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Abstract

BACKGROUND. The remote measurement of physiological signals from
video has gained a particular attention over the last past years. Estimating
cardiovascular parameters like oxygen saturation and arterial blood pressure
(BP) is covered by a limited volume of studies and remain a very challenging
issue. Recent attempts demonstrated that BP can be estimated from facial
video but under very controlled scenarios or with moderate performances.
The data used in these works have not been publicly released or were gathered
in a clinical setting. METHODS. We, in contrast, propose a framework for
estimating BP from publicly available data in order to allow replication and
to facilitate fair comparison. We developed and trained a deep U-shaped
neural network to recover the blood pressure waveform from its imaging
photoplethysmographic (iPPG) signal counterpart. The model predicts the
continuous wavelet transform (CW'T) representation of a BP signal from the
CWT of an iPPG signal. Inverse CWT transform is ultimately computed to
recover the BP time series. RESULTS. The proposed framework has been
evaluated on 57 participants using international standards developed by the
AAMI and the BHS. Results exhibit close agreement with ground truth BP
values. The method satisfies all standards in the estimation of mean and
diastolic BP (grade A) and nearly all standards in the estimation of systolic
BP (grade B). CONCLUSIONS. This is, to the best of our knowledge, the
first demonstration of a deep learning-oriented framework that manages to
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predict the continuous blood pressure waveform from facial video analysis.
Codes developed during the study are publicly available (https://github.
com/frederic-bousefsaf/ippg2bp).

Keywords: imaging photoplethysmography, blood pressure, continuous
wavelet transform, deep learning, U-Net

1. Introduction

Research on the remote measurement of physiological signals and cardio-
vascular parameters from facial video has made significant progress the last
past years. The field is booming and supported by several significant stud-
ies [I]. The principle, termed imaging (or remote) photoplethysmography
(iPPG), consists in measuring the subtle fluctuations of skin color. These
fluctuations reflect complex light-tissue interactions. The simplest cameras
(webcams) to the most advanced ones (professional, laboratory or industrial
cameras) can be employed to reliably recover iPPG signals. Different regions
of interest (ROI) have been studied over time but the face remains the most
frequently observed area [2]. Several studies demonstrated that pulse rate
and its variability can be robustly and precisely estimated with conventional
image processing techniques and, more recently, with deep learning solutions
|3, [4].

Current research in this field is now directed towards the measurement
of new physiological parameters such as oxygen saturation [5] and blood
pressure [6]. Estimating arterial blood pressure (BP) from video is cov-
ered by a limited volume of studies and remain a very challenging issue.

iPPG signal reconstructed BP signal
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Figure 1: General overview of the method.
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Two research directions are considered. First, measurement of the pulse
transit time (PTT) on single [7] or several [§] ROI. PTT is a parameter
considered to be correlated with blood pressure. Secondly, analysis of the
iPPG signal waveform [6, [9]. To our knowledge, deep learning techniques
have only been considered by Schrumpf et al. for the estimation of blood
pressure from iPPG signals [10]. The model includes 5 layers and exhibit
moderate performances, i.e. high mean average error and no compliance
with international standards. These recent attempts demonstrated that BP
can be estimated from facial video but under very controlled scenarios or
with moderate performances. In addition, the data used in these works
have not been publicly released or were gathered in a clinical setting. Only
Schrumpf et al. released a sub-part of the data employed in their study. At
the time of writing, this subset includes small excerpts of iPPG signals and
discrete BP values from 17 over 50 participants (see https://github.com/
Fabian-Sc85/non-invasive-bp-estimation-using-deep-learning). To
conclude on this point, training an artificial neural network that accurately
estimates blood pressure from video is constrained by the amount of available
data because few public databases exist.

We propose, in this article, a framework for estimating BP from publicly
available data. The dataset, namely BP4D+-, includes video streams of mov-
ing participants. Video analysis dedicated to remote physiological sensing
is therefore very challenging. A deep learning-oriented method (see figure
has been specifically developed to recover the blood pressure waveform
from its imaging photoplethysmographic (iPPG) signal counterpart. The
deep U-shaped model presented in this work has already been applied for
translating iPPG to contact PPG signals in a previous work [II]. The full
pipeline includes several stages. Skin pixels are first extracted using a recent
segmentation techniques that relies on fully convolutional networks. iPPG
signal is computed by averaging all the skin pixels from the green channel.
We then employed the continuous wavelet transform (CWT) of iPPG (and
respectively BP) signals to train the aforementioned neural architecture. The
model therefore predicts a CW'T representation of a BP signal from the CW'T
of an iPPG signal. Inverse CW'T transform is ultimately computed to recover
the BP time series.

The article includes five additional sections. Section [2| presents the back-
ground and related works. Section |3|introduces the used data and the devel-
oped methodologies. The full processing pipeline is detailed in this section.
The metrics and results of the proposed approach are presented and discussed
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in sections[4]and [5] respectively. We present the future works and a summary
of the contributions in section [6l

This is, to the best of our knowledge, the first demonstration of a deep
learning-oriented framework that manages to predict the continuous blood
pressure waveform from iPPG signals computed using publicly released data.
Several avenues of interest are envisaged to improve this research that, in its
current state, exhibits very encouraging results. Two out of three estimated
measures (i.e. diastolic BP and mean BP) already satisfy metrics defined by
international standards.

2. Related works

A survey related to blood pressure estimation from video has recently
been proposed by Lu et al. [12]. Several studies of interest have nevertheless
been proposed since its publication. We therefore, and in the two first sub-
sections, propose to review the studies that exploit iPPG for blood pressure
assessment using both conventional and deep learning approaches. The esti-
mation of blood pressure from contact PPG is closely related to this topic.
We therefore dedicate the last subsection to this part.

2.1. iPPG for blood pressure estimation from propagation time

Systolic and diastolic blood pressures have been estimated using the prop-
agation time of pulse waves from two different skin areas (typically hand and
face) in video recordings [I3] 14} 15 8]. The positional of the two skin areas
must be maintained during the measurement. This approach is therefore very
restrictive. In this context, the time delay must be robustly assessed. Dedi-
cated techniques were proposed for this purpose the last past years. Shao et
al. compared peak locations from iPPG signals measured from two sites [16].
To improve accuracy, the peaks were estimated with two linear curves fitted
on the edges of the rising and falling parts of the signal. Fan and Tjahjadib
[17] analyzed the wave peaks with a custom signal quality index. Peaks of
low confidence are removed using a Kalman filter to improve performances.
Sugita et al. proposed to analyze videos of human hands recorded at differ-
ent heights from the heart [I8]. They analyze the difference in amplitude of
iPPG pulse waves to build a model that estimates SBP.

