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Experimental identification and physical interpretations of 2D tensor magnetic properties of a Grain Oriented Electrical Steel magnetized between the rolling and the transverse directions I. INTRODUCTION -CONTEXT AND STATE OF THE ART ron loss and dynamic hysteresis models either 1-D scalar [1,4] or 2-D vectorial [6] are based on a separation principle between the classical losses and the microscopic ones due to reversal mechanisms. Combining the local behavior to the field diffusion equations has been proposed up to now for scalar models [7]. Developing both vector hysteresis models [START_REF] Maloberti | conférence MGE[END_REF] and loss models [START_REF] Appino | [END_REF] in 2D is still a subject of research to compute a magnetic flux that makes an angle with RD in electrical steels used for transformers, inductors and machines (Fig. 1). 

II. THE VECTOR MODEL -TENSOR MAGNETIC PROPERTIES

A. General behavioral model Inspiring from [1,4,6] and following the reference [START_REF] Maloberti | conférence MGE[END_REF], we work with a complex magneto-harmonic behavior between the magnetic field H and the flux density B, resulting from the minimization of the total energy state including the losses as a function of B, involving three contributions (1): the static an-hysteretic magnetic field 𝑯 at equilibrium, the quasi static coercive field 𝑯 responsible for the quasi-static hysteresis losses and the dynamic damping magnetic field 𝑯 due to microscopic eddy currents (see Fig. 2).

𝑯(𝐵, ) = 𝑯 (𝑩) + 𝑯 (𝑩) + 𝑯 (𝑩, 𝜔)

(

This quasi-linear law within time harmonics at frequency f and angle velocity 𝜔 = 2𝜋𝑓 is only able to relate the magnetic field and the flux density but not yet the hysteresis loops. Therefore, it is mainly used to estimate the magnitude permeability and losses given by each cycle slope and area. 1) The static an-hysteretic field This static an-hysteretic field contribution 𝑯 is non dissipative and closely related to the magnetic anisotropy of the material (magneto-crystalline anisotropy, metallographic shape anisotropy, stress induced anisotropy).

[ ] = [𝜇 ] is defined as the static internal magnetic reluctivity and it is a tensor derived from the non-dissipative magnetic energy density 𝑒 , responsible for the major part of reactive power (3).

𝑯 (𝑩) = [ (𝑩)]𝑩 = [𝜇 (𝑩)] 𝑩 (2) 
 , = -

2) The quasi-static coercive field The quasi-static coercive field 𝑯 is dissipative and corresponds to microscopic anti-eddy fields mainly due to jumps of walls at defects and grains boundaries. The tensor [ ] = [𝜇 ] is defined as the coercive reluctivity, closely linked to non reversibility of magnetization at very low frequency [3] (4) (j=exp(i/2)). [ ] is derived from the static hysteresis energy loss density eh (5) responsible for the static hysteresis active power loss density 𝑝 = 𝑟𝑒𝑎𝑙( 𝑗𝜔𝑒 ):

𝑯 (𝑩) = 𝑗[ (𝑩)]𝑩 (4) 
𝑗 , = - (5) 
3) The dynamic damping eddy field At the mesoscopic scale, the magnetization reversal processes induce microscopic eddy currents that generate the extra damping magnetic field 𝑯 . It can be expressed as a function of the electrical conductivity , the angle velocity  and a structural dynamic magnetization property called [] (6). [] represents and lumps the magnetic domains and walls properties [START_REF] Maloberti | conférence MGE[END_REF] averaged among various orientations 𝜃 ⃗ with the help of the product tensor [(𝜃 )] = 𝜃 ⃗  𝜃 ⃗ = 𝜃 ⃗ • 𝜃 ⃗ ) [START_REF] Maloberti | conférence MGE[END_REF]. The generalization proposal consists in deriving the excess energy loss density 𝑒 (7) due to microscopic eddy currents within nucleated magnetic domains and walls and responsible for the dynamic hysteresis active power loss density [START_REF] Maloberti | conférence MGE[END_REF].

𝑯 (𝑩) = 𝑗𝜔𝜎[(𝑩, 𝜔)] 𝑩 (6) 𝑗𝜔𝜎[] = -- (7) 
[(𝑩, 𝜔)] = 〈  [(𝜃 )] + 𝑆 , ([1] -[(𝜃 )]) 〉 ⃗ (8)
Sw is the walls surface, w the walls mobility and nw the walls density [2] stand for the Domain Walls Displacement (DWD). SDMR,w is the domains surface polarizability [5] and stands for the Domain Magnetization Rotation (DMR) mechanism. The most natural reference frame called (TD,RD) for GOES contains the two perpendicular directions known as the Transverse Direction (TD) and the Rolling direction (RD).

