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ABSTRACT 

According to the World Health Organization, cardiovascular diseases correspond to the 

prime cause of death globally. Several technologies are employed to measure vital signs 

remotely. For instance, webcams correspond to ubiquitous systems that can be used to 

detect cardiovascular pathologies by sensing important physiological parameters like 

pulse rate. A review of technologies and methods used to remotely measure vital signs 

and biomedical parameters is proposed in this article. Remote sensing of physiological 

parameters concerns every person: from healthy, ill or hospitalized persons to people with 

disabilities or with reduced autonomy. 
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1. INTRODUCTION

Cardiovascular diseases are designated by the World 

Health Organization as the prime cause of death worldwide 

[1]. Because the risk increases as we age, cardiovascular 

diseases impose a burden in terms of mortality and morbidity, 

disability and functional decline. Telemedicine solutions 

provide interesting health care services over a distance 

through the use of telecommunications technologies. 

Solutions are designed to remotely monitor and diagnose 

(telediagnosis) important vital signs like heart and breathing 

rate. 

Remote sensing of physiological signals and biomedical 

parameters is very relevant in the context of teleconsultation: 

the physician and the medical staff can improve their 

diagnostic as they chat with the patient through ICT 

(smartphone, laptop). Ideally, the remote measurements must 

be effected in a non-invasive and non-intrusive way; without 

any specific hardware or additional medical instrumentation; 

without any contact, preferably through cameras that are 

already embedded in mobile devices; in real-time. Remote 

sensing of medical parameters concerns every person: from 

healthy, ill or even hospitalized persons to people with 

disabilities or with reduced autonomy. 

A large set of technologies has been developed or utilized 

over the last years to remotely measure important biomedical 

parameters [2]. These non-contact systems are increasingly 

preferred over contact devices, the latter being prone to 

irritation and discomfort if worn over a long period. In 

addition, infants in neonatal intensive care units and patients 

that present skin ulcers or burns may not be able to wear 

contact probes. Technologies that have been employed by the 

researchers in this particular scientific field can be 

categorized into three groups [2-4]: sensors based on the 

Doppler effect; thermal imaging; video camera imaging. 

A review of technologies and methods used to remotely 

measure biomedical parameters is proposed in this article. A 

particular focus over video camera imaging is proposed in the 

last subsections of the article. 

2. REVIEW OF METHODS: REMOTE

MEASUREMENT OF PHYSIOLOGICAL AND VITAL

SIGNS

A review of recent techniques that were developed to 

sense physiological signals is proposed in this section. Vital 

signs and biomedical parameters like pulse rate, pulse rate 

variability, breathing rate and oxygen saturation are 

continuously measured and monitored during abnormal 

episodes or when the person suffers from typical pathologies 

like brady- and tachycardia (pulse rate is respectively too low 

or too high), brady- and tachypnea (breathing rate is 

respectively too low or too high) or hypoxemia (when blood 

oxygen level is too low) [2]. 

The human cardiovascular and respiratory systems allow 

the proper functioning of all the different body organs [5]. 

The cardiovascular system, which is composed by the heart 

and the blood vessels, ensures transportation of blood, 

nutrients and oxygen throughout the body by the pulmonary 

and systemic circuits (Fig.1 A). The respiratory system 

supplies the body with oxygen and dispose of carbon dioxide 

through respiration processes (Fig.1 B). 

Cardiovascular and respiratory activities lead to several 

physical and physiological body modifications. These effects 

cannot always be seen by the naked eye. However, they 

contain information of interest that can be sensed and 

measured with probes and sensors. For instance, skin color 

changes that are synchronized with heart contractions can be 

observed by standard camera [6]. This particular 

phenomenon, which is called photoplethysmography [7], 

consists in observing modifications between incident light 

and matter to sense blood volume variations and compute 

pulse rate and other relevant physiological signals. 
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Figure 1. (A) The cardiovascular system and (B) the respiratory system. Modified from [5] 

 

Myocardium (cardiac muscle) contractions cause periodic 

blood volume and blood pressure rises [5]. These 

modifications impact the body by causing unintentional head 

[8] and chest [3] movements that can be measured by remote 

sensors. 

Physiological changes caused by the cardiorespiratory 

system can be sensed to compute biomedical parameters like 

pulse rate, pulse rate variability, breathing rate and oxygen 

saturation [2]. Recent researches include methods that relate 

to the Doppler Effect (section 2.1), thermal imaging (section 

2.2) and video camera imaging (section 2.3). 

 

 

2.1 Doppler effect 

 

Volumetric changes orchestrated by the heart muscle are 

partially transmitted to the chest, producing slight 

unintentional chest displacements (Fig.2). Radars based on 

Doppler effect were employed for remotely sensing heart rate 

[3] and respiration [9]. These two physiological functions are 

concurrently present when observing human chest 

displacements. Thus, the challenge consists in efficiently 

separating raw signals before computing biomedical 

parameters. Because they produce significant noise and 

artifacts in signals, natural movements correspond to the 

main limitation of this technology. 