2.2. 1PPG@ for blood pressure estimation from single facial region
The estimation of BP from a single facial region is covered by very few
studies in the scientific literature. The general approach, inspired from the
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contact PPG field [19] 20], consists in computing waveform features that are
correlated to BP. In this direction, Djeldjli et al. recently showed that tempo-
ral, derivative and area features computed from iPPG and ¢cPPG waveform
evolve similarly [21].

Jain et al. developed a simple regression framework that analyzes 21
waveform features computed on the iPPG signal to estimate BP [22]. Sugita
et al. proposed to quantify the degree of distortion of iPPG signals [7]. They
showed that this quantity exhibits correlation with BP close to correlations
computed between BP and propagation times. Viejo et al. estimated BP
from video using handcrafted features and machine learning models [23].
They studied the evolution of BP using a shallow neural network in the
context of food sensory responses but no direct BP assessment is presented
in their article.

The seminal work from Luo et al. [6] presents for the first time a pipeline
that includes an artificial intelligence model. A multilayer perceptron has
been fed with 30 features computed from iPPG waves. Their results show
that iPPG waveform extracted from video exhibits information that are cor-
related to BP. Combining handcrafted features from iPPG signals with a ma-
chine learning approach to estimate systolic and diastolic BP has also been
investigated by Rong and Li [9]. Deep learning architectures were recently
studied by Schrumpf et al. [I0]. The authors fine-tuned a network that
integrates convolutional, long short-term memory and dense layers. They
conclude that iPPG signals computed from standard RGB video streams
may not be suitable to reliably estimate BP. All these studies pointed out
the feasibility of remote BP monitoring from facial video but showed that
there is still room for improvements and that the estimation remains a very
challenging issue. A synthetic overview of the existing studies is presented
in table I An important disparity in the number of subjects as well as
overall low performances can be observed from this table. In addition, all
the results presented in these studies have been tested on data that has not
been released. To the best of our knowledge, no research dedicated to the
estimation of blood pressure from iPPG has yet been conducted with public
datasets.

2.3. Blood pressure estimation from contact PPG

Estimating absolute BP values from contact PPG (cPPG) remains a chal-
lenging problem even if there is clear evidence that the fluctuations in BP
are reflected in cPPG signals [19] 20].



Deep learning techniques have recently been investigated [26] and re-
cent developments show that these frameworks can effectively be deployed
to convert BP waveform from cPPG signals. Different type of artificial neu-
ral architectures have been proposed the last past years. They combine
fully connected [27] or convolutional layers [28] with long short-term mem-
ory. Simultaneous estimation of systolic and diastolic BP is ensured by these
networks. Demographic features (e.g. weight and height) have addition-
ally been included in machine learning algorithms to improve BP estimation
from ¢PPG signals [29]. Time, frequency and time-frequency features were
computed from the PPG and their derivative signals. Feature selection tech-
niques were used for reducing the computational complexity and simultane-
ously decreasing the chance of over-fitting the machine learning algorithms.

Number of | Sampling | iPPG signal Performances
subjects freq. (fps) | extraction Features Model SBP DBP Ref.
17 140 Green Tpy index — -0.67 — 7]
45 50 PCA 21 time and regression 3.90 + 5.37 | 3.72' £5.08 | [22)
frequency features
45 15 Green amplitude, freq. shallow ANN - - [23]
and pulse rate)
155 features 0.677 0.637
1328 30 Tor (30 after PCA) ANN (MLP) 0.39* £ 7.30 | -0.2" £ 6.00 6]
] 26 features (16 after 9.97% 7.59%
189 30 Green feature selection) SVR 21" £3.35 | 0.79* £ 2.58 1]
CNN-LSTM-Dense
25 32 POS - (transfer learning 13.6* 10.3% [10]

using MIMIC III)

Table 1: Overview of the existing studies in the field of BP estimation from single facial
region in video streams.

*: bias

t: correlation coefficient

¥ Mean Absolute Error (MAE)

ANN: Artificial Neural Network

CNN: Convolutional Neural Network

Green: iPPG signal formed using only the green channel [24]
LSTM: Long Short-Term Memory

MLP: MultiLayer Perceptron

PCA: Principal Component Analysis

POS: Plane-Orthogonal-to-Skin method [25]

SVR: Support Vector Regression

TOI: Transdermal Optical Imaging [6]




A similar framework but with a deep architecture with residual connections
has been proposed by Slapnicar et al. [30]. A part of the network is dedi-
cated to the analysis of the spectral representation of the signal using gated
recurrent units. Deep learning networks that manage to predict the contin-
uous BP waveform from ¢PPG signals have recently been proposed [26]. An
approximation network learns a rough approximation of the BP waveform
while a refinement network further enhances the preliminary estimate. The
approximation and refinement networks are based on a U-Net architecture
[31].

3. Methods
3.1. Database

BP4D+ is a multimodal dataset publicly available to the research commu-
nityﬂ. The database initially includes the physiological, thermal, 2D video,
3D and different metadata and annotations of 140 participants [32]. Ten
tasks were proposed to elicit different emotions in a lab environment.

Because of the nature of the tasks, strong motion artifacts are present
alongside an ensemble of videos, leading to difficult iPPG signal extraction.
Video analysis for remote physiological sensing is therefore very challenging.
We conducted a first selection process where only videos presenting clear
iPPG signals have been kept. The procedure relies on a conventional signal-
to-noise ratio (SNR). The index is defined using the Fourier transform of
iPPG signal in 15-second windowed intervals so that sub-parts of partially
impacted videos can be selected. The SNR has already been used in the
field of iPPG [33, 34]. All the selected video parts have been manually
controlled after this first automatic preselection. A subset of 57 subjects
(21 females, 36 males), leading to a total of 157 videos, has been built. We
additionally removed samples where the reference continuous blood pressure
signal was improperly constituted or flawed (negative values). Details about
the selected participants and tasks are available on a dedicated file in the
website hosting the project (https://github.com/frederic-bousefsaf/
ippg2bp). This subset has been employed for training and testing the neural
architecture presented in this study.

'http://www.cs.binghamton.edu/~1ijun/Research/3DFE/3DFE_Analysis.html
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Each signal (for each participant and for each task) has been processed
using the different techniques detailed in section 3.2l Each full-length sig-
nal has been split in excerpts of 2.56 seconds defined over 256 values. This
constituted a dataset of 4123 portions of signal. About 70% of the data
(2887 randomly selected excerpts) has been reserved for training, 15% (618
randomly selected excerpts) for validation and the remaining 15% (618 ran-
domly selected excerpts) for the testing phase. The different sets contain a
balanced portfolio of the participants and tasks.