B. Tensor magnetic properties

Given a magnetic flux density B oriented in the direction y, forming an angle  with the rolling direction RD, the TD and RD components of B can be deduced as follows (Fig. 3): 𝐵 = 𝐵 sin 𝜃 and 𝐵 = 𝐵 cos 𝜃 (9a)

𝐵 = 𝐵 + 𝐵 (9b) [𝑇] ( , ) ( , ) = cos  -sin  sin  cos  (9c)
The (x,y) reference frame being the frame related to the magnetic measurements, the normalized change of frame transfer matrix from (x,y) to (TD,RD) is given by (9c). It will be shown in the following that tensor properties are not necessarily diagonal in the (TD,RD) reference frame, meaning that 𝑯 does not depend only on 𝑩 but 𝑯 (𝑩 , 𝑩 ). 𝑯 does not depend only on 𝑩 but 𝑯 (𝑩 , 𝑩 ). The important issue addressed in this work consists in finding the (XH,YH) main reference frame in which tensor properties will be diagonal (see Fig. 4). These magnetic axis may be different for  , [ ] and [] respectively. This goal requires to identify first the non-diagonal coupling TD-RD components. gives information on the total anisotropy energy density 𝑒 (𝜃) and its main macroscopic magnetic axis.

[𝜇 ] = 𝜇 𝜇 , (𝐵 ) 𝜇 , (𝐵, 𝜃) 𝜇 , (𝐵, 𝜃) 𝜇 , (𝐵 )

( , ) (10) 
2) Static coercive reluctivity and static hysteresis losses The static coercive field 𝑯 involves the coercive magnetic permeability [𝜇 ] or its inverse, the reluctivity [ ] = [𝜇 ] ,

[𝜇 ] = 𝜇 𝜇 , (𝐵 ) 𝜇 , (𝐵, 𝜃) 𝜇 , * (𝐵, 𝜃) 𝜇 , (𝐵 )

( , ) (11a) 
𝑝 = = 𝑟𝑒𝑎𝑙( 𝑯 • (𝑗𝜔𝑩) * ) = [ ]𝜔𝑩 • 𝑩 * (11b)
This field is responsible for the static hysteresis losses given by equation (11b) ( being the mass density). The diagonal RD component of [ ] is related to the hysteresis loss coefficient 𝐾 of Bertotti [1,4] in case of 1-directional flux (𝜋 , = 𝐾 ). We consider the non-linear diagonal components 𝜇 , = 𝜇 , and 𝜇 , = 𝜇 , of [𝜇 ] as a function of the induction components 𝐵 and 𝐵 respectively. Any cross dependence between TD and RD are included in the non-diagonal 𝜇 , = 𝜇 , components .The vector field dependences of the latter must be identified to find the eigenvectors XHh and YHh depending on B and angle . It gives information on the static hysteresis energy loss density 𝑒 (𝜃), linked to grains shape and boundaries or dislocations directions.

3) Dynamic and structural magnetization property

The dynamic field 𝑯 involves the magnetic structure represented by [], an Hermitian tensor whose components  are equivalent to a local excess loss coefficient relative to 𝑗𝜔𝐵 and 𝑗𝜔𝐵 . In ordered to fit the measurements, the diagonal components

 =  and  =  of []
must be considered non-linear and dependent on both components (𝐵 , 𝐵 ) and the frequency f. The vector field dependences of non-diagonal  =  can also be identified to find the eigenvectors XHd and YHd depending on B and angle  (12). It gives information on the excess energy loss density 𝑒 (𝜃) linked to activated magnetic domains phases, the vector microscopic magnetization mechanisms, including the domain walls motion and domains magnetization rotation.

[] =

 (𝐵 , 𝐵 , 𝑓)  (𝐵, 𝜃, 𝑓)  * (𝐵, 𝜃, 𝑓)  (𝐵 , 𝐵 , 𝑓) ( , ) (12a) 
 (𝐵, 𝜃, 𝑓) =  (𝐵, 𝜃, 𝑓) + 𝑗 (𝐵, 𝜃, 𝑓)

Both the electrical conductivity and the magnetic structure represented by [] are responsible for microscopic and macroscopic eddy currents and finally for the eddy current losses (classical and excess ones). The complete dynamic losses within time harmonics can be deduced from the magnetic field diffusion principles as explained in the following.

