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A B S T R A C T

Ultrasonic fatigue tests (UFT) are used to study the fatigue life behavior of metallic components
undergoing a very high number of cycles (typically ≥ 107 − 109 cycles) under relatively low
mechanical loads. By soliciting fatigue specimens at 20 kHz, ultrasonic fatigue machines are
indispensable for monitoring damage growth and fatigue failures in a reasonable amount of
time. As fatigue damage accumulates in the specimen, the specimen’s free-end exhibits a
nonlinear dynamic response. The resulting quasi-stationary, harmonic signals have sinusoidal
parameters (frequency and amplitude) which are slowly time-varying with respect to the excita-
tion frequency. The discrete Fourier transform (DFT) is typically used to extract these evolving
sinusoidal parameters from a window of finite data of the vibration signal. Alternative spectral
estimation methods, specifically line spectra estimators (LSEs), exploit a priori information of
the signal via their modeling basis and overcome limitations seen by the DFT. Many LSEs are
known to have state-of-the-art results when benchmarked on purely stationary signals with unit
amplitudes. However, their performances are unknown in the context of slowly time-varying
signals typical of UFT, leading to a widespread use of the DFT. Thus, this paper benchmarks
classical and modern LSEs against specific synthetic signals which arise in UFTs. Adequate
algorithms are then recommended and made publicly available to process experimental data
coming from ultrasonic fatigue tests depending on performance metrics and experimental
restraints.

1. Introduction

Engineering design of metallic components according to their classical fatigue limit is no longer sufficient when loaded beyond
107 cycles. Mechanical failure due to fatigue takes place during a significant period of service: e.g., most load-bearing metallic
components in the transportation industry are loaded in 108–109 cycles. Characterizing and modeling fatigue behavior in this very
high cycle fatigue (VHCF) regime (107–109 cycles) has only been recently pursued due to experimental data provided by ultrasonic
fatigue tests (UFT) [1]. To achieve 109 loading cycles, a conventional fatigue machine working at 100 Hz will finish in 115 days
whereas an ultrasonic fatigue machine working at 20 kHz will finish in only 14 h. The principle of action of an ultrasonic fatigue
machine is the excitation at a working frequency that corresponds to the fatigue specimen’s first longitudinal mode. An example of
a typical UFT experimental setup can be seen in Fig. 1. The standing wave formed at this frequency allows for periodic tension–
compression loadings whose maximal stress occurs at the centroid of the fatigue specimen [2]. The local microstructural evolution
at this centroid is of great interest for VHCF researchers interested in characterization with respect to the fatigue life of materials.
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Acronyms

AWGN Additive white Gaussian noise
CFH Course-to-fine HAQSE
CNN Convolutional neural network
CRB Cramér-Rao lower bound
DFT Discrete Fourier transform
ESPRIT Estimation of signal parameters via rational invariance techniques
FSR Frequency success rate
HAQSE Hybrid Aboutanios and Mulgrew and q-shift estimator
LSE Line spectral estimator
MAD Matched amplitude distance
MFD Matched frequency distance
MSAE Mean-squared amplitude error
MSFE Mean-squared frequency error
NOMP Newtonized orthogonal matching pursuit
NRUS Non-contact nonlinear resonance ultrasound spectroscopy
RELAX Relaxation-based estimation method
ReLU Rectified linear activation unit
SHG Second harmonic generation
SHM Structural health monitoring
SNR Signal-to-noise ratio
UFT Ultrasonic fatigue tests
VHCF Very high cycle fatigue

Fig. 1. Experimental setup of an ultrasonic fatigue test.

Multiple techniques currently exist for the assessment of damage and microstructural characteristics in materials during UFTs.
They rely on measuring multiple sinusoidal parameters, specifically amplitudes and/or frequencies [3–11]. During UFTs, fatigue
specimens are excited at their first longitudinal eigenfrequency, nonlinearities can be observed in the vibration’s frequency
spectra [12]. The evolution of these parameters can drive a nonlinear model and consequently infer the microstructural changes
and damage within the fatigue specimen. These techniques would benefit from in-situ, or real-time sinusoidal parameter estimation
since it could correspond to a real-time assessment of microstructural evolution leading to macroscopic damage. Acoustic techniques
using ultrasound for damage and microstructural characterization also utilizes amplitude estimation: the second harmonic generation
(SHG) technique [13], and non-contact nonlinear resonance ultrasound spectroscopy (NRUS) also utilizes frequency estimation [14].
These techniques are also subject to this study since they both rely on estimates of sinusoidal parameters of harmonics from
transmitted tone bursts. More generally, sinusoidal parameters have also been used in fault detection and structural health
monitoring (SHM) for signal-based methods [15] and as features for data-driven methods [16].

UFT signals can be observed to have harmonics at integer multiples of the working frequency, corresponding to the fatigue
specimen’s longitudinal eigenfrequency, see Fig. 2. However, throughout the UFT, damage and other nonlinear phenomena can
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Fig. 2. (Left) Velocity signal from a typical ultrasonic fatigue test with segmented signal windows near the beginning and end of the fatigue test. Frequency
spectra corresponding to an undamaged (right-top) and damaged (right-bottom) fatigue specimen are obtained through a DFT. Harmonics correspond to integer
multiples of the fundamental harmonic while interharmonics correspond to non-integer multiples of the fundamental harmonic.

introduce interharmonics which exceeds the scope of algorithms that only estimate fundamental frequency [17]. Additionally, UFTs
that require a large number of cycles have signals that are nonstationary, but can be adequately modeled as being a locally stationary
signal within a finite segment of length 𝑁 of the data, or window. We refer to the windowed signal as quasi-stationary, which we
define as a trend-stationary sequence by the Kwiatkowski–Phillips–Schmidt–Shin test [18]. One main concern is the method of
estimating such sinusoidal parameters for a quasi-stationary signal: a choice must be made between choosing algorithms whose
basis lies either in spectral analysis or time–frequency analysis.

To date, a sliding window approach has only been coupled with the discrete Fourier transform (DFT) in UFT damage monitoring.
When applied per window, the DFT yields a respective frequency spectrum, and a peak picking algorithm extracts sinusoidal
parameters, i.e. the frequencies and amplitudes. This is one of the most rudimentary forms of a line spectral estimator (LSE): where
sinusoidal parameters correspond to Dirac deltas (lines) in the frequency spectra. However, a finite period (time length) of the
data corresponds to the sinc function convolving with the DFT resulting in a loss of frequency resolution, see Fig. 3. This directly
poses problems for an UFT signal of a damaged fatigue specimen, where introduced interharmonics can influence the estimation
of harmonics. Additional factors can skew the DFT’s spectra affecting the accuracy of the peak picking: nonstationary sinusoidal
components smearing the spectral envelope, non-periodicity of the data manifesting as spectral leakage, aliasing due to violation
of the Nyquist–Shannon sampling theorem, and noise introducing uncertainty into the measured signal. Due to the difficulties seen
by the DFT, alternative spectral estimators should be considered, such as nonparametric and parametric spectral estimators.

Nonparametric algorithms estimate the entire frequency spectra which include the DFT-based methods [20,21] and filter-bank
methods [22,23]. Filter-bank methods’ frequency resolution depends on the spectra length and can achieve super-resolution [24],
i.e., resolve closely-spaced frequencies beyond the DFT in Fig. 3. Recently, nonparametric algorithms have been coupled with a peak
picking algorithm to become LSEs, but require a method to estimate the number of sinusoids [25] or utilize an amplitude/power
threshold [26]. On the other hand, parametric algorithms only estimate parameters for a known number of sinusoids and some are
also capable of super-resolution. These parametric estimators are formulated as sinusoidal frequency estimation problems since the
estimation of amplitudes and phases become least squares solvable when the frequencies are known [27]. Many of the parametric
LSE established in the 1980s and beyond are inspired by Prony’s method [28] of converting a non-linear approximation by solving
a set of linear equations and a root-finding problem. One of the most popular parametric LSEs are the subspace methods, which
include MUSIC [29] and ESPRIT [30]. Subspace methods decompose the finite data into signal and noise subspaces via an eigenvalue
decomposition (EVD) and/or singular-value decomposition (SVD). Exploiting the low-rank structure of the signal’s covariance matrix
allows for these methods to achieve super-resolution. A sliding-window approach [31] is commonly used with a spectral estimator
to circumvent the problem of quasi-stationarity, where the signal is uniformly discretized in time. The sinusoidal parameters in each
window are obtained by applying a spectral estimator, and the window is shifted in time and the process is repeated.

Other dominant parametric LSEs are derived from the maximum likelihood principle of estimators [32], where estimated
sinusoidal parameters are the most likely to explain the finite data. Two classes exist: deterministic maximum likelihood [33] and
stochastic maximum likelihood [34] which have criteria derived in the case the sinusoidal parameters are unknown deterministic
and stochastic, respectively. Deterministic maximum likelihood has been most often referred to as the nonlinear least squares method
in literature [20] since it estimates parameters by minimizing 𝓁2-norm of the difference between the finite data and signal model.
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Fig. 3. Demonstration of the frequency resolution of a signal with a fixed sampling frequency, with respect to the Rayleigh limit 1∕𝑁 seen by the DFT, adapted
from [19]. A multi-sinusoidal signal (dashed blue line) and its Nyquist–Shannon samples (blue circles) are depicted on the top row. The bottom row shows the
DFT’s frequency resolution (purple line) and the true line spectra (dashed red line). For a finite 𝑁 , the DFT’s frequency resolution is equal to the convolution
between the DFT of the signal and the sinc function.