We computed systolic BP (SBP) by averaging the intensities of the max
peaks over the entire excerpt. Diastolic BP (DBP) has been computed with
a similar strategy but using the min peaks intensities instead of the max
ones. Mean arterial pressure (MAP) is the average value computed over all
the excerpt samples. The distribution of SBP, DBP and MAP values for the
training, validation and test sets are presented in figure 2l The distributions
share similar properties and ranges.

Training set Validation set Test set
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Figure 2: Distribution of DBP, MAP and SBP for the different sets. All the samples were
extracted from the BP4D+ dataset.

3.2. 1PPG signal constitution

The overall processing pipeline is quite similar to the one presented in
[I1]. This method (called iPPG 2cPPGQG) consists in employing the contin-
uous wavelet representation (real and imaginary parts) of an iPPG signal
to reconstruct the wavelet representation of a contact PPG (cPPQG) signal.
Inverse transform is then computed to recover the cPPG time series.

First, we employed a recent face segmentation technique that relies on
fully convolutional networks [37]. The approach robustly removed the back-
ground and non-skin areas. The method has recently been employed in the
field of imaging photoplethysmography [38].



iPPG signal has been computed by averaging all the remaining skin pixels
from the green channel. Figure [3a exhibits a raw iPPG signal computed from
one of the BP4D+ video stream. Raw iPPG signals are then interpolated
at a sampling frequency of 100 Hz and detrended using a specific low-pass
filter [35] based on a smoothness priors that attenuates low frequencies [36].

— iPPG

Fmm————

Figure 3: Signal processing before CWT computation. (a) Example of a raw iPPG signal
that contains noise and trends (top illustration) and of a BP signal that has been simulta-
neously recorded using a continuous non-invasive sensor (bottom illustration). (b) iPPG
trends removal is ensured by a method [35] that has already been used in this field [36].
(c) Small excerpts of 2.56 seconds are extracted for further processing. (d) The CWT
(real part) of both iPPG and BP signals is computed in the frequency range [0.6, 4.5] Hz.
(e) The average value is lost when computing the CWT in the aforementioned frequency
range. This information is therefore directly encoded in the CWT of the BP signal by
adding the mean value to every CWT coefficient. See the the difference in the ranges of
the colorbars between subfigures (d) and (e). (f) The CWT (real and imaginary parts)
are used for training the neural architecture presented in section @

(f) Training




Figure 3b shows the impact of the detrending operation on the iPPG signal.
We then extract small excerpts for both the iPPG and the ground truth BP
signals (see figure 3¢ for a typical example). An overlapping sliding window
scheme has been selected to increase the volume of data employed during
training. The sampling frequency of the interpolated iPPG signal being set
to 100 Hz, 2.56 seconds are necessary to form time-frequency representations
of 256 pixels in width. The window length has therefore been set to 2.56
seconds with an empirically defined step size of 0.5 seconds (50 samples). All
the iPPG excerpts have been standardized using the z-score formula (so that
= 0and o = 1). Training, validation and testing sets were then constituted
from this ensemble of excerpts (see section [3.1).

Like in [11], we employed the continuous wavelet transform (CWT) rep-
resentation to train the neural architecture presented in section [3.3] The
global approach is depicted in figure 3] The CWT (equation [1)) of a signal
x (t) corresponds to a time-frequency representation computed from a proto-
type function commonly called mother wavelet. Unlike the Fourier transform,
the wavelet transform can detect abrupt changes in frequency using a family
of wavelets ¢, s (equation [2)) computed from the mother wavelet 1.

CWTY (r9) = [ 20 0
1 t—rT1
e 0= =0 () 2)

1, s corresponds to the mother wavelet dilated by s and translated by
7. Dilating the wavelet allows the transform to analyze larger portions of
signal in the time domain, thus covering lower frequencies. Different mother
wavelets have been developed and the choice depends mainly on the appli-
cation and the properties of the signal. The Morlet mother wavelet used in
this study was already used in previous work related to the analysis of PPG
signals by camera [39] 40, [1T].

The original signal z (¢) can be reconstructed by the inverse transform:

Cw/ / —OWTw (r, ) \/%'w <t;T>dT ds (3)

~[3 ()|
- [ g

10

d¢ < oo (4)



Cy is the admissibility condition and @/A) is the Fourier transform of .

The continuous wavelet transform was computed on each iPPG and BP
signal in the frequency range [0.6, 4.5] Hz, which corresponds to the physio-
logical range of the human heart rate [2]. Typical iPPG signal, BP signal and
their respective wavelet representations (real part) are presented in figure
As it was presented before, the iPPG signals have been standardized (= 0
and o = 1, see top-left illustration in figure {4 for a typical example). This
type of process has not been applied to the BP signals because we need to re-
cover both the average, systolic and diastolic values (see top-mid illustration
in figure {4)). The average value being lost when computing the CWT in the
frequency range [0.6, 4.5] Hz, we chose to directly encode this information in
the CWT of BP signals by adding the mean value to every CW'T coefficients
(see figure [Bp):

CWTgp =CWTgp+ upp (5)

Here, ugp corresponds to the average value of a BP signal (top-mid il-
lustration in figure [4| for a typical BP signal example) and CWTgp to its

iPPG signal Ground truth BP signal Reconstructed BP signal
£, 2120 120
£ £
£ E 110 E 110
2o o o
2 2 100 2 100
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3 8 80 8 &0
9 5 o o
m m m
0 0.5 1 1.5 2 25 0o 05 1 15 2 25 0 05 1 15 2 25
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CWT of iPPG signal CWT of ground truth BP signal

CWT predicted by the U-Net network

w S

n

Frequency (Hz)
Frequency (Hz)

0 0.5 1 15 2 25 0 0.5 1 15 2 25 0 0.5 1 1.5 2 25
Time (s) Time (s) Time (s)

Figure 4: AniPPG and its corresponding ground truth BP are respectively presented in the
bottom-left and bottom-mid figures. Their corresponding CWT (real part) are presented
below. The transform (a complex image with a real and imaginary part) is computed in
the frequency range [0.6, 4.5] Hz. Figures on the right present the CWT predicted by
the neural network and the corresponding reconstructed BP signal, computed using the
inverse CWT transform.
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corresponding CWT (see bottom-mid illustration in figure [4)).

The produced wavelet representations have a dimension of 256 x 256 x 2
pixels. They are used to train the neural architectures (figure [3f) presented
in the next section.

