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Abstract: Photoplethysmography is a method to visualize the variation in blood volume within
tissues with light. The signal obtained has been used for the monitoring of patients, interpretation for
diagnosis or for extracting other physiological variables (e.g., pulse rate and blood oxygen saturation).
However, the photoplethysmography signal can be perturbed by external and physiological factors.
Implementing methods to evaluate the quality of the signal allows one to avoid misinterpretation
while maintaining the performance of its applications. This paper provides an overview on signal
quality index algorithms applied to photoplethysmography. We try to provide a clear view on the role
of a quality index and its design. Then, we discuss the challenges arising in the quality assessment of
imaging photoplethysmography.

Keywords: contact photoplethysmography; imaging photoplethysmography; quality index

1. Introduction

A photoplethysmograph (also known as photoelectric plethysmograph, or PPG) is
an instrument using light to measure blood volume changes in tissues [1,2]. A PPG signal
can be extracted from several parts of the body (e.g., finger, ear, forehead, wrist) [2,3]. The
conventional principle is called contact PPG (cPPG) and consists of a device in contact with
the skin, emitting a controlled light beam. According to the Beer–Lambert law, this light
will be transmitted, absorbed, or dispersed by the different elements constituting the tissues
(e.g., blood components in capillaries or arterioles, keratin and melanin in epidermis [4,5]).
Then, the output light is received by a photoreceptor [6]. The evolution with time of the
light received by the receptor allows one to visualize the blood flow in a specific portion of
tissue. The measurement of PPG can be based on the transmittance or reflectance mode.
In transmittance mode, the source of light and the photoreceptor face each other and the
receptor measures the light that has not been absorbed by the tissue. In reflectance mode,
the light source and receptor are side by side and the receptor measures the light that is
reflected from the tissue. PPG signals have applications in the monitoring of patients and
extraction of vital signs [7].

The simplicity and low cost of the technology allow its integration in various de-
vices, such as oximeters, smartwatches, or smartphones. It can be used in applications
such as home monitoring, or in measurements performed during physical activities such
as running.

Furthermore, the emergence of imaging photoplethysmography (iPPG) potentially
allows the same applications using only the ambient light modulated and reflected by the
blood from the skin and captured by a camera. The development of iPPG could allow
physiological measurement during telemedicine, by using a webcam or a smartphone
camera, to support the diagnosis of a clinician.

However, during a measurement, the signal obtained from a device can be corrupted
by perturbations called artifacts. Consequently, the interpretation of the output signal is
impossible or erroneous, which could lead to false diagnosis or to the rising of false alarms.
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Thus, the discrimination between signals of high and low quality can help to detect
the presence of perturbations. To avoid asking the opinion of an expert for each occurrence
of an artifact and to maintain the high performance of the monitoring device, the field of
quality assessment algorithms has been developed. Many algorithms have been suggested,
evolving with the possibilities offered by devices, and depending on the application that
the PPG signal is used for.

Several reviews have been presented on the topic of quality assessment of contact
PPG signals. Nizami et al. [8] reviewed papers suggesting artifact detection algorithms
for critical care units between 1989 and 2012. Orphanidou published a book [9] in 2018
addressing the quality assessment of contact PPG signals for rule-based and machine
learning-based methods. Two smaller reviews have been recently published by Mejía-
Mejía et al. [10] and Park et al. [11]. Mejía-Mejía et al. provided a definition of PPG
signal quality and discussed methods used for its assessment. Park et al. published a
review on PPG signal features, applications, and processing methods, including a section
on signal quality indexes, in which they presented an overview of quality assessment
algorithms oriented around feature-based methods and machine learning/deep learning-
based methods. However, to the best of our knowledge, no survey has been done on the
topic of quality assessment applied to iPPG. In this review, we try to provide an exhaustive
view on the latest methods dedicated to quality assessment and discuss the methodology
used for the creation of those algorithms for both cPPG and iPPG.

This paper presents an overview of the different methods used to assess the quality of
a PPG signal and discuss the methodology in the design of those methods. Sections 2 and 3
of this paper provide the background on quality assessment, physiological signals, and
photoplethysmography. Section 4 reviews the methods used for the quality evaluation of
contact PPG over two differentiating points, the features extracted and the classification
method. We finish by discussing the role and signal quality indexes (SQI) existing in iPPG.

2. Background
2.1. PPG Signal and Its Application

A PPG signal reflects the variation with time of the blood volume in the tissue of a
patient [5]. The obtained signal is dependent on the mode (transmittance or reflectance)
and on the wavelength of the light source used. Indeed, the light penetration depth
in the tissue is different according to the wavelength used. Green light can only reach
capillaries and upper arterioles under the epidermis, whereas red and infrared light are
able to penetrate further into the dermis and reach deeper and larger arterioles [5]. This
penetration depth has an influence on the quality of the signal under perturbation. Maede
et al. [12] and Jihyoung et al. [13] showed that red- and infrared-based PPG are more subject
to motion artifacts than green-based PPG. The PPG signal is composed of a semi-periodic
component (AC component) reflecting the modification of blood flow due to cardiac activity
and a baseline (DC component) varying with low-frequency physiological changes (e.g.,
respiration or variations of the sympathetic and parasympathetic system of the patient).
The measurement of a PPG signal allows several applications [14]:

• Extraction of physiological parameters, which can be illustrated by the extraction or
estimation of physiological variables such as pulse rate, pulse rate variability, blood
oxygen saturation [15], blood pressure [16], jugular venous pulse, respiration rate,
cardiac output, arterial stiffness, left ventricular ejection time [10].

• Monitoring of patients by the screening PPG signals to follow their cardiovascular
state. It allows the rise of alarms in case of the detection of abnormal situations such
as fibrillation in intensive care units.

• Diagnosis: for example, by the detection of cardiovascular or peripheral vascular dis-
eases [17] or arrhythmia, such as atrial fibrillation [18] or ventricular tachycardia [19].

