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Abstract

Analysing movement learning can rely on human evaluation, e.g. annotating video
recordings, or on computing means in applying metrics on behavioural data. However,
it remains challenging to relate human perception of movement similarity to
computational measures that aim at modelling such similarity. In this paper, we
propose a metric learning method bridging the gap between human ratings of movement
similarity in a motor learning task and computational metric evaluation on the same
task. It applies metric learning on a Dynamic Time Warping algorithm to derive an
optimal set of movement features that best explain human ratings. We evaluated this
method on an existing movement dataset, which comprises videos of participants
practising a complex gesture sequence toward a target template, as well as the collected
data that describes the movements. We show that it is possible to establish a linear
relationship between human ratings and our learned computational metric. This learned
metric can be used to describe the most salient temporal moments implicitly used by
annotators, as well as movement parameters that correlate with motor improvements in
the dataset. We conclude with possibilities to generalise this method for designing
computational tools dedicated to movement annotation and evaluation of skill learning.

Introduction 1

Motor skill learning is defined as the ability to perform a movement better, according to 2

some given criteria such as speed or accuracy, in comparison to a reference movement [1]. 3

Metrics used to assess motor learning usually rely on error-rates or movement variability 4

measures. However, such measures do not necessarily reflect the way humans perceive 5

movement improvements: people might instead focus on specific movement features or 6

agglomerate several criteria established qualitatively. Our long term goal is to establish 7

metrics that could describe human perception of movement improvement during motor 8

learning or adaptation processes. In this paper, we propose a method utilising metric 9

learning in order to describe human ratings of motor improvement. 10

Metric learning is a machine learning technique that aims at finding the best 11

distance function between datapoints so as to optimise a cost function. For example, a 12

Mahalanobis distance can be learned in the context of a classification task to maximise 13

the score of a k-nearest neighbour classifier [2]. Learned metrics typically improve 14

performance in various machine learning tasks (classification or clustering among 15

others). Several metric learning surveys have been published presenting the general 16

approach [3,4] as well as focusing on deep learning [5]. Interestingly, metric learning can 17
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also be used as an analysis tool in relation to human annotated databases. For instance, 18

the perception of musical instrument timbre was investigated by analysing the structure 19

of learned metrics from ratings of sounds similarity [6]. 20

For body pose and movement perception, metric learning was first applied with 21

human comparison of still images from datasets containing skeleton data. Harada et 22

al. [7] optimised the correlation between a weighted sum of joint distances and human 23

ratings to show that wrist, neck and head were the most important joints for explaining 24

body pose similarity. A similar method was investigated by Tang et al. [8]. In both 25

cases, the relative values of the optimised weights reflected the importance of their 26

associated joints for human perception of body pose. Marinoiu et al. [9] derived a metric 27

from data (using Relevant Component Analysis [10]) using the way humans reproduced 28

poses they had seen on videos before analysing how it differed from standard Euclidean 29

distance. As movement is dynamic, previous work also looked at ways to take 30

movement temporal structure into account. To that extent, Ofli et al. [11] used a 31

measure based on information theory and variance analysis to investigated which joints 32

were the most informative at specific times in videos for action recognition. Krüger et 33

al. [12] explored the effect of different input features on the correlation of a Dynamic 34

Time Warping (DTW) metric (representing the cost of temporal alignment between two 35

examples), with similarity ratings produced by humans based on videos. Finally, 36

combining Mahalanobis distance learning and temporal alignment using Dynamic Time 37

Warping has been investigated to improve the performance of classification of 38

handwritten signatures [13], or more generically multivariate time series [14]. 39

To our knowledge, metric learning has not yet been investigated in the context 40

motor learning. In a recent study, Le Naour [15] showed that expert ratings of 41

gymnastic movements did not match measures obtained from quantitative analysis, 42

calling thus for novel methods able to derive metrics based on human ratings. 43

In this paper we investigate whether a computational metric can be learnt from 44

human rating in a context of motor learning. Precisely, we propose to learn DTW-based 45

distances on human movement such as maximising the correlation with human rating. 46

Our objective is then to interpret the learned metrics for motor learning analysis. To do 47

so, we employ a dataset that was initially collected to study how users learn long 48

gesture sequences from videos, over several days. Each participant was asked to practice 49

the movement sequence to be as close as possible to a video reference. By rating this 50

dataset, we can then use a metric learning approach taking into account examples that 51

are considered as similar [16,17]. Our contributions are threefold. First, we confirm that 52

there is a correlation between the human rating and the DTW metric, which we denote 53

the “baseline correlation”. Second, we seek to optimise this baseline correlation and 54

examine whether such procedure allows us to estimate the most prominent parameters 55

used by the raters. We consider two types of parameters. The first one investigates the 56

movement features (position, velocity, acceleration, amongst others) of movement 57

execution; the other explores temporal segments, i.e. focus of attention over time. 58

