
HAL Id: hal-03790757
https://hal.science/hal-03790757

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ACE modular framework for computational ethics :
dealing with multiple actions, concurrency and omission

Gauvain Bourgne, Camilo Sarmiento, Jean-Gabriel Ganascia

To cite this version:
Gauvain Bourgne, Camilo Sarmiento, Jean-Gabriel Ganascia. ACE modular framework for computa-
tional ethics : dealing with multiple actions, concurrency and omission. International Workshop on
Computational Machine Ethics, Nov 2021, Online event, France. �hal-03790757�

https://hal.science/hal-03790757
https://hal.archives-ouvertes.fr

ACE modular framework for computational ethics : dealing with multiple
actions, concurrency and omission

Gauvain Bourgne1 , Camilo Sarmiento1 , Jean-Gabriel Ganascia1

1Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{gauvain.bourgne, camilo.sarmiento, jean-gabriel.ganascia}@lip6.fr

Abstract

This paper presents the ACE modular framework
(Action-Causality-Ethics), a modular and declarative
logic-based framework for representing and applying
multiple ethical principles. We clearly separate model-
ing concerns about dynamics and ethics, using reifica-
tion to explicitly represent generic meta-rules to be con-
trasted with specific domain knowledge. This allows
us to formalize ethical principles as methods for ethical
assessment of actions and plans and specify what addi-
tional domain information are needed for each of them
in addition to the factual description of the unfolding of
events. The architecture presented here is based on an
action model allowing concurrency and multiple agents
and we discuss how this affects the ethical assessment
process and allows precise modelling of omission.

1 Introduction
With the increased ubiquity of Artificial Intelligence,
there has been a growing demand for trustworthy AI,
offering guarantees that decisions made by artificial
agents are transparent, explainable and ethical. Com-
putational ethics has emerged as a subfield of Artif-
ical Intelligence, concerned with ensuring ethical be-
haviours in AI applications. As for humans, the very
question of what constitutes an ethical behaviour is the
topic of many arguments, forming the core of norma-
tive ethics, different schools have given rise to different
ethical principles, with a classic divide between conse-
quentialistic approaches and deontological ones.

A crucial concern in computational ethics is thus to
put forth explicit representation of these ethical princi-
ples. To represent them in a unified way, we need some
common representation and an architecture that can as-
sess actions or plans according to multiple principles.
We focus here on explicit formalization of ethical prin-
ciples using logic and allowing practical implementa-
tion.

A number of contributions have been proposed to
model ethical reasoning (see Tolmeijer et al. (2021) for
a recent survey), but they are often focused on a single
principle. Some noteworthy steps in the direction of
a general architecture are the HERA project (Lindner,
Bentzen, and Nebel, 2017) and the modular ASP frame-

work proposed by Berreby, Bourgne, and Ganascia
(2017). The first one is based on structural equations
model abstracting away the whole dynamics in a causal
model, while the second one proposes a modular logic
program in ASP based on an adaptation of event cal-
culus. We use this one as a basis for our proposal as it
is more declarative and modular and based on richer
models of actions which are used in planning and com-
monsense reasoning.

Thus, building upon Berreby, Bourgne, and Ganascia
(2017), we present here the ACE modular framework
(Action-Causality-Ethics), which divide the overall rea-
soning model in three layers : (i) an Action model,
which is a devoid of ethical consideration and focus
on modeling factually the dynamics of the situation,
(ii) a Causality analysis layer, which is an intermedi-
ate analysis layer to enrich the concrete event trace
with more abstract concepts, focused here on deter-
mining causal relation between events, (iii) the core
Ethical layer, which does the actual ethical assessment
of the different actions or scenarios that are provided
by the former layer. This approach takes great care
to separate different modeling concerns. First, using
this three-layers architecture, we clearly separate con-
cerns related to the modeling of the dynamics of the
situation from purely ethical concerns (with causality
acting as a bridge). Second, at each level, we strive
to separate general mechanisms from applications spe-
cific inputs. This distinction is emphasized by a reifi-
cation approach where all domain specific knowledge
are expressed (after grounding) as a set of grounded
facts, while general axiom takes the form of meta rules
upon this reified knowledge. This modeling principle
allows us to put forth explicit logical representation
of ethical principles as each general set of axioms of
the ethical layer (called Theories of the Right) defines
admissibility for a given principle.

