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A B S T R A C T   

Fossil fuel carbon dioxide (CO2ff), the main driver of global warming and climate change, is often co-emitted with 
nitrogen oxides (NOx) and precursors to ground-level ozone from anthropogenic sources like power plants or 
vehicles. In urban and suburban areas, satellite-based NO2 can be used as a proxy to track the emissions of CO2ff. 
Because of NO2’s shorter lifetime, urban NO2 plumes are more distinguishable from backgrounds and more 
sensitive to variations in emissions. However, the combination of these two gases is limited by the asynchrony 
among NO2 and CO2 monitoring satellites. We used CO2ff simulated by the Weather Research and Forecasting 
model coupled with Chemistry (WRF-Chem) model to reconcile the tropospheric NO2 vertical column density 
(VCD) from Tropospheric Monitoring Instrument (TROPOMI) and column-averaged dry-air mole fractions of 
carbon dioxide enhancements (ΔXCO2) from Orbiting Carbon Observatory 3 (OCO-3) Snapshot Area Maps 
(SAMs) over a multicity area, Washington D.C.-Baltimore (DC-Balt), and a basin city, Mexico City. NO2/CO2ff 
ratios over DC-Balt are smaller than Mexico City, indicative of stricter emission restrictions, a more combustion- 
efficient vehicle fleet, and higher combustion efficiency due to lower altitude in DC-Balt. For single-track cases, 
the spatial correlations between NO2 and ΔXCO2 over Mexico City are stronger than DC-Balt because the NO2 
and CO2 are mostly trapped in the valley of Mexico City, while DC-Balt is severely affected by distant sources (i. 
e., US East Coast cities). Using multi-track averaging, spatial correlation coefficients increase with the number of 
days used for averaging. The correlations reached a maximum when averaging >12 continuous images for DC- 
Balt and >10 continuous images for Mexico City. This finding indicates that multi-track averaging using modeled 
CO2ff as a proxy is helpful to filter the noise in single-track images, to cancel the interference from distant 
sources, and to magnify correlations between NO2 and CO2ff. Mexico City showed stronger spatial correlations 
but weaker temporal correlations than DC-Balt due to biomass burning hot spots and large transport errors 
caused by the trapping effects of the surrounding mountains. Tracking the 20-day moving average of CO2ff 
emissions using TROPOMI NO2 seems technically feasible, considering the relationship between correlation 
coefficients and the number of available satellite images.   

1. Introduction 

Oxides of nitrogen (NOx), precursors to ground-level ozone, and 
fossil fuel carbon dioxide (CO2ff), the main driver of global warming and 
climate change (IPCC, 2014; UNFCCC, 2015) are often co-emitted from 

anthropogenic sources like power plants or vehicles (Hakkarainen et al., 
2021), usually concentrated in urban and suburban areas. Global CO2ff 
emissions exceeded 38 Gt in 2020 (Crippa et al., 2020) accounting for 
>77% of fossil fuel greenhouse gas emissions (Crippa et al., 2019) and 
>70% originate from cities alone (Birol, 2008; Mitchell et al., 2018). 
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Global NOx emissions exceeded 55 TgN in 2019 (Miyazaki et al., 2021), 
predominantly emitted from vehicles in urban areas (Chavez-Baeza and 
Sheinbaum-Pardo, 2014; Parrish et al., 2009). CO2ff and NOx spatial and 
temporal correlations have been widely studied (Ammoura et al., 2014; 
Hakkarainen et al., 2021; Kuhlmann et al., 2019; Lopez et al., 2013; Park 
et al., 2021; Reuter et al., 2014) and utilized in emission quantification 
(Berezin et al., 2013; Reuter et al., 2019; Zheng et al., 2020) and co- 
benefits analysis (Dong et al., 2015; Qian et al., 2021; Xie et al., 2018). 

Bottom-up approaches used to estimate anthropogenic NOx and CO2 
emissions have achieved high spatial resolution (0.1◦ × 0.1◦) thanks to 
downscaling techniques using proxies like population density (e.g., MIX; 
Li et al., 2017), nighttime lights (e.g., ODIAC; Oda et al., 2018), or 
combinations of point sources like power plants (e.g., PKU-Fuel; Wang 
et al., 2013) and line sources for on-road emissions (e.g., HESTIA; 
Gurney et al., 2018). But uncertainties in nationwide annual bottom-up 
fossil fuel can be large, ranging from 5% in Organization for Economic 
Co-operation and Development (OECD) countries (Marland, 2008), to 
25% for China (Shan et al., 2018), to 50% or more for emerging econ
omies (Andres et al., 2014). As for temporal resolution, daily and near 
real-time bottom-up estimations using activity data and energy use in
dicators have recently emerged (Liu et al., 2020a), but it is still chal
lenging to retrieve reliable near real-time statistics of sector-specific 
fossil fuel consumption and match independent atmospheric observa
tions (Dou et al., 2021a). 

