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Abstract In this paper, we shall investigate sequential data

assimilation techniques to improve the stability of reduced-

order models for fluid flows. The reduced-order model used

relies on a Galerkin projection of Navier–Stokes equations on

proper orthogonal decomposition (POD) basis vectors esti-

mated from snapshots of the flow fields obtained with time-

resolved particle image velocimetry (TR-PIV) measurements.

The coefficients of the dynamical system are given through a

least-squares regression technique applied to the experimental

data and lead to a low-order model which is known to diverge,

or damp, rapidly in time if left uncontrolled. In this context, a

sequential data assimilation method based on a Bayesian

approach is proposed. In this formalism, reduced-order

models (ROMs) are modeled with discrete time from the

hidden Markov processes. Given the whole trajectories of the

POD temporal modes, the state of ROM coefficients initially

provided by noisy PIV measurements are re-estimated from a

Kalman filtering of the sequential data. Results are obtained

for the flow around a NACA0012 airfoil at Reynolds numbers

of 1000 and 2000 and angles of attack of 10�; 15�; 20� and 30�.

1 Introduction

The flows encountered in environmental or industrial

applications are generally non-stationary and coupled with

other physical phenomena. The number of degrees of

freedom required for a precise description of their

dynamics is thus very high. The cost of calculations to

model these physical phenomena is prohibitive, particu-

larly those based on systems of partial differential equa-

tions, for example, the resolution of the complete Navier–

Stokes equations for the numerical simulation of turbulent

flows. One possible approach consists in replacing the

equations of states by a reduced-order model, thereby

shortening the calculation time (Aubry 1991; Deane et al.

1991). The low-order model build this way must allow a

faithful approximation of the spatial and temporal evolu-

tion of all the physical quantities considered, while

inducing a significant reduction in the number of degrees of

freedom of the model.

The approach used here is based on Galerkin projection

of the physical model on a reduced-dimension basis

determined by Proper Orthogonal Decomposition (POD).

Thanks to its optimality property, POD allows the defini-

tion, via a set of flow solutions originating from a numer-

ical or experimental database, of the best approximation of

the flow field database from an energetic perspective, using

a limited number of proper functions. A model reduction

methodology, called POD-Galerkin, is then used to define a

reduced-order flow model by Galerkin projection of Na-

vier–Stokes equations on a POD basis.

The corresponding reduced-order model (ROM) is a

system of ordinary differential equations (ODE) of small

dimensions; this system governs the evolution of temporal

coefficients associated with the POD modes (Galletti et al.

2004; Buffoni et al. 2006). In order to use a reduced-order
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model to reconstruct the flow, its accuracy and strength

must be guaranteed. Indeed, it has to reproduce as faith-

fully as possible the complex dynamics contained in the

experimental database and at the same time be resistant to

variations of the input parameters or to changes in the flow

configuration.

Howewer, the POD-Galerkin ROM (or POD ROM) is

non-robust and structurally unstable. It determines in

general a dynamic system that in many cases may lead to

erroneous states after a relative short time of integration

(Rempfer 2000; Noack et al. 2003). Unfortunately, these

reduced-order models determine in general a dynamical

system that in many cases may converge to erroneous

states after a relative short time of integration. The origins

of the lack of robustness of the POD ROM are evidenced at

various levels in Holmes et al. (1996):

• Pressure terms are neglected in the computation of the

coefficients of the dynamic system.

• Numerical errors that spread through the model: They

may result from the truncation of the basis used to

decompose the model variables or to the inaccurate

estimation of the time derivatives coefficients of the

temporal modes that determine the dynamic system

coefficients due to the ill-conditioned least-squares

method for the estimation.

• Dissipation loss due to mode truncation.

Methods for the calibration of ODE systems using the

POD-Galerkin methodology are therefore necessary in

order to guarantee a convergence of these systems own

dynamics toward the temporal dynamics of the initial POD

modes. The various sources of error mentioned generally

combine with each other, which is why the ROM stabil-

ization methods proposed in the literature are based on the

resolution of a specific physical phenomenon.

The small number of POD modes selected according to

an energy criterion to build the POD ROM implies that the

modes with the weakest contribution to the dynamics are

neglected. These modes may correspond to small scales

and their effects on flow dynamics may be quite significant

if they are related for instance to energy dissipation

mechanisms. The most commonly used method to control

the ROM over time is to include the effect of dissipation of

the truncated modes on the ROM through the addition of an

artificial viscosity.

Delville et al. (2001), Podvin and Lumley (1998) added

a constant viscosity acting in the same way on all the POD

ROM. The viscosities finally obtained depend on the nature

of the initial data, Aubry et al. (1988) introduced an

empirical viscosity, called turbulent viscosity, in order to

model the effect of energy exchanges between the selected

and truncated POD modes. Cazemier et al. (1998) proposed

another definition of this empirical viscosity by adding a

conservation constraint of the energy conveyed by the

reduced-order model, Karamanos and Karniadakis (2000)

used a alternative dissipative model called spectral van-

ishing viscosity model and Bergmann et al. (2005) consider

turbulent viscosities as non-stationary correction coeffi-

cients for the constant and linear terms of the ROM which

minimize the prediction error of the POD-Galerkin

reduced-order model. To make up for the structural insta-

bility of the reduced-order model caused by the truncation

of the modal basis, the addition to the truncated POD basis

of modes that are significant from the viewpoint of the

general flow dynamics, but containing little energy, seems

to improve the robustness of the reduced-order model

(Noack et al. 2003).

These calibration terms are determined a posteriori by

means of a constrained minimization problem while

respecting the formulation of the ODE system resulting

from the Galerkin projection. Among the works carried out

for this purpose, we can quote Galletti et al. (2005), who

used a direct and adjoint model optimization method to

determine these coefficients under the nonlinear constraints

optimization for the ROM. Couplet et al. (2005) proposed a

calibration technique based on the minimization of a linear

functional, leading to similar results with a lower numeri-

cal cost. Cordier et al. (2010) proposed an improvement of

this procedure by using a calibration method based on

Tikhonov regularization. Bergmann and Cordier (2008) use

trust region methods to control the reduced-order model

around a cylinder in laminar flow.

The calibration procedure considered in this paper is

based on data assimilation techniques. These techniques

serve to reconstruct the state of a dynamic system by

combining the information contained in the spatial and

temporal evolution equations of the dynamic system under

consideration with the physical information contained in

the observations of this system over time. These methods

are commonly used in fields such as oceanography and

meteorology where it is necessary to introduce observation

data into the model to take account of spatial and temporal

specificities of the physical phenomenon being studied, and

thus be able to make an historical analysis of this phe-

nomenon (Cao et al. 2007; Fang et al. 2009; Le Dimet and

Talagrand 1986). For that purpose, the use of stochastic

methods may be envisaged.