While our proposal adopts the modular architec-
ture of Berreby, Bourgne, and Ganascia (2017), it is
more general as it can deal with concurrent actions, al-
low representation of multiple agents and actions and
propose an explicit representation of omitted actions,
which differs from that of Berreby, Bourgne, and Gana-
sia (2018) in that it handles concurrency. Indeed, by

allowing concurrency, we can further distinguish be-
tween omissions that are forced by other actions (not
doing something because I chose to do something else)
and those that are really a choice not to do something.

The structure of this article follows the architecture
of the ACE framework, with Section 2 discussing the
action model, Section 3 presenting the causal analysis
and Section 4 describing the ethical layer. Section 5
then concludes.

2 Action model
The action model is the foundation of our framework as
it indicates how to express the dynamics of our system,
specifying how the different actions or events can affect
the world depending on their execution context.

Drawing inspiration from PDDL and discrete event
calculus (Mueller, 2008) (DEC), we present here a ba-
sic model, which can be seen as a reified version of a
STRIPS-fragment of DEC.

In our adaptation, indirect consequences are han-
dled by “automatic event”, which are akin to exoge-
nous events in PDDL or to trigger axioms in DEC.
These events occur whenever all their preconditions
hold and can in turn trigger other ones, allowing rea-
soning over chains of events. We consider here a deter-
ministic setting, meaning that both the effect of actions
and the triggering of automatic events can be uniquely
determined: it is thus always possible to infer without
ambiguity the state in which one or more events will
lead us to or which automatic event(s) will occur in a
given state.

2.1 Action context
The action context consists of an event specification which
is domain dependent and of an initial situation. The
event specification defines the existing events, their type
(action or automatic event, expressed with domain
predicates action(E) or auto(E)), their preconditions
and effects (prec(F,E) and effect(E,F)), as well as
the possible priorities between them (prio(E1,E2)).
To account for multiple agents, action events are rep-
resented with function term act(Ag,ActName) where
Ag is the agent executing the action and ActName is a
function term representing the action type and its pa-
rameter. The initial situation defines the fluents that
are initially true, using a number of facts of the form
initially(F). It is also used to specify the vocabulary
by declaring the objects that are present (and their type)
and the positive fluents that can be formed upon them
(domain predicate pfluent(F)). These two parts of the
action context correspond in practice respectively to
PDDL domain specification and problem specification
(McDermott et al., 1998).
Example 1 (Emergency treatment). In a disaster situa-
tion, a team of a medic and a fireman reach a zone with 3
victims. All are injured and will get worse if not treated
soon. First victim is in a critical state, second one has serious
injuries and is stuck under some debris and third one only

has moderate injuries so far. The fireman can extract a victim
from the debris, but then the victim will start bleeding which
will cause her death if she does not received some blood just
after. The medic can heal the injury of an accessible victim
(not stuck under debris). If the victim was already in a critical
state, she will remain weakened. By using some blood trans-
fusion (action ’support’) during her intervention, the medic
can avoid death by bleeding out if the victim was bleeding
and allow recovery from a weakened state. In our scenario,
the medic first heals victim 1 without using her blood pouch
while the fireman extracts victim 2. Then the medic heals
victim 2 (now bleeding) using the blood pouch. At last, the
medic heals victim 3, which has by now become critical and
will remain weakened.

We model the actions as follows1: First, the medic can per-
form actions (i) heal(V,I), removing the injury I of a vic-
tim V, which is possible when the victim V is alive, not stuck
and has injury I. and (ii) supp(V,I), using blood pouch on
an injured victim, which is possible when the victim is alive,
unstuck, injured and the medic still has a blood pouch. Its
effects are to remove the weakened and bleeding state of
the victim. The fireman can only perform action extr(V),
extracting a victim who is stuck in some debris. It is possi-
ble whenever V is stuck and has the effects neg(stuck(V)
and bleeding(V)), as extracting the victim will release the
pressure on its wounds.