2.2. Measurement Factors Influencing a PPG Signal

This measurement of a PPG signal is a process influenced by five factors (Figure 1):
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• the environment: the external conditions in which the measurement is taken (e.g., tem-
perature, pressure, ambient light, occurrence of a perturbation from the environment
hiding the portion of skin in case of iPPG);

• the material: the portion of skin subjected to the measurement;
• the operator: the person performing the measurement;
• the equipment: the device used for the measurement (e.g., a pulse oximeter/smartwatch

for PPG or a camera for iPPG);
• the methods: the physics behind the measurement and the algorithm dedicated to the

extraction of the desired measurand and the protocol of measurement.

Environment Method

Material Operator Equipment

Signal or physiological 
variable from a PPG 

measurement

Figure 1. Ishikawa diagram presenting the factors influencing a photoplethysmographic measurement.

From each factor, perturbations can affect the quality of a PPG measurement (Table 1).

Table 1. Non-exhaustive perturbations affecting a PPG measurement.

Measurement Factor cPPG iPPG

Means

Low resolution of the sensor
Inadequate sampling frequency of the sensor

Clipping
Sensor’s noise

Power source interference [1] Automatic exposition

Contact pressure [20] Rolling shutter [21]

Irregular frame rate [21]

Environment

Ambient light
Temperature [22]

Low luminosity

Nonstable environment
(varying luminosity)

Material

Motion artifacts

Presence of makeup [23]

Ballistocardiographic artifacts [24]

2.3. Physiological Factors Influencing a PPG Signal

In addition to measurement perturbations, several studies have highlighted the in-
fluence of physiological factors (e.g., skin tone, skin thickness, arterial thickness, venous
return) and states of the patient (such as illness, age, weight, blood pressure) on the shape
of a PPG signal (see Table 2).
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Table 2. Physiological factors affecting a PPG signal.

Physiological Factor cPPG iPPG

Measurement site Impact on the shape of the PPG pulse [25]

Autonomic nervous system
(sympathetic

and parasympathetic)

Impact on the baseline of the
signal [26]

Impact on pulse amplitude [7,27,28]

Arterial stiffness

Impact on the waveform [29,30]

Impact on pulse wave velocity
[29,30]

Presence of disease
(Arrythmia, premature

ventricular
contraction, etc.)

Pulse to pulse interval [1,18]
PPG waveform [7,18]

Pulse with multiple peaks
(diabetes), incomplete pulses

(arrythmia) [31]

Respiration

Baseline wandering
Modification of the waveform

shape [25]
Modification of frequency and

amplitude of the AC
component [29]

Modification of the pulse rate [32]

Skin thickess
Lower PPG signal intensity

and modification of the
waveform [29]

Skin tone
Higher absorption of

lower-wavelength light
(green) [29]

Signal of lower amplitude and
more subject to noise [33]

Venous return
Affects both low-frequency

components and AC
components [29]

3. Introduction to Signal Quality Index for Photoplethysmographic Signals
3.1. Definition of Quality

We distinguish between two types of quality for photoplethysmography, the metro-
logical quality and the physiological quality.

3.1.1. Metrological Quality

Metrological quality focuses on the measurement factors affecting both the photo-
plethysmographic signal retrieved and the physiological parameters extracted from it. This
aspect of the signal quality is subject to perturbations (detailed in Table 1) arising from the
environment, the operator (e.g., motion artifacts, poor installation of the sensor for contact
PPG), the sensor (e.g., inadequate sampling frequency or resolution), or the mean. Different
perturbations can occur and impact the signal with varying intensities, such as different
amplitudes of a motion artifact or noise power of a sensor. Thus, we represent the notion of
the quality of the signal with a continuous scale (Figure 2). This scale represents how much
the quality of the retrieved signal is affected and depends on the method implemented
to extract and process the signal, such as the performances of an algorithm of face track-
ing, signal extraction, and filtering for an iPPG measured from the face. For example, a
smartwatch application dedicated to the measurement of photoplethysmographic signals
during exercise may be more subject to motion artifact than a pulse oximeter device used
at rest. However, the use of motion artifact reduction algorithms [34] allows one to recover
a signal from some perturbations. This processed signal can ultimately be labelled as
good-quality. Metrological quality focuses on the following question: given a measurement
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with a protocol and method, in a given condition of measurement, how well does the
obtained signal reflect the variation in blood volume in the tissue?

Measurement 
factor

Perturbation 
factor Low metrological quality

Level of metrological quality
High metrological quality

Low ambient light 
intensity

High ambient 
light intensity

Environment Ambient luminosity

Large motion No motion

Operator
Motion artifact 
(translation)

Low sampling 
frequency

High sampling 
frequency

Means Sampling frequency

Figure 2. Non-exhaustive example of perturbation factors influencing the metrological quality. For
each perturbation, the color bar represents the metrological quality of the signal. Signals tending to
the red color have low metrological quality and will have high metrological quality when tending to
the green color. Depending on the intensity of the perturbation factor, it has an influence on how well
the signal retrieved from the sensor reflects the variation in blood volume in tissues.

3.1.2. Physiological Quality

The notion of physiological quality is specific to the nature of the PPG signal. The
measurement of PPG is done on living tissues. Consequently, the obtained signal is affected
by physiological factors. For example, let us consider a PPG signal measured in optimal
conditions with a perfect sensor and a proper processing algorithm, giving a signal whose
variations are only due to blood volume changes in tissues, supposing also that we want to
use this signal to measure the pulse rate. Then, the signal retrieved may still not be suitable
for this application if the patient suffers from arrhythmia. Here, we want to highlight
that, given some applications built upon the PPG signal (e.g., estimation of pulse rate,
blood oxygenation, or pulse rate variability), the quality of the signal can be independent
of metrological factors. Physiological factors can affect the PPG signal with different
intensities. For example, an arteria can be more or less stiff or the respiration intensity of
the patient can vary. Consequently, we also decided to represent physiological quality with
a continuous scale (Figure 3). This notion of physiological quality is dependent on the
application of the PPG signal and the algorithms implemented to achieve it (including the
signal extraction process).