The aim of this article is to investigate sequential data

assimilation methods on POD-Galerkin low-order model to

reconstruct the flow around a NACA0012 airfoil at Rey-

nolds numbers of 1000 and 2000 and at angles of attack of

10�; 15�; 20� and 30�. For a dynamic system and a series of

observations of this system in time, sequential data

assimilation is a method which combines the observations

with prior knowledge of the current state of the system to

obtain updated and improved estimates of the distribution
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of true model states or parameters. This work is conducted

in a Bayesian statistical framework which includes a

forecast model that propagates the systems dynamics for-

ward in time and an observation model that maps the

observations to model states and a probability density

function, noted pdf, of model and measurements errors. A

filtering approach is applied which consists in estimating

the system at time k on the basis of observations available

up to time k.

The paper is organized as follows. Section 2 briefly recalls

the principles of the proper orthogonal decomposition and

the standard velocity POD ROM for incompressible flows.

The Bayesian approach is introduced, and different calibra-

tion methods based on Bayesian filtering of the POD ROM

are presented. The linear Kalman filter and the Ensemble

Kalman filter are then introduced. The experimental setup

used to obtain the flow database is presented in Sect. 3.

Numerical results of POD and POD ROM are presented in

Sect. 4. Section 5 presents results of the application of Kal-

man filtering on the linear and quadratic POD ROMs.

Finally, Sect. 6 is dedicated to our conclusions.

2 Sequential data assimilation applied to proper

orthogonal decomposition

2.1 Reduced-order model based on proper orthogonal

decomposition

The proper orthogonal decomposition (POD) is a method

used extensively by different authors as a technique to

obtain approximate descriptions of large scale or coherent

structures in laminar or turbulent flows. This section briefly

reviews its main characteristics. The POD method was first

introduced in turbulence by Lumley (1967) so as to identify

the coherent structures widely known to exist in incom-

pressible turbulent flows. The POD, also known as Karh-

unen-Loève decomposition, principal component analysis

or empirical eigenfunctions method, has been widely used

to develop reduced-order flow models so as to approximate

the Navier–Stokes equations for the reconstruction of flow

fields.

Considering X 2 R
2 a physical domain with boundary

oX, we assume that the flow dynamics are governed by the

condition of incompressibility and the two-dimensional

unsteady Navier–Stokes equations:

r�u ¼ 0 in X� ½0; T �
ou

ot
þr�ðu� uÞ ¼ � 1

q
rpþ 1

Re

Du in X� ½0; T �

8
<

:

where uðx; tÞ is the velocity vector and Re ¼ U1c=m the

Reynold number of the flow, with c the chord length of the

NACA0012 profile. The POD consists in looking for the

N-orthonormal spatial basis functions f/iðxÞ : X 2 R
2 �!

R
2; i ¼ 1; . . .;Ng with temporal coefficients faiðtÞ : Rþ �
! R; i ¼ 1; . . .;Ng that is most similar in an average sense

to the realizations of the snapshots of the velocity fields

uðx; tkÞ, k ¼ 1; . . .;N. The POD representation is defined

for zero mean signals that is why the temporal average is

considered here as an additive component that is previously

removed from the data. Hence, the expansion of the flow is

expressed by separating flow velocity into mean �u and

fluctuating u0 parts u ¼ �uþ �u which leads to the following

decomposition:

uðx; tÞ ¼ �uðx; tÞ þ
XN

i¼1

aiðtÞ/iðxÞ ð1Þ

where �uðx; tÞ ¼ limT!1
1
T

R
uðx; tÞdt.

The condition of incompressibility is implicity imposed

on the basis functions through the data and hence can be

dropped. Homogeneous Dirichlet or Neumann boundary

conditions are also implicitly satisfied by the basis func-

tions. Generally, the decomposition is taken over the Hil-

bert space L2ðXÞ. The choice of the inner product becomes

a crucial aspect of the decomposition. In the case of

incompressible flow, the standard inner product stands:

ðu;wÞ ¼
Z

X

uðxÞwðxÞdx ð2Þ

The associated norm of the scalar product corresponds to

kinetic energy of the flow contained in X. The POD basis is

constructed with a constrained optimization problem

(Berkooz et al. 1993) equivalent to the following Fredholm

integral eigenvalue problem (Lumley 1967):
Z

X

Rðx; yÞ/ðyÞdy ¼ k/ðxÞ ð3Þ

where Rðx; yÞ is a two-point correlation tensor:

Rðx; yÞ ¼ 1

N

XN

i¼1

uðx; tiÞ � uðy; tiÞ ð4Þ

The eigenvalue problem (3) can be formulated as:

XN

k¼1

Cðtk; tiÞaðtkÞ ¼ kaðtiÞ ð5Þ

where C ¼ 1

N
ðuðx; tkÞ; uðx; tiÞÞ is a N � N symmetric and

positive definite correlation matrix. It is well known

(Lumley 1967) that the solution of the optimization prob-

lem (3) is provided by the N eigenfunctions

fa1ðtÞ; a2ðtÞ; . . .; aNðtÞg associated with the eigenvalues

k1� k2� � � � � kN of the matrix C. This method, known as
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the snapshot POD method (Sirovitch 1987), is used when

the time range is much lower than the velocity field spatial

dimension. The spatial basis functions /iðxÞ can be then

calculated from flow realizations uðx; tkÞ and the temporal

POD modes aiðtÞ:

/iðxÞ ¼
1

N

XN

k¼0

1

ki

aiðtkÞuðx; tkÞ for i ¼ 1; . . .;N ð6Þ

The Galerkin projection of the Navier–Stokes equations

onto the subspace spanned by the N vectors of the POD

basis formally writes:

ou

ot
;/i

� �

þ ððu�rÞu;/iÞ ¼ �
1

q
rp;/i

� �

þ 1

Re

Du;/i

� �

The spatial modes are orthonormal, a Galerkin projection

of the Navier–Stokes equations, under the hypothesis of

incompressible flow, reduces the system of partial differential

equations to a system of ordinary differential equations with

respect to the temporal coefficients of the decomposition.

Identifying uðx; tÞ to its modal decomposition (1) leads

to a quadratic system of ODE called POD ROM describing

the evolution of the temporal coefficients with constant Di,

linear Lij and quadratic Cijk terms:

d

dt
aiðtÞ ¼ Di þ

XN

j¼1

LijajðtÞ þ
XN

j¼1

XN

k¼1

CijkajðtÞakðtÞ

aið0Þ ¼ ðut¼0 � �u;/iÞX

8
><

>:
ð7Þ

In the following, linear POD ROM refers to the POD ROM

defined in (7) without the coefficients Cijk whereas the

quadratic POD ROM refers to (7).

