used in benchmarks was inhibited in performance since the zero-padding
operation from the DFT operation was removed to further differentiate it from RELAX. This is important since the quality of the
initial estimates has a decisive influence on the subsequent quality of optimization and/or on the convergence of greedy algorithms.
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has an asymptotic lower bound defined by:
aTF−1(θ)a (55)

where the (i, j)th component of the Fisher Information Matrix [65] F is:

Fi,j(θ) = Ex|θ
{
∂ ln p(x|θ)

∂θi

∂ ln p(x|θ)
∂θj

}
(56)

Thus in the case of parametric estimators for line spectra in AWGN, Eq. (56) is simply:

Fi,j(θ) =
2

σ2
<

{(
∂s(θ)

∂θi

)H
∂s(θ)

∂θj

}
(57)

where s(θ) = A(ω)β is the (parametric) signal (model). The corresponding parameter vector used for this measurement
is:

θ =
[
ω1 . . . ωP , β1 . . . βP , σ

2
]

(58)

F (θ) is utilized for the signal model Eq. (1) and the diagonal elements of F−1(θ) give the CRB values corresponding
to complex amplitudes {βi : i = 1, ..., P} and frequencies {ωi : i = 1, ..., P}. The averaged CRB metric used for
frequency metrics in this study is:

CRBω =
1

P

P∑
i=1

diag{F−1(θi)} (59)
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