3.8. Neural architectures

The neural architecture has already been developed and tested in previ-
ous work [IT]. Briefly, it consists in a U-Net architecture, which was initially
proposed by Ronneberger et al. [31], enhanced by a backbone. This type of
network has been widely used for segmentation of medical images [41]. Its
architecture consists of a descending (encoder) branch completed by an as-
cending (decoder) branch, giving a U-shape to the network. The descending
branch contains an ensemble of convolution and pooling layers. The ascend-
ing branch integrates upsampling layers connected to the convolutions of the
descending branch. Connections help to restore the spatial information. A
schematic representation of the network is provided in figure 5} Each con-
volutional layer are coupled with a Rectified Linear Unit (ReLU) activation
function.

A Backbone (e.g. VGG16) can be integrated into the encoder part of
the U-Net network. Its internal parameters can be blocked during train-
ing, meaning that the weights of the network remain the same. In prac-
tice, a backbone correspond to a model subpart pre-trained on ImageNet,
a database deployed for object recognition tasks in images [42]. Training a
U-Net network supported by a backbone consists, in this case, in optimizing
the internal parameters of the decoder part. This approach can be associated
to a transfer learning strategy. In this work, we initialized the U-Net archi-
tecture with a ResNeXt101 backbone [43]. The encoder parameters were
not blocked during training, meaning that they were optimized during the
learning phase. The number of variables to be trained (weights and biases)
is 52 million. We chose ResNeXt101 because it performed better than other
standard backbones on the reconstruction of contact PPG signals from non
contact ones through their continuous wavelet representation, a problem that
is in fact quite similar [1T].

Conventional regularization techniques (e.g. dropout) have not been in-
troduced while a normalization scheme (i.e. batch normalization) has been
employed. Linear activation function was specified because the targeted task
corresponds to a regression in the form of a pixel-to-pixel reconstruction of
a two-channel wavelet representation.
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Figure 5: Overview of the U-Net [31] proposed in this study, which includes encoder (down-
sampling) and decoder (upsampling) portions. The encoder is replaced by a ResNeXt101
backbone [43]. ResNeXt and decoder blocks are detailed on the right-side of the figure.
The input of a ResNeXt block (256 dimensions in the example depicted in the figure)
is split into 32 lower dimensional branches (or paths) that will next be merged through
concatenation. This architecture exploits Inception’s split-transform-merge strategy but
with a uniform topology. The parameters of each stage inside this ResNeXt block example
are respectively the number of input filters, the filter size and the number of output filters.
Each ResNeXt block present different parameters. They are specified in [43].

The input dimensions of a U-Net network supported by a backbone are
fixed by the data used for their training (256 x 256 pixels RGB images from
the ImageNet database). The inputs being in our case a two-channels wavelet
representation, an adaptation strategy must be introduced. We employed an
additional 2D convolutional layer with a (1,1) kernel that has been placed
between the input layer and the encoder part of the network. The neurons
of this layer allow conversion of the input from N to 3 channels. The weights
of all the networks have randomly been initialized by the method proposed
by Glorot and Bengio [44]. Biases are initialized to zero. The Mean Squared
Error (MSE) has been selected as loss for training all the models:
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1 N2
MSE=—%" (CWTM - CWTm) (6)
2y}

CWT corresponds to the wavelet transform (see figure [3) of the ground
truth BP signal. CWT is the wavelet representation predicted by the neural
network starting from the wavelet representation of the iPPG signal.

The architecture implementation was carried out under Python using
Keras API and Tensorflow library. The Segmentation Models library [45]
proposed by P. Yakubovskiy was used to develop the neural network. The
training sessions were launched over 500 epochs through batches of 16 images.
We used, in this study, the Adam optimization algorithm [46] with a learning
rate of 0.001. A dedicated computer equipped with a dual Intel Xeon Silver
4114 and two Nvidia Quadro P6000s was used to carry out network learning.

4. Results

The proposed U-Net architecture transforms an iPPG signal to a con-
tinuous BP signal through their wavelet representation. Figure {4]illustrates
a typical example of BP estimation (top-right figure) from an iPPG wave
(top-left figure). The predicted waveform closely follows the ground truth
BP wave presented in top-mid figure. The shape and magnitude, which were
initially different, have been preserved. We can notice small phase differ-
ences in the wavelet representations of the iPPG signal (bottom-left figure)

2 2 2 2
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© © © ©
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Figure 6: Typical BP signals reconstruction for several pulse rate values. Top figures:
iPPG signals. Bottom figures: predicted and ground truth (GT) BP.
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and the ground truth BP signal (bottom-mid figure). The neural network
learned this specificity, the reconstructed wavelet representation (bottom-
right figure) being in phase with the ground truth one (bottom-mid figure).
The phase has therefore been properly recovered. This follows previous ob-
servations that we made when testing this U-Net to transform contact PPG
to iPPG signals [I1] and observations from other authors that employed deep
learning to convert contact PPG to BP waves [26].

Figure [6] illustrates several examples of blood pressure estimation from
iPPG signals. We evaluated the performances of the proposed technique with
international standards [47, [48] from the Association for the Advancement of
Medical Instrumentation (AAMI) and from the British Hypertension Soci-
ety (BHS). We, however, emphasize that BP4D+ contains videos and phys-
iological data that have not been recorded in a clinical setting. Also, the
constituted subset integrates 57 participants while the AAMI recommends
to evaluate BP estimation techniques on a minimum of 85 subjects.

4.1. General metrics and Bland-Altman plots

The Mean Absolute Error (M AFE, equation and the Root Mean Square
Error (RMSE, equatio have been used to quantify the level of agreement
between the predicted (BP) and the ground truth blood pressure (BP). We
computed these metrics for DBP, MAP and SBP over all the test set (see

section [3.1)).

1l & —
MAE = ;;IBPZ»—BBI (7)
1 « ——\2
RMSE = EZ(BR—BB) (8)

i=1

Table [2| presents a comparative analysis of results taken from similar
works. Bland-Altman representations have been computed for DBP, MAP
and SBP over all the test data. The average between the estimated and
ground truth BP values is depicted on the x-axis while the differences between
the estimated and ground truth BP values are depicted on the y-axis. The
resulting plots are presented in figure [l Means are represented by dash-dot
lines and 95% limits of agreement (4 1.96 SD) by dashed lines. The ranges
of these limits are [-12.3 14.3], [-12.0 11.6] and [-19.6 16.6] for DBP, MAP
and SBP respectively.
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MAE (mmHg) | RMSE (mmHg)
. DBP 7.59 -
Rong and Li [9] SBP 9.97 B
DBP 10.3 -
Schrumpf et al. [10] SBP 13.6 B
DBP 5.1 6.85
iPPG2BP (our results) | MAP 4.47 6.01
SBP 6.73 9.34

Table 2: Blood pressure estimation errors. Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) have been computed between the estimated and ground truth DBP,
MAP and SBP. Results from similar studies are also reported.
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Figure 7: Bland-Altman plots for DBP, MAP and SBP prediction. Means are represented
by dash-dot lines and 95% limits of agreement (+ 1.96 SD) by dashed lines.