The dimension of the system depends on the number of

components retained for the analysis. This degree of free-

dom is usually determined from an energetic criterion

called Relative Information Content (RIC) (Bergmann and

Cordier 2008):

RICðNPODÞ ¼
XNPOD

i¼1

ki=
XN

i¼1

ki ð8Þ

The coefficients of the dynamic system are not directly

estimated by the Galerkin projection but from the least-

squares regression applied to the experimental data using

the polynomial identification technique proposed firstly in

Perret et al. (2006). As described in Noack et al. (2005), the

POD ROM with the quadratic term defined in (7) can

efficiently represent incompressible fluid flows. However,

this kind of low-order model is known to diverge, or

damped, rapidly in time if left uncontrolled. It is thus

necessary to stabilize the POD ROM which has led a

number of authors to introduce regularization terms in

order to stabilize the models (Aubry et al. 1988; Karam-

anos and Karniadakis 2000; Bergmann et al. 2005). The

methods considered in this paper rely on Bayesian methods

applied to POD ROM. They include the classical Kalman

filter and the Ensemble Kalman filter. These filtering

methods of stochastic nature do not introduce any cali-

bration terms and are designed to handle inaccurately

specified and truncated dynamic systems.

2.2 Sequential data assimilation

The estimation of the state of a dynamic system using

sequential data assimilation can be seen as a probabilistic

inference problem, and formulated as the estimation of an a

posteriori probability distribution of the system state

variables at a given time knowing an history of measured

data until that time. The state space approach provides a

general framework for describing this state estimation and

the assimilation estimation can be formulated sequentially

by a stochastic filtering problem. This section provides

some necessary recalls about the Bayesian formulation of

data assimilation and presents two filtering methods, the

linear Kalman and Ensemble Kalman filters. More details

on sequential data assimilation, Bayesian filtering and

Kalman filtering can be found in Le Gland (2009).

2.2.1 State space model

In the following, the state variables at instant k will be

represented by a vector xk of dimension n with initial pdf

pðx0Þ. A sequence of measurements or observations from

time 1 to k will be denoted by a set of vectors of dimension

n as: y1:k ¼ fyi; i ¼ 1; . . .; ng where the time between two

successive measurements is arbitrarily set to Dk = 1. We

consider the nonlinear discrete-time dynamic system:

xk ¼ fk�1ðxk�1Þ þ wk ð9Þ

yk ¼ hkðxkÞ þ vk ð10Þ

where the functions f and h represent the system and obser-

vation models, respectively. Here, fk is a nonlinear operator

describing the state propagation between two consecutive

time steps k � 1 and k. The true state at time k is assumed to be

related to hk, the observation vector that describes what

observation would be measured given the state xk. The

observation yk is conditionally independent given xk and the

observation is represented by the pdf pðykjxkÞ which is often

named as likelihood. In this article, fk corresponds to the POD

ROM and the observations y1:k are the temporal POD modes.

We assume that the stochastic processes ðwkÞk� 0 and ðvkÞk� 1

are i.i.d (independent identically distributed) additive tem-

poral white Gaussian processes with zero mean and covari-

ance matrices Qk and Rk respectively.

The state sequence governed by Eq. (9) is a stochastic

process which is completely described by its pdf pðxkÞ
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assumed to be Gaussian with covariance matrix Pk. It can

be seen as a hidden Markov process according to the

conditional pdf pðxkjxk�1Þ, called the transition distribution

where all the state vectors x0; x1; . . .; xk are mutually

uncorrelated. Under these assumptions, their corresponding

pdfs are fully described by their mean and covariance. The

presence of errors in both the evolution and the observation

steps leads naturally to a probabilistic formulation of the

data assimilation problem, where the interest focuses not

only on the state xk but on its probability density function

given the observations up to that time pðxkjy1:kÞ called the

filtering distribution.

The aim of state estimation in the Bayesian filtering is to

estimate the filtering distribution pðxkjy1:kÞ at each mea-

surement time k. This distribution can be obtained recur-

sively by the Bayesian filtering equations and will

constitute the minimum variance estimation between the

state variables trajectories at instant k and a history of

observations until that time.

2.3 Bayesian filtering

The initialization of the Kalman filter is given by the distri-

bution pðx0Þ, described by a Gaussian of mean x0 and

covariance P0. Given the initial a priori pdf pðx0Þ, the tran-

sition distribution pðxkjxk�1Þ, and the likelihood pðykjxkÞ, the

aim of the filtering is to estimate the optimal state at time k

given the observations up to time k. Assuming pðxkjy1:k�1Þ is

known, the filtering distribution pðxkjy1:kÞ is evaluated in two

steps: the correction and update steps.

• The prediction step evaluates the predicted filtering

distribution pðxkjy1:k�1Þ from pðxk�1jy1:k�1Þ and the

transition distribution pðxkjxk�1):

pðxkjy1:k�1Þ ¼
Z

pðxkjxk�1Þpðxk�1jy1:k�1Þdxk�1 ð11Þ

• The correction step integrates the new observation yk

through the knowledge of the likelihood pðykjxkÞ. When

an observation yk becomes available at time k, it is

possible to obtain this posterior pdf pðxkjy1:kÞ via the

Bayes’s rule:

pðxkjy1:kÞ ¼
pðykjxkÞpðxkjy1:k�1Þ

pðykjy1:k�1Þ
ð12Þ

where pðykjxkÞ is the observation’s likelihood. The

normalizing constant pðykjy1:k�1Þ is called the marginal

likelihood and is defined as:

pðykjy1:k�1Þ ¼
Z

pðykjxkÞpðxkjy1:k�1Þdxk ð13Þ

The filtering distribution pðxkjy1:kÞ of the state xk given the

observations y1:k provides a complete solution of the

sequential data assimilation problem, and determines an

optimal estimate of the state xk. However, despite the simple

formulation of the solution, it is generally impossible to solve

this problem analytically and approximate methods must be

used except in the particular case of linear gaussian systems

where the corresponding filtering distribution is Gaussian and

completely defined from its two firsts moments. The Kalman

filter provides an optimal analytic iterative formulation of

their expression. For nonlinear systems and non-gaussian

distributions, approximations of the optimal Bayesian solution

can be derived. The following section recalls the Kalman

filter’s formulas for linear and nonlinear dynamic system.

2.4 Kalman filtering

2.4.1 Introduction

Kalman filtering, first introduced by Kalman and Bucy

(1961), combines observations of the current state of a

dynamic system with forecasted results to provide the most

accurate estimation, referred to as analysis in the data

assimilation community, of the current state of the system.

In this section, the basic theory of linear and Ensemble

Kalman filters is recalled.

