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This work investigates a 2D vector field behavioral model to describe the anisotropic magnetic permeability and losses in Grain 
Oriented Electrical Steels (GOES) within quasi-static and magneto-harmonic working conditions. The model includes the an-hysteretic 
magnetic field driven by the total anisotropy, the coercive force responsible for the quasi-static hysteresis losses and the dynamic damping 
eddy field responsible for the extra losses. Each field contribution requires the definition of a tensor property whose diagonal and non 
diagonal coupling components are experimentally identified as a function of the flux density magnitude B and its angle  with the Rolling 
direction (RD). The static behavior is identified at low frequency and the dynamic one takes the frequency dependent field diffusion into 
account. Diagonalization tools reveal main characteristic magnetic axis for the separate properties with deflections at the macroscale. 

Index Terms — grain oriented electrical steels, losses, magnetic structure, permeability, tensor properties, 2D vector magnetic field. 

I. INTRODUCTION – CONTEXT AND STATE OF THE ART 

ron loss and dynamic hysteresis models either 1-D scalar [1, 4] or 2-D vectorial [6] are based on a separation principle between 
the classical losses and the microscopic ones due to reversal mechanisms. Combining the local behavior to the field diffusion 

equations has been proposed up to now for scalar models [7]. Developing both vector hysteresis models [8] and loss models [9] in 
2D is still a subject of research to compute a magnetic flux that makes an angle with RD in electrical steels used for transformers, 
inductors and machines (Fig. 1). 

 
Fig. 1: Application of proposed methodology (transformers, chokes, machines). 

II. THE VECTOR MODEL - TENSOR MAGNETIC PROPERTIES 

A. General behavioral model 

Inspiring from [1, 4, 6] and following the reference [8], we work with a complex magneto-harmonic behavior between the magnetic 
field H and the flux density B, resulting from the minimization of the total energy state including the losses as a function of B, 
involving three contributions (1): the static an-hysteretic magnetic field 𝑯ெ at equilibrium, the quasi static coercive field 𝑯 
responsible for the quasi-static hysteresis losses and the dynamic damping magnetic field 𝑯ௗ due to microscopic eddy currents 
(see Fig. 2). 

𝑯(𝐵, ) = 𝑯ெ(𝑩) + 𝑯(𝑩) + 𝑯ௗ(𝑩, 𝜔)     (1) 

This quasi-linear law within time harmonics at frequency f and angle velocity 𝜔 = 2𝜋𝑓 is only able to relate the magnetic field 
and the flux density but not yet the hysteresis loops. Therefore, it is mainly used to estimate the magnitude permeability and losses 
given by each cycle slope and area. 

I
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Fig. 2: Physical principles of the 2D vector field model for magnetic materials. 

1) The static an-hysteretic field 
This static an-hysteretic field contribution 𝑯ெ is non dissipative and closely related to the magnetic anisotropy of the material 
(magneto-crystalline anisotropy, metallographic shape anisotropy, stress induced anisotropy). [௦] = [𝜇௦]ିଵ is defined as the static 
internal magnetic reluctivity and it is a tensor derived from the non-dissipative magnetic energy density 𝑒ெ, responsible for the 
major part of reactive power (3). 

𝑯ெ(𝑩) = [௦(𝑩)]𝑩 = [𝜇௦(𝑩)]ିଵ𝑩     (2) 

௦, = −
డಾ

డడ
        (3) 

2) The quasi-static coercive field 
The quasi-static coercive field 𝑯 is dissipative and corresponds to microscopic anti-eddy fields mainly due to jumps of walls at 
defects and grains boundaries. The tensor [] = [𝜇]ିଵ is defined as the coercive reluctivity, closely linked to non reversibility of 
magnetization at very low frequency [3] (4) (j=exp(i/2)). [] is derived from the static hysteresis energy loss density eh (5) 

responsible for the static hysteresis active power loss density 𝑝௩ = 𝑟𝑒𝑎𝑙(
ଵ

ଶ
𝑗𝜔𝑒): 

𝑯(𝑩) = 𝑗[(𝑩)]𝑩     (4) 

𝑗
,

= −
డ

డడ
        (5) 

3) The dynamic damping eddy field 
At the mesoscopic scale, the magnetization reversal processes induce microscopic eddy currents that generate the extra damping 
magnetic field 𝑯ௗ. It can be expressed as a function of the electrical conductivity , the angle velocity  and a structural dynamic 
magnetization property called [] (6). [] represents and lumps the magnetic domains and walls properties [8] averaged among 

various orientations �⃗�௪ with the help of the product tensor [(𝜃௪)] = 𝜃௪
ሬሬሬሬ⃗  𝜃௪

ሬሬሬሬ⃗ = 𝜃௪
ሬሬሬሬ⃗ ∙ 𝜃௪

ሬሬሬሬ⃗
௧
) (8). The generalization proposal 

consists in deriving the excess energy loss density 𝑒ௗ (7) due to microscopic eddy currents within nucleated magnetic domains and 
walls and responsible for the dynamic hysteresis active power loss density [8]. 