Some deterministic maximum likelihood methods separate the full multidimensional minimization into iterative searches in lower-
dimensional parameter subspaces: these include Expectation–Maximization [35] and RELAX [36]. Stochastic maximum likelihood
methods, until most recently, are generally only found in the direction of arrival literature, e.g., [37].

New LSEs have been introduced due to innovations in data science domains, specifically those relating to compressed sensing,
sparse regularization, and deep learning. LSEs that use compressed sensing for sparse regularization [38] are sometimes referenced
as semi-parametric since they sometimes rely on model order or other signal parameters a priori, such as its noise covariance.
One issue arises when resolving the compressed sensing problem onto LSE, since it normally assumes a discrete basis for signal
recovery, whereas a sparse signal is continuous in frequency space. Thus grid-based approaches divide the frequency spectra
into finite discrete grid points and build bases from these grid points. Popular solutions to this approach can be through convex
optimization algorithms like basis pursuit [39] or LASSO [40]. However, the true frequency parameters are not guaranteed to lie
within the frequency grid, a problem commonly referred to as basis or grid mismatch [41]. Attempts to remediate grid mismatch
includes iterative grid refinement [42], using a dense grid and iteratively optimize sparse solutions [43], generalizing the 𝓁1-norm
as continuous in frequency space via an Atomic Norm minimization problem [44,45], or Bayesian approaches which iteratively
refine the grid [46,47]. Artificial neural networks for LSE have been used for LSEs in the early 1990s [48], whereas recent deep
neural network approaches have provided state-of-the-art performance by adopting convolutional neural network (CNN) [19,49].

The current research is motivated by the tradeoffs between finite window lengths and accuracy when dealing with quasi-
stationarity and the Rayleigh limit. Despite the loss of information which affects estimation performance, a small time window
is sought for many reasons:

• Smaller window lengths along the entire fatigue vibration signal will be more locally stationary compared to larger windows.
• Parameter estimation algorithms are quicker for smaller data lengths, meaning that a computationally complex algorithm can

still be used in real-time.
• A smaller window length about the entire fatigue vibration signal will yield more discrete parameters, which is attractive for

data-driven models. While using window overlap [31] can also increase the number of discrete parameter estimates, this would
carry over for all spectral estimators. Within the context of ultrasonic fatigue experiments, more discrete parameters would
allow for conditional-based rules for stopping a fatigue test before crack failure, and for deterministic models, a prediction of
damage evolution.

Thus the merits of potential algorithms have to weigh between window length and parameter accuracy, noise robustness, and
computational performance.

Our contribution lies in the study of sinusoidal parameter estimation accuracy on quasi-stationary signals, with a focus on
signals found in VHCF vibration. Specifically, we establish two compounding influences that are at play when using a windowed
approach to the real-time estimation of sinusoidal parameters: (1) estimators face a frequency and time uncertainty dictated by
the Rayleigh limit, and (2) the usage of estimators who assume a stationary signal model being used on a quasi-stationary signal.
Minimizing the window length negatively influences the frequency resolution, as mentioned in (1), but increases time resolution
and has positive contributions stated in the bullets previously. Additionally, the statistical performance and accuracy of estimators
are numerous in literature but generally utilize synthetic signals that are purely stationary, whose results cannot be said for quasi-
stationary signals, mentioned in (2). Therefore, we choose to investigate five LSEs, specifically Unitary ESPRIT [50], RELAX [36],
CFH [25], NOMP [42], and DeepFreq [19] with respect to the problems aforementioned. These five algorithms were chosen since
their theoretical basis are a diverse (subspace-based, maximum likelihood-based, DFT peak interpolation-based, greedy algorithm for
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Table 1
Summary of LSE algorithms in implemented.

Algorithms Main principle Advantages Disadvantages Tunable parameters

Unitary ESPRITa

[50]
Rotational invariance of signal’s
subspaces

Forward-backwards averaging of
signal’s covariance, faster than
ESPRIT

Computation complexity
dictated by SVD

Sub-vector length

RELAX [36] Frequency domain (zero-padding)
interpolation, iterative refinement

Conceptually easy to implement Asymptotic gains in
performance tuning large
zero-padding

Zero-padding length

CFH [25] Frequency domain (peak)
interpolation, iterative refinement

One of the fastest parametric
estimators

Algorithm is not tunable –

NOMP [42] Greedy algorithm, iterative
refinement

Newton refinements alleviates
restriction to DFT basis

Unknown performance in
the case of basis mismatch

Number of refinements,
zero-padding lengthb

DeepFreq [19] Deep convolution neural network Fully-automatic frequency
estimatesc

Expensive offline training Training data, CNN
architecture

aThe line spectrum can be computed after the estimation of frequencies, using the LS estimate Eq. (21).
bIn this paper, the zero-padding can be removed to further differentiate NOMP from RELAX.
cDeepFreq, as published, features a frequency representation module, which is used in this paper, but also a component counting module which estimates the
model order, making the algorithm fully-automatic compared to other LSEs.

grid refinement-based, and deep neural network-based, respectively) representation of the many LSE that exist in the literature, and
most are considered to be state-of-the-art LSE for the purely stationary case. We choose not to use fast versions of these algorithms
(for example ESPRIT with partial SVDs [51]) since they trade computational complexity for accuracy; this study assumes the original
algorithms provide their best asymptotic performance. It should be noted that except for the former two algorithms listed, the
original authors provide open access to their algorithms. The remaining part of the paper is organized as follows. Section 2 outlines
the theory of each implemented LSE algorithm. The methodology is described in Section 3. Results and discussions are presented
in Section 4 and the conclusions are drawn in Section 5.

2. Implemented algorithms

In this section, the mathematical formulation of the implemented LSE algorithms is described. A practical summary of the
algorithms used in this work exists in Table 1. The estimation of frequencies and amplitudes for 𝑃 complex sinusoids of 𝑥(𝑛) can be
written as the signal model:

𝑥(𝑛) =
𝑃
∑

𝑖=1
𝛽𝑖𝑒

j2𝜋𝜔𝑖𝑛 + 𝜀(𝑛) (1)

where 𝑛 ∈ Z is a discrete index and 𝜀(𝑛) represents additive white Gaussian noise (AWGN) with variance 𝜎. The sinusoidal parameter
𝛽𝑖 is the complex amplitude such that its modulus |𝛽𝑖| is the amplitude, and {𝜔𝑖 ∈ [0, 1);𝜔𝑖 ≠ 𝜔𝑗 ∶ ∀𝑖 ≠ 𝑗} is the normalized frequency
(units of cycles per sample) whose set is distinct. It is assumed that a uniformly sampled noisy signal has been segmented into
windows. Each local window 𝒙 with sample length 𝑁 can be written in matrix–vector notation:

𝒙(𝑛) = 𝑨𝜷(𝑛) + 𝜺(𝑛) (2)

where 𝒙(𝑛), 𝜺(𝑛) ∈ C𝑁 :

𝒙(𝑛) =
[

𝑥(𝑛) ⋯ 𝑥(𝑛 +𝑁 − 1)
]T

𝜺(𝑛) =
[

𝜀(𝑛) ⋯ 𝜀(𝑛 +𝑁 − 1)
]T

the complex amplitudes for 𝑃 complex sinusoids 𝜷(𝑛) ∈ C𝑃 :

𝜷(𝑛) =
[

𝛽1𝑒 j2𝜋𝜔1𝑛 ⋯ 𝛽𝑃 𝑒 j2𝜋𝜔𝑃 𝑛
]𝑇

and the matrix 𝑨 ∈ C𝑁×𝑃 is a Vandermonde matrix of 𝑃 complex sinusoids:

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 ⋯ 1
𝑒j(2𝜋)𝜔1 ⋯ 𝑒j(2𝜋)𝜔𝑃

𝑒j(2)(2𝜋)𝜔1 ⋯ 𝑒j(2)(2𝜋)𝜔𝑃

⋮ ⋱ ⋮
𝑒j(𝑁−1)(2𝜋)𝜔1 ⋯ 𝑒j(𝑁−1)(2𝜋)𝜔𝑃

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
[

𝒂(𝜔1) ⋯ 𝒂(𝜔𝑃 )
]

(3)

Lastly, it should be reminded real-valued signals can be represented using the complex notation in Eq. (1) through two methods:
the use of the (downsampled) analytic signal [52], provided that there is no spectral content in the real-valued signal near zero and
Nyquist frequencies [53]; or simply realizing real-valued sinusoidal signals can be represented as complex-valued and applying the
algorithms. The latter case is preferred in this work because of its simplicity and to prevent issues seen in computing the analytic
signal.
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2.1. Unitary ESPRIT

The Unitary ESPRIT algorithm is used since it is one of the most economical and accurate among all ESPRIT implementa-
tions [50]. First, Eq. (1) is converted into the necessary matrix notation with overlapping segments such that:

𝑿(𝑛) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥(𝑛) 𝑥(𝑛 + 1) ⋯ 𝑥(𝑛 +𝑀)
𝑥(𝑛 + 1) 𝑥(𝑛 + 2) ⋯ 𝑥(𝑛 +𝑀 + 1)

⋮ ⋮ ⋱ ⋮
𝑥(𝑛 + 𝐿 − 1) 𝑥(𝑛 + 𝐿) ⋯ 𝑥(𝑛 +𝑁)