C. Magnetic field diffusion 1) Diffusion-like equation

Combining the Maxwell-Ampere and the Maxwell-Faraday equations and the behavioral model (1) in the (TD,RD) reference frame, one has to solve equation (13) by using the tensor [𝜏] = 𝜎[] [𝜇 ], and by separating the static hysteresis contribution which does not involve any space variations related to the field diffusion effect.

- (1 + 𝑗𝜔[𝜏])𝑯 + 𝑗𝜔𝜎[𝜇 ]𝑯 = 0 (13a)
The solution of (13a) can be written in (13b) such that it provides the average flux density B as a function of the real 𝐻 , / ′ and imaginary 𝐻 , / ′′ parts of the components TD/RD of vector 𝑯 averaged through the sheet cross section:

𝑩 = [𝜇 ]〈𝑯 〉 = 𝜇 [𝜇 ] 𝐻 , ′ + 𝑗𝐻 , ′′ 𝐻 , ′ + 𝑗𝐻 , ′′ ℎ( / ) / (13b)
 is the sheet thickness and 𝑘 is the wave vector obeying (13c)

𝑑𝑒𝑡 𝑘 (1 + 𝑗𝜔𝜏 ) + 𝑗𝜔𝜎𝜇 , 𝑘 𝑗𝜔𝜏 + 𝑗𝜔𝜎𝜇 , 𝑘 𝑗𝜔𝜏 + 𝑗𝜔𝜎𝜇 , 𝑘 (1 + 𝑗𝜔𝜏 ) + 𝑗𝜔𝜎𝜇 , = 0 (13c) 
Then, the vector field 〈𝑯 〉 with complex components in (TD,RD) can be calculated by solving the system given by (13d) with (𝛼 + 𝑗𝛽) = (𝑠𝑖𝑛ℎ(𝑗𝑘/2))/(𝑗𝑘/2), first with the flux density component 𝐵 (𝐵 = 0) and then 𝐵 (𝐵 = 0).

⎝ ⎜ ⎛ 𝐻 , ′ 𝐻 , ′′ 𝐻 , ′ 𝐻 , ′′ ⎠ ⎟ ⎞ = ⎣ ⎢ ⎢ ⎢ ⎡ +𝛼𝜇 , -𝛽𝜇 , +𝛼𝜇 , -𝛽𝜇 , -𝛽𝜇 , -𝛼𝜇 , -𝛽𝜇 , -𝛼𝜇 , +𝛼𝜇 , -𝛽𝜇 , +𝛼𝜇 , -𝛽𝜇 , -𝛽𝜇 , -𝛼𝜇 , -𝛽𝜇 , -𝛼𝜇 , ⎦ ⎥ ⎥ ⎥ ⎤ 𝐵 0 𝐵 0 (13d)
The magnetic field applied at the sheet surface in both (TD,RD) and (x,y) frames can then be calculated from (13e) and (13f) 

2) Apparent magnitude permeability The apparent magnitude permeability, linked to each loop slope, defined as the ratio between the peak induction and the corresponding magnetic field on the loop, is given by (14a).

3) Iron losses The dynamic iron losses, closely linked to each hysteresis loop area, is then given by the equation (14b). (𝐵,  = 0° 𝑜𝑟 90°) in TD) for the same samples, allows to identify the diagonal components 𝜇 , (𝐵 ) and 𝜇 , (𝐵 ).

b)

Misoriented flux with an angle  For misoriented fluxes forming an angle  with RD, it can be shown that neither the magnitude permeability nor the static hysteresis losses in y or x directions can be accurately reproduced by using a simple combination of diagonal TD and RD properties and cosines and sines functions of . Thus, it is necessary to consider non diagonal properties inside any tensor [𝜇] and to use the frame change transfer rules as follows (15):

[𝜇] ( , ) = [𝑇] ( , ) ( , ) [𝜇] ( , ) [𝑇] ( , ) ( , ) (15) 
Measurement of the permeability in any direction x or y (𝜇 , (𝐵, , 5𝐻𝑧)) for samples 15 to 75 (see Fig. 5 and TABLE 1) leads to the non-diagonal component 𝜇 , (𝐵, ) of [𝜇 ] as a function B and . Measurement of static hysteresis losses in the same directions (𝑝 , (𝐵, , 5𝐻𝑧)) for the same samples, allows to identify the non-diagonal component 𝜇 , (𝐵, ) of [𝜇 ] as a function of B and .