𝑯ௗ(𝑩) = 𝑗𝜔𝜎[(𝑩, 𝜔)]ଶ𝑩     (6) 
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𝑗𝜔𝜎[]ଶ
 = − −

డ

డడ
       (7) 

[(𝑩, 𝜔)]ଶ = 〈

ଵ

ଶఙೞೢೢௌೢ
[(𝜃௪)] +

𝑆ெோ,௪([1] − [(𝜃௪)])
〉

ఏሬሬ⃗ ೢ
      (8) 

Sw is the walls surface, w the walls mobility and nw the walls density [2] stand for the Domain Walls Displacement (DWD). SDMR,w 
is the domains surface polarizability [5] and stands for the Domain Magnetization Rotation (DMR) mechanism. 

B. Tensor magnetic properties 

 
Fig. 3. Description of (x,y) and (TD,RD) reference frames. Definition of angle  between the flux direction y and the rolling direction RD. 

The most natural reference frame called (TD,RD) for GOES contains the two perpendicular directions known as the Transverse 
Direction (TD) and the Rolling direction (RD). 
Given a magnetic flux density B oriented in the direction y, forming an angle  with the rolling direction RD, the TD and RD 
components of B can be deduced as follows (Fig. 3): 

𝐵் = 𝐵 sin 𝜃 and 𝐵ோ = 𝐵 cos 𝜃      (9a) 

𝐵 = ඥ𝐵்
ଶ + 𝐵ோ

ଶ       (9b) 

[𝑇](்,ோ)ି(௫,௬) = ቂ
cos  − sin 
sin  cos  ቃ      (9c) 

The (x,y) reference frame being the frame related to the magnetic measurements, the normalized change of frame transfer matrix 
from (x,y) to (TD,RD) is given by (9c). It will be shown in the following that tensor properties are not necessarily diagonal in the 
(TD,RD) reference frame, meaning that 𝑯் does not depend only on 𝑩் but 𝑯்(𝑩், 𝑩ோ). 𝑯ோ  does not depend only on 𝑩ோ 
but 𝑯ோ(𝑩், 𝑩ோ). The important issue addressed in this work consists in finding the (XH,YH) main reference frame in which 
tensor properties will be diagonal (see Fig. 4). These magnetic axis may be different for ൣ

௦
൧, [] and [] respectively. This goal 

requires to identify first the non-diagonal coupling TD-RD components. 
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Fig. 4: Definition of reference frames for matrix diagonalization. 

1) An-hysteretic quasi-static internal permeability 
The an-hysteretic field 𝑯ெ involves the static internal magnetic permeability [𝜇௦] = [௦]ିଵ = 𝜇[𝜇௦], a symmetrical tensor. We 
consider the non-linear diagonal components 𝜇௦,் = 𝜇௦,்ି் and 𝜇௦,ோ = 𝜇௦,ோିோ  of [𝜇௦] as a function of 𝐵் and 𝐵ோ 
respectively. Any cross dependence between TD and RD are included in the non-diagonal 𝜇௦,்ோ = 𝜇௦,்ିோ components .The 
vector field dependences of the latter must be identified to find the eigenvectors XHM and YHM depending on B and angle . It 
gives information on the total anisotropy energy density 𝑒ெ(𝜃) and its main macroscopic magnetic axis. 