⎤

⎥

⎥

⎥

⎥

⎦

(4)

where 𝑿(𝑛) ∈ C𝑀×𝐿 is a Hankel matrix, 𝑀 is a chosen sub-vector size such that 𝑃 < 𝑀 < 𝑁 , and 𝐿 = 𝑁 − 𝑀 is the remaining
length. Unitary ESPRIT, as opposed to the standard ESPRIT algorithm, inherently includes forward–backward smoothing [30]. A
forward–backward observation matrix 𝒀 ′ is estimated and converted to real-values by the unitary transformation of 𝑿:

𝒀 ′ =
[

ℜ
{

𝐐H
𝑀𝑿

}

ℑ
{

𝐐H
𝑀𝑿

}]

∈ R𝑀×2𝐿 (5)

where □′ indicates a unitary transformed component, □𝑀 indicates the square matrix dimension of size 𝑀 ×𝑀 , and □H indicates
the Hermitian (complex conjugate) transpose. This processing steps has been shown to improve parametric and nonparametric
estimators that rely on covariance estimates [54]. The even- and odd-dimensioned unitary matrices are given, for an arbitrary 𝐷:

𝐐2𝐷 = 1
√

2

[

𝐈𝐷 j𝐈𝐷
𝜫𝐷 −j𝜫𝐷

]

𝐐2𝐷+1 =
1
√

2

⎡

⎢

⎢

⎣

𝐈𝐷 0 j𝐈𝐷
0

√

2 0
𝜫𝐷 0 −j𝜫𝐷

⎤

⎥

⎥

⎦

(6)

where 𝐈𝐷 and 𝜫𝐷 are the identity matrix and the antidiagonal identity matrix (ones along the antidiagonal) of size 𝐷 × 𝐷,
respectively. To obtain the signal subspace 𝑼 ′

s, a SVD is performed on 𝒀 ′ to yield:

𝒀 ′ =
[

𝑼 ′
s 𝑼 ′

n
]

[

𝜮′
s 0
0 𝜮′

n

] [

𝑽 ′H
s

𝑽 ′H
n

]

= 𝑼 ′𝜮′𝑽 ′H (7)

where 𝜮′ corresponds to a diagonal matrix that contains the singular values on the main diagonal in descending order, and 𝑽 ′ is
an identity matrix orthogonal to 𝑼 ′. The signal subspace is extracted via a priori knowledge of the left 𝑃 column singular vectors:

𝑼 ′
s =

[

𝒖′(1) ⋯ 𝒖′(𝑃 )
]

(8)

To exploit the signal subspace, selection matrices are introduced corresponding to a time shift of one sample value:

𝑱 1 =
[

𝐈𝑁 ∣ 𝟎𝑁
]

𝑱 2 =
[

𝟎𝑁 ∣ 𝐈𝑁
] (9)

where 𝟎𝑁 is a zero matrix of size 𝑁 × 𝑁 . Since the signal model of Eq. (1) has distinct frequencies, the rotational invariance of
Eq. (9) allows one to form:

𝑱 1𝑨𝜱 = 𝑱 2𝑨 (10)

where 𝜱 = diag
(

𝑒j2𝜋𝜔1 ,… , 𝑒j2𝜋𝜔𝑃
)

is the diagonal matrix of signal poles. The steering matrix 𝑨 spans the 𝑃 -dimensional signal
subspace 𝑼 s, such that a transformation matrix 𝑻 has the property:

𝑨 = 𝑼 s𝑻 (11)

Eq. (10) can thus be expressed as a function of the eigenvectors of the signal subspace:

𝑱 1𝑼 s𝑻𝜱 = 𝑱 2𝑼 s𝑻 (12)

which is equivalent to:

𝑱 1𝑼 s𝜳 = 𝑱 2𝑼 s where 𝜳 = 𝑻𝜱𝑻 −1 (13)

Eq. (13) is also equivalent to its real-valued counterpart through unitary transformation:

𝑱 ′
1𝑼

′
s𝜳

′ = 𝑱 ′
2𝑼

′
s where 𝜳 ′ = 𝑻 ′𝜱′𝑻 ′−1 (14)

with the respective unitary transformed selection matrices:

𝑱 ′
1 = ℜ

{

𝐐H
𝑀−1𝑱 2𝐐𝑀

}

𝑱 ′
2 = ℑ

{

𝐐H
𝑀−1𝑱 2𝐐𝑀

} (15)
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This representation results in an overdetermined system of equations for calculating the eigenvalues which correspond to the
diagonal elements of the matrix 𝜱, i.e., the signal poles with the frequency parameters 𝜔𝑖. The LS approach is taken over the
total LS approach [50] to reduce computational complexity with negligible accuracy loss for uniformly sampled signals:

𝜳 ′ ≈
(

𝑱 ′
1𝑼

′
s
)−1 𝑱 ′

2𝑼
′
s (16)

The right hand of Eq. (14) is the EVD of 𝜳 ′ since 𝜱′ is diagonal, such that:

𝑒j𝜔𝑖 = 𝜆𝑖(𝜳 ′) for 𝑖 = 1,… , 𝑃 (17)

where 𝜆𝑖(𝜳 ′) is the eigenvalue of the 𝑖th entry of 𝜳 ′. When the signal is consistent with the model of Eq. (1), then the signal poles
will lie close to the unit circle. Finally, the unwrapped frequency estimates can be obtained by:

�̂�𝑖 = tan−1
(

𝜆𝑖
)

∕𝜋 for 𝑖 = 1,… , 𝑃 (18)

where □̂ indicates a consistent estimate. The amplitude estimate vector 𝜷 is then LS solvable using the frequency estimate vector
�̂� through Eq. (21).

2.2. RELAX

The RELAX algorithm attempts to estimate the maximum likelihood estimate by decoupling the nonlinear least squares problem
into iterative one-dimensional minimizations. This idea will be introduced by a description of the nonlinear least squares problem
for frequency estimation:

{𝜷, �̂�} = arg min
{𝜷,𝝎}

1(𝜷,𝝎)

with:

1(𝜷,𝝎) = ‖𝒙 − 𝜷𝑨‖

2
2 (19)

where ‖□‖2 is the 𝓁2-norm. Eq. (19) minimized with respect to 𝝎 yields the estimate:

�̂� = arg max
𝝎

[

𝒙H𝑨
(

𝑨H𝑨
)−1 𝑨H𝒙

]

(20)

and with respect to 𝜷, the least squares error can be minimized through the pseudoinverse:

𝜷 =
(

𝑨𝐻𝑨
)−1 𝑨H𝒙||

|𝝎=�̂�
(21)

Eq. (20) is a multimodal function and its maximization corresponds to searching for its sharp global maxima. The RELAX algorithm
is based on the relaxation of Eq. (19) to minimize the squared error between the observation and the parameterized signal model.
A minimization of Eq. (19) with respect to both 𝝎 and 𝜷 through a cyclic minimization approach is detailed [36]. The subsequent
minimization can be solved to yield the estimate of {�̂�𝑗 , �̂�𝑗}:

{�̂�𝑗 , �̂�𝑗} = arg min
{𝛽𝑗 ,𝜔𝑗}

2(𝛽𝑗 , 𝜔𝑗 )

with:

2(𝛽𝑗 , 𝜔𝑗 ) =
‖

‖

‖

𝒙𝑗 − 𝛽𝑗𝒂(𝜔𝑗 )
‖

‖

‖

2

2
(22)

where 𝒙𝑗 is defined in Eq. (25). Eq. (22) minimized similarly to before with respect to 𝜔𝑗 will yield:

�̂�𝑗 = arg min
𝜔𝑗

‖

‖

‖

‖

‖

‖

[

𝐈 −
𝒂(𝜔𝑗 )𝒂H(𝜔𝑗 )

𝑁

]

𝒙𝑗
‖

‖

‖

‖

‖

‖

2

2

= arg max
𝜔𝑗

|

|

|

|

|

𝒂H(𝜔𝑗 )𝒙𝑗
𝑁

|

|

|

|

|

2
(23)

and with respect to 𝛽𝑗 :

�̂�𝑗 =
𝒂H(𝜔𝑗 )𝒙𝑗

𝑁

|

|

|

|

|𝜔𝑗=�̂�𝑗

(24)

Note Eq. (23) is the definition of the periodogram |

|

|

𝒂H(𝜔𝑗 )𝒙
|

|

|

2
∕𝑁 whose estimate �̂�𝑗 corresponds to the maximum peak. This

corresponds to a maximum likelihood estimate [55] when the signal only contains a single sinusoid. Eqs. (23) and (24) are
interpolated through using a zero-padding [36], appending zeros to the signal:

𝑥(𝑛) =
{

𝑥(𝑛), 𝑛 ≤ 𝑁
0, 𝑁 < 𝑛 ≤ 𝑍p
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where 𝑍p is the new signal length such that 𝒙(𝑛) ∈ C𝑍p .
The RELAX algorithm starts from the strongest signal component to determine {�̂�1, �̂�1} using Eqs. (23) and (24). Then the

successive separation of the signal is performed:

𝒙𝑗 = 𝒙 −
𝑗
∑

𝑖=1,𝑖≠𝑗
�̂�𝑖𝒂(�̂�𝑖) for 𝑗 = 1,… , 𝑃 (25)

where Eq. (25) is used to obtain {�̂�𝑗 , �̂�𝑗} from Eqs. (23) and (24), and {�̂�𝑖, �̂�𝑖}
𝑗−1
𝑖=1 are re-estimated in a sub-iteration:

𝒙𝑘 = 𝒙 −
𝑗
∑

𝑖=1,𝑖≠𝑗
�̂�𝑖𝒂(�̂�𝑖) for 𝑘 = 1,… , 𝑗 − 1 (26)

until 2 < 𝜖, where 𝜖 is a tolerance. This cyclic iterative procedure helps remove bias made from initial estimates done before
successive separation of the signal.