We use automatic events here to handle the automatic pro-
gression of the state of the victim when not attended: worsen
will worsen the state of the injury (from moderate to serious,
serious to critical) of a victim at each time step in which
the victim is still injured (and this event is not overtaken
by some action tending to the victim). When the injury is
serious, worsen will additionally weaken the victim, and it
will kill her when the injury is already critical. Death can
also occur when a victim is left bleeding, which is modeled by
automatic event dieB. Two additional automatic events are
used to emphasize final state of surviving victims : save(V)
registers that a victim survives (when it is alive, and nei-
ther stuck, injured or bleeding) and stwk(V) indicates that
a victim will stay weakened when it has been healed while
her weakened status has not been removed.

A scenario can be defined as a set of couple (A,T) in-
dicating that action A is performed at time T. We repre-
sent it as a set of ground instances of theperforms(A,T)
predicate. A scenario is correct if all performed actions
actually occur at the given time in the enfolding of
events simulated by the event motor given the action
context.

Example 2. The proposed scenario s0 is given as :
performs(act(m,heal(v1,crit)),0). performs(act(f,extr(v2)),0).

performs(act(m,heal(v2,crit)),1). performs(act(m,supp(v2,crit)),1).

performs(act(m,heal(v3,crit)),2).

Checking the event trace, we can verify that each of these
actions occur at the given time. This scenario is correct for
our model. For illustrative purpose, we will also use another

1Full code for this paper can be found on
https://gitlab.lip6.fr/sarmiento/CME2021

scenario s1 where the medic decides to use the blood pouch at
time 0 on the first patient. The second victim then cannot be
saved and the medic thus focus at time 1 on victim 3.
performs(act(m,heal(v1,crit)),0). performs(act(f,extr(v2)),0).

performs(act(m,supp(v1,crit)),0). performs(act(m,heal(v3,serious)),1).

2.2 Event motor
The main purpose of the event motor is to infer from
the initial situation and the performed actions the set
of events that occur and the evolution of the fluents at
each step, that is, to produce the event trace of each sce-
nario. This trace is a set of ground instances of predicate
holds(F,T), which indicate that (possibly negated) flu-
ent F holds at time T and predicate occurs(E,T), ex-
pressing that event E occurs between time T and T+1.

Events effect axioms These axioms define the prin-
ciples that govern fluents: a fluent holds at T if it was
just initiated by an event occurrence at T-1 (or it was
so initially if T= 0); a fluent which is true at T holds
until the occurrence of an event which terminates it ; it
is false in all other cases, which is here made explicit
for the fluents that appear as negative preconditions.
holds(F,0):-initially(F).

holds(F,T):-effect(E,F),occurs(E,T-1),pfluent(F),time(T).

holds(F,T):-holds(F,T-1),{occurs(E,T-1):effect(E,neg(F)}0,time(T).

holds(neg(F),T):-prec(neg(F),_),not holds(F,T),time(T).

Events precondition axioms These axioms charac-
terise the behaviour and the triggering of events,
defining in a unique way which predicates of type
occurs(E,T) are verified at each moment. First, we
define predicate poss(E,T), which indicates that E is
possible at T, meaning that all its preconditions hold.
As several incompatible events can be possible at the
same time, we distinguish the triggering of an event
(trigg(E,T)), that is, the fact that the event tries to
execute, from its actual occurrence, that is, the fact
that it actually occurs. Priorities between incompatible
events are given using predicate prio(E2,E1) (mean-
ing that E2 has priority over E1). The principles gov-
erning the occurrence of events are as follows: an au-
tomatic event (resp. an action) is triggered whenever
possible (resp. whenever possible and performed); any
triggered event occurs unless it is overtaken by the oc-
currence of another event having priority over it.
poss(E,T):-{not holds(F,T):prec(F,E)}0,event(E),time(T).

trigg(U,T):-poss(U,T),auto(U).

trigg(A,T):-poss(A,T),performs(A,T),action(A).

ovtkBy(E1,E2,T):-poss(E1,T),occurs(E2,T),prio(E2,E1).

overtaken(E1,T):-ovtkBy(E1,_,T).

occurs(E,T):-trigg(E,T),not overtaken(E,T).