[𝜇௦] = 𝜇 ቈ
𝜇௦,்(𝐵்) 𝜇௦,்ோ(𝐵, 𝜃)

𝜇௦,்ோ(𝐵, 𝜃) 𝜇௦,ோ(𝐵ோ)


(்,ோ)

      (10) 

2) Static coercive reluctivity and static hysteresis losses 
The static coercive field 𝑯 involves the coercive magnetic permeability [𝜇] or its inverse, the reluctivity [] = [𝜇]ିଵ,  

[𝜇] = 𝜇 ቈ
𝜇,்(𝐵்) 𝜇,்ோ(𝐵, 𝜃)

𝜇,்ோ
∗ (𝐵, 𝜃) 𝜇,ோ(𝐵ோ)


(்,ோ)

      (11a) 

𝑝 =
ೡ

ఊ
= 𝑟𝑒𝑎𝑙(

ଵ

ଶఊ
𝑯 ∙ (𝑗𝜔𝑩)∗) =

ଵ

ଶఊ
[]𝜔𝑩 ∙ 𝑩∗     (11b) 

This field is responsible for the static hysteresis losses given by equation (11b) ( being the mass density). The diagonal RD 
component of [] is related to the hysteresis loss coefficient 𝐾 of Bertotti [1, 4] in case of 1-directional flux (𝜋,ோ = 𝐾). 
We consider the non-linear diagonal components 𝜇,் = 𝜇,்ି் and 𝜇,ோ = 𝜇,ோିோ  of [𝜇] as a function of the induction 
components 𝐵் and 𝐵ோ  respectively. Any cross dependence between TD and RD are included in the non-diagonal 𝜇,்ோ =

𝜇,்ିோ components .The vector field dependences of the latter must be identified to find the eigenvectors XHh and YHh 
depending on B and angle . It gives information on the static hysteresis energy loss density 𝑒(𝜃), linked to grains shape and 
boundaries or dislocations directions. 

3) Dynamic and structural magnetization property 
The dynamic field 𝑯ௗ involves the magnetic structure represented by [], an Hermitian tensor whose components  are 
equivalent to a local excess loss coefficient relative to 𝑗𝜔𝐵 and 𝑗𝜔𝐵 . In ordered to fit the measurements, the diagonal components 
் = ்ି் and ோ = ோିோ of [] must be considered non-linear and dependent on both components (𝐵் , 𝐵ோ) and the 
frequency f. The vector field dependences of non-diagonal ்ோ = ்ିோ can also be identified to find the eigenvectors XHd 
and YHd depending on B and angle  (12). It gives information on the excess energy loss density 𝑒ௗ(𝜃) linked to activated magnetic 
domains phases, the vector microscopic magnetization mechanisms, including the domain walls motion and domains magnetization 
rotation. 

[] = 
்(𝐵் , 𝐵ோ , 𝑓) ்ோ(𝐵, 𝜃, 𝑓)

்ோ
∗ (𝐵, 𝜃, 𝑓) ோ(𝐵் , 𝐵ோ , 𝑓)

൨
(்,ோ)

     (12a) 
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்ோ(𝐵, 𝜃, 𝑓) = ்ோ
ᇱ (𝐵, 𝜃, 𝑓) + 𝑗்ோ

ᇱᇱ (𝐵, 𝜃, 𝑓)     (12b) 

Both the electrical conductivity and the magnetic structure represented by [] are responsible for microscopic and macroscopic 
eddy currents and finally for the eddy current losses (classical and excess ones). The complete dynamic losses within time 
harmonics can be deduced from the magnetic field diffusion principles as explained in the following. 

C. Magnetic field diffusion 

1) Diffusion-like equation 
Combining the Maxwell-Ampere and the Maxwell-Faraday equations and the behavioral model (1) in the (TD,RD) reference 

frame, one has to solve equation (13) by using the tensor [𝜏] = 𝜎[]ଶ[𝜇௦], and by separating the static hysteresis contribution 
which does not involve any space variations related to the field diffusion effect. 

−
డమ

డ௭మ ൫(1 + 𝑗𝜔[𝜏])𝑯ெ൯ + 𝑗𝜔𝜎[𝜇௦]𝑯ெ = 0     (13a) 

The solution of (13a) can be written in (13b) such that it provides the average flux density B as a function of the real 𝐻ெ,்/ோ
′  and 

imaginary 𝐻ெ,்/ோ
′′  parts of the components TD/RD of vector 𝑯ெ averaged through the sheet cross section: 

𝑩 = [𝜇௦]〈𝑯ெ〉 = 𝜇[𝜇௦] ቆ
𝐻ெ,்

′ + 𝑗𝐻ெ,்
′′

𝐻ெ,ோ
′ + 𝑗𝐻ெ,ோ

′′ ቇ
௦ℎ(/ଶ)

/ଶ
   (13b) 

 is the sheet thickness and 𝑘 is the wave vector obeying (13c) 