2.4.2 Linear Kalman filter

We will assume that the evolution of state variables is

described through a recursive discrete linear time invariant

dynamic system model:

xk ¼ Fxk�1 þ wk ð14Þ

yk ¼ Hkxk þ vk ð15Þ

where F is a n� n matrix and wk and vk are white Gaussian

noises with covariance Qk and Rk. The linearity of the

observation operator (10) is also assumed. The initialization

of the filter is given by the distribution pðx0Þ, described by a

Gaussian of mean x0 and covariance P0. Given the available

observations, the Kalman filter computes the filtering dis-

tribution pðxkjy1:kÞ in two steps as described below. The first

step is the prediction step where pðxkjy1:k�1Þ is determined

from pðxk�1jy1:k�1Þ. The prediction is then corrected with

the new available observation yk. The result of the correc-

tion step, also called analysis, provides the vector

xa
k,E½xkjy1:k� and the covariance Pk

a,E½ðxk � xa
kÞðxk � xa

kÞ
T

jy1:k� characterizing the Gaussian filtering distribution at

time k. These moments depend on the mean xa
k and

covariance Pa
k . The state space model is considered here as

linear and gaussian, hence the transition distribution and the

likelihood are also gaussians. So for all k ¼ 1; . . .;N if

pðxk�1jy1:k�1Þ is a gaussian density with mean ma
k�1 and

covariance Pa
k�1 we have the following quantities:
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pðxkjxk�1Þ ¼ N ðmf
k;P

f
kÞ ð16Þ

pðykjxkÞ ¼ N ðma
k ;P

a
kÞ ð17Þ

with m
f
k;P

f
k;m

a
k ;P

a
k defined as follows:

m
f
k ¼ Fkma

k�1
ð18Þ

P
f
k ¼ FkPa

k�1FT
k þ Qk ð19Þ

ma
k ¼ m

f
k þ Kkðyk � Hkm

f
kÞ ð20Þ

Pa
k ¼ ðI � KkHkÞPf

k
ð21Þ

where Kk ¼ P
f
kHT

k ðHkP
f
kHT

k þ RkÞ�1
is the so-called Kal-

man gain (Throughout this paper we use superscripts ‘‘f’’

for forecasted and ‘‘a’’ for analyzed). A demonstration of

these properties can be found in Le Gland (2009). In prac-

tice, the process noise and measurement noise covariance

matrices might change with each time step or measurement;

however, here, we assume they are constant. The covari-

ance matrices in the Kalman filter provide a measure for

uncertainty in the predictions and updated state estimate.

In the case of a linear and Gaussian system, the discrete-

time Kalman filter is the exact solution of the problem of

optimal filtering because it is equivalent to the BLUE (Best

Linear Unbiased Estimator) (Le Gland 2009) and produces

the optimal minimum mean-square error of the underlying

system state as described in Kalman and Bucy (1961).

However, the computation of covariance matrices is the

main issue. Even if the state and measurement equations are

linear with additive Gaussian white noise, for sufficiently

large-scale problems, such as those which arise in weather

forecasting and oceanography, computing and storing the

error covariance matrices involved in the Kalman filter are

practically impossible and hence, approximations must be

made. Besides, for nonlinear systems, the solution exists but

it is impossible to determine it analytically.

Several advanced filter algorithms based on the Kalman

filters have been developed for data assimilation with large-

scale nonlinear models. The Ensemble Kalman filter

(EnKF) first proposed by Evensen (1994), including several

of its variants, is one of the most used filter algorithms. The

Singular Evolutive Extended Kalman (SEEK) filter (Pham

et al. 1998) and the Singular Evolutive Interpolated Kalman

(SEIK) filter (Pham 2001) provide alternative approaches.

2.4.3 Ensemble Kalman filter

This section presents the ensemble extension of the Kal-

man filter for systems described by nonlinear dynamics (9)

and a linear measurement model (10).

The EnKF is a Monte Carlo, derivative-free, alternative

to the extended Kalman filter (Gelb 1974), to approximate

the Kalman filter for the linear gaussian state space model.

It was developed for the nonlinear gaussian models with

great performance compared with the other methods. The

Ensemble Kalman filter relies on an ensemble of samples to

describe the different probability distributions. The princi-

ple of the EnKF is to evaluate the empirical covariance

matrix of an ensemble of elements instead of the exact

covariance matrix by matrix products. The covariance P
f
k is

then replaced by the empirical covariance noted PN
k and the

Kalman gain by the empirical Kalman gain noted KN
k where

N is the number of ensemble elements used in the EnKF.

From initial conditions, the initial pdf is sampled by N

members x
a;i
0 normally distributed. Forecast distribution and

filtering distribution are, respectively, approximated through

a prediction step and a correction step of the ensemble

members. The prediction step consists in propagating the

ensembles x
a;i
k�1 through the nonlinear dynamics in order to

obtain the forecast ensemble, denoted by x
f ;i
k (Burgers et al.

1998; Evensen 2003, 2006; Bishop et al. 2001). From the

corresponding prediction of these ensembles, the empirical

covariance matrix PN
k is calculated which leads to the com-

putation of the Kalman gain KN
k of the EnKF.

The EnKF assumes the Gaussian approximation

between assimilation times, in order to apply Kalman’s

formulae. The empirical mean mN
k of the forecast ensemble

is firstly defined by:

mN
k 	

1

N

XN

i¼1

x
f ;i
k ð22Þ

The empirical ensemble covariance matrix PN
k is then

deduced from the following expression:

PN
k 	

1

N � 1

XN

i¼1

x
f ;i
k � mN

k

� �
x

f ;i
k � mN

k

� �T
� �

ð23Þ

Similarly to the Gaussian case presented in the previous

section, the empirical Kalman gain KN
k can be computed

from the ensemble variance. We have:

KN
k PN

k

� 	
¼ PN

k HT
k HkPN

k HT
k þ RN

k

� 	�1 ð24Þ

In the corrective step, the forecast ensemble members are

moved toward the new observation and updated according to

the Kalman filter scheme and replaces the covariance matrix

by the sample covariance computed from the ensemble:

x
a;i
k ¼ x

f ;i
k þ KN

k yk � Hkx
f ;i
k þ vi

k

� �h i
ð25Þ

The corrected ensemble are then propagated in the state

space model at step k þ 1. The algorithm of the EnKF is

presented in Fig. 1.

The Ensemble Kalman filter is a gaussian Kalman

filter. Errors are statistically represented by an ensemble

of points directly propagated by the state equation
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without any linearization. The analysis step is the same

as the standard Kalman filter. One of the most attractive

aspect of the EnKF is that the ensemble size required is

usually much smaller than the dimension of model state.

So it can be applied to solve high-dimensional problems

which cannot be tackled using traditional Kalman filter.

The EnKF does not require the linearity of the state

equation but the linearity of the observation operator Hk.

However, as shown by Evensen (2003), it is possible to

use the EnKF for a system in which the observation

operator is nonlinear, without using linearization. For the

EnKF, adding stochastic perturbations to the observations

is essential for each ensemble member. Indeed, as sta-

tistic samples become less significant by point coales-

cence, adding noise to the observations can be interpreted

as adding a stochastic term which leads the sample to

become more significant (McKean 1969).

Potential loss of rank may occur with the EnKF where

random measurement perturbations are used to represent the

measurement error covariance matrix. The measurement

perturbations introduce sampling errors which can be fully

eliminated by a proper sampling of measurement perturba-

tions or avoiding the perturbations as such. The Ensemble

Square-Root filter (EnSRF) avoids the measurement’s per-

turbations and thus has a lower analysis error by reducing this

additional source of sampling error, without imposing any

additional approximations, such as the assumption of

uncorrelated measurement errors (Evensen 2004).