Concurrency and event priorities Contrarily to
Berreby, Bourgne, and Ganasia (2018), we consider here
that multiple events can occur at the same time, pro-
vided that they are compatible, meaning that their con-
current execution would not pose any interpretation
issue. Typical cases of incompatibility between events
are cases when the execution of one would falsify the

preconditions of the other or when they produce op-
posed effects. This corresponds to non-interferring
events in PDDL.
Example 3. Priorities for our example are defined as follows:
prio(act(m,heal(V,I)),worsen(V,I)):-vict(V),inj(I).

prio(act(m,supp(V,I)),dieB(V)):-vict(V),inj(I).

prio(act(m,heal(V,I)),act(m,heal(V2,I2))):-V!=V2,[...].

prio(act(m,supp(V,I)),act(m,supp(V2,I2))):-V!=V2,[...].

prio(act(m,heal(V,I)),act(m,supp(V2,I2))):-V!=V2,[...].

Here, healing a given victim would prevent her state from
worsening and giving it blood (action support) would pre-
vent her from bleeding out, so these actions are given priority
over these automatic events (ensuring they have a chance to
falsify their preconditions before they are triggered). Next
priorities ensure that the medic cannot heal or support two
different victims at the same time, nor support a victim while
healing another one. Note at last that when the target v is
the same, supp(v,I) and heal(v,I) are compatible.

2.3 Detecting omission
An agent, broadly speaking, is an entity with the power
to act; exercising this capacity makes agents liable to
blame or praise, both in ethics and in the law. Yet
this capacity is not just a matter of performed actions:
surely we are to blame if we choose not to rescue a
drowning child. Responsibility therefore also pertains
to the power to not act. Whether there is a fundamental
moral difference between actions and omissions is an
important point of debate within moral philosophy (see
Bennett and Bennett (1998); Foot (1985)). As such, it is
critical to be able to model them both separately in our
agnostic architecture.

The meaningful fact of omitting to act only occurs
when acting is possible. One cannot omit to act if there
is no act to omit (Weiner, 1995). As such, we state
that an omission occurs when an action is possible,
not overtaken, and not performed. Both an action or
such an omission constitute a volition — i.e. a decision
made. However, the fact that an action is overtaken
does not necessarily imply that acting was not pos-
sible. If it is overtaken by another action, different
choices could have been made to perform it. We thus
also consider such case as forced omission. It is not a
volition per se, but rather the consequence of another
volition (the choice to do the other action). Given an ac-
tion act(D,X), its omission is denoted by omit(D,X,A)
where A is either constant no or an action A that over-
turned act(D,X).
occurs(omit(D,X,no),T):-A=act(D,X),poss(A,T),

not overtaken(A,T),not performs(A,T).

occurs(omit(D,X,A2),T):-ovtkBy(act(D,X),A2,T),action(A2).

3 Causality analysis
Causality is a central element of ethical decision mak-
ing as it links an action with the changes and events it
provokes, and so infer its consequences, which is the
basis of consequentialist approaches. Moreover, it is
also instrumental to defining what is a means to an

end, a distinction used both by Kant and the doctrine
of double effect. Assessing causal links within a partic-
ular case, as we do here, is called actual causality. Main
approaches are based on counter-factual (Pearl, 2003)
or regularity-based (Wright, 2011).