𝑑𝑒𝑡 ቈ
𝑘ଶ(1 + 𝑗𝜔𝜏்) + 𝑗𝜔𝜎𝜇௦,் 𝑘ଶ𝑗𝜔𝜏்ିோ + 𝑗𝜔𝜎𝜇௦,்ோ

𝑘ଶ𝑗𝜔𝜏ோି் + 𝑗𝜔𝜎𝜇௦,்ோ 𝑘ଶ(1 + 𝑗𝜔𝜏ோ) + 𝑗𝜔𝜎𝜇௦,ோ

 = 0  (13c) 

Then, the vector field 〈𝑯ெ〉 with complex components in (TD,RD) can be calculated by solving the system given by (13d) with 
(𝛼 + 𝑗𝛽) = (𝑠𝑖𝑛ℎ(𝑗𝑘/2))/(𝑗𝑘/2), first with the flux density component 𝐵் (𝐵ோ = 0) and then 𝐵ோ (𝐵் = 0). 

⎝

⎜
⎛

𝐻ெ,்
′

𝐻ெ,்
′′

𝐻ெ,ோ
′

𝐻ெ,ோ
′′

⎠

⎟
⎞

=

⎣
⎢
⎢
⎢
⎡

+𝛼𝜇௦,் −𝛽𝜇௦,் +𝛼𝜇௦,்ோ −𝛽𝜇௦,்ோ

−𝛽𝜇௦,் −𝛼𝜇௦,் −𝛽𝜇ఓೞ,ೃವ
−𝛼𝜇ఓೞ,ೃವ

+𝛼𝜇௦,்ோ −𝛽𝜇௦,்ோ +𝛼𝜇௦,ோ −𝛽𝜇௦,ோ

−𝛽𝜇௦,்ோ −𝛼𝜇௦,்ோ −𝛽𝜇௦,ோ −𝛼𝜇௦,ோ ⎦
⎥
⎥
⎥
⎤

ିଵ

൮

𝐵்

0
𝐵ோ

0

൲    (13d) 

The magnetic field applied at the sheet surface in both (TD,RD) and (x,y) frames can then be calculated from (13e) and (13f) 

𝑯,(்,ோ) = (1 + 𝑗𝜔[𝜏]) ቆ
𝐻ெ,்

′ + 𝑗𝐻ெ,்
′′

𝐻ெ,ோ
′ + 𝑗𝐻ெ,ோ

′′ ቇ 𝑐𝑜𝑠ℎ ቀ


ଶ
ቁ    (13e) 

𝑯(௫,௬) = [𝑇]ିଵ𝑯(்,ோ)  and 𝑩(௫,௬) = [𝑇]ିଵ𝑩(்,ோ)  (13f) 

2) Apparent magnitude permeability 
The apparent magnitude permeability, linked to each loop slope, defined as the ratio between the peak induction and the 
corresponding magnetic field on the loop, is given by (14a). 

3) Iron losses 
The dynamic iron losses, closely linked to each hysteresis loop area, is then given by the equation (14b). 

𝜇,௫ / ௬(𝐵, , 𝑓) =
หೣ/ห

หுೣ/൫หೣ/ห൯ห
=

ௗ௨൬
ಳೣ ೝ 

ಹೣ ೝ 
൰

ቤୡ୭ୱቆ൬
ಳೣ ೝ 

ಹೣ ೝ 
൰ቇቤ

     (14a) 

𝑝ௗ(𝐵, 𝑓) = 𝑝(𝐵, 𝑓) − 𝑝


ହ
=  𝑟𝑒𝑎𝑙(

𝑯ೌ∙(ఠ𝑩)∗

ଶఊ
)     (14b) 

D. Unknowns, working conditions – Identification strategy 

The two tensors [𝜇௦] and [𝜇] lead to 6 unknown components (3 each). The tensor [] contains 4 unknown components. The 
strategy proposed to identify the 10 unknowns in total. 