 
 

Figure 2. Pulse rate and breathing rate engender unintentional movements of the chest. These displacements can be sensed by the 

Doppler effect. The frequency and the phase of the reflected signal are slightly different from those of the source signal. From [3] 

 

2.2 Thermal imaging 

 

Thermal cameras are employed to remotely and passively 

(the camera does not emit any electromagnetic energy) detect 

radiations transmitted by bodies, herein by the human body. 

Sensors embedded in thermal cameras are manufactured to 

operate in the infrared spectral range (between near and far 

infrared). Pulse rate [10] and breathing rate [11] have been 

measured from thermal images (Fig.3). 

The propagation of the cardiac pulse produces, by 
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convection and conduction, modulations in the temperature 

of tissues. The evolution of skin temperature over time 

reflects the cardiac pulse waveform [12]. This effect is even 

more perceptible in superficial blood vessels, like the carotid 

for example (Fig.3 A). Digital processing techniques allow 

pulse recovering from composite signals [10]. 

 

 
 

Figure 3. Temperature fluctuations of (A) carotid and (B) nostrils are continuously monitored to respectively measure pulse rate 

and breathing rate in thermal images. Modified from [10] 

 

Expiration and inspiration are the two phases that 

characterize breathing in humans. During inspiration, heat 

exchanges with the external atmosphere cause a temperature 

decrease near the nostrils. In contrast, the expired air has 

higher temperature because of its interaction with the lungs 

and respiratory passageways. Thermal images have been 

employed to measure breathing by tracking nasal regions 

(Fig.3 B). A signal by nostril can be formed to detect a nasal 

congestion in left, right or even both nostrils [11]. Robust 

tracking of vessels in thermal images corresponds to one of 

the main challenges, and thus one of the main limitations, of 

this technology. 

 

2.3 Video camera and webcam 

 

2.3.1 Cardiovascular activity 

Photoplethysmography [7] and ballistocardiography [8] 

are the two main principles for measuring pulse rate in video 

streams recorded by standard video camera. 

Ballistocardiography (BCG) relates to the observation of 

small body displacements [13] that appear during systole 

(cardiac contraction), when the oxygenated blood is ejected 

into the systemic circuit and the deoxygenated blood into the 

pulmonary circuit (Fig.1). BCG is frequently measured on 

sitting subjects to minimize unintentional movements. When 

the heart beats, the flow of blood passes through carotid 

arteries at a high pressure. This generates a force on the head 

that is not noticeable by the naked eye but can be recorded by 

standard cameras using video amplification and 

magnification [8]. 

Photoplethysmography (PPG) consists in an indirect 

observation of blood volume variations by measuring 

absorption and reflection of light on skin tissues [7] (Fig.4 A). 

These fluctuations in volume are periodic and produced at 

each heartbeat: the volume of blood increases during systole 

(cardiac contraction) and decreases during diastole (cardiac 

relaxation). It must be emphasized that the definition of the 

principle is still discussed today: light variations that are 

remotely measured by the camera could in fact be produced 

by elastic deformations of the capillary bed (rise of the 

capillary density that compress tissues during systole) instead 

of a direct observation of the changes in section of the 

pulsatile arteries [14]. 

First measurements of PPG signals from facial videos 

recorded by a standard camera were proposed by Takano et 

al. [15] and Verkruysse et al. [16] in 2007 and 2008 

respectively. The authors proposed a method that detects 

color fluctuations on the face from a set of predefined regions 

of interest. This technique has been employed on 

monochromatic (Takano et al.) and color image sequences 

(Verkruysse et al.). PPG signals are simply formed by 

averaging the intensity of pixels included in the region of 

interest. 

 

 
 

Figure 4. (A) Photoplethysmography consists in measuring variations in light absorption on skin tissues. (B) The RGB signals 

(one per chromatic component of the camera sensor) contain typical pulse waves whose shape depends on diastolic and systolic 

phases. From [17] 

 

A B 

 

A B 
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In practice, each color frame is converted into three RGB 

scalars and a full video into three RGB vectors (Fig.4 B). 

These signals contain several biomedical parameters of 

interest [18-21]: pulse rate, oxygen saturation, blood pressure 

and breathing rate. 

Several digital processing methods [22] were proposed to 

process and filter PPG signals: Fourier transform [23] and 

continuous wavelet transform [24] have been used to create 

custom spectral bandpass filter in order to reduce and/or 

remove noise and artifacts in signals. Poh et al. [23] have 

employed a detrending method and independent component 

analysis, a blind source separation technique, to suppress 

artifacts induced by motion and light fluctuations in order to 

recover the cardiovascular pulse wave. The authors have used 

this filtering technique on red, green and blue signals that 

were computed from frames delivered by a low-cost webcam. 

De Haan et al. [25] proposed to transform RGB signals into 

two orthogonal chrominance components with parameters 

empirically defined from experiments. 

The region of interest selected to compute PPG signals 

corresponds to an essential parameter of the methods [13, 16, 

23]. Prior selection of pixels of interest by analysis of sub-

regions [26] or using skin detection [24] has been introduced. 

Herein, PPG signals are computed using only the intensity of 

these pixels of interest. 