In this framework, to take advantage of the struc-
tured information provided by the action model, dis-
tinguishing condition and transition as well as actions
and omissions, we use event-based causality (Berreby,
Bourgne, and Ganasia, 2018). We focus here on sup-
porting relations, that is, stating that the occurrence of an
event resulted in the occurrence of another. Identifying
when the occurrence of an event ensures that another
event does not happen, is left for future work. Occur-
rences of events are reified with function term o(E,T)
(corresponding tooccurs(E,T)). Likewise, h(F,T) rep-
resents the fact that fluent F holds at time T. A causal
relation will thus be represented by ternary predicate
r(R,A,B) where R is a keyword qualifying the kind
of causal relation, and A and B are either of the form
o(E,T) or h(F,T).

Causing and enabling An obvious starting point to
define causes from an action model is to consider that
an event causes its effects. Factoring in inertia, by con-
sidering that h(F,T) causes h(F,T+1) when both are
true, we can directly define that the occurrence of an
event at time T1 will cause a (possibly negated) fluent
F to hold at a later time T2 when F is one of its effects
and it remained true from T1+1 to T2.

r(causes,o(E,T1),h(F,T2)):- occurs(E,T1),holds(F,T2),effect(E,F),

{not holds(F,T):T>T1,T<T2, time(T)}0, T2>T1.

We shall then consider that a causal link exists when
an occurrence of event causes at least one precondition
of another event to hold at the time this second event
occurs. As causing something by a deterministic chain
of events is different from giving another agent the
opportunity to cause another thing by its actions, we
distinguish the relation causes, where an event causes
a precondition of an automatic event and the relation
enables, where an agent causes a precondition of an
action, making it possible for the agent of this action to
perform it.

r(causes,h(F,T),o(U,T)) :-holds(F,T), prec(F,U), occurs(U,T), auto(U).

r(enables,h(F,T),o(A,T)):-holds(F,T), prec(F,A), occurs(A,T), action(A).

At last, we can chain these two steps by stating that
an event E1 will cause (resp. enable) another event E2
if it causes a fluent F which causes (resp. enables) E2.
Moreover, causing is ‘transparently’ transitive, mean-
ing that an event E1 that causes an event E2 that itself
causes or enables a third event E3will be considered to
cause or enable that third event E3.

posRel(causes;enables).

r(R,o(E1,T1),o(E2,T2)) :- r(causes,o(E1,T1),h(F,T2)),

r(R,h(F,T2),o(E2,T2)), T1<T2, posRel(R).

r(R,o(E1,T1),o(E2,T2)) :- r(causes,o(E1,T1),o(E3,T3)),

r(R,o(E3,T3),o(E2,T2)), T1<=T3, T3<=T2, posRel(R).

Causal effects of omissions While they have no op-
erational effect, causally, omission preserves the truth
values of the fluents that would have been affected by
the omitted action. If an agent chose not to save a
children that is drowning, this model of the omission’s
effect would result in concluding that it contributes to
this drowning (i.e. it is considered as one of the causes
of this death) by failing to prevent it. In practice, an
omission only causes the preservation of the fluents
that would have been affected by the action if they are
not otherwise changed by another concurrent event. To
reflect this, we adapt the first causality rule for omis-
sion, using predicate compl to get the complementary
of a fluent literal. Moreover, when the omission is not a
volition per se, but rather a consequence of the volition
to do the other action, we explicitly state that this other
action causes the omission.

compl(F,neg(F)):-pfluent(F). compl(neg(F),F):-pfluent(F).

r(causes,o(omit(D,X,A),T1),h(F,T2)):- occurs(omit(D,X,A),T1),

holds(F,T2),compl(F,neg(F)),effect(act(D,X),neg(F)),

{not holds(F,T):T>T1,T<T2,time(T)}0, T2>T1.

r(causes,o(A,T),o(omit(D,X,A),T)):-occurs(omit(D,X,A),T), A!=no.

At last, when omitting to perform an action, one al-
lows the events that would have been overtaken by
this action to happen. This can be seen as a case of
failing to prevent something. Indeed, if considering
opposing causal relation such as prevention, we can
say that performing an action that overtakes an auto-
matic event will prevent the occurrence of this event
at this time step (at least). By omitting such an action,
one fails to prevent the event, which thus actually hap-
pens. Such a relation is a supporting relation as it links
events that happen in the unfolding. Ethically, how-
ever, allowing something to happen and causing it do
not carry the same weight, so we model this case as a
new causal relation: allows. This relation will have the
same transitivity property as enables (which amount
to declaring it as a posRel).

r(allows,o(omit(D,X,A),T),o(U,T)) :- occurs(omit(D,X,A),T),

occurs(U,T), prio(act(D,X),U), auto(U).

posRel(allows).