1) Quasi-static working conditions 
The identification procedure starts at low frequency to identify separately the components of static tensors: [𝜇௦] and [𝜇]. 

a) Rolling and transverse directions 

Measurement of the permeability in both RD (𝜇,௫  ௬(𝐵,  = 90° 𝑜𝑟 0°, 𝑓 = 5𝐻𝑧)) and TD (𝜇,௫  ௬(𝐵,  = 0° 𝑜𝑟 90°, 𝑓 =

5𝐻𝑧)) for samples 0 and 90 (see Fig. 5 and TABLE 1) allows to identify the two diagonal components 𝜇௦,்(𝐵்) and 
𝜇௦,ோ(𝐵ோ). Measurement of static hysteresis losses in the same directions (𝑃,௫  ௬(𝐵,  = 90° 𝑜𝑟 0°) in RD and 
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𝑝,௫  ௬(𝐵,  = 0° 𝑜𝑟 90°) in TD) for the same samples, allows to identify the diagonal components 𝜇,்(𝐵்) and 
𝜇,ோ(𝐵ோ). 

b) Misoriented flux with an angle  

For misoriented fluxes forming an angle  with RD, it can be shown that neither the magnitude permeability nor the static hysteresis 
losses in y or x directions can be accurately reproduced by using a simple combination of diagonal TD and RD properties and 
cosines and sines functions of . Thus, it is necessary to consider non diagonal properties inside any tensor [𝜇] and to use the frame 
change transfer rules as follows (15): 

[𝜇](௫,௬) = [𝑇](்,ோ)ି(௫,௬)
ିଵ [𝜇](்,ோ)[𝑇](்,ோ)ି(௫,௬)     (15) 

Measurement of the permeability in any direction x or y (𝜇,௫  ௬(𝐵, , 5𝐻𝑧)) for samples 15 to 75 (see Fig. 5 and TABLE 1) 
leads to the non-diagonal component 𝜇௦,்ோ(𝐵, ) of [𝜇௦] as a function of B and . Measurement of static hysteresis losses in the 
same directions (𝑝,௫  ௬(𝐵, , 5𝐻𝑧)) for the same samples, allows to identify the non-diagonal component 𝜇,்ோ(𝐵, ) of 
[𝜇] as a function of B and . 

2) Dynamic working conditions 
The next identification step include measurements at variable frequencies to identify separately the components of []. 

a) Rolling and transverse directions 

Simultaneous measurement of the dynamic permeability and losses in both the transverse direction (𝜇,௫  ௬(𝐵,  =

0° 𝑜𝑟 90°, 𝑓) 𝑎𝑛𝑑 𝑝ௗ(𝐵,  = 0° 𝑜𝑟 90°, 𝑓)) and the rolling direction (𝜇,௫  ௬(𝐵,  = 90° 𝑜𝑟 0°, 𝑓) 𝑎𝑛𝑑 𝑝ௗ(𝐵,  =

90° 𝑜𝑟 0°, 𝑓)) for samples numbered 0 and 90 (see Fig. 5 and TABLE 1) allows to identify the two diagonal components 
்(𝐵் , 𝐵ோ = 0) and ோ(𝐵் , 𝐵ோ = 0) of [𝜇௦] first; then ்(𝐵் = 0, 𝐵ோ) and ோ(𝐵் = 0, 𝐵ோ). 

b) Misoriented flux with an angle  

Simultaneous measurement of the angle and frequency dependent permeability and losses in both x and y directions 
(𝜇,௫ ௗ ௬(𝐵, , 𝑓) 𝑎𝑛𝑑 𝑝ௗ(𝐵, , 𝑓)) for samples numbered from 15 to 75 (Fig. 5, TABLE 1) gives the real ்ோ

ᇱ (𝐵, 𝜃, 𝑓) and 
imaginary ்ோ

ᇱᇱ (𝐵, 𝜃, 𝑓) parts of non-diagonal component ்ோ(𝐵, 𝜃, 𝑓) of [] as a function of B,  and f. 

E. Diagonalization conditions of Tensor properties 

In case of diagonal tensors, the identification should lead to non diagonal components negligible compared to diagonal ones. The 
results in Fig. 9, Fig. 11, Fig. 17 and Fig. 18 reveal significant couplings between the RD and TD directions that appear for 
misoriented fluxes. The measurement data shows that the eigenvectors of the reference frame (XH,YH) able to diagonalize the 
tensor properties must be adapted to the variations of induction B and angle . The corresponding equivalent “hard” and easy” 
magnetic axis for each property can thus be revealed and valued by determining the eigenvectors and eigenvalues of [௦] and []. 