Third, we examine how these parameters used by the raters are implied by motor 59

learning processes for our specific case. 60

The paper is structured as follows. We introduce the method we propose, including 61

the dataset we annotated. Then, we report on the results and discuss them. 62

Method 63

General approach 64

Our goal is to train a similarity metric between movements which matches perceived 65

similarity expressed by human ratings. Human annotation of perceived movement 66
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similarity is challenging for several reasons. First, it might be difficult to establish 67

objective criteria for rating [18]. Second, absolute continuous ratings are prone to large 68

discrepancy between raters. To avoid this, a better strategy is to ask raters to compare 69

pairs of movements [16], or to compare two pairs relative to a reference movement [17]. 70

This is a well-documented finding which recommends relative over absolute judgement 71

or assessment [19,20]. This strategy is adopted in the present paper, which we call 72

relative movement similarity assessment. 73

rater
moptim(A,A’)

d(A’,T)d(A,T)

moptim(A,A’)

mrating(A, A’)
imitation A

template gesture T

imitation A’

mrating(A, A’)

a. annotation b. metric learning

choice: 
moptim(A,A’) = d(A,T) - d(A’,T)

goal: mrating
 ~ moptim 

Fig 1. Overall setup for the paper. (a) Performance pairs (A, A′) are sampled for
comparison against a reference T by judges on videos and computing algorithms on
sensor data. (b) Metric learning acts on parameters of the compute function moptim

through search or optimisation to produce a meaningful relationship with mrating

through a distance function d.

Figure 1 depicts the general approach. We consider the comparison between two 74

video-tapped movements of a person learning to perform a template gesture. First, we 75

collect human ratings on a given set of recorded performed movements, and second, we 76

learn a computational metric that matches, as close as possible, these human ratings. 77

In the first step, a movement database containing several performances of a given 78

movement template is chosen and rated (Figure 1(a)). Precisely, raters give, for a pair 79

of movements A and A′, a value between −1 and 1 expressing how close each movement 80

A and A′ is to a template T : −1 corresponding to A being the closest to T , 1 81

corresponding to A′ being the closest to T , and 0 where A and A′ being judged as 82

equally close to template T . In the second step, we compute a parametric similarity 83

metric between movement A (resp. A′) and template T (resp. T ). The difference 84

between the two metric results is compared to the human relative similarity metric for 85

each corresponding pair. By acting on the metric’s parameters, we can optimise the 86

correlation between the parametric similarity metric and the human similarity 87

judgement, assuming that the relationship between DTW differences and ratings is 88

linear. 89

The following subsections detail the annotation and learning procedure that were 90

developed. 91

Dataset 92

We used a publicly available dataset, previously used in a motor learning study [21] 93

where it was investigated how participants learned from video a complex hand 94

movement, referred to as template gesture in the following. This template gesture can 95

be schematically represented by a sequence of four phrases (Figure 2, bottom panel). It 96

September 28, 2022 3/18



was designed with a variety of ‘strokes’ and specific spatial patterns, reminiscent of 97

conducting gestures. For instance, vertical strokes followed horizontal inwards and 98

outwards movements, as visible in Figure 2, top panel. The video of the template 99

gesture is provided in the supplementary materials. 100
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Fig 2. Stills from video (top), times series from sensor data (middle) and position data
(bottom) for the template gesture, segmented in the the four phrases. In the middle
graph, the short peaks in the time series correspond to vertical strokes that can be seen
in the video. The position (x, y) provided by the Optitrack sensor is seen on bottom
graphs. For each phrase, the starting point is marked by a circle while the last sample is
indicated with a cross. The colours are matching between the sensor time series and the
segmented position data.

The template gesture was performed by the person who designed the gesture, seated 101

on a chair, wearing on the right hand a custom-made glove equipped with optical 102

markers and an IMU (Inertial Measurement Units), while being filmed (Figure 2, top 103

panel). The gesture was specifically designed to be performed with the hand, so most of 104

the information was indeed carried by the hand. A total of 24 participants were asked 105

to learn this template gesture over three sessions occurring during three different days 106

in a week, under various conditions. In this article, we selected the dataset related to 12 107

participants having learned the template gesture in the condition which did not involve 108

audio feedback. During each session, participants were equipped similarly in addition to 109

having the template gesture video shown to them. Thus, the same movement data and 110

video recording are available for the participants’ performances and for the template 111

gesture. Precisely, motion capture data (3d positions (x, y, z)) and inertial data (3D 112

accelerometers and 3D gyroscopes) are available at a sampling rate of 100Hz, as shown 113

in Figure 2, middle panel. The video was captured at 30fps. For more details on the 114

experimental protocol used in the dataset collection, please refer to [21]. 115

Human annotation 116

The annotation task consisted in providing a continuous measure assessing which video 117

of a pair of movements (A, A’) showed the movement most similar to the video of the 118

gesture template. 119
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Annotation tool 120

