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Abstract

Human’s affective state recognition remains a challeng-
ing topic due to the complexity of emotions, which involves
experiential, behavioral, and physiological elements. Since
it is difficult to comprehensively describe emotion in terms
of single modalities, recent studies have focused on fusion
strategy to exploit the complementarity of multimodal sig-
nals. In this article, we study the feasibility of fusing fa-
cial expressions with physiological cues on human emotion
recognition accuracy. The contributions of this work are
threefold: 1) We propose a new spatiotemporal network for
facial expression recognition using a 3D squeeze and exita-
tion based 3D Xception architecture (squeeze and exitation
Xception network). 2) We adopt the first multiple modali-
ties fusion using single input source which, to the best of
our knowledge, no existing multimodal emotion recognition
system has attempted to identify emotional state from only
facial videos using facial expressions and physiological sig-
nals features. 3) We compare the performance of the uni-
modal approach using only facial expressions or physiolog-
ical data, to multimodal systems fusing facial expressions
with video-based physiological cues. In our experiments,
physiological signals such as the iPPG signal and features
of heart rate variability measured remotely using the imag-
ing photoplethysmography (iPPG) method are used. The
preliminary results show that the multimodal fusion model
improves the accuracy of emotion recognition, and merging
facial expressions features with iPPG signal gives the best
accuracy with 71.90 %.

1. Introduction

Human faces are a rich source of information. They
are characterized by a great expressive richness to convey
emotions, which makes them widely used to identify a per-
son’s emotional state through facial expressions. Despite
the impressive results achieved by facial expressions recog-
nition systems on acted databases with controlled condi-

tions [31,49, 54, 55], they are rarely faced with real situa-
tions. In a natural environment, reliability cannot be guaran-
teed and performance degrades considerably [20,32,43]. In
addition to environmental conditions (camera angles, light-
ing conditions and occlusion of multiple parts of the face)
and the ability to control and fake emotions by people, fa-
cial expressions are also more affected by social and cul-
tural differences. Human expressiveness can vary among
individuals and can be expressed differently. Additionally,
facial expressions can be a mix of different emotion status
that occur at the same time or may not be expressed at all.
Consequently, using facial expressions to identify person’s
emotional state can lead to wrong inferences.

Recently, few studies have proposed emotion recognition
systems that use physiological cues extracted from the face
using the imaging photoplethysmography method [2, 30].
The advantage of using physiological parameters to assess
emotion compared to facial expressions is : physiologi-
cal data are a response to the autonomic nervous system
(ANS), which is involuntarily activated and therefore un-
controllable.

Most existing studies have examined the use of facial
expressions and physiological cues separately [12, 24, 31,

,49]. However, little attention has been paid to a fusion
between these two modalities [8, 18, 51]. Combining the
two can improve recognition accuracy and provide greater
reliability by continuously gathering information about the
person’s emotional state despite missing acquisition or mis-
leading information that may occur when using a single
modality, operating in a noisy environment or in the case
of falsified expression. Additionally, fusion of multiple
modalities can help to compensate errors and resolve am-
biguities by learning useful representations of data of dif-
ferent nature. However, The main limitation is related to
asynchrony across modalities, which are usually unaligned.
In addition, physiological data are collected through intru-
sive devices that are psychologically stressful and this can
modify the measurement results of physiological signals.
Therefore, this will certainly affect the accuracy of emotion
scoring [9]. In this work, we propose the first video-based
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Figure 1. Proposed system for multimodal emotion recognition using facial expressions, iPPG signals and HRV features.

multimodal spontaneous emotion recognition that combines
facial expressions with physiological data to derive the ad-
vantages of each modality.

In this paper the physiological parameters are mea-
sured from facial video recordings based on imaging pho-
toplethysmography principal [6]. While, facial expressions
features are extracted using a new spatio-temporal network
that combines 3D squeeze and exitation module with 3D
Xception architecture. The features vector of facial expres-
sions is then merged with the physiological signals to ulti-
mately estimate the corresponding emotion. In the remain-
der of this paper, human emotion recognition related works
are presented in Section 2. Section 3 details our proposed
approach. Then, in Section 4, our method is evaluated. Fi-
nally, conclusions and future works are given in Section 5.