Appl. Sci. 2022, 12, 9582 6 of 25

Physiological
factor Low physiological quality

Level of physiological quality 
High physiological quality

+ rigidity - rigidity

Arterial stiffness

Less fit for locating 
a diastolic peak

More fit for locating 
a diastolic peak

Arrhythmic signal No illness

Illness

Less fit for pulse 
rate measurement

More fit for pulse 
rate measurement

Figure 3. Non-exhaustive example of physiological quality illustrated with the waveform of a
fingertip contact PPG. The physiological factors presented here are not measurement perturbations.
Here, the case of optimal measurement conditions with a perfect sensor is represented. The signal
reflects the variation in blood volume. However, the shape of the obtained signal cannot be used for
its application.

3.1.3. Annotation

From the above sections, quality has been defined as how well the signal translates
the variation in the blood flow of a patient with the metrological quality and how well the
signal can be used for the derived application with physiological quality using continuous
scales. In practice, quality is commonly addressed as discrete. Most of the reviewed papers
presented in this survey associate the quality of the PPG signal binarily (“good” or “bad”
quality) or with intermediate discrete levels. Passing from two continuous notions of
quality with respect to metrological and physiological factors to a discrete representation
makes the annotation of a set of signals difficult. However, it is a necessary step for the
evaluation of the performance of an SQI algorithm.

Automatic annotation
Automatic annotation processes refer to annotation methods without the intervention

of a human operator.
A common method is to extract a physiological variable (e.g., PR, stroke volume) from

the PPG signal and compare it to the value of the same physiological variable extracted
from another device and/or another signal (e.g., electrocardiogram (ECG)) serving as a
reference. If the difference between the values does not exceed a threshold, then the PPG
signal is considered of good quality; otherwise, it is considered of low quality. In this case,
the notion of quality is principally driven by the application.

Another method consists in annotating the signals with the help of an already existing
SQI. This method is used for the case of papers wanting to deploy an SQI algorithm
replacing one or several older SQI algorithms.
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Manual annotation
Manual annotation involves human intervention in the process. As with any manual

annotation, this process takes time and is difficult. It is also subject to errors from annotators
(noise in labels).

The annotation of PPG signals differs from the annotation of objects in images [18]
as follows.

• A PPG signal is a physiological signal, and evaluating its metrological quality needs
the opinion of experts in the field. Consequently, the process of annotation can be
expensive, and the annotation of large datasets is difficult.

• Because of its physiological nature, a PPG signal measured from a patient must
be coherent with the physiological possibilities of the human body and with other
physiological signals (e.g., ECG or continuous blood pressure). This coherence offers
the possibility for the annotators to be guided

– with a set of rules that the PPG signal must comply with;
– with another physiological signal not affected by the perturbation.

Other than subjective or guided annotation, a third way to manually annotate the
quality has been proposed. This method consists in including artificial perturbations during
the recording of the PPG. For example, the luminosity can be changed during the recording
of an iPPG signal, or a patient may be asked to move his/her hand at a given time (Figure 4)
during the recording of the cPPG. Then, the PPG signal corresponding to the occurrence of
the perturbation is labelled as low-quality. The impact of the perturbation on the signal
may still depend on the intensity of the artifact induced. Table 3 proposes a summary of
the different methods of annotation.

Execution time of the perturbation
Signal labelled as “bad quality”

motion

Figure 4. Example of annotation done during a controlled experiment. Here, a patient is wearing
a PPG sensor and is asked to not move during a given period. Then, at a specific time, the patient
is asked to artificially create a perturbation (here, a motion artifact with up–down movement). The
signal recorded during this period of perturbation is automatically annotated as “bad-quality”.
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Table 3. Classification of papers addressing SQI according to the annotation type.

References Details Annotation Type

[35] Evolution of PR between 2 pulses and sudden
evolution of the value of the blood oxygenation.

Automatic annotation

[35–38] Comparison between PR estimated from the PPG
signal and the HR estimated from ECG.

[39,40]
Comparison between stroke volume measured

from cPPG and a reference taken from
impedance cardiography.

[40]
Comparison of left ventricular ejection time

measured by a reference with the one measured
by cPPG.

[41] Labelling by computing already existing
quality indicators.

[36,42–50] Not Guided

Manual annotation
[51–54] Guided By rules
[55,56] By reference signal

[35,57–59] Perturbations artificially created during recording
PR = Pulse Rate, HR = Heart Rate, ECG = Electrocardiogram, cPPG = Contact Photoplethysmography.

3.2. Applications

We define as a quality index an algorithm taking a PPG signal in entry and assigning
it a score or label indicating its quality. A signal quality index can be used in several
applications:

• Reducing false alarms during patient monitoring;
• Presenting clean signals for experts’ interpretation;
• Cleaning datasets for machine learning applications;
• Suppressing irrelevant signals to maintain performance of physiological variable

predictions;
• Integrating the SQI into the signal processing algorithm to evaluate or improve

its performance.

The general purpose of an SQI consists in increasing the reliability of the application
in which it is implemented. We can distinguish two ways to use an SQI: as an indicator for
keeping or removing a signal and as an indicator to improve the performance of the signal
processing chain.

3.2.1. Keeping or Removing PPG Signals

The main reasons to remove a set of PPG signals are as follows:

• Avoiding misinterpretation and false alarms from corrupted signals;
• Maintaining the performance of an application by keeping only relevant signals;
• Preparing an artifact-free dataset for the training and testing of a machine/deep

learning estimator to achieve good performance [60].

In the case of cleaning, a signal quality assessment algorithm can be used as a tool to
indicate which signal should be kept and which should be suppressed (see Figure 5).
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SQI 
algorithm

To keep

To remove

Figure 5. Example of application of an SQI assigning a quality score or label to filter irrelevant data.
In this figure, an SQI assigns a “bad-quality” label (in red) for a noisy PPG signal or a signal affected
by a motion artefact to be suppressed and a “good-quality” label (in green) for the signals to be kept
in the dataset.

An SQI algorithm can be evaluated for its contribution to the performance of the
estimation. This kind of evaluation is application-oriented. However, it may not represent
accurately how the SQI algorithm behaves as it does not consider the proportion of good
signals unnecessarily removed or the proportion of bad signals still present after cleaning.