Modelling causal effects of plans Since ethical as-
sessment rely for a great part on the consequences of
the choice being assessed, in order to assess scenario
with multiple decisions, we can consider that selecting
a scenario corresponds to the choice of performing each
of its actions. In a collaborative setting where agents
can communicate before hand, this would be a collec-
tive choice. We can model this by denoting by constant
plan the choice to commit to the scenario being un-
folded and consider that this choice causes all of the
volitions in the scenario, meaning that a plan causes
each of the actions that are performed, but also each
of the omissions that do not result from other choices.
The following rules reflect this idea.

r(causes,plan,o(A,T)):-occurs(A,T), performs(A,T).

r(causes,plan,o(omit(D,X,no),T)):-occurs(omit(D,X,no),T).

Example 4. Figure 1 illustrates the unfolding of our first
scenario and the causal relations between the events occur-
ring in the event trace. To be more concise, occurrences of
actions (o(act(D,X),T) are denoted as aT

X. Likewise, omis-
sion (o(omit(D,X,),T) and automatic event o(E,T) are
denoted respectively oT

X and uT
E, while constant plan is just

denoted as P.

a0
extr(v2)

a0
heal(v1)

o0
heal(v3)

o0
supp(v3)

o0
supp(v1)

u0
wors(v3)

u0
wors(v2)

a1
heal(v2)

a1
supp(v2)

o1
heal(v3)

o1
supp(v3)

u1
wors(v3)

u1
save(v1)

u1
stwk(v1)

a2
heal(v3)

u2
save(v2)

u3
save(v3)

u3
stwk(v3)

P

t = 0 t = 1 t = 2 t = 3

causes
enables
allows

...

Figure 1: Causal relations between event occurrences of the
running example.

We can see that in this scenario, all victims are saved, but
both victim 1 and victim 2 stay weakened. The causal trace
correctly analyses that (i) healing victim 1 at time 0 will
cause this victim to be saved ; (ii) the choice not to support
victim 1 at time 0 causes this victim to stay weakened, but
this omission also enables the action supp(v2,crit) at time
1, which causes o(save(v2),2); (iii) omitting to heal the
victim 3 at time 0 and 1 each time allows the states of victim
3 to worsen, which in turn causes this victim to stay weak
in the end. As we do not model opposing relation here, we
cannot however causally link the action supp(v2,crit) at
time 1 to the fact that we cannot support victim 3 at time 2
(which is not an omission as its preconditions are not met).
This would be a case of exclusion (one action making a future
one impossible by falsifying its preconditions).

4 Ethical assessment
The different models given in the previous sections
allow an agent to foresee the unfolding of events and
derive the consequences of its actions, but these models
do no contain any ethical considerations. To assess
the ethical admissibility of actions, there is a need to
characterize the decision or their outcome. Berreby,
Bourgne, and Ganascia (2017) propose two elements
for the ethical layer. First, a model of the Good performs
an evaluation of the Good produced by the actions.
Theories of the Right can then rely on this evaluation to
assess what is or not permissible in a given context.

Model of the Good A model of the Good must eval-
uate the atomic good and bad produced by each event
in order to qualify and eventually quantify them. It is
not directly affected by concurrency or omissions. In
our running example, we consider two modalities : the
right to live, which is ensured by save(V) and violated

by any event causing death, and the right to be in good
health, which is violated by stwk(V). We quantify these
by giving respectively weight of 10 and 2 for the right
to live or to be in good health.

wGood_elem(save(V),V,life,10):-event(save(V)).

wBad_elem(E,V,life,10):-effect(E,neg(alive(V))).

wBad_elem(stwk(V),V,health,2):-event(stwk(V)).

wGood(o(S,E,T),V,M,N):- wGood_elem(E,V,M,N); occurs(S,E,T).

wBad(o(S,E,T),V,M,N):- wBad_elem(E,V,M,N), occurs(S,E,T).