2) Dynamic working conditions

The next identification step include measurements at variable frequencies to identify separately the components of [].

a)

Rolling and transverse directions

Simultaneous measurement of the dynamic permeability and losses in both the transverse direction (𝜇 , (𝐵,  = 0° 𝑜𝑟 90°, 𝑓) 𝑎𝑛𝑑 𝑝 (𝐵,  = 0° 𝑜𝑟 90°, 𝑓)) and the rolling direction (𝜇 , (𝐵,  = 90° 𝑜𝑟 0°, 𝑓) 𝑎𝑛𝑑 𝑝 (𝐵,  = 90° 𝑜𝑟 0°, 𝑓)) for samples numbered 0 and 90 (see Fig. 5 and TABLE 1) allows to identify the two diagonal components  (𝐵 , 𝐵 = 0) and  (𝐵 , 𝐵 = 0) of [𝜇 ] first; then  (𝐵 = 0, 𝐵 ) and  (𝐵 = 0, 𝐵 ).

b)

Misoriented flux with an angle  Simultaneous measurement of the angle and frequency dependent permeability and losses in both x and y directions (𝜇 , (𝐵, , 𝑓) 𝑎𝑛𝑑 𝑝 (𝐵, , 𝑓)) for samples numbered from 15 to 75 (Fig. 5, TABLE 1) gives the real  (𝐵, 𝜃, 𝑓) and imaginary  (𝐵, 𝜃, 𝑓) parts of non-diagonal component  (𝐵, 𝜃, 𝑓) of [] as a function of B,  and f.

E. Diagonalization conditions of Tensor properties

In case of diagonal tensors, the identification should lead to non diagonal components negligible compared to diagonal ones. The results in Fig. 9, Fig. 11, Fig. 17 and Fig. 18 reveal significant couplings between the RD and TD directions that appear for misoriented fluxes. The measurement data shows that the eigenvectors of the reference frame (XH,YH) able to diagonalize the tensor properties must be adapted to the variations of induction B and angle . The corresponding equivalent "hard" and easy" magnetic axis for each property can thus be revealed and valued by determining the eigenvectors and eigenvalues of [ ] and [ ].

III. EXPERIMENTS -PERMEABILITY AND LOSS MEASUREMENTS WITH MISORIENTED FLUX

A. The experimental set-up Magnetic measurements have been carried out with a Single Sheet Tester (SST150) adapted to 150*150 mm 2 specimens. Error is always under 5%: about 5% for B  0.1 T and f  5 Hz, less than 1 % for B  1 T and f  50 Hz. Error bars are not plotted on the upcoming figures for better legibility. Meanwhile, the SST magnetic circuit is closed and any demagnetizing effect due to the cutting angle should have a coefficient for such large samples below 1% of magnetization.

B. Material and samples

In order to characterize the 2D behavior with misoriented but 1-directional fields, seven GOES samples have been prepared with specific cutting angles (see Fig. 5 and TABLE 1). 

=90°/0° x (BRD=Bxcos0=Bx, BTD=Bxsin0=0) C. Quasi-static Measurements (f = 5Hz)
1) The B(H) curves and quasi-static permeability Fig. 6 shows the results on the apparent static magnetic permeability measured linking the magnitudes of Hy and By for the whole samples. As expected for GOES, the permeability for y parallel to RD is much higher than the permeability when y forms and angle  with RD. Usually, the permeability is reduced when  increases, however some marginal effects appear for weak and strong angles (<15° and >45°) ( § IV.A).

1) The quasi-static hysteresis losses and coercive field Fig. 7 shows the results on the quasi-static hysteresis losses measured for the whole samples. As expected, the losses for y parallel to RD is much lower than the losses when y forms and angle  with RD. [𝜇 (𝐵, )] variations are discussed in § IV.B. Dynamic 𝜇 (𝐵, , 𝑓) can be deduced from (14a) by using results similar to that of Fig. 6 with damping effects.

2) The dynamic losses 𝑃 (𝐵, 𝑓) Fig. 8 shows the results on the total iron losses measured for the whole samples. As expected, the losses for f >> 5 Hz are mainly driven by the dynamic contributions. For y parallel to RD it is still much lower than the losses when y forms and angle  with RD.

[(𝐵, , 𝑓)] variations are discusses in § IV.A.