4.2. BHS standards

The BHS assesses blood pressure estimation techniques by their cumu-
lative percentage of errors [47]. Different grades are provided (see table [3)
according to the percentage of the predictions on the test samples that fall
under three empiric thresholds, i.e. 5, 10 and 15 mmHg.

Table 3| presents a comparative analysis of the BHS evaluation on our
results. We reported the values provided by Rong and Li [9] as it appears
to be the only study that computed BHS metrics. Our results exhibit good
overall performances with more than 60%, 87% and 95% of the test samples
having estimation errors less than, respectively, 5, 10 and 15 mmHg for both
DBP and MAP (grade A). More than 50% and 79% of SBP predictions fall
under 5 and 10 mmHg respectively (grade B) while 89.6% of SBP predictions
fall under 15 mmHg, which is slightly under the 90% threshold.

The conclusions drawn from the analysis of the results presented in table
are graphically presented in figure
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Cumulative Error Percentage
<5 mmHg | <10 mmHg | < 15 mmHg
DBP 55.4% 85.7% 98.2%
Rong and Li [9] SBP 48.2% 78.6% 94.6%
DBP 60.2% 87.1% 95.8%
iPPG2BP (our results) MAP 66.8% 90.9% 96.4%
SBP 50.2% 79.0% 89.6%
grade A 60% 85% 95%
BHS grade B 50% 75% 90%
grade C 40% 65% 85%

Table 3: BHS metrics for DBP, MAP and SBP prediction.
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Figure 8: Absolute error in DBP, MAP and SBP predictions. Dashed lines represent the
5, 10 and 15 mmHg thresholds recommended by the BHS.

4.8. AAMI standards

The AAMI proposes to assess blood pressure estimation techniques by

analyzing the mean error (ME) and the standard deviation of errors (SDE)
on the test set [48]. The former must be lower than 5 mmHg while the latter
must be lower than 8§ mmHg to fully respect the recommendation.

Table (| presents a comparative analysis of the AAMI evaluation on our
results. We additionally reported the values provided by Luo et al. [6] and
Rong and Li [9]. Our results exhibit good overall performances. Both DBP
and MAP satisfy the AAMI standards. They exhibit a small ME and a
SDE lower than 8 mmHg. Regarding SBP estimations, the ME condition is
fulfilled but the SDE is a bit higher (1.2 mmHg over the 8 mmHg threshold
defined by the AAMI).

The histograms of prediction errors for DBP, MAP and SBP are presented
in figure 9} The spread of these histograms gives a graphical picture of the
different SDE presented in [4| (narrower for MAP, wider for SBP).

17



ME (mmHg) | SDE (mmHg)

DBP -0.20 6.00
Luo et al. [6] SBP 0.39 7.30
DBP 0.79 2.58
Rong and Li [9] SBP 2.1 3.35
DBP -1.001 6.781
iPPG2BP (our results) | MAP -0.205 6.007
SBP 1.51 9.221

\ AAMI standard \ <5 \ <8 \

Table 4: AAMI metrics for DBP, MAP and SBP prediction. ME: Mean Error; SDE:
Standard Deviation of Errors.
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Figure 9: Error in DBP, MAP and DBP predictions.

5. Discussion

The method presented in this paper corresponds to one of the few pro-
posals that relies on deep learning to estimate blood pressure from facial
video. We propose, in the next subsection, to discuss and compare our re-
sults with related works. Section [5.2| presents the limitations of this study.

We ultimately present and discuss the results of a leave-one-patient-out cross-
validation procedure (section [5.3)).

5.1. About the results presented in this study

Regarding previous works, and to the best of our knowledge, only Rong
and Li presented Bland-Altman representations to assess their results. The
technique proposed by the authors seems to underestimate low BP values
and overestimate high BP values, both for DBP and SBP [9]. Our results
depict a similar tendency but with lesser impact, the Bland-Altman plots
presented in figure [7] being quite consistent across all the BP range. Table
presents a comparative analysis of results taken from similar works. The
technique proposed in this study performs better than the other methods in
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terms of MAE and RMSE. We, however, emphasize that the results reported
from other studies were computed from data of different nature. To the best
of our knowledge, these data are not publicly available.

Results presented in sections, 4.2 and [4.3] exhibit a relevant level of agree-
ment between predicted and ground truth BP values. It can however be
observed that several BP predictions exceed the 15 mmHg threshold, in par-
ticular for SBP (see table[3). We emphasize that no other techniques focusing
on the analysis of BP from a single facial video have obtained grade B in SBP
prediction, in particular from challenging data. Techniques dedicated to the
conversion of contact PPG signals to the BP waveform [26] or from contact
PPG signals to DBP and SBP values [30] 28, 29] also produce SBP estima-
tions that are less relevant than DBP estimations. We do not report the
AAMI and BHS analysis from Schrumpf et al. because none of their results
seems to satisfy the requirements [10].

Integrating the wavelet representation of iPPG signals instead of raw
iPPG signals in the network is a key-point of the method presented in this
study. We here take advantage of transfer learning through a ResNeXt back-
bone pre-trained on large databases [11]. U-Nets have been widely used for
segmentation of medical images and can be trained with a low volume of
data [41].

5.2. Limitations

Figure [10| presents a prediction of lesser quality where the mean BP value
is approximately estimated by the model. Apart from the mean error, DBP
and SBP seem to be properly estimated. Adding more data during the
learning phase of the network may solve, or at least minimize, this mean
error. Balancing the distribution of ground truth BP values while varying
the iPPG and BP waveform (shape of the signals) may be a relevant approach
to tackle this issue.

All the presented results are limited by the current dataset: a low per-
centage of subjects (<.85) has been used to derive the results presented in
section We point out that the reference blood pressure, gathered using
a continuous non-invasive sensor, has not been recorded in a clinical set-
ting. There might be irrelevant ground truth values, ultimately leading to
improper BP learning by the U-Net model presented in section [3.3] We also
emphasize that only videos presenting clear iPPG signals have been included
in the dataset. Videos with motion can lead to iPPG signals that contain
strong artifacts. This particular source of noise can negatively impact the
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Figure 10: Predictions of lesser quality. Top figure: iPPG signal. Bottom figure: predicted
and ground truth BP.

CWT coeflicients. Including noisy iPPG signals into the dataset will be the
objective of future works. Broaden the currently limited dataset is necessary
so that all types of noise are represented.