For this, we designed an interface displaying the video of the template gesture above the 121

videos of the current pair (A, A′) to evaluate (see S1 Apparatus - Figure 8). Between 122

videos of A and A′, a slider, which default position was centred, allowed raters to set 123

their rating. The left and right positions of the slider were associated to the video on 124

the left and right, respectively. 125

Dataset sampling 126

We considered several strategies for creating the pairs of movement. After several 127

pretests, we chose that each pair of videos A and A’ were to be performed by the same 128

participants, but related to different learning sessions (i.e. different days). In that case, 129

we hypothesised that the movement differences recorded in videos A and A’ would be 130

noticeable. Thus, to select each given pair, a participant was first randomly chosen (in a 131

total of 12), and two performances were randomly chosen provided they belonged to 132

different sessions (days). 133

Annotation datasets 134

Three different annotation datasets were created, due to practical limits. First, a 135

dataset Dinter, consisting of 90 video pairs, was annotated by all four paper authors. 136

This allows us to test the raters agreement. Second, the annotation dataset Dintra was 137

built to evaluate the intrarater reliability. For this, the first author re-annotated 45 138

video pairs, from the previous annotation dataset, twice at a month interval. Third, a 139

annotation dataset Dsingle which contained 180 video pairs annotated by a single rater 140

(each author annotated 45 pairs). As described later, this annotation dataset provided 141

additional data feeding the metric learning, while its consistency can be evaluated. 142

DTW-based metric learning 143

The learning goal is to optimise the parameters of a movement similarity metric based 144

on human ratings. We propose to use a DTW-based metric (Dynamic Time 145

Warping [22]). DTW allows for handling temporal structure of the movements and 146

remains one of the most used metric for time series analysis, in addition to being easily 147

parameterisable and interpretable. Formally, the DTW between two time series X and 148

Y, of sizes N and M respectively, is the sum of element-wise distances over the optimal 149

path p, where p = {(n,m)k, k ≥ min(N,M)}: 150

DTW (X,Y) =
∑
i∈p

||xi(0) − yi(1)||1 (1)

where xi(0) (resp. yi(1)) is the feature vector of movement X (resp. Y) at time i(0) 151

(resp. i(1)), where i(0) (resp. i(1)) is the first (resp. second) index of the element i in 152

path p, and where ||x||1 is the L1-norm. 153

We propose to investigate weighted versions of the DTW acting on either feature 154

dimension or temporal dimension. The adjustment of these weights should ideally 155

reproduce the weights implicitly used by raters in judging the similarity between 156

movements. 157

In the following, a movement A is represented as a multidimensional time series A of 158

length N , where the feature vector at time i is written ai = (a0i , a
1
i , ..., a

K
i ) of dimension 159

K. For instance, ai can be a vector made of movement position, velocity, acceleration 160

along the three dimensions (x, y, z), leading in this case to K = 9. We present the two 161

weighted versions of DTW for the task of aligning movement A onto template T. 162
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Weighting the movement features 163

The first version of the weighted DTW is based on feature weighting. The goal is to 164

adapt some weights on movement features, such as positions, velocities, accelerations 165

and/or IMU-based features acceleration including gravity, and angular velocities. For 166

two movement time series, such as template T and movement A, we denote this 167

distance DTWfeature(T,A), which is defined as: 168

DTWfeature(T,A) =
∑
i∈p

K∑
k=1

wk||tki(0) − aki(1)||1 (2)

where tki(0) (resp. a
k
i(1)) is k-th dimension of feature vector t (resp. a) at time i(0) (resp. 169

i(1)) wk is the weight on feature dimension k. The weights (wk)k are to be optimised. 170

We imposed two constraints: wk > 0,∀k and a regularisation with 1
K

∑
k wk = 1. 171

Weighting the temporal segments 172

We also propose to weight different time segments of the movement sequence with 173

respect to the template gesture. In this case, optimising the metric corresponds to 174

adapting the relative importance of each segment. Considering two movements such as 175

template T and movement A, we first compute standard DTW distances between these 176

movements, which produce temporal alignment path between A and T. The optimal 177

path p is then segmented in N segments pi of equal size with regards to the unaligned 178

indices of the template gesture. The segments pi are only defined with regards to the 179

template gesture, which make this operation asymmetrical, but ensures that meaningful 180

comparisons can be made on the same segments between different aligned movements A 181

and A′. We denote this distance DTWsegment(T,A), which is defined as: 182

DTWsegment(T,A) =

N∑
j=1

wj

∑
i∈pj

||ti(0) − ai(1)||1 (3)

where (wj)j are the weights to be optimised. Here again, we imposed the constraints: 183

wj > 0,∀j and
∑

j wj = 1. 184

Defining the cost function for learning weights 185

Given ratings mrating(A,A′) reflecting the perceived relative similarity of A compared
to A′ with respect to a given target gesture T , we seek to optimise the DTW metric:

moptim(A,A′) = DTWoptim(T,A)−DTWoptim(T,A′)

maximising the Pearson correlation between the moptim and mrating for all sampled 186

pairs of movements A,A′, where moptim refers to either mfeature (involving 187

DTWfeature) or msegment (involving DTWsegment). 188

Implementation and optimisation strategy 189

In our implementation, we used an open-sourced version 190

(https://github.com/slaypni/fastdtw) of the DTW algorithm [23] modified to 191

support the computation of fast Mahalanobis based distances. The DTW radius was set 192

to 10, after preliminary testing, to balance accuracy and compute time. 193

The optimisation is performed using the L-BFGS-B algorithm [24], which is a 194

particularly efficient algorithm for optimisation, useful when the number of datapoints 195

is small, as compared to popular gradient based approaches. The loss function is defined 196
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as the Mean Square Error (MSE) between the generated distance and the annotation 197

value. Once trained, we report in the result the Pearson’s correlation between the vector 198

of ratings and the vector of learned distances. The optimisation is ran until convergence 199

of the loss, defined as a relative change between two steps smaller than 1e−3. 200

The cross validation used a repeated K-fold procedure (K=2, 8 repeats) over 201

datasets Dinter and Dsingle, splitting each time in half the 12 participants for training 202

and for testing. The 2-folds 8-repetitions procedure provided in total 16 estimates. The 203

performance is evaluated and reported on the testing sets of Dinter. 204

Results 205

In this section we present our main findings. More precisely, we validate our datasets 206

through the analysis of annotation reliability between raters. Then we compute the 207

correlation between ratings and the standard DTW metric. This allows us to establish a 208

baseline value that we compare to both learning cases: feature-based and segment-based. 209

Finally, we show that the optimised weights can be used for movement learning analysis. 210

Annotation reliability 211

We used the Intraclass Correlation Coefficient (ICC) [25] to measure the degree of 212

agreement between raters, in the Dinter dataset. 213
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Fig 3. Distribution of ratings against their averaged value for dataset Dinter (top) and
Dintra (bottom). The distribution around the averaged value is representative of the
annotation noise, which appears greater for different raters as compared to different
annotation session for the same rater, as reflected by comparing the ICC values of
Dinter and Dintra.

First, the ratings over Dinter of all four raters are shown in Figure 3 (top). The ICC 214

estimate based on a single-rating (k = 1), absolute-agreement, 2-way mixed-effects 215

model is 0.58 with 95% confident interval = 0.49− 0.68 (F89,267 = 6.70, p < 0.001). 216

Such a value for ICC is considered as ‘good’. If we considered the ICC calculated based 217

on a mean-rating (k = 4), absolute-agreement, 2-way mixed-effects model, a value of 218

0.85 is obtained, with 95% confident interval = 0.79− 0.90 (F89,267 = 6.70, p < 0.001). 219

Such a value can be considered between good and excellent. 220

Second, considering the dataset Dintra, shown in Figure 3 (bottom), the ICC 221

calculated based on a mean-rating (k = 3), absolute-agreement, 2-way mixed-effects 222

model, is 0.93 with 95% confident interval = 0.90− 0.96 (F44,88 = 16.29, p < 0.001). 223

Therefore, we found that reliability was higher for this particular rater, with repeated 224

annotation over time, compared to the interrater reliability (t(131) = 2.75, p < 0.005). 225

This was expected and shows that the interrater differences are likely due to some 226
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perceptual differences rather than notators being uncertain when annotating 227

movements. 228

While these results cannot be generalised to other raters, they are still important for 229

our method since they show that 1) the rater group is consistent enabling us to use the 230

annotation mean 2) additional ratings of this group could be used, even if the movement 231

is annotated by a single rater. 232

Establishing a correlation baseline, without optimisation 233

We question first whether the DTW metric, applied between the template and the 234

movement pairs, correlates with the annotations. We investigated the effect of the 235

feature space (which feature is used in the distance) on this correlation. To do so, we 236

employed a grid-search approach with selected groups of input features. 237

We consider a feature space of a total of 5 types of features: acc (from the 238

accelerometers), gyr (from the gyroscope), p0 (position from the optical motion 239

capture), and finally p1, p2 being respectively the first and second derivative of p0. 240

Each of these types has three spatial dimensions, denoted (x, y, z), leading to a total of 241

15 features. p1 and p2 where computed using a Savitzy-Golay filter (window length of 242

17 samples and third degree polynomial fit). Each parameter was standardised per 243

dimensions (zero mean and unit variance). We tested each 5 types individually, along 244

with three possible combination as reported in Table 1. Correlation coefficients were 245

computed using cross-validation (see Method). 246

sensor computed correlation

data data µ σ
acc . . . . 0.713 0.058
. gyr . . . 0.697 0.054
. . p0 . . 0.495 0.061
. . . p1 . 0.687 0.054
. . . . p2 0.573 0.066
acc gyr p0 . . 0.753 0.040
. . p0 p1 p2 0.684 0.040
acc gyr p0 p1 p2 0.759 0.036

Table 1. Pearson correlation coefficient mean and standard deviation across
cross-validation splits for different input feature combinations. The two highest
coefficients are marked in bold (statistically not different).