IV. IDENTIFICATIONS -TENSOR MAGNETIC PROPERTIES

A. Static internal permeability [𝜇 (𝐵, )] -discussions The identification procedure for each component of [𝜇 (𝐵, )] is summed up with the equations (16) below: 

Fig. 9 and Fig. 10 show the identifications of [𝜇 ]. At small angle , and for low or intermediate flux densities (B<0.8T), 𝜇 , can be negative even if lower than 𝜇 , , with beneficial impact on the B(H) curves corresponding to <15°. The misoriented flux seems to activate a coupling between TD polarizations of domains with moving walls and RD components of main 180° domains.

When  is increased (30°, B<0.8T), 𝜇 , becomes positive with a negative impact on the B(H) curves with lower slopes. The higher the flux density (B>0.8T), the stronger the coupling term 𝜇 , , comparable to 𝜇 , or 𝜇 , . The maximum of 𝜇 , apparently always occur at the magnetization knee. For higher angles (30°, B>0.8T), 𝜇 , is decreasing with ; however, for angles 45°, 𝜇 , can still have a value bigger than 𝜇 , , such that the B(H) curves show a slope lower than in TD. Fig. 13 and Fig. 14 show that while B increases, the "hard"/"easy" axis deviate from a direction close to TD/RD respectively (-15°<<+15°) towards a direction forming a significant angle with TD/RD respectively (15°<<40°).

B. The coercive permeability [𝜇 (𝐵, )] -discussions

The identification procedure for each component of [𝜇 (𝐵, )] is summed up with the equations (17) below:

𝜇 , (𝐵 ) = ( , °, ) (17a) 
𝜇 , (𝐵 ) = ( , °, ) 

Fig. 11 and Fig. 12 show the identifications of [𝜇 ] similarly to [𝜇 ]. We notice a significant increase of 𝜇 , and hysteresis loss when 15°<<45°, which partly corresponds to the low values of 𝜇 , at its maximum compared to 𝜇 , . Fig. 15 and Fig. 16 show that while B increases, the "hard"/"easy" axis deviate from a direction close to TD/RD respectively (-10°<<+10°) towards a direction forming a significant angle with TD/RD respectively (10°<<30°).

A. The dynamic magnetization property [(𝐵, )] The identification procedure for each component of [(𝐵, )] is explained in § II.D.2) and with the equations in (13). In Fig. 17 

Fig. 1 :

 1 Fig. 1: Application of proposed methodology (transformers, chokes, machines).

I 2 Fig. 2 :

 22 Fig. 2: Physical principles of the 2D vector field model for magnetic materials.

Fig. 3 .
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 5 Fig. 5: Definition of cutting angles and flux density directions of specimens.
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 6 Fig. 6. B(H) curves measured on the seven samples at low frequency (f=5Hz) and as a function of the magnitude value of flux density B and its angle .

Fig. 7 .

 7 Fig. 7. Hysteresis losses Phm(B,) measured on the 7 samples at low frequency (f=5Hz) as a function of the magnitude value of flux density B and its angle .

Fig. 8 .

 8 Fig. 8. Total losses Pfm(B,) measured on the 7 samples at frequency f = 50 Hz as a function of the magnitude value of flux density B and its angle . D. Dynamic measurements (variable frequency, f = 50 Hz) 1) The Apparent Permeability 𝜇 (𝐵, , 𝑓)

  𝜇 , (𝐵 ) = 𝜇 , (𝐵, 90°, 5𝐻𝑧) (16a) 𝜇 , (𝐵 ) = 𝜇 , (𝐵, 0°, 5𝐻𝑧)

  Fig. 18 , Fig. 19 and Fig. 20, we notice the Nucleation/activation of specific domains with walls (DWN) and magnetization mechanisms at specific B values. Around 0.2 T: walls between new nucleated domains (Lancet and out-of-plane 45°-90° domains,  ) and source couplings between TD and RD (loss reduction,  <0) start appearing with the DWD mechanism when magnetizing the sample with a significant TD component (45°). Around 0.6 T: walls between previously nucleated domains start Fusing with lower density and mobility (DWF). The non-dissipative couplings between TD and RD (absorption of reactive power,  ) and the dissipative couplings ( >0) start increasing when magnetizing in a direction forming an angle 30°<<45°. Around 1 T: No more DWD and RD component of domains ( ) play any role when magnetizing the sample closer to TD (>45°). It is replaced by the DMR and  . At 1.3 T and above: domains with RD components ( ) still play a role when magnetizing closer to RD (<45°) but the activated DMR mechanism with TD components becomes predominant ( ).
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 9 Fig. 9. Components of 𝜇 𝑠𝑟 (𝐵, ) identified as a function of the magnitude value of flux density B for the whole angles  (0°, 15°, 30°, 45°, 60°, 75°, 90°).