2.4.4 Ensemble square-root Kalman filter

This section is devoted to the Ensemble Square-Root

Kalman filter (EnSRF) that was introduced by Whitaker

and Hamil (2002). The Ensemble Square-Root Kalman

filter (EnSRF) modifies the correction equation in such a

way as to eliminate the necessity to perturb the obser-

vations. The EnSRF algorithm is used to update the

ensemble perturbations and is derived starting from the

traditional analysis equation for the covariance update in

the Kalman filter. Kalman filter of square-root formula-

tion has been used since in meteorology by Bishop et al.

(2001) and Whitaker and Hamil (2002), following the

initial work of Andrews (1968). The general solution was

developed by Andrews (1968) and used in various forms

by Bishop et al. (2001), Whitaker and Hamil (2002),

Anderson (2001) and Tippett et al. (2003). The Ensemble

Square-Root Kalman filter uses the Kalman filter equa-

tions for the estimation of the analysis and correction

error covariance matrices.

Let Xk be the matrix holding the ensemble members at

instant k. The equations of the evolution of the prediction

covariance P
f
k and correction error Pa

k of the Kalman filter

are:

P
f
k ¼ FkPa

k�1FT
k þ Qk ð26Þ

Pa
k ¼ ðI � KkHkÞPf

k
ð27Þ

The matrices P
f
k and Pa

k are symmetrical and positive

definite, so they can be written as P
f
k ¼ ðX

f
kÞðX

f
kÞ

T
and

Pa
k ¼ ðXa

k ÞðXa
k Þ

T
. The Ensemble Square-Root Kalman filter

replaces the equations of the evolution of the matrices P
f
k

and Pa
k by the square root matrices X

f
k ans Xa

k so as to avoid

the inverse computation of the matrices P
f
k and Pa

k . From

the rewriting of the matrix Pa
k one may obtain:

Fig. 1 Ensemble Kalman filter

algorithm
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Pa
k ¼ P

f
k � P

f
kH

f
k HkP

f
kHT

k þ Rk

� ��1

HkP
f
k

Pa
k ¼ X

f
k I � HkX

f
k

� �T

HkX
f
k HkX

f
k

� �T

þRk

� ��1

HkX
f
k

" #

X
f
k

� �T

Pa
k ¼ X

f
k I � VT

k VkVT
k þ Rk

� 	�1
Vk

h i
X

f
k

� �T

with Vk ¼ HkX
f
k and Dk ¼ VkVT

k þ Rk. When observation

errors are decorrelated, i.e., the matrix R is diagonal, the

observation can be sequentially assimilated one other after

the other. In this case, Vk is a column vector and Dk is a

scalar. The matrix square root of I � VkD�1
k Vk can be then

calculated by resolving the following equation for the

scalar bk:

I � VkD�1
k Vk ¼ I � bkVkVT

k

� 	
I � bkVkVT

k

� 	T ð28Þ

which gives the following solution bk ¼ ðDk þ
ffiffiffiffiffiffiffiffiffiffiffi
RkDk

p
Þ�1

.

The correction of the ensemble is then provided by:

Xa
k ¼ X

f
k I � bkP

f
k

� �
ð29Þ

The linear Kalman filter, the Ensemble Kalman filter and

the Ensemble Square-Root Kalman filter are applied on the

linear and quadratic POD ROMs so as to improve their

abilities to accurately reproduce the velocity fluids around

the NACA0012 airfoil from experimental time-resolved

data PIV.

3 Description of the experimental setup

The experimental configuration settled for this work con-

sists of the flow around a NACA0012 airfoil of chord c ¼
60 mm at Reynolds numbers Re of 1000 and 2000 and at

angles of attack of 10�; 15�; 20� and 30� in a square

ð160 mm� 160 mmÞ section water tunnel. Time-resolved

2D-2C PIV measurements were carried out with Nd-YAG

laser (Quantel with nominal energy by pulse of 2� 120

mJ), a pulnix Dual tap Accupixel camera (2,048 9 2,048

px image size), using polyamide seeding particles of 15 lm

mean diameter.

The PIV records were analyzed through a cross-corre-

lation technique implemented with a Fast-Fourier-Trans-

form algorithm in a multi-grid process with 3 iterations (1

at 64 � 64 and 2 at 32 � 32) with 75 and 50 % overlap-

ping, respectively, using window shifting with iterative

deformations and Gaussian sub-pixel peak localization.

The instantaneous vector fields in each snapshot were

validated using objective statistical methods (standard

deviation and local magnitude difference comparisons) to

remove erroneous velocity vectors. The velocity vectors

with a signal-to-noise ratio inferior to 1.5 and those with a

deviation from the median between 1.5 and 2.5 times the

RMS are removed. These erroneous vectors are replaced

with the estimated values obtained with the secondary

correlation peak. The full series of experiments comprised

2,048 samples of velocity fields obtained at a sampling

frequencies f ðPIVÞ ¼ 6:4 Hz for the flows at Re ¼ 1000 and

f ðPIVÞ ¼ 12:8 Hz for the flows at Re ¼ 2000, which corre-

spond, respectively, to a flow velocities of 16.7 and

33:33 mm s�1 (Fig. 2).

Figures 3 and 4 illustrate of the spanwise vorticity Xz

(a dimensioned with U0) for PIV in the plane z ¼ 0 for

the case of 15� and 20� at Re ¼ 1000. The purpose here is

to work with flows having different dynamics according

to a low number of parameters, that is why these two

flows were selected as a reference state. The Reynolds

numbers based on the chord which are concerned here are

low, which makes it possible to suppose that the con-

cerned physical mechanisms remain two-dimensional.

Turbulence is absent with such Reynolds numbers so the

flow is considered as a swirling flow. Different kinds of

vortex shedding of a NACA0012 profile according to the

angle of attack and Reynolds number were determined by

Huang et al. (2001). Several vortex shedding regimes

according to the angle of attack can be distinguished. For

each one of these regimes, the identification of the vortex

shedding is based on the classification proposed by Huang

et al. (2001). For a ¼ 15�; the vortex shedding is of type

separation vortex, and for a ¼ 20�; the vortex shedding is

of type leading edge vortex. The sequence a ¼ 20� and

Re ¼ 1000 covers 23 vortex shedding cycles with a

Strouhal number St ¼ 0:265 and the a ¼ 15� sequence at

Re ¼ 1000 depicting 30 vortex shedding cycles with a

Strouhal number St ¼ 0:345. Sampling rate enables us to

obtain approximately 89 snapshots of velocity fields for

the case a ¼ 20� at Re ¼ 1000 and 68 snapshots for the

case a ¼ 15� at Re ¼ 1000, by vortex shedding period

TSt
¼ 1

St

c

U0

where St is the Strouhal number of the vortex

shedding cycles. Figure 3 represents snapshots of the flow

fields estimated from PIV for non-dimensional times

tH ¼ t

TSt

.