Theories of the Right The model of the Right is
tasked with determining which actions or set of actions
are right according to the circumstances of their execu-
tion. Each theory of the Right then represents a given
ethical principle (the different theories being given by
th(P)). This model can infer impermissible actions ac-
cording to each of its ethical principles using predicate
imp(P,A), which indicates that volition occurrence A is
inadmissible (or impermissible) according to theory P.
Ethical principles usually focus, in classical dilemma,
on defining which action you should do. But as actions
can be part of a greater collective plan, we will here as-
sess directly the whole scenario, using constant plan,
which represents the volition to perform the whole set
of actions decided upon, causing each action and de-
liberate omission of the scenario.

While most deontological theories define satisficing
principles, i.e. principles that can assess the permis-
sibility of an action or a scenario in itself, without
considering alternatives courses of actions, some con-
sequentialistic approaches prescribe maximising prin-
ciples. Rather than assessing whether an option is
good enough, they focus on finding the best options
given the possible alternatives. To model such princi-
ples, we must compare different scenarios within the
same program. To each deterministic unfolding of a
scenario corresponds a unique simulation S that we
add to each occurrence of events : o(E,T), plan and
occurs(E,T) appearing in simulation S are rewritten
as respectively o(S,E,T), plan(S) and occurs(S,E,T)
through some post processing gathering the traces of
all scenarios. A permissible scenario is then one that
is not impermissible: per(P,plan(S)):-sim(S), not
imp(P,plan(S)), th(P).

Some theories of the Right We propose three the-
ories to illustrate this architecture. The first two of
these theories are adapted from Berreby (2018) and the
last one is adapted from Lindner and Bentzen (2018).
This first sample could be expanded easily by adapting
more principles from such sources.

Benefit Cost Analysis and Act-utilitarism. First two
theories are consequentialistic, with the first one being
an example of a satisficing consequentialistic approach
while the second one is maximising. Our first step
is thus to gather and aggregate individual good and
bad of all consequences of one’s actions, considering
that each causal relations R can be given a weight fR :
w(A) = ΣR∈posRel(Σ(k,x,m,e)∈GR(A)k. fR−Σ(k,x,m,e)∈BR(A)(fR× k)

where GR(A) = {(k, x,m, e)|wGood(k,e,m,k),r(R,A,e)}, BR is
similar to GR using instead wBad, fcauses = fallows = 10
and fenables = 0. This is translated to ASP rules with
sum aggregates deriving weightAct(A,w(A)). Using
this aggregation, we define the benefit cost analysis
principle benCost (one should act in a way that it brings
about more good than bad) and the act-utilitarism prin-
ciple actUti (one should act in a way that maximises
the overall good).
th(benC). th(actU).

imp(benC,plan(S)):-weightAct(plan(S),N),number(N),N<0,sim(S).

imp(actU,plan(S)):-weightAct(plan(S),N1), weightAct(plan(S2),N2),

N1<N2,sim(S;S2).

Kant 2nd categorical imperative. At last, we propose
an adaption of Kant’s second categorical imperative
based on the formalisation by Lindner and Bentzen
(2018) (using their first reading of ”means”). This prin-
ciple states that you should ”act in such a way that
you treat humanity [...] never merely as a means to
and end, but always at the same time as an end.” This
requires additional ethical specification of the moral
patient (mPatient(P)), which event affects them and
how (affect(EvOcc,P,K), where EvOcc is an event oc-
currence, P a moral patient and K∈ {−1, 1} indicates
whether it is affected negatively or positively) and what
is the aim of the scenario (aim(plan(S),EvOcc)). In
our example, moral patients are the victims, affected
by each event having them as parameters and the aim
of each scenario is to save them. Using these, the theory
itself defines what is an end, a means, before prohibit-
ing scenarios that consider some moral patient as a
mean and not an end.
th(kant(1;2)).

end(A,X):-affect(G,X,1), aim(A,G), {affect(G2,X,-1):aim(A,G2)}0.

means(A,X):-r(R1,A,E),affect(E,X,_),r(R2,E,G),aim(A,G),posRel(R1;R2).

imp(kant(N),plan(S)):-means(plan(S),X),not end(plan(S),X),mPatient(X).