2.3. CFH

The coarse-to-fine HAQSE (CFH) algorithm also exploits the idea of the maximum likelihood estimator. Many estimators exist
which attempt to refine a frequency estimate via interpolation of the DFT grid via zero-padding [21], parabolic fitting [56], and
iteratively [57]. However, most have not been extended to the multiple sinusoidal case and thus require a posteriori knowledge of
frequencies to interpolate via peak picking. CFH utilizes the HAQSE interpolator [58] which shifts the DFT coefficients by ±𝑞 with:

|𝑞| ≤ 𝑁−1∕3 (27)

where it was shown that it obtains better accuracy compared to parabolic interpolators. CFH begins by finding the dominant signal
component:

�̃�𝑗 = arg max
𝜔𝑗

|

|

|

|

|

𝒂H(𝜔𝑗 )𝒙𝑗
𝑁

|

|

|

|

|

2

(28)

where □̃ is a coarse estimate. [57] is used to iterate to the fractional residual components:

𝛿1 =
𝑁
2𝜋

sin−1
(

sin
( 𝜋
𝑁

)

ℜ
{

𝑆0.5 + 𝑆−0.5
𝑆0.5 − 𝑆−0.5

})

(29)

and refined residual component:

𝛿2 =
1

𝑐(𝑞)
ℜ

{𝑆+𝑞 − 𝑆−𝑞

𝑆+𝑞 + 𝑆−𝑞

}

+ 𝛿1 (30)

where 𝑆 are the interpolation functions:

𝑆±0.5 = 𝒂H(�̃�𝑗 ± 0.5)𝒙𝑗
𝑆±𝑞 = 𝒂H(�̃�𝑗 + 𝛿1 ± 𝑞)𝒙𝑗

(31)

and 𝑐 is the bias correction:

𝑐(𝑞) =
1 − 𝜋𝑞 cot(𝜋𝑞)
𝑞 cos2(𝜋𝑞)

(32)

The coarse frequency estimate is composed of an integer and a residual component, which can be expressed as:

�̂�𝑗 =
�̃�𝑗 + 𝛿2

𝐹𝑠
𝑁 (33)

where 𝐹𝑠 is the sampling frequency, and the respective complex amplitude:

�̂�𝑗 =
𝒂H

(

𝜔𝑗
)

𝒙𝑗
𝑁

|

|

|

|

|𝜔𝑗=�̂�𝑗

(34)

It then uses a similar procedure of RELAX, obtaining {�̂�𝑗 , �̂�𝑗} from Eqs. (33) and (34), and successfully separates the signal:

𝒙𝑗 = 𝒙 −
𝑗
∑

𝑖=1,𝑖≠𝑗
�̂�𝑖𝒂(�̂�𝑖) for 𝑗 = 1,… , 𝑃 (35)

where Eq. (35) is used to obtain {�̂�𝑗 , �̂�𝑗} by repeating Eqs. (28)–(34) until the 𝑃 components are coarsely interpolated. The coarsely
estimated signal components are all subtracted from the signal:

𝒙𝑘 = 𝒙 −
𝑃
∑

𝑖=1,𝑖≠𝑘
�̂�𝑖𝒂(�̂�𝑖) for for 𝑘 = 1,… , 𝑃 (36)

where Eq. (36) is used to obtain {�̂�𝑗 , �̂�𝑗} by repeating Eqs. (28)–(34) until the 𝑃 components are finely interpolated. The fine step
corrects for selection bias due to estimation from the strongest to the weakest signal component in the coarse step of the algorithm.
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2.4. NOMP

Newtonized orthogonal matching pursuit (NOMP) algorithm is built upon orthogonal matching pursuit, which is based on the
greedy algorithm that iterates a sparse selection of the best fitting basis of the matrix 𝑨. An LS optimization is then performed in
the subspace spanned by all previously selected bases. The grid mismatch is mitigated through the Newton–Raphson method, which
iteratively refines the DFT grid. We describe this algorithm with complete measurements (sensing matrix is an identity matrix) first
by rewriting the nonlinear least squares problem Eq. (19) as a maximization:

{𝛽𝑗 , �̃�𝑗} = arg max
{𝛽𝑗 ,𝜔𝑗}

3(𝛽𝑗 , 𝜔𝑗 )

with:

3(𝛽𝑗 , 𝜔𝑗 ) = 2ℜ
{

𝒙H𝛽𝑗𝒂(𝜔𝑗 )
}

− |𝛽𝑗 |
2
‖𝒂(𝜔𝑗 )‖22 (37)

Eq. (37) maximized with respect to 𝜔𝑗 will yield:

�̃�𝑗 = arg max
𝜔𝑗

𝜁 (𝜔𝑗 )
𝑁

(38)

where 𝜁 is the power of the spectra:

𝜁 (𝜔𝑗 ) =
|

|

|

𝒂H(𝜔𝑗 )𝒙𝑗
|

|

|

2
(39)

and Eq. (37) maximized with respect to 𝛽𝑗 :

𝛽𝑗 =
𝒂H(𝜔𝑗 )𝒙𝑗

𝑁

|

|

|

|

|𝜔𝑗=�̃�𝑗

(40)

The DFT grid of Eqs. (38) and (40) can be densely defined through zero-padding as indicated by [42]. To improve a coarse estimate
of {𝛽𝑗 , �̃�𝑗}, the Newton–Raphson method is used for refine the frequency estimate:

�̂�𝑗 = �̃�𝑗 −
̇3(𝛽𝑗 , 𝜔𝑗 )

̈3(𝛽𝑗 , 𝜔𝑗 )
(41)

where the derivatives are defined:

̇3(𝛽𝑗 , 𝜔𝑗 ) = ℜ
{

(

𝒙𝑗 − 𝛽𝑗𝒂(�̃�𝑗 )
)H 𝛽𝑗

𝑑𝒂(�̃�𝑗 )
𝑑�̃�𝑗

}

(42)

and:

̈3(𝛽𝑗 , 𝜔𝑗 ) = ℜ

{

(

𝒙𝑗 − 𝛽𝑗𝒂(�̃�𝑗 )
)H 𝛽𝑗

𝑑2𝒂(�̃�𝑗 )

𝑑�̃�2
𝑗

}

− |𝛽𝑗 |
2
‖

‖

‖

‖

‖

𝑑𝒂(�̃�𝑗 )
𝑑�̃�𝑗

‖

‖

‖

‖

‖

2

2
(43)

The NOMP algorithm first estimates {𝛽𝑗 , �̃�𝑗} using Eqs. (38) and (40) and successively separates the signal:

𝒙𝑗 = 𝒙 −
𝑗
∑

𝑖=1,𝑖≠𝑗
�̂�𝑖𝒂(�̂�𝑖) for 𝑗 = 1, 2,… (44)

until 𝜁 (�̃�𝑗 ) < 𝜏, where Eq. (44) is used to obtain {�̂�𝑗 , �̂�𝑗} from Eqs. (40) and (41) and 𝜏 represents a sparsity promoting 𝓁0-norm
regularization, which implicitly determines the model order 𝑃 :

𝜏 = 𝜎2 log(𝑁) − 𝜎2 log log
(

1
1 − 𝜚

)

(45)

where 𝜎 is the noise variance and 𝜚 is the probability of a false alarm. For the 𝑗th estimate, an initial refinement is performed
through the Newton step of Eq. (41). The refinement is conditionally accepted only if it serves to maximize 3, i.e. locally concave
̈3(𝛽𝑗 , 𝜇𝑗 ) < 0, and if the refinement globally reduces the residual energy such that 𝜁 (�̂�𝑗 ) > 𝜁(�̃�𝑗 ). After each singular refinement,
the sub-iteration of cyclic refinement is performed 𝑅𝑐 times to reestimate {�̂�𝑗 , �̂�𝑗}:

𝒙𝑘 = 𝒙 −
𝑘
∑

𝑖=1,𝑖≠𝑘
�̂�𝑖𝒂(�̂�𝑖) for 𝑘 = 1,… , 𝑗 − 1 (46)

At the end of the 𝑗th estimate, the least square procedure of Eq. (40) is performed to refine complex amplitudes {�̂�𝑖}
𝑗
𝑖 . Performing

this step just prior to detecting a new sinusoid increases the rate of convergence of NOMP by mirroring arguments used to establish
matching pursuit convergence [59].



10

S.L. Kiser et al.

Fig. 4. Algorithm flowchart of DeepFreq’s frequency representation module. The assumed complex input of the DeepFreq is split into its real and imaginary parts
before input. For real-valued signals, the imaginary-valued portion is supplied with zeros of equal length. The frequency representation generates a pseudospectrum
(purple line) subject to a peak-picking algorithm.

Fig. 5. Architecture of the DeepFreq frequency representation module.

2.5. DeepFreq

A fully connected neural network trained on the signal model of Eq. (1) is unlikely to converge to the maximum likelihood
solution of the cost function Eq. (19). In general, the nonlinear least squares problem of Eq. (19) has many local minima, and
training generally iterates to some local minimum (or a point near a local minimum). This is opposed to converging to the sought
global minimum, which can depend on the initialization conditions and loss function optimization. DeepFreq differs from this direct
problem in that it is schematized into different deep neural networks. A pseudospectrum is generated in a data-driven manner,
training the frequency representation neural network to produce superimposed Gaussian kernels directly from the measurements.
The representation is fed into a second frequency counting neural network that estimates the number of sinusoids. Frequency
estimation is then carried out through the selection of the 𝑃 th most prominent peaks of the frequency representation, see Fig. 4.