We ran an ANOVA on correlation coefficients with the parameter types as 247

independent variable. We found a significant main effect (F7,120 = 45.77, p < .001, 248

η2p = 0.72). Post-hoc tests with Holm corrections highlighted several differences. For 249

individual types, acc, gyr and p1 produced the best (and comparable) correlations at 250

0.713 (0.058), 0.697 (0.054) and 0.687 (0.054), respectively. Features p0 and p2 251

produced the lowest (and statistically equivalent) correlations at 0.495 (0.061) and 0.573 252

(0.066). In other words, the position data was less informative than inertial data (acc or 253

gyr). When combining three parameter types, we found that the combination (acc, gyr, 254

p0) correlated better with ratings than (p0, p1, p2). Overall, using all five feature 255

together produced the best level of correlation at 0.759 (0.036), while the difference 256

with (acc, gyr, p0) was not statistically different. 257

We further examine the relationship between the computed similarity metric and 258

ratings. Scatterplots of values for ratings (mrating) and similarity metrics based on two 259

sets of features (m(p0) and m(acc,gyr,p0,p1,p2)) are shown in Figure 4, on the left and 260

right, respectively. Comparing the left and right figure furthermore indicates that the 261
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Fig 4. Effect of input features on Pearson correlation. The scatter plots represent
dataset Dinter with unique colours associated to participants. The DTW differences
against the ratings displayed a stronger linear relationship with all input features
included (right) than with just the position (left). These two combinations were chosen
as they exhibit the worst and best performance from Table 1.

improvement of the correlation factor with specific types of features can indeed be 262

explained by lowering the noise level. Visual inspection of scatterplots for different 263

feature combinations did not hint that other models would be more suitable for 264

explaining how these two variables could be related. 265

In summary, this confirms our assumption that the relationship between the 266

similarity metric derived from DTW differences and ratings can be characterised using 267

the Pearson’s correlation. In the next section, we examine how this correlation can be 268

further optimised. 269

Optimising the similarity metric 270

In this section, we present our results on metric learning. We show that the correlation 271

can be improved through weight learning and, more importantly, that the weights can 272

be interpreted with respect to motor learning. 273

Weighting movement features 274

We optimised the weights on each dimension used in the DTW distance (denoted wk in 275

Equation 2) to maximise the correlation with human ratings. The optimisation achieves 276

a mean correlation coefficient of 0.772 (0.040), where the statistics are computed over 277

the cross-validation folds (see Method for more details on the optimisation procedure). 278

This is a slight improvement compared to the results obtained in the previous section 279

using all parameters without weighting (0.759 (0.036)). Nevertheless, paired t-tests 280

confirmed the optimised value is significantly higher to the previously found coefficient 281

(t(15) = 2.438, p < 0.05). 282

The optimised mean weights per dimension are depicted in Figure 5, top panel. We 283

ran an ANOVA on the optimised weight values with Feature as the independent 284

variable. We found a significant main effect (F14,225 = 29.92, p < .001, η2p = 0.65). 285

Post-hoc tests with Holm corrections highlighted several differences. First, the weights 286

are lower on the z-axis for the position and its derivatives. This is coherent with the 287

fact that the movement was mostly performed in the (x, y)−plane. Also, some weights 288

are significantly higher than others within groups of sensors (e.g. accx with respect to 289

accy and accz or gyry as compared to gyrx and gyrz). This suggests that annotators 290

might have used these movement features to find differences within the pair of 291

movements with respect to the template. 292
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Fig 5. Optimisation weights (top) and learning rate extracted from residual errors
(bottom) across all 15 spatial dimensions. Colours are unique per data type (acc, gyr,
p0, p1, p2).

Finally, we analysed the relationship between the optimised weights and movement 293

learning. We recall that the ratings were related to performances that happened at 294

different sessions (days) when learning the template. Thus, ratings are expected to 295

reflect participants’ improved performance in imitating the model. To answer this 296

question, we examined whether the movement features that are important to optimise 297

the correlation (given by the weights in Figure 5, top panel) are also the ones that 298

exhibited more improvement. To do so, we computed motor learning rates associated to 299

each movement parameters separately. For this, we used the baseline DTW alignment 300

with all 15 features, between performed movements and the template, and we extracted 301

the errors per feature along the aligned path. Then, we computed motor learning rates 302

by fitting an exponential function on the errors (see S2 DTW errors and learning rates 303

per movement feature, Figure 9). The learning rates are reported in the Figure 5 304

bottom panel. Interestingly, there is overall a good correspondence between the learning 305

rates and the optimised weights: a Pearson’s correlation coefficient computed between 306

means reached r(15) = −0.62 (p < 0.05), which seems to confirm our hypothesis. The 307

higher the weight of a feature, the lower the exponential coefficient, which means a high 308

learning rate. 309

Weighting temporal segments 310

Regarding the segment-based optimisation, we iterate on different values of number of 311

segments. We considered 11 choices of the number N of segments (i.e. [2, 5, 7, 12, 15, 312