Some applications need a more accurate evaluation of the signal. For example, in the
case of false alarm reduction, it in necessary to separate a corrupted signal from an episode
of arrhythmia. This second method relies on an annotated database. The performance
of the SQI algorithm is evaluated by comparing the estimated signal quality with the
annotated reference.

The SQI evaluation metrics are usually taken from a confusion matrix (accuracy, sensi-
tivity, precision, positive predictive value (PPV), Area Under Curve–Receiver Operating
Characteristic (AUC-ROC)). Accuracy gives the global performance of the SQI algorithm,
while sensitivity and precision focus, respectively, on the proportion of signals well clas-
sified within the real bad-quality signals and on the proportion of correctly estimated
samples in all estimated bad-quality signals. AUC-ROC is the area under the curve in the
graph relating the sensitivity and false positive rate obtained by moving the threshold
between the good and bad signals. An algorithm with an AUC close to 1 is able to separate
the good from the bad signals.

3.2.2. Supporting the Signal Processing Chain

In this scenario, the algorithm can be integrated into the processing algorithm. For
example, in [32,61], a remote iPPG signal is extracted from an image divided into several
subregions. Each subregion provides an iPPG signal and these signals are evaluated by an
SQI algorithm (signal to noise ratio (SNR) in this case). The score obtained for each signal is
then used to weight the contribution of each subregion to form the final iPPG signal. An SQI
algorithm can also be used to evaluate different signal extraction and processing methods.
For example, Wang et al. [62] compared different methods of extraction of imaging PPG
(PCA, ICA, CHROM [63], Spatial Subspace Rotation (SSR) [64], and Plane Orthogonal to
Skin (POS) [62] by evaluating the quality of the signal extracted from a common database
using an SNR quality index.

4. SQI for cPPG

We grouped quality assessment algorithms for cPPG into three categories: rule-based,
machine learning-based, and deep learning-based method.

4.1. Rule-Based

In this section, we focus on the SQI algorithm as a set of criteria computed from the
PPG signal. These criteria rely on the expected behavior or on specific properties (resulting
from statistical analysis). These criteria reflect morphological features (see Section 4.1.1
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and Figure 6). The SQI consists here in verifying if their values or variations are within
a plausible physiological range. These physiological ranges are defined from a statistical
study from the literature or datasets. They can also consist in the detection of events
unlikely to have a physiological origin, such as clipping [44,45,65,66], i.e., truncation due
to the saturation of the signal. The stability of the PPG waveform is also an important
property of the signal, used as a criterion to evaluate its quality.

Systolic peak

Diastolic peak

Systolic
amplitude

Diastolic
amplitude

Inter foot interval

Amplitude difference 
between successive feet

Inter beat interval
Amplitude difference 
between successive peaks

Area under 
systole

Area under 
diastole

Figure 6. Figure illustrating cPPG pulses and possible features extracted from them.

4.1.1. Criteria Based on Signal Features

To address the different criteria reviewed in papers suggesting a rule-based SQI al-
gorithm, we decided to group them within three scales. Signal scale criteria regroup
conditions based on morphological and spectral statistics computed on an ensemble of suc-
cessive pulses (see Table 4). Pulse scale criteria regroup conditions based on morphological
and spectral features computed for each pulse. Fischer et al. [44,45] suggested to evaluate
the quality of a PPG pulsation based on the value taken by its morphological features (pulse
width, rising time, pulse amplitude, area under the pulse, difference between autocorrela-
tion of red and infrared signals). Each threshold separating good- from bad-quality signals
has been designed from the literature and on statistical analysis. Among features computed
on pulses, the skewness of the pulse is the most commonly used. This feature indicates the
asymmetry of a PPG waveform and should be positive as the systolic peak is dominant in
a normal pulse. Mohamed Elgendi demonstrated in [51] that skewness is the best indicator
to separate excellent-quality from medium- and low-quality signals. The inter-beat scale
regroups conditions based on the variation in features between successive beats. Within
inter-beat features, the inter-beat interval (the time separating two successive pulse peaks)
is the most commonly used feature and gives an idea of the stability of the signal from one
beat to another.

In Table 4, we only enumerate features extracted from a PPG signal. However, if
the device used to measure the PPG signal offers measurement from other sensors, such
as the acceleration from a smartwatch accelerometer [67], the use of features from other
signals is often observed to assess its quality. For example, Sappia et al. [48] used the red
and infrared PPG signals offered by their sensor to deduce the variation in oxygenated
and deoxygenated blood and build criteria based on it (ratio between oxygenated and
deoxygenated pulse). These criteria are not applicable for smartwatches measuring PPG
from green light.
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Table 4. Enumeration of the different PPG signal features extracted for the assessment of its quality.

Scale Domain Features References

Pulse

Temporal

Amplitude

Pulse amplitude [44,45,68,69]

Area under pulse [44,45]

Mean, std of pulse waveform [35,37]

Temporal
Pulse width [44,45]

Pulse rate [36,70]

Derivative
Ratio of maximum positive

slope over minimum
negative slope

[59]

Spectral
Entropy [51]

Principal frequencies and residual noise [69]

Statistical
Skewness [37,50,51,57,69]

Kurtosis [37,50,51,57,69]

Inter-beat Temporal

IBI [35,37,46,59,71]

Successive IBI [59]

Inter-foot interval [46]

Amplitude difference between successive peaks (mean, std) [35,37,44–46]

Amplitude difference between successive feet [46,69]

Difference between pulse widths [44,45]

Difference between rising times [44,45]

Signal

Temporal

Amplitude of the signal [48,72]

Difference between autocorrelation of PPG from red and infrared [48]

Ratio of oxygenated and deoxygenated blood measured [48]

Ratio between systolic and diastolic time [35]

Kurtosis [58]

Shannon entropy on signal amplitude distribution [47,58]

Shannon entropy on signal amplitude distribution [47,58]

Permutation and sample entropy [73]