While this yields a fast, fully-automatic method for frequency and model estimation, we are interested only in the frequency
representation module. The pseudospectrum FR is defined as the convolution of the 𝑃 frequencies of the signal with Gaussian
kernels 𝐾 ∶ R → R:

FR(𝑛) ≜
𝑃
∑

𝑖=1
𝐾

(

𝑛 − 𝜔𝑖
)

(47)

This frequency representation is continuously differentiable and features smooth peaks at the true frequencies for the signal model
of Eq. (1). Despite not including amplitude and/or phase information into the CNN, this pseudo-spectra serves as the regression
that the CNN weights are tasked to learn from a noisy and finite signal. I.e., this is achieved by the loss function that penalizes the
𝓁2-norm between the output of the CNN and the true pseudo-spectra for a large number of training data. Fig. 5 shows the proposed
architecture for the frequency representation neural network.

First, the input layer maps the complex signal to a real-valued feature space. Then, the features are processed in the hidden
layers that contain a series of convolutional layers with localized filters of length three and batch normalization [22], interleaved
with rectified linear activation unit (ReLUs). The dimension of the input is preserved using circular padding. No pooling layers are
used since frequency sensitivity is prioritized over invariance. Finally, the output utilizes a decoder that produces the estimate FR
applying a transposed convolution. The original network described in [19] is slightly modified to accept signals 𝑁 > 50. This and
all technical details are detailed in Table 2.

3. Experimental methodology

The performance of the implemented LSEs was analyzed using five benchmarks, each using relevant performance metrics defined
below. All chosen algorithms were subjected to the same signal model shown in Eq. (1). Additionally, estimation of the number of
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Table 2
Layer summary of frequency representation module with respect to input size 𝑁 , where layers notated by ∗ have no bias. The
set of convolution, batch normalization, and ReLU layers are repeated for a depth of 20.
Layer Features Filter Stride Padding Output

Input – – – – 1 × 2𝑁
Linear* – – – – 1 × 8000

20 ×

⎧

⎪

⎨

⎪

⎩

Conv*
BatchNorm
ReLU

64 3 – 1, Circ 1 × 64 × 125
64 – – – 1 × 64 × 125
– – – – 1 × 64 × 125

ConvTrans* 64 17+Stride 2log2 (𝑁)−3 9 1 × 125
8
𝑁

sinusoidal components 𝑃 is given a priori. This is because LSEs are parametric and the algorithms typically used for estimation of the
number of sinusoidal components within a signal is a separate problem, see [20] for a brief introduction on model order estimation.
The normalized frequencies are wrapped on the bounds [0, 1). The AWGN variance 𝜎 is defined such that a desired signal-to-noise
ratio (SNR) can be obtained, SNR ≜ ‖𝑨(𝝎)𝜷‖22∕𝜎

2. A Raspberry Pi 4b, which is an affordable option for control of ultrasonic fatigue
tests, is utilized for all benchmarks using Python 3.8.8 via the Anaconda distribution. We readily make available our algorithms and
synthetic data [60].

This section aims to define multiple benchmarks for LSEs which are lacking in the literature. Specifically, the first test aims
to demonstrate the degeneration of LSEs when exposed to quasi-stationarity within each window: this corresponds to the effects
of the Rayleigh limit (if the signal was stationary) compounded with signal noise. The following three tests aim to benchmark in
the stationary signal case when LSEs are subject to less favorable conditions, e.g., non-unit amplitudes, interharmonics, and order
mismatch. The last test looks at the asymptotic computational costs and the algorithm runtimes for a Raspberry Pi 4b.

3.1. Test signals

For usage in the first two tests, a synthetic real-valued signal is generated from an experimental UFT signal. The discrete UFT
velocity signal has a sampling frequency 𝐹𝑠 = 106 Hz which was performed on a pure copper fatigue specimen in a setup similar
to Fig. 1. The time-evolving amplitude and frequencies are extracted from the signal per window via the DFT for the first three
harmonics. Then cubic polynomial fits are evaluated on a quasi-stationary basis for each 𝑖th window along the entire experimental
signal seen in Fig. 6. These averaged sinusoidal parameters can be quantified as:

𝑎𝑖 =
1
𝑁 ∫

𝑁

0
𝑎𝑖(𝑛) 𝑑𝑛

and:

𝜔𝑖 =
1

𝑁𝐹𝑠 ∫

𝑁

0
𝑓𝑖(𝑛) 𝑑𝑛

where 𝑎𝑖 and 𝜔𝑖 are quantized (window-averaged) amplitude and normalized frequencies, respectively. The frequencies in Section 3
are normalized to cycles per sample corresponding to the wrapped bounds [0, 1). This achieves a similar signal model defined in
Eq. (1) with a model order of 𝑃 = 6 complex sinusoids but has a symmetrical frequency component about 𝜔 = 0.5. The real-valued
synthetic signal is created with a sampling frequency 𝐹𝑠 = 250 kHz which is compared with the experimentally obtained signal in
Fig. 6. The time evolving sinusoidal parameters cubic polynomial fits can be found in Appendix A. For all tests except the first, the
synthetic signal excludes the last 10 s of the data, where the formation of a large crack manifests large nonstationary components
unsuitable for the LSEs.

For the next 3 tests, we test the sensitivity to amplitude variability, interharmonics, and order mismatch for randomly generated
stationary test signals. The set of true normalized frequencies representing harmonics is generated in these signals in two steps.
First, a fundamental harmonic is generated randomly, such that

{

𝜔1 ∈ [2∕𝑁, 1∕𝑃 − 2∕𝑁)
}

. Second, the remaining higher harmonics
(𝑖 > 1) are simply integer multiples of 𝜔1 creating a set

{

𝜔𝑖 ∈ [0, 1) ∶ |𝜔𝑖 − 𝜔𝑗 | > 2∕𝑁, ∀𝑗 ≠ 𝑖
}

. Note, a minimum frequency separation
below the Rayleigh limit of 1∕𝑁 makes the estimation problem ill-posed [24]. The complex amplitudes of the signal components
in 𝜷 are generated with independent and identically distributed uniformly random phases from [0, 2𝜋). The complex amplitudes’
magnitudes |𝛽𝑖| in are generated in ratio descending manner. The fundamental harmonic 𝑖 = 1 has a unit complex magnitude, with
subsequent harmonics (𝑖 > 1) being scaled such that

{

|𝛽𝑖| ∈ (0, 1] ∶ |𝛽𝑖+1| = |𝛽𝑖|∕𝛼, ∀𝑖
}

.

3.2. Configuration of algorithms

We compare the five algorithms Unitary ESPRIT [50], RELAX [36], CFH [25], NOMP [42], and DeepFreq [19] with configura-
tions:

• Unitary ESPRIT requires an estimate of the measurement matrix and the model order. The former is estimated from the signal
vector with size 𝑀 = 𝑁∕2 since this sub-vector length was shown to be optimal by [61]. After obtaining the frequency
estimates �̂�, the complex amplitude estimates 𝜷 are LS solvable using Eq. (21).
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Fig. 6. Copper specimen ultrasonic fatigue test excited at 20 kHz with vibration signal sampled at 200 kHz (left). A synthetic signal (center) is created from
the first 3 harmonics’ amplitudes and frequencies fits (right). The frequency 𝑓1 is only shown, where it should be understood that higher harmonic frequencies
occur at integer multiples, e.g. 𝑓2 = 2𝑓1. Near the end of the ultrasonic fatigue test, the signal becomes increasingly nonstationary, where the last 20 s (shaded)
are excluded from evaluation.

• RELAX utilizes a zero-padded DFT and iterates over the model order. We select this zero-padding length such that its grid size
is interpolated over 𝑍p = 4𝑁 . This was chosen since it corresponded to a computational speed similar to other iterative LSEs,
see Fig. 15.

• CFH requires only a model order and a minimum separation parameter which is already set by default to the Rayleigh limit
and is considered optimal by [25].

• NOMP requires a cyclic refinement parameter 𝑅𝑐 and the sparsity promoting parameter 𝜏 which implicitly determines the
model order. We set 𝑅𝑐 = 3 since it was shown by [42] that beyond number of cycles of Newton refinement has diminishing
returns in estimation accuracy. We modify the NOMP algorithm to terminate on model order 𝑃 , bypassing the regularization
Eq. (45) to put it on par with other LSEs, especially when trying to test model order robustness.

• DeepFreq is inherently input data length-dependent so that separate frequency representation neural networks are trained per
input length. We specifically use Table 2 and a standard deviation of the Gaussian kernel to 0.3∕𝑁 . It was found that for all
input sizes, DeepFreq was able to generalize for all SNR when its frequency representation neural network was trained on
AWGN with SNR = 1 dB. The training data consists of the generating signals with the following sets on uniformly distributed
bounds: {𝑃 ∈ [1, 10]},

{

𝝎 ∈ [0, 1) ∶ |𝜔𝑖 − 𝜔𝑗 | > 2∕𝑁, ∀𝑗 ≠ 𝑖
}

, and {|𝜷| ∈ [0.001, 1]}. For other training data parameters, we used
the defaults described in the original paper [19]. The amplitude estimates are obtained from its frequency representation
through peak-picking via amplitude prominence with a minimum separation of 2∕𝑁 , when appropriate.