4 Characterization of the linear and quadratic POD

ROMs

The snapshot POD method was performed using the

sequences of PIV measurements after substraction of their

time-averages. The RIC of the NPOD first projection modes

obtained from the series of 2,048 snapshots of the studied

configurations is given in Table 1.
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For the configurations a ¼ 20� Re ¼ 1000 and

a ¼ 15� Re ¼ 1000, the evolution of the RIC of the NPOD

first POD modes is represented, respectively, in Figs. 5 and 6.

For the configuration a ¼ 15� and Re ¼ 1000, the two most

energetic modes represent more than 80 % of the total tur-

bulent kinetic energy of the flow, whereas the first 28 modes

Fig. 2 Experimental setup: a square-section, b test section and c NACA0012 profile at angle of attack of 20�

Fig. 3 Snapshots of the

vorticity field Xz estimated from

PIV–tH = 5.75 and tH ¼ 11:5,

tH ¼ 17:25 and tH ¼ 23 - a ¼
20� and Re ¼ 1000

Fig. 4 Snapshots of the

vorticity field Xz estimated from

PIV–tH ¼ 7:48 and tH ¼
14:97; tH ¼ 22:46 and tH ¼
29:94 - a ¼ 15� and Re ¼ 1000
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concentrate 90 %. These coupled modes correspond to the

structure of the von Karman vortices which strongly domi-

nate the flow.

For the studied configurations, the RIC converges

slowly to 100 %. Indeed, for most cases, a high number of

projection modes are necessary to reconstruct the flow with

a satisfactory energetic content. For example, to recon-

struct 90 % of the flow, 599 temporal modes are necessary

in the case a ¼ 30� and Re ¼ 2000, and 207 in the case

a ¼ 15� and Re ¼ 2000. So as to illustrate the velocity field

reconstruction from the POD, Figs. 7 and 8 depict the

spanwise vorticity Xz corresponding to a RIC of 90 % in

both cases.

Linear and quadratic reduced-order models based on (7)

are tested on the flows around the NACA0012 airfoil at

Reynolds numbers Re of 1000 and 2000 and angles of attack

of 10�; 15�; 20� and 30�. The snapshot POD method intro-

duced by Sirovich (1987) is first performed using the full

sequences of the PIV measurements and used to built the

POD basis /iðxÞi¼1;...;N . The 2,048 snapshots uniformly

distributed over time are used to compute the discrete form of

the temporal correlation matrix C and the POD basis func-

tions are obtained via a projection of the temporal tensor

eigenvectors on the whole set of snapshots. Using the most

energetic modes and the snapshot mean, the POD-Galerkin

model is defined with constant model coefficients, according

to Eq. (7). The initial condition of the dynamic system is

given by the projection of the first snapshot on the POD basis.

The coefficients Di; Lij;Cijk empirically defining the linear

and quadratic POD ROMs are estimated with a polynomial

identification. The models are integrated with a constant time

Fig. 5 a RIC of the fluctuating

modes–a ¼ 20� and Re ¼ 1000

b RIC of the fluctuating

modes—a ¼ 20� and

Re ¼ 1000—zoomed

Fig. 6 a RIC of the fluctuating

modes–a ¼ 15� and Re ¼ 1000,

b RIC of the fluctuating

modes—a ¼ 15� and

Re ¼ 1000—zoomed

Table 1 RIC in function of the number of projected coefficients

NPOD for each configuration

RICðNPODÞ 50 % 60 % 70 % 80 % 90 %

a ¼ 30� Re = 2000 NPOD 30 57 114 255 599

a ¼ 30� Re = 1000 NPOD 7 12 25 58 181

a ¼ 20� Re = 2000 NPOD 14 23 39 69 149

a ¼ 20� Re = 1000 NPOD 2 4 10 21 59

a ¼ 15� Re = 2000 NPOD 22 35 57 99 207

a ¼ 15� Re = 1000 NPOD 
 
 
 2 28

a ¼ 10� Re = 2000 NPOD 15 23 37 63 126

a ¼ 10� Re = 1000 NPOD 12 25 45 76 139

* Indicate RIC reached with 2 POD modes
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step explicit Runge-Kutta method with a timestep Dt ¼
0:001 9 DtðpivÞ, where DtðpivÞ ¼ 1=f ðpivÞ, over the time

interval in which the snapshots are taken. Due to the high

number of POD modes necessary to obtain a high RIC, only

the linear POD ROM will be used at RIC = 90 %. For the

quadratic ROM, only the 10 first temporal modes will be

used, which correspond to a RIC from 50 to 70 %. The dif-

ferent evolutions of the linear and quadratic POD ROMs are

summarized in Table 2. The corresponding behaviors of the

POD ROMs are plotted on Figs. 9 and 10 where the original

data have also been plotted for comparison purpose. It can be

observed that the short-term behaviors of the linear and

quadratic POD ROMs are not accurate. In all the configu-

rations tested, errors in amplitude and phase appear quickly

at the first time steps and are followed, according to the

configurations, by divergence or damping of the amplitude.

Both the linear and quadratic models can either diverge or

remain stationary, so that none of them can properly repro-

duce the flow dynamics.

As was already mentioned in Sect. 2, system (7) is

clearly unstable when integrated in time. That has led many

authors to introduce regularization terms in order to sta-

bilize the model, via constrained optimization methods. We

propose, in the following section, to apply linear and

nonlinear bayesian inference methods based on sequential

data assimilation so as to to stabilize the temporal evolu-

tion of the linear and quadratic ROMs without the intro-

duction of corrective terms.

Fig. 7 Snapshots of the

vorticity Xz field estimated from

POD with RIC ¼ 90 %—tH ¼
5:75 and tH ¼ 11:5; tH ¼ 17:25

and tH ¼ 23—a ¼ 20� and

Re ¼ 1000

Fig. 8 Snapshots of the

vorticity Xz field estimated from

POD with RIC ¼ 90 %—tH ¼
7:48 and tH ¼ 14:97; tH ¼
22:46 and tH ¼ 29:94—a ¼ 15�

and Re ¼ 1000
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5 Stabilization of the linear and quadratic POD ROMs

by Kalman filtering

This section is devoted to the application of Bayesian

inference techniques on the POD ROM so as to improve

the estimation of predicted temporal modes with linear and

quadratic POD ROMs from discrete sequences of POD

temporal modes provided by the snapshot POD method.

Following the notation used in Sect. 2.2 the vector xk is

the n dimensional state space vector to estimated with the

function fk which represents the linear or the quadratic

POD ROM. The vector x
f
k contains the predicted POD

temporal modes and the vector xa
k the temporal modes

corrected with the Kalman filter. The vector yk contains the

POD temporal modes. The white gaussian noises wk and vk

of the state and observation equations of the Kalman filter

are initialized as:

• Q ¼ 0:001 I and R ¼ 0:001 I, where I is the identity

matrix of size NPOD for the linear Kalman filter.

• w�Nð0; 0:01Þ and v�Nð0; 0:01Þ for the EnKF.