III. EXPERIMENTS – PERMEABILITY AND LOSS MEASUREMENTS WITH MISORIENTED FLUX 

A. The experimental set-up 

Magnetic measurements have been carried out with a Single Sheet Tester (SST150) adapted to 150*150 mm2 specimens. Error is 
always under 5%: about 5% for B  0.1 T and f  5 Hz, less than 1 % for B  1 T and f  50 Hz. Error bars are not plotted on the 
upcoming figures for better legibility. Meanwhile, the SST magnetic circuit is closed and any demagnetizing effect due to the 
cutting angle should have a coefficient for such large samples below 1% of magnetization. 

B. Material and samples 

In order to characterize the 2D behavior with misoriented but 1-directional fields, seven GOES samples have been prepared with 
specific cutting angles (see Fig. 5 and TABLE 1). 

 
Fig. 5: Definition of cutting angles and flux density directions of specimens. 
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TABLE 1: LIST AND DESCRIPTION OF SAMPLES WITH CUTTING ANGLES 

sample 
Angle(y, RD) / 
Angle(B, RD) 

Direction of flux B measured 
and components in (TD,RD) frame 

0 =0°/0° y (BRD=By, BTD=Bx=0) 
0 =0°/90° x (BRD=Bx=0, BTD=By) 

15 =15°/15° y (BRD=Bycos15, BTD= Bysin15) 
15 =15°/75° x (BRD=Bxcos75, BTD= Bxsin75) 
30 =30°/30° y (BRD=Bycos30, BTD= Bysin30) 
30 =30°/60° x (BRD=Bxcos60, BTD= Bxsin60) 
45 =45°/45° y (BRD=Bycos45, BTD= Bysin45) 
45 =45°/45° x (BRD=Bxcos45, BTD= Bxsin45) 
60 =60°/60° y (BRD=Bycos60, BTD= Bysin60) 
60 =60°/30° x (BRD=Bxcos30, BTD= Bxsin30) 
75 =75°/75° y (BRD=Bycos75, BTD= Bysin75) 
75 =75°/15° x (BRD=Bxcos15, BTD= Bxsin15) 
90 =90°/90° y (BRD=Bycos90=0, BTD=Bysin90=By) 
90 =90°/0° x (BRD=Bxcos0=Bx, BTD=Bxsin0=0) 

C. Quasi-static Measurements (f = 5Hz) 

1) The B(H) curves and quasi-static permeability 
Fig. 6 shows the results on the apparent static magnetic permeability measured linking the magnitudes of Hy and By for the whole 
samples. As expected for GOES, the permeability for y parallel to RD is much higher than the permeability when y forms and angle 
 with RD. Usually, the permeability is reduced when  increases, however some marginal effects appear for weak and strong 
angles (<15° and >45°) (§ IV.A). 

1) The quasi-static hysteresis losses and coercive field 
Fig. 7 shows the results on the quasi-static hysteresis losses measured for the whole samples. As expected, the losses for y 

parallel to RD is much lower than the losses when y forms and angle  with RD. [𝜇(𝐵, )] variations are discussed in § IV.B.

 
Fig. 6. B(H) curves measured on the seven samples at low frequency (f=5Hz) and as a function of the magnitude value of flux density B and its angle . 

 
Fig. 7. Hysteresis losses Phm(B,) measured on the 7 samples at low frequency (f=5Hz) as a function of the magnitude value of flux density B and its angle . 
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Fig. 8. Total losses Pfm(B,) measured on the 7 samples at frequency f = 50 Hz as a function of the magnitude value of flux density B and its angle . 

D. Dynamic measurements (variable frequency, f = 50 Hz) 

1) The Apparent Permeability 𝜇(𝐵, , 𝑓) 
Dynamic 𝜇(𝐵, , 𝑓) can be deduced from (14a) by using results similar to that of Fig. 6 with damping effects. 

2) The dynamic losses 𝑃(𝐵, 𝑓) 
Fig. 8 shows the results on the total iron losses measured for the whole samples. As expected, the losses for f >> 5 Hz are mainly 
driven by the dynamic contributions. For y parallel to RD it is still much lower than the losses when y forms and angle  with RD. 
[(𝐵, , 𝑓)] variations are discusses in § IV.A. 