The data distributions presented in figure [2| are not well-balanced across
all the BP range. This can drastically impact training, in particular by negat-
ing the generalization power of the model (see next subsection). To tackle
this issue, the development of a smart overlapping selection could be a poten-
tial approach. It would consist in automatically increasing the overlapping
to produce more signals in the underrepresented BP ranges. We also empha-
size that data augmentation strategies were recently proposed in the field of
pulse rate estimation from video to improve the models performances [49).
These approaches are however not conceivable in the case of BP estimation
because removing frames or augmenting the videos with conventional trans-
formations may directly impact the shape of iPPG waveforms. Developing
an augmentation strategy towards the wavelet representations, by for exam-
ple adding random noise to the CW'T coeflicients, can here be an approach
of interest.

The distributions of the training, validation and test sets presented in
figure [2| contain a mix of all the participants data. In the next subsection,
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we analyze the impact of a leave-one-patient-out cross-validation procedure
on the performances.

5.3. Leave-one-patient-out cross-validation

Table |5 presents the assessment of BP using the method proposed in this
study (section [3) but under a leave-one-patient-out cross-validation proce-
dure (three folds). We can observe a decrease in performances over all the
folds, even if some values are close from the international standards rec-
ommendations. The Bland-Altman representations for DBP, MAP and SBP
over all data from the first fold are presented in figure[11] They exhibit wider
point clouds than those computed from the randomly distributed subsets (see
the Bland-Altman plots presented in figure 7)) where each set includes a bal-
anced portfolio of participants and tasks (details in section . We can also
observe that SBP predictions depicted in figure follow an inverse trend
than those displayed in figure [7] Here, the trained model overestimates SBP
in low BP values and underestimates SBP in high BP values. All these re-
sults exhibit a limitation in the generalization power of the network but are,
in contrast, encouraging because the model has been trained with limited
data.

It can also be observed, from table [5| that the model performed poorly
for SBP estimations of fold 2. After a closer look on the iPPG signals and
ground truth BP, we remarked that this decrease in performance was due to
a patient who presents the highest SBP values. All these patient signals were
included in the test and were therefore totally missing from the training set.
We therefore believe that the network did not learn the features relative to
these specific samples. As stated in the previous subsection, broadening the
dataset is a necessary step to improve generalization.

6. Conclusion and future works

We proposed, in this article, a deep learning-oriented solution dedicated
to the recovering of blood pressure from facial video. The reconstruction is
carried out using a U-shaped network supported by a ResNeXt backbone
from the time-frequency representation of the iPPG signal. To the best of
our knowledge, this study presents the first demonstration of an automatic
framework that manages to estimate the continuous BP waveform from facial
video. The approach corresponds to an efficient way for predicting BP with-
out a prior extraction of complicated hand-crafted waveform features from
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Errors (mmHg) BHS AAMI (mmHg)
MAE RMSE <5 | <10| <15 | ME SDE

8.28 11.78 49% | 3% | 83% | 4.23 10.99 DBP
1 7.52 10.66 50% | 76% | 86% 3.39 10.11 MAP
9.79 12.64 33% | 61% | 76% | 4.56 11.79 SBP
5.83 7.12 48% | 85% | 97% 0 7.12 DBP
2 8.03 10.24 43% | 65% | 87% 3.97 9.45 MAP
16.41 21.61 26% | 46% | 57% | 12.99 17.27 SBP
11.43 14.12 28% | 51% | 68% | -4.77 13.29 DBP
3 8.11 10.21 38% | 69% | 86% | -3.81 9.47 MAP
8.87 11.33 38% | 62% | 81% | -4.77 10.28 SBP

Fold

Table 5: Assessment of the proposed solution under a leave-one-patient-out cross-
validation procedure.
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Figure 11: Bland-Altman plots for DBP, MAP and SBP prediction under a leave-one-
patient-out, three folds, cross-validation procedure (only the results from the first fold are
presented here).

the iPPG signal. Our extensive experiments showed the effectiveness of the
proposed method, which achieves high accuracy and satisfies all international
standards in the estimation of mean and diastolic BP (grade A) and nearly
all international standards in the estimation of systolic BP (grade B).

Several ways of improvement for this work are considered. We first pro-
pose expanding the currently limited volume of data by increasing the num-
ber of included recordings and participants. We, in this study, conducted
a manual selection of videos that presented well-defined iPPG signals. This
step can be automatized using a quality index [I7]. Also, it has recently been
shown that data augmentation strategies can significantly improve the per-
formances of deep learning models dedicated to pulse rate estimation from
video [49]. Producing more overlapped signals in the range of low represented
BP values might be a first considered approach for re-balancing the dataset
distribution.
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The Morlet wavelet has been used as a prototype function for the compu-
tation of the CW'T. We propose evaluating the impact on performances with
different mother wavelets as well as investigating different time-frequency
representations like short-time Fourier and constant-Q) transforms.

Inputting directly the video stream in an end-to-end architecture rather
than the time-frequency representation of iPPG signal will be the subject of
long-term research. We also envisage to extend this work in the context of
blood oxygen saturation using a similar approach (inputting CWT represen-
tations of iPPG signals to a deep U-Net model).

7. Acknowledgments

This work has been partly funded by the Contrat Plan Etat Région
(CPER) Innovations Technologiques, Modélisation et Médecine Personnal-
isée (IT2MP) and Fonds Européen de Développement Régional (FEDER).

References

[1] D. McDuff, Camera measurement of physiological vital signs, arXiv
preprint arXiv:2111.11547 (2021).

[2] S. Zaunseder, A. Trumpp, D. Wedekind, H. Malberg, Cardiovascu-
lar assessment by imaging photoplethysmography—a review, Biomedical
Engineering/Biomedizinische Technik (2018).

[3] A. Ni, A. Azarang, N. Kehtarnavaz, A Review of Deep Learning-
Based Contactless Heart Rate Measurement Methods, Sensors 21
(2021) 3719. URL: https://www.mdpi.com/1424-8220/21/11/3719.
d0i:10.3390/521113719.

[4] C.-H. Cheng, K.-L. Wong, J.-W. Chin, T.-T. Chan, R. H. Y. So, Deep
Learning Methods for Remote Heart Rate Measurement: A Review and
Future Research Agenda, Sensors 21 (2021) 6296. URL: https://www.
mdpi.com/1424-8220/21/18/6296. doi:10.3390/521186296.

[5] A. Al-Naji, G. A. Khalid, J. F. Mahdi, J. Chahl, Non-Contact SpO2
Prediction System Based on a Digital Camera, Applied Sciences
11 (2021) 4255. URL: https://www.mdpi.com/2076-3417/11/9/4255.
doii10.3390/app11094255.