We also include the DFT, utilizing the Fast Fourier Transform algorithm, as a baseline which determines the 𝑃 sinusoidal parameters
through peak-picking via amplitude prominence. with a minimum separation of 2∕𝑁 , when appropriate.

3.3. Performance metrics

Five performance metrics are used: matched frequency distance (MFD), matched amplitude distance (MAD), frequency success
rate (FSR), mean-squared frequency error (MSFE), and the mean-squared amplitude error (MSAE). All metrics are averaged over
each window (discretized) of the entire synthetic signal for the first test, and the number of Monte Carlo trials for the latter 3 tests.
To determine the accuracy of the recovered sinusoidal parameters, the MFD is defined as:

MFD ≜
∑

�̂�𝑖∈�̂�

(

min
𝜔𝑗∈𝝎

|

|

|

�̂�𝑖 − 𝜔𝑗
|

|

|

)

+
∑

𝜔𝑗∈𝝎

(

min
�̂�𝑖∈�̂�

|

|

|

𝜔𝑗 − �̂�𝑖
|

|

|

)

(48)

The MFD aims to match each estimated frequency with its closest window-averaged frequency, and vice versa, and record a
chamfered error. The MAD follows a similar logic, seen in Eq. (49).

MAD ≜ ̂∑ +
∑

with ̂∑ =
∑

�̂�𝑖∈�̂�

|

|

|

�̂�𝑖(�̂�𝑖) − �̄�𝑗 (�̄�𝑗 )
|

|

|

�̄�𝑗 (�̄�𝑗 )
, 𝜔𝑗 = arg min

𝜔𝑗∈𝝎,�̂�𝑖∈�̂�

|

|

|

�̂�𝑖 − 𝜔𝑗
|

|

|

∑

=
∑

�̄�𝑗∈�̄�

|

|

|

�̂�𝑖(�̂�𝑖) − �̄�𝑗 (�̄�𝑗 )
|

|

|

�̄�𝑗 (�̄�𝑗 )
, �̂�𝑖 = arg min

𝜔𝑗∈𝝎,�̂�𝑖∈�̂�

|

|

|

�̂�𝑖 − 𝜔𝑗
|

|

|

(49)

Note, the MAD is normalized by the window-averaged amplitude to remove the scaling bias from amplitudes with larger magnitudes.
The FSR is defined as follows:

FSR ≜

∑

�̂�𝑖∈�̂� 
(

�̂�𝑖,𝝎
)

+
∑

𝜔𝑗∈𝝎 
(

𝜔𝑗 , �̂�
)

2𝑃
(50)

with the success function defined as:

(𝑖, 𝒋) ≜ 1

[

min
𝑗𝑘∈𝒋

|𝑖 − 𝑗𝑘| <
1
2𝑁

]

(51)
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Fig. 7. Demonstration of the DFT spectra and Unitary ESPRIT line spectra for the synthetic signal (left) and experimental signal (right). To extract sinusoidal
parameters of the first three harmonics: first, a maximum amplitude of the fundamental is searched for, represented by the green shaded area; second, integer
multiples (two and three times) of the green shaded area are created and represented by the yellow shaded area; lastly, the peak is searched within the yellow
shaded area, within a ±2∕𝑁 tolerance.

where 1[□] denotes the indicator function. An FSR of 1 is achieved if, and only if, all estimated frequencies are in the vicinity of
one or more true frequencies and all true frequencies are in the vicinity of one or more estimated frequencies. The MSFE and MSAE
are also introduced as statistical measures:

MSFE ≜ 1
𝑃

𝑃
∑

𝑗=1

(

min
�̂�𝑖∈�̂�

|

|

|

�̂�𝑖 − 𝜔𝑗
|

|

|

)2
(52)

and:

MSAE ≜ 1
𝑃

𝑃
∑

𝑗=1

|

|

|

�̂�𝑖(�̂�𝑖) − 𝑎𝑗 (𝜔𝑗 )
|

|

|

2
with 𝜔𝑖 = arg min

𝜔𝑗∈𝝎,�̂�𝑖∈�̂�

|

|

|

�̂�𝑖 − 𝜔𝑗
|

|

|

(53)

The MSFE is juxtaposed with the averaged Cramér–Rao lower bound (CRB) of Eq. (B.6), which characterizes the asymptotic
performance at large 𝑁 and/or high SNR, see Appendix B. The MSAE metric is compared with an ‘‘Oracle’’ estimator, which is
the LS estimate of the noisy signal given the true frequencies. Lastly, it is to be understood that all metrics are subject to the
constraint {𝜔𝑘∖𝝎 ∶ ∀𝜔𝑘+1 ∈ 𝝎}, i.e. no components are repeated for evaluation.

4. Results

4.1. Parameter estimation for synthetic and experimental signals

The differences between an estimator’s ability to extract the first three harmonics of a synthetic and experimental signal are
demonstrated in this test. The vibration signal is distinguished by a large amplitude variability between the first harmonic and
higher harmonics, seen in Fig. 6. Harmonics are extracted through all estimators using the following methodology: the maximum
prominent amplitude is assumed to be the fundamental harmonic, and the following peak at integer multiples of the fundamental
harmonic are searched for within ±2∕𝑁 and extracted. These details are visualized in Fig. 7 for windows of both the synthetic and
experimental signals. The SNR for the experimental signal is estimated to be 50 dB through a periodogram-based method [21]; the
synthetic signal has AWGN applied per window such that its SNR matches the experimental signal. A signal length of 𝑁 = 28 is
empirically chosen to trade off computational time for the LSEs and still allow for peak resolution in the DFT frequency spectra.
For the LSEs, the model order 𝑃 = 6 and 𝑃 = 12 are imposed for the synthetic and experimental signals, respectively.

In Fig. 8, the estimation of harmonics is plotted against the synthetic signal. For Unitary ESPRIT and NOMP, the estimation of the
amplitudes match most closely to the averaged truth; their frequency estimates are slightly outperformed by DeepFreq. However,
DeepFreq demonstrates that it fails to estimate accurate amplitudes, even for a strong fundamental harmonic. Due to the small
signal length, it can be seen that the DFT struggles to accurately capture even the fundamental harmonic’s amplitude. It should be
reminded that even though zero-padding the DFT would improve the amplitude results (to a certain extent), its frequency estimation
ability would remain the same in resolution. CFH outperforms RELAX for fundamental harmonic amplitude estimation, despite its
fundamental harmonic frequency estimation being offset more than RELAX. However, both CFH and RELAX struggle to steadily
estimate the second harmonic’s amplitude due to a difference of magnitudes with respect to the fundamental and third harmonic.
In general, Unitary ESPRIT and NOMP show the most stability in parameter estimation for the synthetic signal. DeepFreq is unique
in that it completely fails to provide accurate amplitude estimates for any part of the synthetic signal, however, it is able to only
track the fundamental frequency with success. While not shown, it is unable to extract the frequencies of the higher harmonics.

In contrast with the synthetic signal, the estimation of harmonics is performed for the experimental signal. A glance of Fig. 9
reveals a qualitative difference in the behavior of all estimators. For the fundamental harmonic’s amplitude, Unitary ESPRIT, NOMP,
and CFH all closely estimate a similar amplitude evolution. For the fundamental harmonic’s frequency, CFH follows more closely to
RELAX, while Unitary ESPRIT and NOMP overlap one another. All LSEs struggle with stability more than compared with the synthetic
signal, e.g. Unitary ESPRIT and NOMP demonstrate a large oscillation at the beginning of the experimental signal before stabilizing
for the second harmonic’s amplitude. This might be because of the presence of more harmonics within the real experimental signal,
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Fig. 8. Sinusoidal parameter estimation of the three harmonics’ amplitudes and fundamental harmonic’s frequency for synthetic signal. The legend shown above
applies to all plots.

which presents a more difficult estimation problem for the LSEs. Similar to the synthetic test, DeepFreq has a subpar performance
for extraction of amplitudes but can capture the fundamental harmonic only. If the LSEs’ behavior on the synthetic signal test is to
be indicative of its behavior on the experimental signal, one may conclude that the general results of the LSEs can be carried over.
For example, the widely spread and oscillatory nature of amplitude estimation should be understood to be an uncertainty of the
estimator instead of a detectable very small vibratory oscillation. Lastly, it can be noted that during the nonstationary evolution of
sinusoidal parameters near fatigue failure, i.e., the end of the synthetic signal, the LSEs provide frequency estimates which diverge
from truth, but still maintain accurate amplitude estimates.

4.2. Tolerance to noise, sensitivity to signal length

In this test, we opt to study the quasi-stationary synthetic signal of three well-separated sinusoids, with large amplitude variability
between the first harmonic and higher harmonics, as seen in Fig. 6. Grid-based simulations with respect to (windowed) signal lengths
and AWGN levels are applied per window along the entire signal. For purely stationary signals, it is well known that an increase in
signal length and/or a decrease in noise variance increases the performance of LSEs. A specific quality of the synthetic signal is the
unknown interaction between frequency resolution and non-stationarity with respect to signal length.
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Fig. 9. Sinusoidal parameter estimation of the three harmonics’ amplitudes and fundamental harmonic’s frequency for experimental signal. The legend shown
above applies to all plots.