• w�Nð0; 0:01Þ for the EnSRF.

In order to initialize the EnKF, the use of N ¼ 100 is

usually retained, taking into account the fact that moreover

it presents one certain margin compared with the N ¼ 20

number of ensemble which guarantee the positivity of

covariance (Houtekamer et al. 2005). However, to ensure a

good convergence of the EnKF, the overall number N used

for the EnKF filter will vary according to the number of

selected POD coefficients. This is why one choose an

overall number of ensemble members N such as if

NPOD\100, then N ¼ 100 and 100\NPOD\200, then N ¼
250 and NPOD [ 200, then N ¼ 500.

Figures 11 and 13 present the reconstructed temporal

modes a1ðtÞ; a2ðtÞ and a5ðtÞ; a10ðtÞ after the assimilation of

the observed POD temporal modes for a ¼ 20� and

Re ¼ 1000. Flow reconstruction at different instants and

vector fields associated for the case a ¼ 15� and a ¼ 20� to

Re ¼ 1000 are presented on the Figs. 18, 19 and 20. These

flow reconstruction are obtained by using the EnKF on the

linear POD ROM with a RIC of 90 %, with 28 projection

modes for the case a ¼ 15� and 59 projection modes for the

case a ¼ 20� Re ¼ 1000 (Fig. 12).

Figure 13 shows the effects of Kalman filtering on POD

ROM instability. The POD ROM does not diverge much

along short time steps, which allows the Kalman filtering to

operate efficiently on the POD ROM where the predicted

temporal modes are close to their true values. However, the

filtering is done using a complete set of observations with

low level of noise leading to very low error levels as shown

in Fig. 14. Kalman filters used this way are not a straight-

forward solution for the global problem of the prediction of

flow fields using POD ROMS, but they have sufficiently

interesting stabilizing properties to be used in this context.

Indeed, as can be observed, the Ensemble Kalman filter

enables for the linear reduced-order model to faithfully

recover with a good accuracy the trajectories correspond-

ing to the POD modes. The various criteria quantifying the

efficiency of the Kalman filters used on the linear and

quadratic POD ROMs highlight behaviors which differ

according to the configurations studied. The application of

the linear Kalman filter to the POD ROM implies an

increase in the instantaneous error E in the L2 norm of the

prediction modes according to the number of projection

modes in all cases, except the case a ¼ 30� Re ¼ 2000.

Indeed, in this case, where 255 projection modes are used,

the reconstruction error remains homogenous and in the

order of 0.1, which here translates into a divergence of the

linear Kalman filter. In other configurations, the maximum

reconstruction error committed by the linear Kalman filter

is in the order of 8� 10�3. Depending on the configura-

tions studied, the reconstruction error of the linear Kalman

filter is multiplied by a factor 3, 4 or 6 according to the

number of projection modes used (Fig. 14; Table 3). For

example, for case a ¼ 10� Re ¼ 1000, the reconstruction

error over the first coefficients is 0:001, and 0:006 over the

last ones. The efficiency of the linear Kalman filter thus

depends on the number of coefficients used on the POD

ROM. Despite the increase in the RMSE with the number

of coefficients, its values remain low in most configurations

Table 2 Temporal evolution of the linear and quadratic POD ROMs

for the different configurations

a� 30 30 30 30

Re 2000 1000 2000 1000

ROM Linear Linear Quadratic Quadratic

Evolution Damping Damping Damping Stationnary

a� 20 20 20 20

Re 2000 1000 2000 1000

ROM Linear Linear Quadratic Quadratic

Evolution Divergence Divergence Divergence Divergence

a� 15 15 15 15

Re 2000 1000 2000 1000

ROM Linear Linear Quadratic Quadratic

Evolution Damping Damping Damping Stationnary

a� 10 10 10 10

Re 2000 1000 2000 1000

ROM Linear Linear Quadratic Quadratic

Evolution Divergence Damping Divergence Stationnary
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tested provided the number of coefficients is not too high,

i.e., lower than 200.

For the EnKF and EnSRF filters applied to the POD-

Galerkin linear ROM, the reconstruction error remains

homogenous over time. An increase in the reconstruction

error with the number of projection modes is observed (Fig.

14) with the increase in the frequency of temporal modes.

However, this increase is slight, in the order of 1.5 between

the first and last coefficients estimated (Fig. 14). The

reconstruction error is small in all configurations tested,

and in the order of 10�4. The reconstruction error com-

mitted by the EnKF and EnSRF filters is systematically

lower than that committed by the linear Kalman filter. For

example, for case a ¼ 20� Re ¼ 2000, the maximum

reconstruction error of the EnKF filter is 0:00015, that of

the EnSRF filter 0:0006 and that of the linear Kalman filter

increases from 0:005 to 0:006. The difference in quality

between these three Bayesian estimators can also be found

in their RMSE (Figs. 15, 16). In each case, the RMSE of

the EnKF and EnSRF filters remains in the order of 10�4

and 10�3 while that of the linear Kalman filter is in the

order of 10�2 and 10�3 (Table 4). The RMSE of the linear

Kalman filter is always higher than that of the EnKF and

EnSRF filters. Use of the EnKF filter on the quadratic POD

ROM results in a reconstruction error in the order of 10�4

between the coefficients (Table 5). The RMSE is also low,

in the order of 10�3. Unlike the linear case, the small

dimension of the state vector does not produce a trend in

terms of the evolution of the reconstruction error according

to the number of coefficients used (Fig. 17).

The EnKF and EnSRF filters do not diverge over time

and the quality of reconstruction of the prediction modes

allows an estimation of the prediction modes without a loss

of phase or amplitude relation (Figs. 11, 12, 13). The same

goes for the linear Kalman filter when it does not diverge.

These Bayes estimators allow calibration of the linear POD

ROM. Application of the EnKF filter to the quadratic POD

ROM also allows efficient calibration of the ROM. The

main structures and vector fields of the flow are also

reconstructed (Figs. 18, 19, 20).

Fig. 9 Predicted coefficients

a1ðtÞ; a2ðtÞ; a5ðtÞ; a10ðtÞ—a ¼
20� and Re ¼ 1000

Exp Fluids (2014) 55:1699 Page 13 of 19 1699

123



6 Conclusion and future work

Bayesian inference methods derived from sequential data

assimilation were applied to linear and quadratic POD

ROMs in order to reconstruct the flow fields from

experimental measurement. The ability of these methods to

correct the results of POD ROMs while exploiting avalaible

observations has been studied. Different angles of attack and

Reynolds numbers were tested in order to apply these

methods on the different flow regimes and, consequently, on

Fig. 10 Predicted coefficients

a1ðtÞ; a2ðtÞ; a5ðtÞ; a10ðtÞ—a ¼
15� and Re ¼ 1000

Fig. 11 Reconstructed temporal

modes a1ðtÞ; a2ðtÞ—linear

ROM—a ¼ 20� and Re ¼ 1000:

red dashed line, the temporal

POD modes; blue dashed line,

result of the EnKF filtering

1699 Page 14 of 19 Exp Fluids (2014) 55:1699

123



different behaviors of the POD ROM. The Bayesian infer-

ence methods used here are the following stochastic filtering

methods: the linear Kalman filter, the Ensemble Kalman

filter and the square-root Ensemble Kalman filter. These

Kalman filters enable for the long time PIV sequences to

stabilize linear and quadratic reduced-order models that

faithfully recover with a certain accuracy the trajectories

corresponding to the POD temporal modes.