Predictor (autoregressive model) coefficients fitted on 5 s signals [66]

Spectral

Variable-Frequency Complex
Demodulation (VFCDM)

Residual noise [36]

Projected frequency modulation
difference [36]

Difference between PR and IBI [36]

Energy and amplitude of dominant
frequencies in PR range [74,75]

Energy of non-dominant frequencies in
PR range [74]

Variation of dominant frequencies with
time [75]

Power spectrum Variation of dominant frequencies with
time [37]

Spectral entropy [73]

Hjort parameters [37]

Statistics

SNR [47,51]

Variance of the signal [37]

2 first peaks of correlogram of the signal [47]

First peak amplitude and time and number of zero crossing of the auto-correlation of the
signal [72]

Detrended Fluctuation Analysis, Fractal Dimension, and Higuchi Fractal Dimension [73]

IBI = Inter-Beat Interval, PR = Pulse Rate, SNR = Signal to Noise Ratio, std = Standard Deviation.
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4.1.2. Stability of the PPG Waveform

Among the reviewed papers, some suggest using the stability property of the wave-
form of the PPG signal to discriminate between good- and bad-quality signals. Instability
of the waveform of a PPG signal’s pulsations is likely due to measurement perturbations
such as motion artifacts or sensor clipping. To check the stability of a PPG pulse, a common
process is to extract the pulses from the PPG signal. Then, each pulsation is compared to
a reference, i.e., a model of pulsation built from the signal and called a template. If the
pulse is different from the reference, the pulse is considered as low-quality. For example,
Orphanidou et al. [70] computed a template as the mean pulsation of a portion of signal
neighboring the pulsation to be evaluated, whereas Karlen et al. [43] used only the previous
pulsation as the template. John et al. [76] built a template iteratively within the first few
seconds of the signal. The authors first spot an interesting portion of a pulse (with points
of interest) and take it to initialize the template. Then, they iteratively use the Toeplitz
correlation matrix to find the next portions of pulse aligned with the template and add it to
the current template. On this principle, several papers have suggested original methods
to build a pulsation model and compare it with the PPG pulse to be evaluated. Building
a template of a pulse as the average of detected pulses in the signal [43,46,65,70,77,78] or
using neighbors [43,79] is a common method. The difference is based on how the pulses
are selected for the building of the template (Li et al. [65] used all pulses in a 30 s windows,
while Karlen et al. [43] preselected the pulses by performing normalized cross-correlation)
and how the signals are aligned ([46,77,78] applied dynamic time warping (DTW) for the
alignment of the pulses that [80] used to build the template; John et al. [76] first spotted a
portion of signal presenting interest points and then iterated over the signal to find aligned
portions of signals to add to the template). Comparing the template with new pulses is
mainly done with the correlation [43,65,70,79] and the DTW distance [53,65,77,78]. Sabeti
et al. [46] made a comparison using the Kullback–Leibler divergence, while John et al. [76]
suggested a more original way to compare the signals by first computing a point-to-point
difference between the template and the signal and then computing the variance of the
obtained signal. If the variance is high, then the quality is low. Lim et al. [81] suggested a
comparison with several pulses, in a model called the master template. These templates
are obtained from the two first components of a PCA analysis performed on pulses of the
MIMIC II dataset [82]. A pulse is then compared with the template maximizing normalized
correlation. If the pulse and its neighbors are not labelled as artifacts, then it is used to
update the template.

The rule-based methods present several limitations. As the different conditions are
commonly designed manually, another statistical study may be needed when the SQI
algorithm is applied to a PPG signal obtained by a different process of measurement
(e.g., different device and conditions of measurement). Moreover, the performance of the
algorithm of the SQI depends on the signal processing and feature extraction algorithms
and should be evaluated along with the SQI algorithm [45]. The reviewed methods are
summarized in Table 5.
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Table 5. Summary of the rule-based type of quality assessment algorithms.

Reference Data Performance

[68]
13 subjects Cohen’s κ = 0.64

8 records of 1 min per subject Sen = 0.89
Spe = 0.77
Acc = 0.83

[58]
24 subjects Acc = 0.888

>134 min of recording Sen = 0.869
Spe = 0.983

[43]
Capnobase [83] 90% of the signals with artifacts had a score

Complex System Laboratory [84] below 95/100
14% of good-quality signals are labelled as

artifacts for a score below 85/100

[65] MIMIC II [82] Evaluation by the impact on false alarm
reduction with suppression

[70] Physionet/CinC 2011 Sen = 0.91
+ author-collected database Spe = 0.95

[44,45]

63 subjects Performance of extended algorithm:
31.5 h of annotated signals Acc = 0.984

Sen = 0.995
Spe = 0.916
Pre = 0.986

[77]
Capnobase [83] Performance on Capnobase

Complex System Laboratory [84] for a threshold of 0.8:
Sen = 0.9664
PPV = 0.9926

[81]
19 subjects (>5 min per record) Mean performance (over authors’ dataset):

+ PhysioNet MIMIC II Acc = 0.935
Sen = 0.869
Spe = 0.902

[53]

3 subjects Best performance:
6 min records Acc = 0.9258

Sen = 0.9297
Spe = 0.9218
PPV = 0.9225

[48]

14 subjects Classification performance:
158 records of 10 s Acc = 0.9268

Sen = 0.9286
Spe = 0.9245
Pre = 0.6420

F1-score = 0.9353

[79] Capnobase [83] Sen = 0.9466
Complex System Laboratory PPV = 0.9678

[66]
15,000 records of 5 s from 3 different devices Acc = 0.9321

+ MIMIC II [82] + Complex System Sen = 0.9822
Laboratory [84] + Wrist [85] + Cup [86] Spe = 0.9071

[72]
19,700 segments of 4 s Acc = 0.9989

Sen = 0.9994
Spe = 0.9939

Acc = Accuracy, Pre = Precision, Sen = Sensitivity, AUC = Area under Curve, PPV = Positive Predictive Value.