2. Related works

In literature, various modalities have been used to rec-
ognize emotion either in unimodal [12,36,45,47] or multi-
modal way [5, 18,39]. Initial research on unimodal emotion
recognition systems have focused on the expressiveness of
the face because it is visible and it is easier to collect a large
set of facial data. The commonly adopted methods for fa-
cial expression recognition are either deep learning or hand-
crafted based approaches [22,25]. However, deep learning
techniques have made a great success due to their high gen-
eralizability for new data and their ability to automatically
extract robust features and learn complex nonlinear repre-
sentations. Today, the state of the art deep learning methods
allow to achieve a categorization of facial expressions with
a reliability of around 98% in controlled situations [23].
Nevertheless, several real environment issues can degrade
recognition accuracy such as lighting variations or back-
ground appear [28]. Additionally, deep learning algorithms
often fail in the case of expressionless faces or falsified ex-

pressions.

To address this issue, some attempts have been made to
identify emotion through physiological data that are man-
aged by the autonomous nervous system (ANS) which is
involuntarily activated and therefore can not be controlled
[12]. Physiological signals such as electroencephalography,
electrocardiography, skin temperature and electromyogra-
phy are reliable data for quantifying emotions [10]. How-
ever, they are acquired by intrusive contact sensors that
can interfere with the subjects and modify their emotional
state. Moreover, the complexity of measurement and the
sensitivity of the electrodes of these devices strongly limit
their scope of application, since they cannot be used out-
side of the laboratory. Therefore, recent studies have fo-
cused on wearable devices that provide various biosig-
nals such as blood volume pulse (BVP) and electroder-
mal activity and their derivatives to explore new application
fields. Going even further, recent works have used heart
rate variability measured by the camera to detect emotional
state [3,30]. They rely on imaging photoplethysmography
method, which allows non-contact extraction of the blood
volume pulse signal from facial video recording, making it
more interesting and promising among the other physiolog-
ical signals that require contact devices and the presence of
a specialist to monitor them.

Numerous literature studies show that multimodal emo-
tion recognition systems outperform unimodal approaches
[11,33]. For this reason, several works have merged facial
expressions with physiological data to develop reliable sys-
tems [8, 18,21]. Despite the obtained results , they follow a
constrained experimental setup under laboratory conditions
due to the use of intrusive and sensitive equipment. In addi-
tion, dealing with multiple signals of different nature gath-
ered from different sources, may conflict with each other
due to asynchrony across modalities and thus lead to mises-
timation.
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3. Materials and Methods
3.1. Dataset

Although many multimodal emotion databases are avail-
able, few of them provide physiological signals. The ex-
isting datasets for multimodal emotion recognition from fa-
cial expressions and physiological signals are quite limited
not only in data size but also in diversity. In this study we
explore a new multimodal sponatneous emotions database
named BP4D+ [53]. Compared to existing datasets such
as MAHNOB [42] and DEAP [19], BP4D+ is a large scale
dataset that includes annotated action units (AUs) and dis-
crete emotion categories. In addition, it contains numerous
challenging conditions and diversity in terms of significant
head motion and ethnic diversity, making it more interest-
ing and challenging. Since its creation, BP4D+ has been
widely used in several works related to affective computing
and vital signs measurement [26,46,50].

This dataset consists of RGB and thermal images, 2D
and 3D facial landmarks, actions units and 8 physiological
signals collected with contact sensor. 140 subjects (82 fe-
males and 58 males) of different ethnic ancestry participated
in 10 sessions designed to induce the following emotions :
Happiness (T1), Surprise (T2), Sadness (T3), Startle (T4),
Skeptical (T5), Embarrassment (T6), Fear (T7), Pain (T8),
Anger (T9), and Disgust (T10). 1400 RGB videos lasting
30 seconds to 1 minute were recorded at a frame rate of
25 fps. The resolution of each image is 1040 x 1392 pix-
els. Among the 10 tasks, only four emotions are used in our
experiments, corresponding to happiness, embarrassment,
fear and pain. These emotion tasks are provided with man-
ually coded action units (33 in total) that were computed
only for the most expressive frames of each task.