Fig. 10 .

 10 Fig. 10. Non diagonal component 𝜇 𝑠𝑟,𝑇𝑅𝐷 (𝐵, ) of 𝜇 𝑠𝑟 identified as a function of angle  given the magnitude values of induction B (0.2 T, 0.5 T, 1 T, 1.5 T).
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 11 Fig. 11. Components of 𝜇 𝑐𝑟 (𝐵, ) identified as a function of the magnitude value of flux density B for the whole angles  (0°, 15°, 30°, 45°, 60°, 75°, 90°).
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 12 Fig. 12. Non diagonal component 𝜇 𝑐𝑟,𝑇𝑅𝐷 (𝐵, ) of 𝜇 𝑐𝑟 identified as a function of angle  given magnitude values of induction B (0.2 T, 0.5 T, 1 T, 1.5 T).
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 13 Fig. 13: eigenvectors XHM and eigenvalues  , =  ,  with the hardest quasi-static magnetization axis of tensor property [ 𝑠 ].
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 14 Fig. 14: eigenvectors YHM and eigenvalues  , =  ,  with the easiest quasi-static magnetization axis of tensor property [ 𝑠 ].

Fig. 15 :

 15 Fig. 15: eigenvectors XHh and eigenvalues  , =  ,  with the hardest static coercive field axis of tensor property [ 𝑐 ].

Fig. 16 :

 16 Fig. 16: eigenvectors YHh and eigenvalues  , =  ,  with the easiest static coercive field axis of tensor property [ 𝑐 ].

Fig. 17 .

 17 Fig. 17. Components of [(𝐵, )] identified at f = 50 Hz as a function of the magnitude value of flux density B for various angles  (0°, 45°).

Fig. 18 .

 18 Fig. 18. Components of [(𝐵, )] identified at f = 50 Hz as a function of the magnitude value of flux density B for various angles  (45°, 90°).

Fig. 19 :

 19 Fig. 19: Non-diagonal real component  𝑇𝑅𝐷 ′ (𝐵, 𝜃, 𝑓) of [] identified at f = 50 Hz as a function of  for various B (0.2 T, 0.5 T, 1 T, 1.3 T).

Fig. 20 .

 20 Fig. 20. Non-diagonal imaginary component  𝑇𝑅𝐷 ′′ (𝐵, 𝜃, 𝑓) of [] identified at f = 50 Hz as a function of  for various B (0.2 T, 0.5 T, 1 T, 1.3 T).

Fig. 21 :

 21 Fig. 21: Model discrepancies in both TD and RD directions for the estimation of permeability and losses @ f = 50 Hz as a function of B.

Fig. 22 :

 22 Fig. 22: Model discrepancies with misoriented flux (=45°) for the estimation of iron losses @ f = 50 Hz as a function of B.

  

V. CONCLUSION AND FORTHCOMING

A mesoscopic tensor H(B) model dedicated to the description of the 2-D vectorial magnetic behavior and losses within quasi-static and magneto-harmonic working conditions is proposed. It is based on microscopic properties of magnetic domains and walls by separating the 2D vector magnetic field in three components. The latter involve tensor properties ([ ], [ ] and []) derived from physical energies. In the frequency domain, macroscopic eddy currents can be taken into account through the field diffusion-like equations. Analytical solutions of this 1-D problem within the sheet thickness but with in-plane fields in two directions are used to identify the magnetic properties by fitting the permeability or/and the losses measured. Identification are performed by magnetizing a GOES material at various angles  between the flux and RD. It is shown that significant non linear non diagonal components of each tensor must be considered to include the couplings between TD and RD. The components of [] explain the role played by the magnetic domains, walls and the two main mechanisms DWD and DMR during a misoriented magnetization sequence. While B increases, the equivalent "hard"/"easy" axis for [ ] and [ ] deviate from a direction close to TD/RD towards a direction at 50°-70° from RD/TD which corresponds the 60° found in the literature. The methodology will be useful when investigating recrystallization processes or surface treatments. The same model could be used for NGOES. Experiments show that the role played by non diagonal components is less significant in NGOES than in GOES. The model fits well the iron losses in all directions but requires improvements to estimate better the permeability and predict hysteresis loops in each direction .