23


https://www.mdpi.com/1424-8220/21/11/3719
http://dx.doi.org/10.3390/s21113719
https://www.mdpi.com/1424-8220/21/18/6296
https://www.mdpi.com/1424-8220/21/18/6296
http://dx.doi.org/10.3390/s21186296
https://www.mdpi.com/2076-3417/11/9/4255
http://dx.doi.org/10.3390/app11094255

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

H. Luo, D. Yang, A. Barszczyk, N. Vempala, J. Wei, S. J. Wu, P. P.
Zheng, G. Fu, K. Lee, Z.-P. Feng, Smartphone-based blood pressure
measurement using transdermal optical imaging technology, Circulation:
Cardiovascular Imaging 12 (2019) e008857.

N. Sugita, M. Yoshizawa, M. Abe, A. Tanaka, N. Homma, T. Yambe,
Contactless Technique for Measuring Blood-Pressure Variability from
One Region in Video Plethysmography, Journal of Medical and Biolog-
ical Engineering (2018) 1-10.

X. Fan, Q. Ye, X. Yang, S. D. Choudhury, Robust blood pressure es-
timation using an RGB camera, Journal of Ambient Intelligence and
Humanized Computing (2018) 1-8.

M. Rong, K. Li, A Blood Pressure Prediction Method Based
on Imaging Photoplethysmography in combination with Machine
Learning,  Biomedical Signal Processing and Control 64 (2021)
102328. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1746809420304444. doi:10.1016/j.bspc.2020.102328.

F. Schrumpf, P. Frenzel, C. Aust, G. Osterhoff, M. Fuchs, Assessment
of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals
Using Deep Learning, Sensors 21 (2021) 6022. URL: https://www.
mdpi.com/1424-8220/21/18/6022. doi:10.3390/s21186022.

F. Bousefsaf, D. Djeldjli, Y. Ouzar, C. Maaoui, A. Pruski, iPPG 2
cPPG: reconstructing contact from imaging photoplethysmographic sig-
nals using U-Net architectures, Computers in Biology and Medicine 138
(2021) 104860. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0010482521006545. doi:10.1016/j.compbiomed.2021.104860.

Y. Lu, C. Wang, M. Q.-H. Meng, Video-based Contactless Blood Pres-
sure Estimation: A Review, in: 2020 IEEE International Conference on
Real-time Computing and Robotics (RCAR), IEEE, Asahikawa, Japan,
2020, pp. 62-67. URL: https://ieeexplore.ieee.org/document/
9303040/. d0i:10.1109/RCAR49640.2020.9303040.

N. Sugita, K. Obara, M. Yoshizawa, M. Abe, A. Tanaka, N. Homma,
Techniques for estimating blood pressure variation using video images,
in: Engineering in Medicine and Biology Society (EMBC), 2015 37th

24


https://linkinghub.elsevier.com/retrieve/pii/S1746809420304444
https://linkinghub.elsevier.com/retrieve/pii/S1746809420304444
http://dx.doi.org/10.1016/j.bspc.2020.102328
https://www.mdpi.com/1424-8220/21/18/6022
https://www.mdpi.com/1424-8220/21/18/6022
http://dx.doi.org/10.3390/s21186022
https://linkinghub.elsevier.com/retrieve/pii/S0010482521006545
https://linkinghub.elsevier.com/retrieve/pii/S0010482521006545
http://dx.doi.org/10.1016/j.compbiomed.2021.104860
https://ieeexplore.ieee.org/document/9303040/
https://ieeexplore.ieee.org/document/9303040/
http://dx.doi.org/10.1109/RCAR49640.2020.9303040

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Annual International Conference of the IEEE, IEEE, 2015, pp. 4218-
4221.

I. C. Jeong, J. Finkelstein, Introducing contactless blood pressure as-

sessment using a high speed video camera, Journal of medical systems
40 (2016) 77.

P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-M. Lin, B.-F. Wu, Image
based contactless blood pressure assessment using Pulse Transit Time,
in: Automatic Control Conference (CACS), 2017 International, IEEE,
2017, pp. 1-6.

D. Shao, Y. Yang, C. Liu, F. Tsow, H. Yu, N. Tao, Noncontact mon-
itoring breathing pattern, exhalation flow rate and pulse transit time,
IEEE Transactions on Biomedical Engineering 61 (2014) 2760-2767.

X. Fan, T. Tjahjadi, Robust contactless pulse transit time estimation
based on signal quality metric, Pattern Recognition Letters 137 (2020)
12-16.

N. Sugita, T. Noro, M. Yoshizawa, K. Ichiji, S. Yamaki, N. Homma,
Estimation of Absolute Blood Pressure Using Video Images Captured
at Different Heights from the Heart, in: 2019 41st Annual International

Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), IEEE, 2019, pp. 4458-4461.

M. Elgendi, On the analysis of fingertip photoplethysmogram signals,
Current cardiology reviews 8 (2012) 14-25.

E. von Wowern, G. Ostling, P. M. Nilsson, P. Olofsson, Digital photo-
plethysmography for assessment of arterial stiffness: repeatability and
comparison with applanation tonometry, PloS one 10 (2015) e0135659.

D. Djeldjli, F. Bousefsaf, C. Maaoui, F. Bereksi-Reguig, A. Pruski, Re-
mote estimation of pulse wave features related to arterial stiffness and
blood pressure using a camera, Biomedical Signal Processing and Con-
trol 64 (2021) 102242.

M. Jain, S. Deb, A. Subramanyam, Face video based touchless blood
pressure and heart rate estimation, in: Multimedia Signal Processing

25



[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

(MMSP), 2016 IEEE 18th International Workshop on, IEEE, 2016, pp.
1-5.

C. G. Viejo, S. Fuentes, D. D. Torrico, F. R. Dunshea, Non-Contact
Heart Rate and Blood Pressure Estimations from Video Analysis and
Machine Learning Modelling Applied to Food Sensory Responses: A
Case Study for Chocolate, Sensors 18 (2018) 1802.

W. Verkruysse, L. O. Svaasand, J. S. Nelson, Remote plethysmographic
imaging using ambient light., Optics express 16 (2008) 21434-21445.

W. Wang, A. C. den Brinker, S. Stuijk, G. de Haan, Algorithmic Prin-
ciples of Remote PPG, TEEE Transactions on Biomedical Engineering
64 (2017) 1479-1491.

N. Ibtehaz, M. S. Rahman, PPG2ABP: Translating Photoplethysmo-
gram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms using
Fully Convolutional Neural Networks, arXiv preprint arXiv:2005.01669
(2020).