Example 5. Going back to our example, considering our
basic scenario s0 and only the alternative scenario s1 where
the medic support victim 1 in the first time step (resulting
in two full remissions but one death), the program assess
that both scenarios are permissible for satisficing principles
(benCost and kant), while only the first is permissible ac-
cording to actU. Should we consider the weakened state to
represent something really serious (for example coma), giv-
ing it a much higher penalty (e.g. 12), the act-utilitarian
approach would then prefer the second scenario, making the
first one impermissible.

5 Conclusion
We presented here an architecture to structure ethical
reasoning, and especially the task of assessing moral
permissibility of some scenarios with respect to dif-
ferent ethical principles. The ACE framework allows
us to separate modelling concerns and provide a clear
picture of the reasoning involved in an ethical decision.
The proposed implementation, presented as a machin-
ery for assessment scenario defined beforehand can

easily be geared toward planning by using choice ax-
iom to generate scenarios (and integrity constraints to
ensure they are correct). Even without using the un-
derlying implementation in ASP, we believe this sepa-
ration in three layers to be a useful methodological tool
to model ethical principles. More specifically, we dis-
cussed here how to deal with explicit representation of
omission in a concurrent setting and proposed a simple
way to assess plans by evaluating the collective deci-
sion to commit to a plan as a meta action causing all
the volitions involved in the scenario. As most works
in normative ethics focus on the assessment of a single
decision within a context, this allows us to lift up the
modelling of multiple actions to a single decision that
can be modeled accordingly. We left for future work
a more detailed analysis of the interactions between
omission and opposing causal relations.

References
Bennett, J., and Bennett, J. F. 1998. The act itself. Oxford

University Press.
Berreby, F.; Bourgne, G.; and Ganascia, J.-G. 2017.

A declarative modular framework for representing
and applying ethical principles. In AAMAS, 96–104.
IFAAMAS.

Berreby, F.; Bourgne, G.; and Ganasia, J.-G. 2018.
Event-based and scenario-based causality for com-
putational ethics. In AAMAS, 147–155. IFAAMAS.

Berreby, F. 2018. Models of ethical reasoning. Ph.D. Dis-
sertation, Sorbonne Université, EDITE, LIP6, Paris.

Foot, P. 1985. Morality, action, and outcome. Morality
and objectivity 23–38.

Lindner, F., and Bentzen, M. 2018. A formalization of
kant’s second formulation of the categorical impera-
tive. DEON 2018, Utrecht, Netherlands.

Lindner, F.; Bentzen, M. M.; and Nebel, B. 2017. The
HERA approach to morally competent robots. In
IROS, 6991–6997. IEEE.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL-the planning domain definition language.

Mueller, E. T. 2008. Event calculus. In Handbook
of Knowledge Representation, Foundations of Artificial
Intelligence, volume 3. Elsevier. 671–708.

Pearl, J. 2003. Causality: models, reasoning, and infer-
ence. Econometric Theory 19:675–685.

Tolmeijer, S.; Kneer, M.; Sarasua, C.; Christen, M.;
and Bernstein, A. 2021. Implementations in Ma-
chine Ethics: A Survey. ACM Computing Surveys
53(6):132:1–132:38.

Weiner, B. 1995. Judgments of responsibility: A foundation
for a theory of social conduct. guilford Press.

Wright, R. 2011. The NESS Account of Natural Cau-
sation: A Response to Criticisms. In Perspectives on
Causation. Hart Publishing. 38.

	Introduction
	Action model
	Action context
	Event motor
	Detecting omission

	Causality analysis
	Ethical assessment
	Conclusion