20, 25, 30, 40, 50, 80]). For each number of segment, we ran the optimisation using 313

cross-validation, similarly as before. In Figure 6, the blue line reports the baseline 314

correlation (cross-validated correlation coefficients when considering the standard DTW 315

on the whole movement, as described when establishing the baseline); the green line 316

reports the correlation values obtained on the training sets while optimising the weights 317

on each segment; the orange line reports the correlation values obtained on the test sets. 318

We found that, for small values of N , the model could not learn a meaningful solution 319
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and the correlation did not improve. For higher values of N , qualitatively between 320

N = 20 and N = 30, the model seems to be able to learn meaningful weights which 321

improves the correlation. At N = 25, a Student’s T-test analysis shows a significant 322

performance improvement against baseline (t(15) = 2.549, p < 0.05) with a mean 323

correlation coefficient of 0.796 (0.043). For N higher than 30, the mean correlation on 324

the test set decreases and is not significantly higher than the mean baseline correlation. 325

This suggests that the model overfits on the training sets. 326
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Fig 6. Influence of the number of regions on the correlation for training and testing.
The best performance (marked with an asterisk) occurred for N = 25, with fewer
segments the model was not flexible enough and with more segments the model started
to overfit.
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Fig 7. Per-segment learning rate, correlation and optimisation weights. Colours are
indicative of the four template’s phrase defined on Figure 2.

The optimised weights for N = 25 are depicted in Figure 7, top panel. We ran an 327

ANOVA on the optimised weights with Segment as the independent variable. We 328

found a significant main effect (F24,375 = 41.21, p < 0.001, η2p = 0.72). Post-hoc tests 329

with Holm corrections highlighted several differences. In particular, one group of 330
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segments stands out from the others, and whose weights reached significantly higher 331

values than the rest. This group is comprised of segments {17, 18, 19, 20}. Interestingly, 332

the segments are adjacent and occurring at a specific moment of the gesture sequence 333

(see Figure 2), indicating where raters temporally focused their attention in the rating 334

process. 335

We repeated a similar analysis to the previous section, investigating the potential 336

relationships between the optimised weights and learning rates per segment. Partial 337

DTW contributions were computed per segment as the sum of pairwise distances on the 338

portion of aligned paths described by each segment. These contributions were then 339

ordered by performance time and learning rates were extracted from a fitted exponential 340

model (see S3 DTW errors and learning rates per temporal segment). The learning rates 341

are reported below the optimisation weights in Figure 7. We found a significant linear 342

relationships between the means of optimised weights and learning rates (r(25) = −0.70, 343

p < 0.001). By comparing adjacent segments with t-tests, we identified three main 344

regions of motor improvement located in segments [7-9], [12-14] and [16-21]. The 345

beginning and end of the movement showed the smallest learning rates. Interestingly, 346

while three main regions exhibited some learning progress, only the last one was 347

favoured by the ratings. This suggests that, although learning occurred predominantly 348

at three different times during the movement, the technique revealed that annotators 349

ultimately placed more importance on the last of these three occurrences. 350

Discussion 351

In this paper, we proposed a method that learns a similarity metric which matches 352

human relative similarity ratings of pairs of movements with respect to a template. 353

First, we found that the relationship between the DTW similarity metric with all 354

movement features and continuous human ratings can be approximated as a linear 355

function (R = 0.76), with respect to the annotated database we considered. In other 356

words, linear and rotational accelerations, positions and its derivatives conveyed useful 357

information to characterise the movement. This result seems to indicate that raters 358

referred to a multidimensional complex of information. In a higher dimensional space, 359

metric learning could allow to find a lower dimensional manifold where the ratio 360

between information and noise is improved [26]. This also echoes other results with 361

similar data where feature selection for time warping of long movement sequences was 362

not found to be beneficial [27] and significantly differ from other work involving data 363

with larger feature spaces, such as skeleton data used by [7, 8]. 364

Second, we found that this correlation could be optimised by weighting either 365

movement features or time segments. Statistically significant improvements were found 366

in both cases as compared to baseline even though the improvements were rather small: 367

+1.6% increase from 0.76 compared to 0.77 for the spatial case; +4.8% increase from 368