3.2. Data preparation

First, the most expressive frames are extracted from
each emotion task using action units code provided in the
database. Then, we follow the same protocol used in [37].
A robust face swapping-based segmentation method is used
to get rid of non-skin regions that do not hold any color
changes associated with cardiac activity [35]. This step
improves imaging photoplethysmographic signal extraction
from face skin. All the images of the segmented faces are
cropped according to the coordinates of the non-zero pixels
and then scaled to 48 x 48 x 3. Besides, data augmentation
strategy is applied for the training set to create additional
and different training instances. Several image transforma-
tions such as rotating the image by varying degrees, trans-
lating it and flipping it horizontally and vertically, cropping,
zooming in, or changing the contrast of the image have been
randomly applied on video fragments. It helps to reduce
overfitting and improve the generalizability of the model.

Recovered iPPG signal
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—— Recovered signal by MTTS-CAN
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Figure 2. Comparison between a predicted signal by MTTS-CAN
and the ground-truth PPG signal taken from BP4D+ dataset.

3.3. Video-based physiological signals measurement

In this study, physiological parameters are measured re-
motely using imaging photoplethysmography method [6].
iPPG is an optical technique for capturing cardiac signals
by observing the blood-volume variations on a person’s face
using a simple camera. The captured light reflected by the
skin is translated to a variation of the iPPG signal. Sev-
eral important vital signs can be derived from the iPPG
waveform such as pulse rate, respiration rate and heart rate
variability (HRV). However, among these physiological fea-
tures, only iPPG signal and its derivative HRV features have
been used in our experiment. It was reported in several stud-
ies that heart rate variability is one of the most important
physiological characteristic that reflects affective states of
a person [3,30]. HRV features can be derived from time
interval variation between consecutive heartbeats in iPPG
signal. [14].

iPPG extraction algorithms can be divided to hand-
crafted based algorithms [52] that use signal/image process-
ing steps and deep learning based approaches [34]. In this
work, we used a multi-task sequential shift convolutional
attention network (MTTS-CAN) proposed by Liu et al. to
extract the iPPG signal [29]. MTTS-CAN is one of the
recent popular state-of-the-art deep learning based method
that provides good performance in terms of heart and respi-
ratory rates measurement. In order to better appreciate the
quality of the recovered iPPG signal, we present, in Figure
2, a superposition of a ground truth PPG signal recorded by
contact sensor and the iPPG signal predicted by the MTTS-
CAN network. It is clear that the estimated iPPG signal is
strongly correlated with the ground truth and the location of
the peaks is very close.

The core module of MTTS-CAN is a hybrid network
that uses the attention mechanism in conjunction with Tem-
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Figure 3. A representative PSD for IBI signal showing The areas
of VLF, LF and HF powers of the HRV.

poral Shift Modules [29]. The recovered iPPG signals
by MTTS-CAN allow HRV features extraction both in the
time-domain and in the frequency-domain. For both time
and frequency analysis, peak detection is performed to lo-
cate the instant of time at which heartbeat occurs (which
allows to compute HRV features).

In time domain, heart rate is calculated as the inverse
of the of the interbeat interval (IBI) divided by 60 to get
the frequency in beats per minute. From the heart rate
variations in the selected window, we computed the mean
(meanHR) and standard deviation (stdHR) of the heart rate
series. The root mean square of successive interval differ-
ences (RMSSD) is also calculated (see Equation 1). This
parameter allows assessing vagal activity reflected in heart
variability [40].

1 N—1
—— Y (IBILiy1 —IBL)? (1)
N-14

RMSSD =

In frequency domain, the IBI series were interpolated
with cubic Hermite and the power spectra were obtained by
employing Welch’s method [48]. The power spectral den-
sity (PSD) of a signal makes it possible to analyze its dif-
ferent oscillatory components such as HRV low frequency
(LF) and high frequency (HF) components. The LF compo-
nent is modulated by baroreflex activity and contains both
sympathetic and parasympathetic activity, while the HF
component reflects parasympathetic branch of the ANS [1].
The LF and HF powers of the HRV were computed as the
area under the PSD curve corresponding to 0.04-0.15Hz and
0.15-0.4Hz respectively (see Figure 3). We also computed

the ratio LF/HF, which represents the sympatho-vagal bal-
ance [4]. The very low frequency (VLF) components were
not employed in our experiments.
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Figure 4. The Squeeze-and-Excitation module consists of global
average pooling as a Squeeze operation. The two Fully Connected
layers are then used to to learn the feature weights. We first re-
duce the feature dimension with a shrinkage parameter r, then we
recover the dimension with the same r in the next fully connected
layer. After the excitation operation, the SE block use the scale op-
eration to re-weight the input layers, by element-wise multiplying
the raw input by the excitation output.