IV. IDENTIFICATIONS – TENSOR MAGNETIC PROPERTIES 

A. Static internal permeability [𝜇௦(𝐵, )] - discussions 

The identification procedure for each component of [𝜇௦(𝐵, )] is summed up with the equations (16) below: 

𝜇௦,்(𝐵்) = 𝜇,௬(𝐵, 90°, 5𝐻𝑧)     (16a) 

𝜇௦,ோ(𝐵ோ) = 𝜇,௬(𝐵, 0°, 5𝐻𝑧)     (16b) 

𝜇௦,்ோ(𝐵, 𝜃) =
ఓೞೝ,ವ(ವ) ୱ୧୬మ ఏାఓೞೝ,ೃವ(ೃವ) ୡ୭ୱమ ఏ

ଶୡ୭ୱ ఏ ୱ୧୬
− 𝜇,௬(𝐵, , 5𝐻𝑧)     (16c) 

Fig. 9 and Fig. 10 show the identifications of [𝜇௦]. At small angle , and for low or intermediate flux densities (B<0.8T), 𝜇௦,்ோ 
can be negative even if lower than 𝜇௦,ோ , with beneficial impact on the B(H) curves corresponding to <15°. The misoriented flux 
seems to activate a coupling between TD polarizations of domains with moving walls and RD components of main 180° domains. 
When  is increased (30°, B<0.8T), 𝜇௦,்ோ becomes positive with a negative impact on the B(H) curves with lower slopes. The 
higher the flux density (B>0.8T), the stronger the coupling term 𝜇௦,்ோ, comparable to 𝜇௦,ோ or 𝜇௦,். The maximum of 𝜇௦,்ோ 
apparently always occur at the magnetization knee. For higher angles (30°, B>0.8T), 𝜇௦,்ோ is decreasing with ; however, for 
angles 45°, 𝜇௦,்ோ can still have a value bigger than 𝜇௦,், such that the B(H) curves show a slope lower than in TD. 
Fig. 13 and Fig. 14 show that while B increases, the “hard”/”easy” axis deviate from a direction close to TD/RD respectively (-
15°<<+15°) towards a direction forming a significant angle with TD/RD respectively (15°<<40°). 

B. The coercive permeability [𝜇(𝐵, )]  - discussions 

The identification procedure for each component of [𝜇(𝐵, )] is summed up with the equations (17) below: 

𝜇,்(𝐵்) =
గವ

మ

ఊ(,ୀଽ°,ୀହு௭)
      (17a) 

𝜇,ோ(𝐵ோ) =
గೃವ

మ

ఊ(,ୀ°,ୀହு௭)
      (17b) 

𝜇,்ோ(𝐵, 𝜃) =
ఓ,ವ(ವ) ୱ୧୬మ ఏାఓ,ೃವ(ೃವ) ୡ୭ୱమ ఏ

ଶୡ୭ୱ ఏ ୱ୧୬ ఏ
−

𝜋𝑓𝐵
2

𝛾𝑃𝑓ℎ൫𝐵,,𝑓=5𝐻𝑧൯
     (17c) 

Fig. 11 and Fig. 12 show the identifications of [𝜇] similarly to [𝜇௦]. We notice a significant increase of 𝜇,்ோ and hysteresis 
loss when 15°<<45°, which partly corresponds to the low values of 𝜇,்ோ at its maximum compared to 𝜇௦,்ோ. 
Fig. 15 and Fig. 16 show that while B increases, the “hard”/”easy” axis deviate from a direction close to TD/RD respectively (-
10°<<+10°) towards a direction forming a significant angle with TD/RD respectively (10°<<30°). 
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A. The dynamic magnetization property [(𝐵, )] 

The identification procedure for each component of [(𝐵, )] is explained in § II.D.2) and with the equations in (13). In Fig. 17, 
Fig. 18 , Fig. 19 and Fig. 20, we notice the Nucleation/activation of specific domains with walls (DWN) and magnetization 
mechanisms at specific B values. Around 0.2 T: walls between new nucleated domains (Lancet and out-of-plane 45°-90° domains, 
்) and source couplings between TD and RD (loss reduction, ்ோ

ᇱ <0) start appearing with the DWD mechanism when 
magnetizing the sample with a significant TD component (45°). Around 0.6 T: walls between previously nucleated domains 
start Fusing with lower density and mobility (DWF). The non-dissipative couplings between TD and RD (absorption of reactive 
power, ்ோ

ᇱᇱ ) and the dissipative couplings (்ோ
ᇱ >0) start increasing when magnetizing in a direction forming an angle 

30°<<45°. Around 1 T: No more DWD and RD component of domains (ோ) play any role when magnetizing the sample closer 
to TD (>45°). It is replaced by the DMR and ். At 1.3 T and above: domains with RD components (ோ) still play a role when 
magnetizing closer to RD (<45°) but the activated DMR mechanism with TD components becomes predominant (்). 