4.2. Machine Learning

As with rule-based algorithms, their performance is dependent on the features selected
and the algorithms implemented to extract them. Selecting the features for quality level
separation adaptable to PPG signals from different datasets needs further design effort.

Couceiro et al. [69] extracted 26 features from the period-domain short-time Fourier
transform and performed feature selection via normalized mutual information. This tech-
nique shows how knowing the value of a feature reduces the uncertainty in the prediction
of the quality of the signal while keeping only features independent from each other. In this
study, they extracted four temporal and four periodic features. Sabeti et al. [46] focused
their efforts on the computation of features that would not be affected by the change of
PPG device. The authors first computed reference values of features and templates with the
first few seconds of each record. Then, they used them to normalize the features computed
from the signal and feed machine learning models to predict the quality.
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Contrarily to rule-based techniques, the use of machine learning has the advantage
of avoiding statistical studies to design the thresholds separating the different levels of
quality. It also allows complex non-linear combination of the signal features. Support vector
machine (SVM) is the most commonly used model among publications [36,46,69,87,88]. It
has the ability to non-linearly project the extracted features to a higher-dimensional space
to increase the probability of finding a hyperplane separating good from bad signals. The
SVM algorithm has become a reference found in many of the comparisons described in SQI
papers. Sabeti et al. [46] described a benchmark over several machine learning methods
(SVM, classification and regression tree, ensemble decision tree, and threshold optimization)
and found that SVM offers less overfitting and maintains high performance over several
datasets. They also compared their method using SVM with two other algorithms [43,77]
on the Capnobase dataset [83]. Pereira et al. [52] also found the best performance with
their SVM classifier against seven representative methods [42,43,68,70,77,89,90]. Elgendi
used the SVM algorithm to find the most discriminant feature to classify the quality of a
PPG pulse [51]. Dao et al. [36] compared their method with a smaller SQI including an
SVM using time-domain features. Pereira et al. [55] compared the performance of different
classic deep learning architectures but included the SVM in their comparison.

Designing supervised learning methods for the quality assessment of a PPG signal
makes the step of signal annotation necessary (whose issues are highlighted in Section 3.1.3)
and adds the difficulty of hyperparameter tuning. For example, Li et al. [42] performed an
ablation to find the best parameters of their network. The authors tested the use of either
four inputs (three correlations with a template and clipping detection) or six inputs (four
previous entries with number of detected pulses and a combination of the four previous
entries) and the number of neurons in the hidden layer of a multi-layer perceptron (MLP).
A summary of the different SQI based on machine learning methods is presented in Table 6.

4.3. Deep Learning

Deep learning methods have been employed in the field of PPG signal quality as-
sessment. Feature extraction is integrated in the architecture of a deep neural network
(DNN) [38]. It allows one to regroup several quality assessment algorithms into one deep
learning architecture [41,54,91] and gives higher freedom for the input passed to those
networks [40,54,55,92].

Figure 7 illustrates typical methods applied to the quality assessment. Roh et al. [54]
converted PPG pulses into 2D images using a recurrent plot and then classified each
pulse into good or bad quality using two 2D convolutional neural networks (CNNs) with
max dropout and a dense layer with softmax activation (Figure 7a). Azar et al. [92]
decomposed each 6 s PPG signal into 78 approximation coefficients using DWT. A 1D
autoencoder (with CNN and bidirectional Long Short-Term Memory (LSTM) layers) is
trained to reconstruct clean PPG signals. Because the network is only trained on clean
signals, the reconstruction of the signal fails for PPG with bad quality and the mean square
error between the input and the rebuilt signal is high. If this error is over a threshold,
then the signal is considered as bad-quality (Figure 7b). Figure 7c illustrates the method
implemented by Guo et al. [56]. The authors trained an autoencoder (UNet with residual
blocks) to perform quality assessment as a segmentation task. They assign a score between
0 and 1 to each point of a 30 s PPG signal, which allows a precise estimation of the quality.
Then, they evaluate the performance of their trained network with the DICE score (ratio
between the intersection of portion of signal estimated and annotated as artifact over the
portion of signal estimated or annotated as artifact).
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Table 6. Summary of machine learning methods dedicated to quality assessment.

Reference Data Machine Learning Method Performance

[42]
104 subjects, 1055 pulsations MLP Acc = 0.952

Sen = 0.990
Spe = 0.806
PPV = 0.952

[35]

33 subjects SVM + temporal neighbor voting Mean performance on 3 artefacts
(finger motion, head motion, walking):

Acc = 0.938
Sen = 0.943
Spe = 0.924

[69]
15 subjects C-SVC Mean performance:

22 records of 1 min per subject Acc = 0.885
Sen = 0.843
Spec = 0.915

[36]
5 different datasets SVM Precision in the detection of the

(Chon Lab and UMass Medical center) occurrence time of a MNA
Difference in Transit Time = 0.91 ± 0.59 s

[52]
13 subjects SVM Acc = 0.9033

Sen = 0.9505
Spe = 0.9163

[37]
17 subjects SVM Acc = 0.984

24 h record per subject Sen = 0.8550
Spe = 0.9184

[59]
40 subjects Fuzzy neural network Mean performance:

records of 1.5 to 2 min Acc = 0.8992
Sen = 0.8421
Spe = 0.9363

[46]
46 subjects Test of 3 machine learning models: Best score from SVM, mean performance:

+ Capnobase dataset Classification and regression tree, SVM, Sen = 0.9576
ensemble tree Spe = 0.9190

PPV = 1

[47]
26 subjects Test of k-nearest neighbor, Best score for random forest:

multi-class SVM, Naïve Bayes, Acc = 0.745
decision tree, random forest

[39]

10 subjects Fuzzy neural network Performance on detection of
3 min per record bad-quality pulses :

Acc = 0.86
Pre = 0.97
Sen = 0.84

[73]
30 subjects Self-organizing map Acc = 0.9201

10 min per subject Sen = 0.9580

[50]
5 subjects Unsupervised elliptical envelope Results of the leave-one-subject-out test

12 min of recording per hour for algorithm in the classification of bad quality:
each subject during 6 days Pre = 0.85