0.76 compared to 0.79 for the temporal case. While we used diagonal covariance 369

matrices in the Mahalanobis distance to limit the number of parameters to learn, a full 370

covariance matrix should technically improve the correlation value, and was confirmed 371

by preliminary testing. However, such approach has two main drawbacks. First, it 372

would require the collection of a larger dataset to mitigate the risk of overfitting, which 373

was challenging in our case of human-provided ratings. Second, the learned metric 374

would also be more difficult to interpret than in the case of the diagonal matrix which 375

simply amounts to weighting each dimension of the feature space. As a matter of fact, 376

interpretabilty represents an important feature of our method and contrasts with other 377

works in metric learning wherein classification performance improvements do not 378

necessarily need to be explained [13,14]. 379

Regarding metric interpretation, the optimised weights provide valuable information 380
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about important features that the raters perceived to judge the movement similarity. 381

For the spatial case, the three largest weights (accx, gyry and p1x) point towards the 382

type of movement parameters that the raters seemed to focus on: acceleration in the 383

horizontal plane (typically occurring after the vertical strokes), rotation of the wrist 384

(appearing in the preparation and during the strokes), and velocities in the vertical axis 385

(typically during strokes). In contrast, the optimised weights on features along the z 386

axis are among the lowest (e.g. p0z = 0.015). Since the movement is executed mostly in 387

the X-Y plane, this validates the fact that the learned metrics extract meaningful 388

information from the data. This is in line with previous work using input weights 389

learning as a way to analyse human perception [6]. In this paper, we went further by 390

exploring also the temporal dimension. For the temporal case, the very beginning and 391

end show lower weight values meaning that these movement segments (segments 1-5, 392

21-25) do not provide meaningful information in assessing movement similarity. This is 393

also the case during the two transition moments (segments 10-11 and 14-15). In 394

contrast, we found that the most important segments for assessing movement similarity 395

were located in the third phrase (segments 17-20, in green). Interestingly, this is the 396

most complex phrase to perform, requiring to articulate several circle arcs in different 397

directions. Typically, the participants made several mistakes such as inverting the 398

movement directions, or missing the starting point of a rotation or the number of 399

rotations. 400

More importantly, in addition to having found strong correlations between learned 401

weights and motor learning rates in both spatial (r(15) = −0.62) and temporal 402

(r(25) = −0.70) cases, the analysis of their relationship offer interesting opportunities 403

for interpretation. In the spatial case, we found that the weight for the dimension p0z 404

(position in depth) is close to 0, whereas associated learning rate suggest that some 405

progress was also made by participants on this axis. Likewise, in the temporal case, it 406

appears that motor learning occurs in segments following the strokes (segments [7-9] in 407

phrase 1, segments [12-14] in phrase 2, and segments [17-21] in phrase 3) but only the 408

last segment is favoured through optimisation. This evidence shows that the learned 409

metric is able to highlight what caught the attention of the raters when assessing the 410

similarity between movements. Therefore, the method goes one step further than the 411

state of the art on metric learning applied to motion perception [9, 11] as it highlights 412

where motor learning occurs as well as where human raters perceive improvements in 413

movement execution. In addition, this result is based on averaged ratings across raters, 414

which suggests that raters were consistent with respect to the spatial and temporal foci 415

of attention in movement similarity assessment. However, nothing prevents using the 416

method considering a single rater which will highlight idiosyncratic choices in movement 417

similarity assessment. 418

This paper showed that metric learning is a promising approach as a tool for probing 419

how humans perceived motion similarity and progress in movement execution. In this 420

study we tested our method with one dataset taken from previous work, which included 421

a specific sensor configuration. Our method could, however, be used in future research 422

to draw broader conclusions about the links between movement perception and motor 423

learning, by investigating to which extent movement characteristics might generalise 424

across different datasets. 425

Conclusion 426

We propose a method that uses metric learning to obtain a similarity metric to match 427

human annotators. This is among the first attempts to use metric learning in the 428

context of motor skill learning, especially considering complex movement sequences. We 429

show that the method is effective in providing information on salient movement features 430
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and temporal moments that human annotators focused on. Such information can be 431

corroborated with motor learning processes in our case. Further studies can explore 432

these findings in order to clarify criteria used in movement annotation that are known 433

to be difficult to formalise. 434

Our method is generic and could be applied in other scenarios. For example, it could 435

be used with other algorithms other than DTW, such as probabilistic models (e.g. 436

Hidden Markov Models [28]) or Neural Networks [29]. Importantly, we believe that this 437

is an important first step toward building interactive approaches of annotating complex 438

movement, where similarity metrics could be adapted using human ratings. 439
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15. Le Naour T, Ré C, Bresciani JP. 3D feedback and observation for motor learning:
Application to the roundoff movement in gymnastics. Human Movement Science.
2019;66:564–577. doi:10.1016/j.humov.2019.06.008.

16. Xing EP, Ng AY, Jordan MI, Russell S. Distance Metric Learning, with
Application to Clustering with Side-Information; 2002.