In Fig. 10, the mean MFD, with outliers outside of five standard deviations removed, is plotted as a heatmap for specific LSEs with
respect to signal length and AWGN. Most notably, Unitary ESPRIT has the largest area of ‘‘best’’ frequency estimation performance (in
dark blue) compared to other estimators. Additionally, similarities between estimators that explicitly rely on the DFT are also seen,
despite their attempts to refine frequency estimation: the DFT has an area of ‘‘best’’ frequency estimation that roughly intersects the
CFH, RELAX, and NOMP’s areas of ‘‘best’’ frequency estimation. As mentioned previously, CFH, RELAX, and NOMP all utilize DFT
operations in their algorithm, but their refinements can be characterized as peak parabolic interpolation, zero-padding interpolation,
and Newton–Raphson refinements of the DFT grid, respectively. This is likely due to the limitations of the DFT operation with
respect to the quasi-stationarity in the sinusoidal parameters, whose expression can be seen in the fits in Appendix A. The other
LSEs’ expanded area in Fig. 10 compared to the DFT represents their ability to mitigate the quasi-stationarity and AWGN in each
signal segment.

Lastly, it should be mentioned that DeepFreq has errors larger than any of the other LSEs presented; the frequency representation
produced by DeepFreq is unable to compensate for any quasi-stationarity in the signal and creates a problem for a peak picking
algorithm. This is a realistic reminder that this particular data-driven approach cannot be deployed so easily even if the data is
quasi-stationary. Similarly, the average MAD is shown in Fig. 11, with outliers outside of five standard deviations removed, LSEs
show a similar pattern with the MFD. As seen in the previous test, the LSEs have a better amplitude estimation ability compared
to their frequency estimation, indicating amplitude estimation is more ‘‘lenient’’. The exception is the large difference of amplitude
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Fig. 10. Simulation results as heatmaps of the MFD metric for each LSE, whose colorscales are plotted logarithmically.

estimation performance for the DFT: the corresponding ranges at which the DFT provides excellent frequency estimations (dark
blue) provide poor amplitude estimates with a MAD of approximately one magnitude higher than other LSEs. For all LSEs for this
particular synthetic signal, in the low SNR region (below 20 dB) provides unsatisfactory results for even the best-performing LSEs.

4.3. Sensitivity to amplitude variability

For randomly generated well-spaced sinusoids, the components whose descending magnitudes vary by the amplitude magnitude
scaling parameter 𝛼 correspond to a proportionally difficult problem as 𝛼 increases. We remind the reader that the complex
amplitudes are generated in a ratio descending manner, such that |𝛽1| = 1 and subsequent harmonics (𝑖 > 1) are scaled such that
{

|𝛽𝑖| ∈ (0, 1] ∶ |𝛽𝑖+1| = |𝛽𝑖|∕𝛼, ∀𝑖
}

. We perform 5000 Monte Carlo simulations on five complex sinusoids for a signal length 𝑁 = 27

and an SNR = 40 dB. In Fig. 12, the statistical performance is shown. At first glance, Unitary ESPRIT performs best or on par with all
other LSEs for the three metrics. For the FSR, the DFT can be seen to be most unsuccessful in estimating frequency components within
the defined vicinity of 0.5∕𝑁 . RELAX, which is bound by its zero-padding operation, is also expected to plateau in performance. For
all other LSEs at unit amplitude magnitudes (𝛼 = 1), their FSR parallel results typically seen in the literature.

In the plots of MSFE for 𝛼 > 4, Unitary ESPRIT and NOMP begin to descend towards the CRB. NOMP characteristically shows
an upturn after 𝛼 = 4 which is not seen by other LSEs. After 𝛼 = 2, CFH overtakes Unitary ESPRIT in terms of distance from the
CRB. The DFT, RELAX, and DeepFreq can be seen to plateau approaching unit amplitudes. LSEs in the MSAE plot do not follow the
same pattern as their MSFE counterparts. Essentially, ESPRIT is the first to approach the lower bound at 𝛼 = 3, and CFH achieve
the lower bound at 𝛼 = 1.5. The Oracle estimator (Oracle knows the true frequencies and performs an LS fit) shows a lower, but
realistic bound tied to the accuracy of the frequency estimation.
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Fig. 11. Simulation results as heatmaps of the MAD metric for each LSE, whose colorscales are plotted logarithmically.

4.4. Influence of interharmonics (super-resolution)

When maximizing for the smallest signal length, interharmonics close to harmonics with respect to the Rayleigh limit can
influence measurement accuracy. Interharmonics correspond to non-integer multiples of the fundamental harmonic where an
example can be seen in Fig. 2. With signal parameters SNR = 40 dB, 𝑁 = 27, a similar test with three well-spaced complex sinusoids of
magnitude ratios dictated by 𝛼 = 1.5, is performed for 5000 Monte Carlo simulations. A single interharmonic is uniformly randomly
generated such that its distance is 𝑑 from at least one harmonic. In Fig. 13, the FSR of the DFT and RELAX can be seen to already
inconsistently predict the well-spaced harmonics, with an average success rate 63% and 16% respectively. At 𝑑 = 0.75∕𝑁 , only the
Unitary ESPRIT and CFH can still achieve a high FSR. Below 𝑑 = 0.75∕𝑁 , only Unitary ESPRIT is capable of obtaining a consistent
FSR until 𝑑 = 0.1∕𝑁 when its frequency resolution begins to taper. The performance dip seen by some LSEs in the FSR is simply
the conflict between the LSE to predict the interharmonic with another harmonic. The gradual increase despite still decreasing 𝑑
indicates that the interharmonic is simply masked by its harmonic.

For the MSFE, all LSE follow a similar trend, where the order of best performance is Unitary ESPRIT, followed by CFH, DeepFreq,
RELAX, NOMP, and the DFT. Interestingly, DeepFreq is capable of generalizing below 𝑑 = 1∕𝑁 until 𝑑 = 0.4 despite being trained
on randomly generated signals with 𝑑 = 1∕𝑁 minimum separation. The MSAE shows a comparable pattern of performance, except
that DeepFreq provides very poor amplitude estimates, similarly seen in the previous simulation plot of Fig. 12.

4.5. Robustness against order mismatch

While it is not the main focus of this paper, robustness against model order mismatch is an attractive feature since algorithms used
for order estimation can under/overestimate. Generally, the most commonly used model order estimation methods are the Akaike
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Fig. 12. Simulation results for varying amplitude magnitude scaling parameter 𝛼. The signal length 𝑁 = 27, SNR = 40 dB, and model order 𝑃 = 5 are
pre-determined. The legend shown above applies to all plots, with sub-legends within the plots applying only to sub-plots.

information criterion and the minimum description length criterion [20]. In short, they balance a measure between a goodness of fit
with the data while penalizing a higher model order. With signal parameters SNR = 40 dB, 𝑁 = 27, 5000 Monte Carlo simulations
with 𝑃 = 5 frequencies drawn uniformly random in the set

{

𝝎 ∈ [0, 1) ∶ |𝜔𝑖 − 𝜔𝑗 | > 2∕𝑁, ∀𝑗 ≠ 𝑖
}

with amplitude magnitude ratios
dictated by 𝛼 = 1.5 are performed. The LSEs are given a varying 𝑃 instead of the true 𝑃 . In Fig. 14, Unitary ESPRIT can be seen to
provide the best results when the imposed model order 𝑃 > 𝑃 for MSFE and MSAE. At 𝑃 ≤ 𝑃 , CFH provides the lowest MSFE and
MSAE, and benefit the most when 𝑃 = 𝑃 . CFH can be seen to perform best as 𝑃 → 𝑃 , whereas Unitary ESPRIT is very robust when
𝑃 > 𝑃 .

4.6. Computational effort

The computational time plays a large factor when considering LSE algorithms for real-time usage. In Fig. 15, averaged
computation times are shown with respect to signal lengths. It can be seen that the DFT always achieves the best runtime, this
is due to the usage of the Fast Fourier Transform algorithm, which has the relatively lowest asymptotic complexity in Table 3.
RELAX, CFH, and NOMP can be seen to have similar runtimes as the signal length varies. ESPRIT begins to diverge at 𝑁 = 10,
having the greatest runtime analogous to its large asymptotic complexity. It and the other LSE’s asymptotic complexities in Big-
notation can be found in Table 3. Unique to DeepFreq, offline training requires a considerable amount of computational effort and
training data that is a good representation of experimental data. The GPU training times can be seen at the bottom of Fig. 15 on a
specialized computer for offline training with four virtual Intel Xeon CPUs clocked at 2.00 GHz, 32 Gb of memory, and an NVIDIA
Tesla P100 GPU. It should be noted that Python (versions 3.8 and prior) is known to have a poor just-in-time compilation, meaning
that LSEs that utilize for-loops, namely CFH, RELAX, and NOMP, suffer with respect to their theoretical computational complexities.
One can expect the LSEs to perform closer to their asymptotic complexities when programmed in a statically compiled language. A
few options exist to leverage static typing of existing Python code, e.g., using Pythran [62].

5. Conclusions

In the field of fatigue research, VHCF of metallic components is a microstructural-dominated phenomenon that relies on UFTs
for experimental study. Due to the recent abundance of experimental data in the literature, new modeling attempts will seek
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Fig. 13. Simulation results for varying interharmonic distance parameter 𝑑. The signal length 𝑁 = 27, SNR = 40 dB, amplitude magnitude ratio 𝛼 = 1.5, and
model order 𝑃 = 3 + 1 are pre-determined. The legend shown above applies to all plots, with sub-legends within the plots applying only to sub-plots.