Sen = 0.98

Acc = Accuracy, MLP = Multi-Layer Perceptron, MNA = Motion Noise Artifact, Pre = Precision, Sen = Sensitivity,
PPV = Positive Predictive Value, SVM = Support Vector Machine, C-SVC = C-Support Vector Classifier.
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Figure 7. Presentation of several deep learning architectures dedicated to quality estimation of a
cPPG signal. (a) Architecture used by Roh et al. [54] using 2D convolution to treat each pulse of the
signal as an image. (b) Architecture implemented by Azar et al. [92]. Because the architecture is only
trained on clean PPG signals, it will fail to reconstruct a PPG signal when the input is corrupted, thus
increasing the MSE between the reconstructed signal and the input signal. With a manually chosen
threshold, it allows one to make the distinction between good and bad signal quality. (c) Architecture
implemented by Guo et al. [56] showing the estimation of the quality of the signal as a segmentation
problem using deep learning.
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Signal processing is still necessary for the generalization of deep neural networks over
several datasets. Moreover, this kind of SQI algorithm needs a large dataset with annotated
data for training, which is difficult and expensive in the case of manual annotation (see
Section 3.1.3). Automatically annotating datasets with already existing SQI allows one to
solve the problem of the number of samples but without any relevant increase in perfor-
mance. Another main limitation of the use of deep learning is the lack of transparency in
the features learned in the PPG signal fed to the DNN. To tackle this issue, Zhang et al. [93]
suggested to evaluate the explicability of two DNN artifact detectors (a 1D Resnet-34 and a
2D Resnet-18) with the attention score offered by the DeepSHAP, Integrated Gradient and
Guided Saliency. A summary of the different deep learning-based methods can be found in
Table 7.

Table 7. Summary of deep learning-based quality assessment algorithms.

Reference Data Entry Deep Learning Architecture Performance

[67]

19 subjects 30 s PPG signal + index 3 CNN + 2 dense layers Acc = 0.9002
1443 records of 30 s length indicating motion detected by AUC = 0.9521

the smartwatch accelerometer
injected into the dense part of

the network

[38]

5 days data collection 60 s signal window 1 CNN + dense network Best performance:
AUC = 0.88
Pre =0.7674
Sen = 0.8354

[55]

2 private datasets 2 entries are tested: 1D entry: Best performance (ResNet18):
1D entry, 30 s of normalized Attention LSTM ending with Acc = 0.9851

PPG signal dense network Spe = 0.9791
2D entry, normalized RGB Fully connected network Sen = 0.9877

plot image of the signal 2D entry:
VGG19, Resnet18, Resnet50,

Xception

[40]
14 subjects 2D images of the plot of ResNet50; VGG19 Best performance (ResNet50):

zero-padded PPG pulse and Acc = 0.94
its derivative Pre = 0.96

Sen = 0.92

[49]
183 subjects Raw PPG signal 1 CNN + 1 shared CNN -

+ 2 separated CNN with
dense layer

[91]
38 subjects 5 s of normalized PPG signal 13 layers 1D CNN Acc = 0.945

BIDMC and ICU dataset from Sen = 0.967
MIMIC Spe = 0.904

[54]
76 subjects PPG pulse signal converted to 2D CNN + 1 dense Acc = 0.975

recurrence plot Sen = 0.964
Spe = 0.987

[41]

PPG : 5 points window of 64Hz 3-unit LSTM + dense layer Average Acc = 0.7973
DaLiA dataset [94] and PPG signal
Cuffless Blood Pressure
Estimation dataset [95]

iPPG: 6 subjects

[92]

2 subjects Discrete wavelet transform Autoencoder used Pre = 0.90
+ data augmentation (DWT) approximation Encoder : 1D CNN Sen = 0.95

coefficients from second level + bidirectional LSTM layer
of 6 s PPG signal Decoder : LSTM layer

+ dense layer

[56] 44 subjects 30 s bandpass-filtered signal 1D U-Net (5 residual encoder, Mean performance
5 residual decoder) DICE score = 0.8734 ± 0.0018

Acc = Accuracy, CNN = Convolutional Neural Network, LSTM = Long Short-Term Memory, Pre = Precision,
Sen = Sensitivity, AUC = Area under Curve, PPV = Positive Predictive Value.

5. Design of SQI for iPPG
5.1. Existing Studies

Imaging PPG is the photoplethysmography measurement using a camera. Several
reasons motivate research in this technology:

• A camera is a widely used technology allowing remote and continuous monitoring of
physiological variables (e.g., PR, PRV);
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• This technology imposes less constraints on the patient as the signal can be taken
remotely;

• Several potential applications exist for telemedicine (e.g., PR, blood pressure, blood
oxygenation).

However, this kind of measurement is done in a less controlled environment [96]
and is also subject to measurement perturbations (see Table 1). Even if iPPG is still an
emerging technology, signal quality indexes have been used to guide the extraction methods
implemented to retrieve the signal from the camera [63,97,98].

Botina-Monsalve et al. [99] compared the quality of their iPPG signal extracted using
periodic variance maximization [97] after filtering it by a bandpass filter, a wavelet filter, or
a deep learning architecture using SNR and a template matching method [70] as metrics.
Gao et al. [41] designed a 1D signal quality index for PPG and iPPG using a deep LSTM
architecture. They highlight the difficulty of designing deep learning methods for iPPG
quality assessment as the proportion of bad-quality signals is important in iPPG, which
unbalances their training dataset. Moreover, the training of deep learning architectures
is difficult as the number of iPPG datasets available for research is limited. The authors
augmented their initial dataset with artificial data to train their model.