3.4. Facial expressions recognition network

Xception network is one of the state-of-the-art methods
that has proven efficient for general purpose 2D image tasks
in terms of accuracy, fast convergence speed and low com-
putational costs [7]. Xception is a derivative of Inception
network [44]. It replaces Inception modules with depth-
wise separable convolution layers and adds residual con-
nections. This modification, compared to Inception archi-
tecture, greatly reduces the computational cost and mem-
ory requirements, while maintaining similar (or slightly bet-
ter) performance. The depth-wise separable convolution
performs spatial convolution by channel separately with-
out considering the relationship between different channels,
while conventional convolution considers all spatial and
channel information together. Exploiting channel depen-
dency is an important way to improve convolutional neu-
ral network. Therefore, we fuse Xception network with
Squeeze and Excitation (SE) [16] module to achieve chan-
nel weighting and maintain or improve classification ac-
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curacy while reducing the number of parameters and the
amount of computation. The SE block aims to explicitly
model the interdependency between the channels of the im-
age, in order to recalibrate the channel-wise feature maps in
a computationally efficient manner.

The structure of the SE block is depicted in Figure 4.
The SE processing blocks are composed of two successive
parts: Squeeze and Excitation. The squeeze operation uses
a global average pooling layer, while the excitation phase
consists of two fully-connected layers that take the rectified
linear units and sigmoid activation units as the hidden units
respectively. In our implementation, 3D version of Xcep-
tion network and SE block are used instead of the original
implementations that only consider the spatial information.
In this way, we simultaneously extract spatio-tempoal fea-
tures without adding additional layers to take into account
the temporal features.

Figure 5 presents the overall architecture of the proposed
3D-SE-XceptionNet which consists of three blocks (entry,
middle and exit) as the original architecture of Xception net-
work. However, the model structure is simplified by reduc-
ing the number of repetitive depthwise separable convolu-
tion layers. Our new mini Xception includes 15 convolu-
tion layers instead of 36 compared to the original version.
These convolutional layers are structured into 14 modules,
all linked with shortcuts as in ResNet architecture [15] ex-
cept the first and last modules. SE blocks are inserted after
the residual connections. The output of the features extrac-
tion is flattened and passed to two dense layers with 256 and
4 neurons respectively. The first dense layer takes the recti-
fied linear units as the hidden units while the second takes
the softmax activation function to predict the corresponding
emotion classes.

4. Results and Discussion

The BP4D+ dataset was split to 90 percent training set
and 10 percent validation set. Training and validation were
performed three times with different samples in order to
verify the consistency of the system. Three different experi-
ments were conducted to classify emotions : using (a) facial
expressions only, (b) physiological modalities only, and (c)
facial expressions and physiological signals together.

4.1. Implementation details

The proposed system is implemented with Keras and ten-
sorflow frameworks and ran on Nvidia Quadro P6000s. As
BP4D+ is sampled at 25 fps, the length of face video clip
is set to Nbframes = 100 frames (corresponding to 4 sec-
onds) while the size of each image frame is 48 x 48 x 3
(ImHeight x ImWidth x Channel). We used Rectified
Adam (RAdam) optimizer [27] to optimize a categorical
crossentropy loss function. We trained the network for 50
epochs with batch size = 16, learning rate 10~ 4 and decay

=1072. L1 and L2 regularization strategies with coefficient
equal 10~ 2 are employed which help to overcome overfit-
ting issue and improve the model generalizability to new
data.