M. S. Tanveer, M. K. Hasan, Cuffless blood pressure estimation
from electrocardiogram and photoplethysmogram using waveform based
ANN-LSTM network, Biomedical Signal Processing and Control 51
(2019) 382-392.

M. Panwar, A. Gautam, D. Biswas, A. Acharyya, PP-Net: A Deep
Learning Framework for PPG based Blood Pressure and Heart Rate
Estimation, IEEE Sensors Journal (2020). Publisher: IEEE.

M. H. Chowdhury, M. N. I. Shuzan, M. E. Chowdhury, Z. B. Mahbub,
M. M. Uddin, A. Khandakar, M. B. I. Reaz, Estimating Blood Pres-
sure from the Photoplethysmogram Signal and Demographic Features
Using Machine Learning Techniques, Sensors 20 (2020) 3127. Publisher:
Multidisciplinary Digital Publishing Institute.

G. Slapnic¢ar, N. Mlakar, M. Lustrek, Blood pressure estimation from
photoplethysmogram using a spectro-temporal deep neural network,
Sensors 19 (2019) 3420. Publisher: Multidisciplinary Digital Publish-
ing Institute.

26



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks
for biomedical image segmentation, in: International Conference on
Medical image computing and computer-assisted intervention, Springer,
2015, pp. 234-241.

Z. Zhang, J. M. Girard, Y. Wu, X. Zhang, P. Liu, U. Ciftci, S. Cana-
van, M. Reale, A. Horowitz, H. Yang, others, Multimodal spontaneous
emotion corpus for human behavior analysis, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp- 3438-3446.

G. de Haan, V. Jeanne, Robust pulse rate from chrominance-based
rPPG, IEEE Transactions on Biomedical Engineering 60 (2013) 2878-
2886.

A. Hammer, M. Scherpf, M. Schmidt, H. Ernst, H. Malberg,
K. Matschke, A. Dragu, J. Martin, O. Bota, Camera-based assessment of
cutaneous perfusion strength in a clinical setting, Physiological Measure-
ment (2022). URL: http://iopscience.iop.org/article/10.1088/
1361-6579/acb57d.

M. P. Tarvainen, P. O. Ranta-Aho, P. A. Karjalainen, An advanced
detrending method with application to HRV analysis, IEEE transactions
on biomedical engineering 49 (2002) 172-175. Publisher: IEEE.

M.-Z. Poh, D. J. McDuff, R. W. Picard, Advancements in noncon-
tact, multiparameter physiological measurements using a webcam, IEEE
transactions on biomedical engineering 58 (2011) 7-11.

Y. Nirkin, I. Masi, A. T. Tuan, T. Hassner, G. Medioni, On face seg-
mentation, face swapping, and face perception, in: 2018 13th IEEE In-

ternational Conference on Automatic Face & Gesture Recognition (FG
2018), IEEE, 2018, pp. 98-105.

Y. Ouzar, D. Djeldjli, F. Bousefsaf, C. Maaoui, LCOMS Lab’s Ap-
proach to the Vision for Vitals (V4V) Challenge, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
2750-2754.

27


http://iopscience.iop.org/article/10.1088/1361-6579/ac557d
http://iopscience.iop.org/article/10.1088/1361-6579/ac557d

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

|47]

F. Bousefsaf, C. Maaoui, A. Pruski, Continuous wavelet filtering on
webcam photoplethysmographic signals to remotely assess the instan-
taneous heart rate, Biomedical Signal Processing and Control 8 (2013)
568-574.

F. Bousefsaf, C. Maaoui, A. Pruski, Peripheral vasomotor activity as-
sessment using a continuous wavelet analysis on webcam photoplethys-
mographic signals, Bio-medical materials and engineering 27 (2016)
527-538.

S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, F. Cervenansky, F. Es-
pinosa, T. Espeland, E. A. R. Berg, P.-M. Jodoin, T. Grenier, others,
Deep learning for segmentation using an open large-scale dataset in 2d
echocardiography, IEEE transactions on medical imaging (2019).

E. C. Too, L. Yujian, S. Njuki, L. Yingchun, A comparative study of fine-
tuning deep learning models for plant disease identification, Computers
and Electronics in Agriculture 161 (2019) 272-279. Publisher: Elsevier.

S. Xie, R. Girshick, P. Dollar, Z. Tu, K. He, Aggregated residual trans-
formations for deep neural networks, in: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 1492-1500.

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, 2010, pp. 249-256.

P.  Yakubovskiy, Segmentation Models, GitHub, 2019. URL:
https://github.com/qubvel/segmentation_models, publication
Title: GitHub repository.

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 (2014).

E. O’Brien, J. Petrie, W. Littler, M. de Swiet, P. L. Padfield,
K. O’Malley, M. Jamieson, D. Altman, M. Bland, N. Atkins, The british
hypertension society protocol for the evaluation of automated and semi-
automated blood pressure measuring devices with special reference to
ambulatory systems., Journal of hypertension 8 (1990) 607-619.

28


https://github.com/qubvel/segmentation_models

[48]

[49]

G. S. Stergiou, B. Alpert, S. Mieke, R. Asmar, N. Atkins, S. Eckert,
G. Frick, B. Friedman, T. Grakl, T. Ichikawa, others, A universal
standard for the validation of blood pressure measuring devices: As-
sociation for the Advancement of Medical Instrumentation/European
Society of Hypertension /International Organization for Standardization
(AAMI/ESH/ISO) Collaboration Statement, Hypertension 71 (2018)
368-374. Publisher: Am Heart Assoc.

Z. Yu, X. Li, X. Niu, J. Shi, G. Zhao, AutoHR: A Strong End-
to-End Baseline for Remote Heart Rate Measurement With Neural
Searching, IEEE Signal Processing Letters 27 (2020) 1245-1249.
URL: https://ieeexplore.ieee.org/document/9133501/. doi:10.
1109/LSP.2020.3007086.

29


https://ieeexplore.ieee.org/document/9133501/
http://dx.doi.org/10.1109/LSP.2020.3007086
http://dx.doi.org/10.1109/LSP.2020.3007086

	Introduction
	Related works
	iPPG for blood pressure estimation from propagation time
	iPPG for blood pressure estimation from single facial region
	Blood pressure estimation from contact PPG

	Methods
	Database
	iPPG signal constitution
	Neural architectures

	Results
	General metrics and Bland-Altman plots
	BHS standards
	AAMI standards

	Discussion
	About the results presented in this study
	Limitations
	Leave-one-patient-out cross-validation

	Conclusion and future works
	Acknowledgments