Fig. 14. Simulation results for varying imposed model orders 𝑃 . The signal length 𝑁 = 27, SNR = 40 dB, amplitude magnitude ratio 𝛼 = 1.5, and model order
𝑃 = 5 are pre-determined. The legend shown above applies to all plots.

to determine the microstructural state from the vibration signal measured from a fatigue specimen. The real-time estimation of
these sinusoidal parameters, specifically frequencies and amplitudes, are of utmost importance. Similar domains which rely on the
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Fig. 15. Averaged runtimes of LSEs on a Raspberry Pi 4 (top) and offline Tesla P100 GPU training time required for frequency representation module of
DeepFreq (bottom) with respect to signal length 𝑁 . The legend shown above applies to all plots.

Table 3
Comparison of asymptotic computational complexities of implemented line spectra estimators in
big- notation.

LSE Asymptotic complexity

DFT (𝑁 log(𝑁) )

Unitary ESPRIT ( (𝑁∕2)3 )

RELAX (𝑃𝑍p log(𝑍p) )

CFH (𝑃𝑁 log(𝑁) )

NOMP (𝑃𝑅c𝑁 log(𝑁) )

DeepFreqa (2 +𝑁 )

aThe notation is defined where  is the layer depth,  is the sequence length,  is the
representation dimension,  is the kernel size of convolutions.

estimation of the damage state can be found in SHM, but also in nonlinear acoustics, namely SHG and NRUS. Unique to these
ultrasonic vibration signals is the quasi-stationarity of the sinusoidal parameters, which slowly evolve with respect to many periods
of the signal. When real-time usage is sought, the dichotomy between signal length, i.e., the Rayleigh limit 1∕𝑁 , and the quasi-
stationarity of sinusoidal components can pose difficulties for estimators whose original formulation relies on the assumption of
stationary signals.

This motivates an experimental methodology comparing alternatives to the DFT. LSEs provide direct estimates of sinusoidal
parameters instead of estimating the entire frequency spectra and can overcome shortcomings of the DFT given a signal model
and model order a priori. Notably, many LSEs are considered to have state-of-the-art results for purely stationary signals with unit
amplitudes, which cannot be said for quasi-stationary signals with non-unit amplitudes.

The benchmarks on a synthetic UFT signal and randomly generated signals with unique estimation challenges seen in ultrasonic
vibration, show the capabilities of the various estimators in terms of their adaptability to quasi-stationary, amplitude variability,
small interharmonic distance (super-resolution), and robustness to model order mismatch (number of sinusoidal components). In
general, Unitary ESPRIT and then NOMP can be seen to offer the best performance with respect to the quasi-stationarity of a synthetic
UFT signal. In the subsequent benchmarks, their statistical performance on stationary signals further validates their general usage
for sinusoidal parameter estimation. A drawback of this study and current literature, however, is the lack of theory that precisely
dictates when a signal is ‘‘too nonstationary’’, thus prohibiting the use of LSEs.

In the practice of UFT, three algorithms can be recommended depending on usage criteria. When accuracy and precision
are dominating criteria, Unitary ESPRIT is recommended for all cases when the signal length is 26 ≤ 𝑁 < 29. Beyond this
signal length, we recommend NOMP for its computational simplicity. This is justified by their area of ‘‘best’’ performance when
dealing with the nonstationarity of sinusoidal parameters and signal length dichotomy for the synthetic signal. When computational
complexity becomes a constraint, e.g., if using a low-powered Arduino, CFH becomes extremely attractive since it offers the lowest
computational complexity of the five algorithms. However, evident in Figs. 10 and 11, it suffers from an ‘‘island’’ of good performance
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which is bounded by the nonstationarity of components and the Rayleigh limit (signal length). In terms of flexibility beyond the
metrics used in the paper, NOMP is advised to be used simply because it offers more tunable parameters (specifically zero-padding
and refinement parameters) than Unitary ESPRIT (sub-vector length) and CFH (which has none). Tuning the algorithmic parameters
seen in Table 1 can be done heuristically on synthetic ultrasonic vibration signals representative of a particular fatigue cycle regime.
Lastly, it should be noted that all algorithms presented require a priori knowledge of the signal: e.g., the number of sinusoids and/or
statistical properties of the noise. However, model order estimation is a separate problem; instead, the test of Section 4.5 examines
when the LSEs are given an incorrect model order estimate. A simple solution is to overestimate the number of sinusoidal parameters
and extract the harmonics only, given the robustness of the parametric algorithms seen in Fig. 14.

Data-driven CNNs remain a hopeful and interesting prospect for LSEs and vibration signals, despite it requiring a large offline
training investment. CNNs have not been limited to parameter estimation, but have also been used for LSEs in denoising stationary
signals [63], demonstrating a substantial improvement in estimation accuracy. The poor estimation performance of DeepFreq for
the tested synthetic UFT signal is a notable reminder that a data-dependent algorithm cannot necessarily generalize beyond its test
data in all facets. Interestingly our implementation of DeepFreq generalized in terms of super-resolution estimation: the training
data used in Fig. 13 had an imposed minimum separation of 1∕𝑁 , but DeepFreq was able to estimate frequencies with good results
up to 0.4∕𝑁 . Beyond the scope of the paper, we noticed DeepFreq tended to fail even for stationary signals when amplitudes of
the harmonics differed beyond a magnitude of 𝛼 ≈ 102. For more practical usage in vibration signals, the use of quasi-stationary
signals instead of stationary signals for training data and the modification of the optimization function to account for the average
frequencies can be a possible remedy to nonstationarity. The poor amplitude estimates created by the frequency representation
can be remedied in one of two ways: including amplitude information into the architecture of the frequency representation neural
network, or simply performing LS fits on its estimated frequencies into the algorithm. It is suspected DeepFreq can be improved
concerning these benchmarks with the former points explored, in addition to modifying its CNN architecture e.g., increasing layer
depth in conjunction with using residual nets [64].
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Appendix A. Synthetic UFT sinusoidal parameters

In this Appendix, we detail the cubic fits of the time-varying sinusoidal parameters seen in right of Fig. 6, specifically 𝑎1(𝑡), 𝑎2(𝑡),
𝑎3(𝑡) and 𝑓1(𝑡). The original signal comes from a pure copper fatigue specimen subject to a UFT. It is reminded that 𝑓2(𝑡) and 𝑓3(𝑡)
are integer multiples of 𝑓1(t), since they correspond to higher harmonics used for the first test in Section 3. The cubic fits for the
amplitudes in meters per second are:

𝑎1(𝑡) = −(7.564 × 10−10)𝑡3 + (1.038 × 10−6)𝑡2 − (4.818 × 10−4)𝑡 + 7.378 × 10−1

𝑎2(𝑡) =(6.094 × 10−12)𝑡3 − (7.455 × 10−9)𝑡2 + (5.791 × 10−6)𝑡 + 2.751 × 10−3

𝑎3(𝑡) =(2.346 × 10−11)𝑡3 − (2.904 × 10−8)𝑡2 + (1.09 × 10−5)𝑡 + 1.823 × 10−2

The cubic fits for the frequencies in cycles per second are:

𝑓1(𝑡) = −(2.859 × 10−7)𝑡3 + (4.286 × 10−4)𝑡2 − (2.628 × 10−1)𝑡 + 2.013 × 104

Appendix B. Averaged Cramér–Rao bound

In this Appendix, the CRB is reviewed for an unbiased estimator from statistical theory, and then resolved to the line spectra
problem [20]. For a parametric model 𝒂 ∈ R, with data vector 𝒙 and parameter vector 𝜽:

Theorem 1. If 𝒂T𝜽(𝒙) is an unbiased estimator of 𝒂T𝜽, than the variance of the estimator given by:

E𝒙∣𝜽

{

(

𝒂T�̂�(𝒙) − 𝒂T𝜽
)2} (B.1)

has an asymptotic lower bound defined by:

𝒂T𝑭 −1(𝜽)𝒂 (B.2)

where the (𝑖, 𝑗)th component of the Fisher Information Matrix [65] 𝑭 is:

𝐹𝑖,𝑗 (𝜽) = E𝒙|𝜽

{

𝜕 ln 𝑝(𝒙|𝜽)
𝜕𝜃𝑖

𝜕 ln 𝑝(𝒙|𝜃)
𝜕𝜃𝑗

}

(B.3)
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Thus in the case of parametric estimators for line spectra in AWGN, Eq. (B.3) is simply:

𝐹𝑖,𝑗 (𝜽) =
2
𝜎2

ℜ

{

(

𝜕𝒔(𝜽)
𝜕𝜃𝑖

)H 𝜕𝒔(𝜽)
𝜕𝜃𝑗

}

(B.4)

where 𝒔(𝜽) = 𝑨(𝝎)𝜷 is the (parametric) signal (model). The corresponding parameter vector used for this measurement is:

𝜽 =
[

𝜔1 …𝜔𝑃 , 𝛽1 … 𝛽𝑃 , 𝜎
2] (B.5)

𝑭 (𝜽) is utilized for the signal model Eq. (1) and the diagonal elements of 𝑭 −1(𝜽) give the CRB values corresponding to complex
amplitudes {𝛽𝑖 ∶ 𝑖 = 1,… , 𝑃 } and frequencies {𝜔𝑖 ∶ 𝑖 = 1,… , 𝑃 }. The averaged CRB metric used for frequency metrics in this study
is:

CRB𝝎 = 1
𝑃

𝑃
∑

𝑖=1
diag{𝑭 −1(𝜃𝑖)} (B.6)
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