4.2. Emotion recognition from facial expressions

5 state-of-the-art networks are compared : 3D-VGG
[41], 3D-ResNet [15], 3D-DenseNet [17], 3D-Inception
[44] and 3D-Xception [7]. We train these architectures us-
ing the BP4D+ dataset and then we compare their perfor-
mance with our proposed model. As shown in Table 1, our
3D-SE-Xception network outperforms the state-of-the-art
deep learning architectures. Note that in the conducted ex-
periments, we do not perform any special preprocessing to
the input images except face segmentation (See section 3.2).
Compared to other architectures, the accuracy improves to
the highest value of 63.40% when the Xception network is
fused with the SE block. The proposed framework derives
more targeted feature information through the SE module,
meanwhile using the Xception network to avoid the van-
ishing gradient problem through residual connections and
reduce the computational cost and memory requirements
through the depthwise separable convolutions.

Table 1. Comparison of proposed method to state-of-the-art net-
works on spontaneous data for facial expression recognition.

Method Accuracy
3D-DenseNet [17] 37.91
3D-Inception [44] 42.48

3D-ResNet [15] 44 .44
3D-VGG [41] 49.02
3D-Xception [7] 53.59
3D-SE-Xception (Ours) 63.40

Figure 6 shows the confusion matrix for the emotion
recognition system based on facial expressions. The over-
all performance of the proposed network was 63.4%. Hap-
piness and pain are the most recognized emotions with an
accuracy of 80% and 81% respectively, while fear is miss-
classified as happiness and pain. This can partially be ex-
plained by the multiple behaviors that may occur during the
expression of this emotion.

4.3. Emotion recognition from Physiological signals

Emotion classification from physiological signals is per-
formed using iPPG signals and HRV features. Three differ-
ent fusion schemes were conducted for emotion recognition
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Figure 5. The network structure of 3D-SE-Xception corresponds to a modified version of the Xception network. 2D depthwise separable
convolution layers are replaced by 3D depthwise separable convolution to capture both spatial and temporal features across video frames.
The SE block was embedded in the model to enhance the useful feature channels and weaken the useless feature channels through channel-
wise feature maps recalibration. Two dense layers are used instead of Global Average Pooling.The input video fragment first goes through
the entry flow, then through the middle flow which is repeated eight times, and finally through the exit flow which ends in a dense layer

with 4 neuron to classify emotions.

using physiological data. First, iPPG signals and HRV fea-
tures are used separately to classify emotions. Then, we
merge them to see which approach gives the best accuracy.

Inspired by the work of Fabiano et al. [13], a feedforward
neural network is used in our experiments. It consists of two
layers. The input layer has the same number of neurons as
the input length (100 for iPPG modality , 6 for HRV), while
the output layer includes the same number of neurons as
the number of classes of emotion to predict. The activa-

tion function for the input layer is ReLU, while the softmax
activation function is employed for the output layer.

Table 2 illustrates the recognition accuracy using iPPG
signals and HRV features separately and after fusion be-
tween them. As can be seen from table 2, whether physio-
logical signals are used separately or combined, the recog-
nition accuracy is low compared to facial expressions. Be-
sides, the performance when using iPPG signals is better
than HRV. This can be justified by the short length of the
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Figure 6. Emotion classification confusion matrix using facial ex-
pressions.

iPPG signals used for HRV analysis as well as the signal
quality which is prone to noise and artifacts due to move-
ments and lighting conditions. Therefore, it has an impact
on the accuracy of HRV characteristics. On the other hand,
iPPG and HRYV fusion exhibit lower performance. This may
be related to the lack of correlation between the iPPG signal
and the HRV characteristics.

Table 2. Comparison of emotion recognition accuracy from phys-
iological signals. Abbreviations: (iPPG :Emotion from iPPG sig-
nals), (HRV : Emotions from HRV features), (iPPG + HRV : Emo-
tions from the combined iPPG and HRV).
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-0.1