 
Fig. 9. Components of ൣ𝜇

𝑠𝑟
(𝐵, )൧ identified as a function of the magnitude value of flux density B for the whole angles  (0°, 15°, 30°, 45°, 60°, 75°, 90°). 

 
Fig. 10. Non diagonal component 𝜇

𝑠𝑟,𝑇𝑅𝐷
(𝐵, ) of ൣ𝜇

𝑠𝑟
൧ identified as a function of angle  given the magnitude values of induction B (0.2 T, 0.5 T, 1 T, 1.5 T). 

 
Fig. 11. Components of ൣ𝜇

𝑐𝑟
(𝐵, )൧ identified as a function of the magnitude value of flux density B for the whole angles  (0°, 15°, 30°, 45°, 60°, 75°, 90°). 



 

10 
 

 
Fig. 12. Non diagonal component 𝜇

𝑐𝑟,𝑇𝑅𝐷
(𝐵, ) of ൣ𝜇

𝑐𝑟
൧ identified as a function of angle  given magnitude values of induction B (0.2 T, 0.5 T, 1 T, 1.5 T).

 

Fig. 13: eigenvectors XHM and eigenvalues ௦,௫ = ௦,௫ with the hardest quasi-static magnetization axis of tensor property [𝑠]. 

 
Fig. 14: eigenvectors YHM and eigenvalues ௦,௬ = ௦,௬ with the easiest quasi-static magnetization axis of tensor property [𝑠]. 
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Fig. 15: eigenvectors XHh and eigenvalues ,௫ = ,௫ with the hardest static coercive field axis of tensor property [𝑐]. 

 
Fig. 16: eigenvectors YHh and eigenvalues ,௬ = ,௬ with the easiest static coercive field axis of tensor property [𝑐]. 

 
Fig. 17. Components of [(𝐵, )] identified at f = 50 Hz as a function of the magnitude value of flux density B for various angles  (0°, 45°). 

 
Fig. 18. Components of [(𝐵, )] identified at f = 50 Hz as a function of the magnitude value of flux density B for various angles  (45°, 90°).
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Fig. 19: Non-diagonal real component 𝑇𝑅𝐷

′ (𝐵, 𝜃, 𝑓) of [] identified at f = 50 Hz as a function of  for various B (0.2 T, 0.5 T, 1 T, 1.3 T). 

 
Fig. 20. Non-diagonal imaginary component 𝑇𝑅𝐷

′′ (𝐵, 𝜃, 𝑓) of [] identified at f = 50 Hz as a function of  for various B (0.2 T, 0.5 T, 1 T, 1.3 T).

 
Fig. 21: Model discrepancies in both TD and RD directions for the estimation of permeability and losses @ f = 50 Hz as a function of B. 

 

 
Fig. 22: Model discrepancies with misoriented flux (=45°) for the estimation of iron losses @ f = 50 Hz as a function of B. 
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V. CONCLUSION AND FORTHCOMING 

A mesoscopic tensor H(B) model dedicated to the description of the 2-D vectorial magnetic behavior and losses within quasi-static 
and magneto-harmonic working conditions is proposed. It is based on microscopic properties of magnetic domains and walls by 
separating the 2D vector magnetic field in three components. The latter involve tensor properties ([௦], [] and []) derived from 
physical energies. In the frequency domain, macroscopic eddy currents can be taken into account through the field diffusion-like 
equations. Analytical solutions of this 1-D problem within the sheet thickness but with in-plane fields in two directions are used to 
identify the magnetic properties by fitting the permeability or/and the losses measured. Identification are performed by magnetizing 
a GOES material at various angles  between the flux and RD. It is shown that significant non linear non diagonal components of 
each tensor must be considered to include the couplings between TD and RD. The components of [] explain the role played by 
the magnetic domains, walls and the two main mechanisms DWD and DMR during a misoriented magnetization sequence. While 
B increases, the equivalent “hard”/”easy” axis for [௦] and [] deviate from a direction close to TD/RD towards a direction at 50°-
70° from RD/TD which corresponds the 60° found in the literature. The methodology will be useful when investigating 
recrystallization processes or surface treatments. The same model could be used for NGOES. Experiments show that the role 
played by non diagonal components is less significant in NGOES than in GOES. The model fits well the iron losses in all directions 
but requires improvements to estimate better the permeability and predict hysteresis loops in each direction . 
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