17. Schultz M, Joachims T. Learning a Distance Metric from Relative Comparisons;
2003.

18. Alaoui SF, Carlson K, Cuykendall S, Bradley K, Studd K, Schiphorst T. How do
experts observe movement? In: ACM International Conference Proceeding Series.
vol. 14-15-Augu. Association for Computing Machinery; 2015. p. 84–91.

19. Stewart N, Brown GDA, Chater N. AbsoLute identification by relative judgment.
Psychological Review. 2005;112(4):881–911. doi:10.1037/0033-295X.112.4.881.

20. Yannakakis GN, Hallam J. Ranking vs. Preference: A Comparative Study of
Self-reporting. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2011;6974
LNCS(PART 1):437–446. doi:10.1007/978-3-642-24600-547.

21. Liu W, Magalhaes MA, Mackay WE, Beaudouin-Lafon M, Bevilacqua F. Motor
Variability in Complex Gesture Learning: Effects of Movement Sonification and
Musical Background. ACM Trans Appl Percept. 2022;19(1). doi:10.1145/3482967.

22. Sakoe H, Chiba S. Dynamic Programming Algorithm Optimization for Spoken
Word Recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing. 1978;26(1):43–49. doi:10.1109/TASSP.1978.1163055.

23. Salvador S, Chan P. Toward accurate dynamic time warping in linear time and
space. Intelligent Data Analysis. 2007;11(5):561–580. doi:10.3233/ida-2007-11508.

24. Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B. ACM
Transactions on Mathematical Software (TOMS). 1997;23(4):550–560.
doi:10.1145/279232.279236.

25. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation
Coefficients for Reliability Research. Journal of Chiropractic Medicine.
2016;15(2):155–163. doi:10.1016/j.jcm.2016.02.012.

26. Goldberger J, Hinton GE, Roweis S, Salakhutdinov RR. Neighbourhood
components analysis. Advances in neural information processing systems. 2004;17.

27. Bevilacqua F, Baschet F, Lemouton S. The Augmented String Quartet:
Experiments and Gesture Following. Journal of New Music Research.
2012;41(1):103–119.

September 28, 2022 15/18



28. Karg M, Venture G, Hoey J, Kulic D. Human movement analysis as a measure
for fatigue: A hidden markov-based approach. IEEE Transactions on Neural
Systems and Rehabilitation Engineering. 2014;22(3):470–481.
doi:10.1109/TNSRE.2013.2291327.

29. Coskun H, Tan DJ, Conjeti S, Navab N, Tombari F. Human motion analysis with
deep metric learning. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
2018;11218 LNCS:693–710. doi:10.1007/978-3-030-01264-941.

Supporting information

S1 Apparatus. This document (Figure 8) shows the annotation interface that was
presented to judges. Its simplicity is quite different than what can be proposed for
expert annotations.

Fig 8. Screenshot of the interface that was presented to annotators during the
experiment. The video of the gesture template T is presented on the top and can be
watched at any moment. Directly below, the videos of the current pair of motions A
and A′ are displayed, on the left and right, respectively. In between, a slider serves the
purpose of recording the relative measure of motion similarity to the template. In case
the distances are similar, the slider should be left in the middle. If A is closer to T than
A′, then the slider should be moved to the left in proportion to the certainty of the rater.
The videos were anonymised. A HOG filter was run on each video frame to identify
faces. The region around these was then scrambled to remove any recognisable features.

S2 DTW errors and learning rates per movement feature. DTW errors per
movement feature were extracted as follows. The baseline DTW alignement with all 15
features was computed, between performed movements and the template. For each
feature, the error was accumulated along the alignment path, yielding one value per
dimension (15 in total). These partial costs were re-ordered according to their place in
the learning schedule, displayed in figure 9, from which learning rates can be computed,
per movement features.

S3 DTW errors and learning rates per temporal segment. DTW errors per
temporal segments were extracted as follows. The baseline DTW alignement with all 15
features was computed, between performed movements and the template. N segments
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Fig 9. DTW errors as a function of movement feature (title) and session in the learning
schedule derived from the DTW alignement including all 15 festures in the point-wise
distance. Learning rates are computed from the fit of an exponential model represented
by a black line. Colours are unique per data type (acc, gyr, p0, p1, p2).

were then defined on the template. The partial contribution of the alignement cost to
the total DTW was then computed per temporal segment, yielding one value per
temporal segment (N in total). These partial costs were re-ordered according to their
place in the learning schedule, displayed in figure 10, from which learning rates can be
computed, per temporal segments.
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Fig 10. DTW errors as a function of temporal segment (title) and attempt in the
learning schedule. Learning rates are computed from the fit of an exponential model
represented by a black line. Colours are unique per phrase. The three training sessions
covered attempts 1-15, 16-30 and 31-45, respectively.
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