Motion corresponds to the main limitation of PPG or BCG 

methods. BCG methods present two advantages over PPG 

methods: (1) they work even when the skin is not visible and 

(2) are not affected by variations of lighting conditions. They 

are, however, more affected by natural motion than PPG 

methods and are more prone to noise and artifacts when 

measuring over larger distances [2]. PPG has been far more 

exploited over the last years than BCG. Applications cover 

mixed reality [27], newborn health monitoring [28], 

physiological measurements of drivers [29], automatic skin 

detection and segmentation [30] and face anti-spoofing [31].  

 

2.3.2 Blood oxygen saturation 

The blood oxygen level, also known as peripheral oxygen 

saturation (SpO2), is continuously monitored to detect 

respiratory insufficiency and respiratory diseases [7]. In 

healthy subjects, the rate is generally comprised between 95 

and 100 percent. Hypoxemia is considered when this rate 

falls below 90 percent. Pulse oximeters are used to measure 

SpO2 in a noninvasive fashion. These sensors, which are 

usually clipped to the finger, exploit PPG (see section 2.3.1 

and Fig.4 A) to compute SpO2 from PPG signals measured at 

different wavelengths [32]. It has been shown that SpO2 can 

be remotely computed using PPG signals measured from 

video streams recorded by standard cameras [33, 34]. 

 

2.3.3 Respiration 

Recent developments demonstrate that standard camera are 

relevant for sensing both the respiratory function and the 

breathing rate [4]. The researches can be categorized into 

three groups: body motion and displacements; PPG; thermal 

imaging (which will not be presented here, see section 2.2 for 

more details). 

 

 
Figure 5. Breathing process produces a slight movement of the shoulders that can be tracked from video streams recorded by a 

camera. Computer vision techniques can be deployed to detect and track relevant features on the shoulders. A time signal that 

reflects the displacements, and thus inspiration and expiration phases, is computed from the tracked points. Modified from [35] 

 

The first category regroups methods based on tracking 

chest motion during breathing by computer vision techniques. 

Shoulders are detected and continuously tracked using 

relevant features [35], forming a time signal that reflects 

shoulders displacements and thus inspiration and expiration 

phases (Fig.5). Other techniques employing dedicated 

hardware, like light projectors, multi-camera frameworks or 

3D scanner have also been employed [4]. 

The second category of methods is based on PPG signals 

analysis to compute breathing rate [36]. Chest motion 

modifies blood pressure during breathing, which induces 

particular amplitude and frequency modulation of the PPG 

signal [37]. Digital processing methods like independent 

component analysis [23] and continuous [24] or discrete 

wavelet transform [38] were employed to extract breathing 

rate from raw PPG signals. 

 

2.3.4 Blood pressure 

Blood pressure is an important medical parameter. The 

measure enables detection and diagnostic of several 

cardiovascular diseases and pathologies like hypertension 

(high blood pressure). Different studies have shown that the 

Pulse Transit Time (PTT) is a promising way of measuring 

blood pressure in a noninvasive fashion [7]. Arterial stiffness 

rises when blood pressure increases, which also affects pulse 

wave velocity. Thus, the time the pulse wave takes to travel 

from one point of the arterial tree to another is reduced as 

blood pressure rises. Blood pressure in then estimated from 
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pulse wave velocity using blood vessels elasticity models [7]. 

 

 
 

Figure 6. Pulse Transit Time (PTT) corresponds to the time 

the pulse wave takes to travel from one point of the arterial 

tree to another. In this example, PTT is computed using PPG 

waveform analysis of face and wrist. The physiological 

signals are recorded with a contact sensor (for measuring 

wrist signal) and a camera (for measuring face signal), both 

sensors being embedded in a smartwatch. From [39] 

 

Recent studies have demonstrated that PTT can be 

measured unobtrusively from PPG signals taken at different 

body sites (Fig.6), like wrist and face using a smartwatch [39] 

or hand and face using a single video camera [40]. Junior et 

al. [41] have used smartphone camera and microphone to 

measure PTT: the moment the blood leaves the heart is 

detected by recording the heart sound with the microphone 

while the camera is employed to detect the time the blood 

reaches the finger by analyzing the PPG pulse wave. 

 

 

3. CONCLUSION 

 

The domain of physiological signals measurement using 

contactless devices has gained vast attention. Researches 

exhibit significant advancements over the last few years and 

demonstrate that standard video cameras correspond to 

reliable devices that can be employed to measure a large set 

of biomedical parameters without any contact with the 

subject. Nevertheless, and despite important advancements, 

the most recent methods are still not ready to satisfy real-

world applications. The main challenge consists in improving 

robustness toward natural motion that produces undesirable 

noise and artifacts in the measurements. This issue is 

common to most of systems that record and analyze images 

to sense vital signs and biomedical parameters. 

Clinical studies must now be conducted to confirm the 

relevance of methods tested in laboratory conditions and to, 

afterwards, constitute commercial systems. At the era of 

ubiquitous computing where mobile devices (smartphones, 

laptops, tablets) are omnipresent, cameras and webcams 

correspond to sensors that are already available and, thus, 

that are particularly interesting for unobtrusively measuring 

vital signs. 
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