The Kalman filter sequentially supplies the best least-

squares state estimator for a dynamic linear system given a

Fig. 12 Reconstructed temporal

modes a5ðtÞ; a10ðtÞ—linear

ROM—a ¼ 20� and Re ¼ 1000:

red dashed line, the temporal

POD modes; blue dashed line,

result of the EnKF filtering

Fig. 13 Reconstructed temporal

modes a1ðtÞ—linear ROM—

a ¼ 20� and Re ¼ 1000: red

dashed line, the temporal POD

modes; blue dashed line, result

of the EnKF filtering (zoomed)

Fig. 14 Reconstruction error E between the reconstructed temporal modes of the linear Kalman, red bars, and EnKF filtering, green bars: a
a ¼ 20� and Re ¼ 1000 b a ¼ 20� and Re ¼ 2000
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Table 3 Min to max intervals

of error E—linear POD ROM
Lower and upper bound of E

Re and a Linear Kalman filter EnKF EnSRF

1000 and 10� [0.0015, 0.0105] [0.0003, 0.0007] [0.0004, 0.0009]

1000 and 15� [0.0075, 0.0626] [0.00005,0.0007] [0.0007, 0.0059]

1000 and 20� [0.0008, 0.0060] [0.0002, 0.0008] [0.0001, 0.0008]

1000 and 30� [0.0008, 0.0086] [0.0003, 0.0009] [0.0003, 0.0010]

2000 and 10� [0.0007, 0.0071] [0.0002, 0.0004] [0.000089, 0.0006]

2000 and 15� [0.0006, 0.0078] [0.0008, 0.0027] [0.000081, 0.0007]

2000 and 20� [0.0010, 0.0059] [0.000019, 0.00012] [0.0001, 0.0005]

2000 and 30� [0.0065, 0.0376] [0.0002, 0.0004] [0.0001, 0.0007]

Fig. 15 KF, EnKF and EnSRF

RMSE—a ¼ 20�;Re ¼ 1000

and Re ¼ 2000

Fig. 16 KF, EnKF and EnSRF

RMSE—a ¼ 15�;Re ¼ 1000

and Re ¼ 2000

Table 4 Min to max intervals

of RMSE—linear POD ROM
Min to max intervals of RMSE

Re and a Kalman filter EnKF EnSRF

1000 and 10� [0.0038, 0.1563] [0.0036, 0.0138] [0.0033, 0.0151]

1000 and 15� [0.0083, 0.0454] [0.00008, 0.0005] [0.0008, 0.008]

1000 and 20� [0.0098, 0.0380] [0.0012, 0.0110] [0.0017, 0.0166]

1000 and 30� [0.0528, 0.1205] [0.0040, 0.0203] [0.0050, 0.0194]

2000 and 10� [0.0231, 0.0817] [0.0021, 0.0059] [0.0025, 0.0073]

2000 and 15� [0.0211, 0.0803] [0.0048, 0.0473] [0.0024, 0.0053]

2000 and 20� [0.0257, 0.0808] [0.0005, 0.0015] [0.0025, 0.0071]

2000 and 30� [0.2972, 0.7433] [0.0039, 0.0080] [0.044, 0.0097]
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series of available observations. Here, the linear Kalman

filter is far less efficient for the same model than the EnKF

and EnSRF filters, which result in more homogenous error

levels. The EnSRF also gives the lowest reconstruction

error and RMSE levels. A difference therefore appears

between the linear Kalman filter and the nonlinear Kalman

filters based on Monte-Carlo methods. This leads to dif-

ferent behaviors in the growth of instantaneous and global

prediction errors in the assimilation interval of the obser-

vations. The EnKF and EnSRF filters therefore perform

better than the linear Kalman filter. The linear Kalman

filter does not offer the same quality of reconstruction, but

it does counter the instability of the POD ROM if the

number of POD coefficients remains low. The nonlinear

filters lead to a significant improvement in the ability of the

ROM to show the dynamics of the prediction modes.

Table 5 Min to max intervals of RMSE—Quadratic POD ROM

Min to max intervals of RMSE

Re and a EnKF

1000 and 15� [0.0001, 0.0007]

1000 and 20� [0.00021, 0.0024]

Fig. 17 Snapshots of the

vorticity Xz field reconstruction

with the EnKF applied to the

linear POD ROM with a RIC of

90 %—tH ¼ 5:75 and

tH ¼ 11:5—a ¼ 20� Re ¼ 1000

Fig. 19 Snapshots of the

vorticity Xz field reconstruction

with the EnKF applied to the

linear POD ROM with a RIC of

90 %—tH ¼ 7:45 and

tH ¼ 14:97—

a ¼ 15� Re ¼ 1000

Fig. 20 Snapshots of the

vorticity Xz field reconstruction

with the EnKF applied to the

linear POD ROM with a RIC of

90 %—tH ¼ 22:46 and

tH ¼ 29:94—a ¼ 15� and

Re ¼ 1000

Fig. 18 Snapshots of the vorticity

Xz field reconstruction with the

EnKF applied to the linear POD

ROM with a RIC of 90 %—tH ¼
17:25 and tH ¼ 23—a ¼ 20� and

Re ¼ 1000
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Indeed, it is important to carefully choose the N ensemble

number used in order to avoid divergence of the filter over

time.

The POD ROM, calibrated using Bayesian inference

methods, enables an efficient reconstruction of the pro-

jection coefficients relative to the reference dynamics for

both the linear and quadratic POD ROMs. No amplitude

damping, phase shift or amplitude drift are observed. The

Kalman filter can stabilize a POD ROM over time without

modification of its parameters and without including cali-

bration terms. An analysis of the global relative prediction

errors by coefficient and instantaneous error in the L2 norm

confirms a significant improvement in the accuracy of the

POD ROM. The low error in each case results in a faithful

reconstruction of the coefficients and of the main structures

of the flow, as well as the associated vector fields. This

validates the application of stochastic filtering as a trust-

worthy method for calibration of POD ROMs.

The Bayesian inference methods used here allow to

taking into account of the noise affecting the experimental

measures. An empirical method for adjusting the noise

levels of equations of state and of measure was chosen

here. Different noise levels and ensemble numbers were

tested in order to obtain a sufficiently precise behavior of

the ROM, both linear and quadratic. However, it is possible

to determine these noise levels using a quantification of the

error committed by the PIV, the POD, and the identifica-

tion of the ROM coefficients.
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