Bobbia et al. [98] considered the idea that an iPPG signal extracted from different
regions of the face may have different qualities. The authors introduced unsupervised
superpixel segmentation, to segment the image of the face of a patient into different regions
of interest. The final iPPG signal is obtained by summing the PPG signals extracted
from each superpixel weighted by their respective SNR. Benezeth et al. [61] extended the
work of Bobbia et al. [98] by lowering the SNR complexity. The authors first trained a
Hidden Markov Model (HMM) to build a probabilistic distribution modeling the evolution
of an iPPG signal. The authors also created a HMM to model the noise of the signal.
The SNR is then computed as the ratio between the likelihood that the evolution of the
signal is explained by the HMM modeling the iPPG signal and the likelihood that it is
explained by the HMM modeling the noise. Fallet et al. [100] used the average value of
the absolute difference between the tracked forehead pixel amplitude at frame n and n − 1.
The authors observe sudden increases in its value when a perturbation, such as motion
or an illumination change, occurs. They also set different strategies of artifact detection
according to the iPPG extraction method. The authors added an additional step for iPPG
signals extracted by POS [62] and SSR [64] methods (as these methods are more resistant
and react differently to perturbations) by detecting if a change in the amplitude of the
signal (characteristic of a corrupted signal) happens in a suspicious portion of the signal.
Tables 8 and 9 provide respectively a summary of the features used to design SQIs for
imaging PPG and of the existing methods.

Table 8. Features used for the evaluation of iPPG.

Scale Domain Features References

Pulse Temporal Amplitude

Difference between systole and diastole
(pulse amplitude) [101]

Amplitude before and after perturbation
for iPPG extracted by POS or SSR [100]

Template matching [70] [99]

Signal

Temporal Std of the signal [64,101]

Spectral SNR (from frequency spectrum) [63,97–
99,101,102]

Relative difference between highest and second highest amplitude of the
signal spectrum [101]

Maximum scalar product between PPG periodogram [103] and predefined filters [104]

Probabilistic SNR (obtained using HMM models) [61]

HMM = Hidden Markov Model.
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Table 9. Papers dedicated to signal quality indices for iPPG.

Reference Data Algorithm Type Performance

[100] 31 video records Rule-based algorithm Evaluated on contribution
over HR estimation

[61] UBFC-RPPG dataset [105] Hidden Markov Model Evaluated on contribution
over HR estimation

[104] 200,000 smartphone PPG Rule-based algorithm -
records

[36] 5 different datasets SVM Evaluated on contribution
(Chon Lab and over HR estimation

UMass Medical Center)

[106]

226 subjects Fitting each pulse to a Evaluated on impact on
sinusoidal model using error between HRV
non-linear least square estimated from PPG and

optimization. If the fitting ECG
fails (i.e., no convergence or

error high) or the model
parameters are outside a

statistical range, the pulse is
bad-quality.

[101]
Bingamton–Pittsburgh–RPI Rule-based algorithm Evaluated on contribution
Multimodal Spontaneous over HR estimation
Emotion database [107]

[41]
6 subjects 3-unit LSTM + dense layer Evaluated on contribution

+ augmentation with PPG over HR estimation
DaLiA dataset

HR = Heart Rate; LSTM = Long Short-Term Memory, SVM = Support Vector Machine.

iPPG and cPPG share common properties such as semi-periodicity and the extractable
features of their respective pulses. Some SQIs can be either used for cPPG or for iPPG.
For example, approaches based on the signal to noise ratio [51,98] can either be applied to
cPPG or iPPG signals. The difference lies in the threshold value separating good from bad
signals. Some deep learning methods can either be applied to iPPG or cPPG. For example,
Gao et al. [41] developed a single LSTM architecture for the assessment of cPPG and iPPG
signals. Both types of signals can be analyzed with SQI developed for 1D signals. The case
of iPPG is particular as the signal is computed from images. SQI applied to iPPG can be
computed on two-dimensional matrices, thus allowing one to analyze subregions of the
image [98].

5.2. Potential Developments in This Domain

The creation of SQI for the measurement of iPPG comes with new challenges. As
mentioned above, iPPG presents significant potential for telemedicine-based applications.
However, to democratize this technology, its measurement must be reliable despite the
high diversity of uncontrolled measurement contexts and perturbations (see Table 1). To
overcome these difficulties, the implementation of an SQI is a solution to maintain the
performance of these applications.

In this regard, the use of a camera can be regarded as an opportunity in the design of an
innovative SQI. This sensor allows one to extract information on the context of measurement
and offers the possibility to design a more complete SQI. The exploitation of contextual
information could allow one to distinguish perturbation factors linked to the metrological
and physiological aspects of the quality of the signal. For example, Wang et al. [108] created
a signal quality index for iPPG by first designing indices for the quality of the context
of measurement and then for the quality of the signal extracted. Within the quality of
the measurement context, the authors considered the environment of the measurement
by computing indices related to the intensity of the light source, the light spectrum and
direction, the type of light source (punctual or parallel source of light), and the quantity
of skin exposed to the measurement. The authors also considered a physiological factor,
the skin tone, in the study of their SQI. The use of camera also allows one to pass to a
spatio-temporal notion of quality. Indeed, the quality of an iPPG signal extracted may be
uneven over the different skin regions [109] and may also change with time. Only a few



Appl. Sci. 2022, 12, 9582 20 of 25

papers [61,98] take into account the spatial dimension of the quality. Thus, the field of
SQI applied to iPPG has room for improvement and could be a sandbox for new signal
quality algorithms.

6. Conclusions

In this review, we have presented an overview of the existing methods for contact
photoplethysmography and imaging photoplethysmography. We have subdivided the
different quality assessment algorithms according to their use of designed rules from
statistical studies or from the use of machine learning/deep learning algorithms. We have
also reviewed the new challenges set by the emerging iPPG and its potential applications.
As we believe that iPPG will further develop, we have tried to encourage the development
of new methods of quality estimation in this field by suggesting new lines of research to be
explored in this field.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural network
DTW dynamic time warping
DWT discrete wavelet transform
HMM hidden Markov model
HR heart rate
HRV heart rate variability
ICA independent component analysis
LSTM long short-term memory
MLP multi-layer perceptron
PCA principal component analysis
POS plane orthogonal to skin
PPG photoplethysmography
cPPG contact photoplethysmography
iPPG imaging photoplethysmography
PR pulse rate
SNR signal to noise ratio
SQI signal quality index
SSR spatial subspace rotation
SVM support vector machine
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