- 0.0

Method Accuracy
iPPG 55.33
HRV 53.59

iPPG + HRV 44.64

4.4. Multimodal emotion recognition

The architecture of our multimodal emotion recognition
system is shown in Figure 1. Basically, the proposed model
consists of two pipelines allowing to extract the features
of each modality from video streams (See section 3.3 and
3.4). Each video of BP4D+ is fed to the facial expression
network (3D-SE-Xception) and to the iPPG signal network
(MTTS-CAN). The first pipeline extracts the features vec-
tor after the flatten layer (See Figure 1 using the pre-trained
weights of our 3D-SE-Xception model, while the second

pipeline returns either the iPPG signal recovered through
the MTTS-CAN network or HRV features. Hence, three
experiments have been carried out for multimodal emotion
recognition. First, facial expressions features are combined
with only the iPPG signal, then only with HRV vector. Fi-
nally, all modalities are fused. The contactenation result
vector is then passed to two dense layers with 256 and 4
neurons respectively. The first dense layer takes the recti-
fied linear units as the hidden units while the second takes
the softmax activation function to predict the corresponding
emotion class.

The recognition accuracy for each experiment is re-
ported in Table 3. The results show that combining fa-
cial expression features with physiological parameters im-
prove the performance compared to unimodal approach ei-
ther using facial expressions or physiological data sepa-
rately. This confirms previous studies that have obtained
the same results where the precision of the fusion exceeds
unimodality systems, and the performance of facial expres-
sions modality is always better compared to physiological
signals [8, 1 8]. Furthermore, the lack of correlation between
the iPPG signal and HRV features impacts performance,
whether merging just these two modalities or their fusion
with facial expressions.

Table 3. Comparison of multimodal emotion recognition accuracy
from facial expressions and physiological signals.

Method Accuracy
Facial expressions + HRV 70.59
Facial expressions + iPPG 71.90
Facial expressions + iPPG + 67.97

HRV

Figure 7 shows the confusion matrix for the multimodal
emotion recognition system based on facial expressions and
HRV features fusion, and facial expressions and iPPG fu-
sion. The overall performance of the proposed network is
70.59% and 71.90 % respectively. Compared to using fa-
cial expressions only, the fusion with physiological signals
improved significantly the accuracy for missclassified emo-
tions. For example, fear accuracy has been doubled from
32% to 64% for each fusion schemes.

4.5. Discussion

Facial expressions and physiological signals modalities
establish superiority to each other. The combination of fa-
cial expression features and iPPG signal achieved the high-
est accuracy of around 72%. This slightly outperforms the
fusion between facial expressions and HRV features. How-
ever, merging only the iPPG signal and HRV features, or
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Figure 7. Multimodal emotion classification confusion matrix using facial expressions with HRV Features and iPPG signals.

with facial expressions features, gives the lowest accuracy.
We hypothesize that these two modalities may interfere with
each other, thus impacting the recognition accuracy. In
addition, using multiple modalities considerably improved
performance for miss-classified emotions such as Fear. Al-
though facial expressions are visible and easy to categorize
compared to physiological cues, incorporating with physio-
logical modalities can provide complementary information
and further enhance the performance. On the other hand, the
results obtained fit perfectly with existing multimodal sys-
tems that use multiple input data sources and demonstrate
the possibility of using only facial videos to recognize emo-
tions using human physiological and physical cues.

5. Conclusion

This paper proposes a new framework for multimodal
emotion recognition through facial expressions and physio-
logical signals. A novel spatiotemporal neural network has
been proposed, which fused Squeeze-and-Excitation mod-
ules with a 3D Xception network to recalibrate the channel-
wise feature maps in a computationally efficient manner.
Two physiological parameters were selected, namely the
iPPG signal and the HRV features. Unlike existing studies,
physiological cues were measured remotely based on imag-
ing photoplethysmography method. This way, only single
input source were used to extract features from each modal-
ity. It is very interesting and promising to recognize emo-
tions in a multimodal way with a single non-intrusive sen-
sor. using a camera that is integrated on all digital devices
used in daily life allows to reduce the cost and to make the
system more accessible. Furthermore, video-based physio-

logical signals measurement is more practical and may re-
duces the discomfort caused by the contact devices. Over-
all, we have shown that fusion of two modalities (facial ex-
pressions with iPPG signals or facial expressions with HRV
features) gives significant improvements and offer potential
for more accurate recognition of affects and emotions.

As future work, we intend to incorporate other physi-
ological signals and test the performance on other multi-
modal emotion datasets. We will further explore the com-
plexity of expressions to understand the poor performance
of certain emotions.
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