Satellite-based inversions combine satellite observations with at
mospheric transport models and (or) bottom-up emissions to estimate 
the sources and sinks of greenhouse gases (Crowell et al., 2019; Lei et al., 
2021; Ye et al., 2020). Currently, estimation of NOx emissions from 
satellite observations is generally easier than for CO2ff for several rea
sons: (1) the lifetime of NOx is much shorter than CO2 (several hours vs. 
hundred years), making local NOx signals more distinguishable from 
background values and more sensitive to variations in emissions than 
CO2; (2) CO2ff signals need to be separated from biogenic signals before 
inversion (Ye et al., 2020) while NOx is mainly from the anthropogenic 
sources in urban areas (Zhang et al., 2003); and (3) the available NO2 
satellite observations are more frequent than CO2 thanks to shorter 
revisit times and a broader spatial coverage. Consequently, satellite- 
based NOx emission estimations over cities and large point sources 
benefit from averaging multiple tracks (Goldberg et al., 2019a; Saw 
et al., 2021), while CO2 emission estimations are often based on indi
vidual overpasses (Nassar et al., 2017; Yang et al., 2020; Ye et al., 2020). 

The need for satellite monitoring of carbon emissions has become 
more pressing than ever (Bézy et al., 2019). The world’s major econo
mies have pledged to achieve carbon neutrality by 2050 (Paris Agree
ment, UNFCCC, 2015), and the COVID-19 pandemic caused a temporary 
reduction in global carbon emissions (Liu et al., 2020b). Current CO2 
satellites alone cannot detect long-term CO2ff emission trends (Lei et al., 
2021) or daily variations (Liu et al., 2020b). Therefore, recent studies 
used NO2 as a proxy of anthropogenic CO2 to achieve better spatial and 
temporal resolutions (Dou et al., 2021b; Kuhlmann et al., 2019; Zheng 
et al., 2020). In these studies, satellite measurements of NO2 are con
verted to NOx emissions using a fixed factor of 1.33 derived from long- 
term statistics (Goldberg et al., 2019b, 2019a) (a simplification of the 
complex urban chemistry of aerosols; Atkinson, 2000), or pre-calculated 
NOx/NO2 ratios (Lorente et al., 2019; Zheng et al., 2020). CO2ff emis
sions are then calculated based on NOx/CO2 ratios based on emission 
factors and consumptions of different types of fuels. But the effects of 
meteorology, sectoral energy use, and anthropogenic activity on NO2/ 
NOx ratios should not be ignored when investigating short-term varia
tions of emissions. Additionally, previous studies relied on NO2 and CO2 
satellites in orbits with a very close local solar time to avoid the problem 
of asynchronous overpassing (Reuter et al., 2019), which cannot be 
circumvented for all CO2 and NO2 satellites. Last but not least, most 
studies (Beirle et al., 2021; Goldberg et al., 2019a; Nassar et al., 2021, 
2017; Reuter et al., 2019) are focused on power plants or isolated cities 
with clean backgrounds with little interference from distant sources; 

Schuh et al. (2021) have quantified variations from large-scale CO2 
inflow limiting our ability to detect and quantify city plumes. 

To understand the representativity of satellite-based NO2 as a proxy 
of CO2ff across different cities, we investigated spatial and temporal 
correlations between NO2 vertical column density (VCD) from TRO
POMI and column-average CO2 dry-air mole fraction enhancement 
(ΔXCO2) from OCO-3 SAMs over two typical metropolitan areas: 
Washington D.C.-Baltimore (DC-Balt) and Mexico City. We compared 
satellite data with model concentrations from WRF-Chem to reconcile 
the asynchrony of the two satellites. In Section 2, we describe the data 
and methodology. We evaluate discrepancies between NO2 and ΔXCO2 
spatial distributions for single tracks in Section 3.1. Then we evaluate 
the role of various averaging time windows (multitrack analysis) to help 
reconcile model-data discrepancies and to quantify temporal variations 
of NO2 and ΔXCO2 in Section 3.2. Finally, we discuss the results in 
Section 4 and conclude in Section 5. 

2. Data and method 

We selected two representative metropolitan areas, DC-Balt and 
Mexico City, which are challenging for atmospheric CO2 modeling in 
terms of urban boundaries (DC-Balt) and terrain (Mexico City). DC-Balt 
is located on the East Coast of the US on relatively flat terrain; thus, it is a 
typical multicity region as described in Ye et al. (2020). Unlike isolated 
plume cities, DC-Balt is affected by CO2 plumes originating from upwind 
power plants from places like the Ohio river valley and other large cities 
on the East coast of the United States (e.g., Philadelphia, New York, and 
Richmond). Mexico City is a typical “basin city” whose terrain resembles 
Los Angeles, as shown in Ye et al. (2020). Because of complex topog
raphy, the simulated CO2 spatial distribution over the city is more sen
sitive to transport model errors. CO2ff emissions from DC-Balt are about 
20.5 TgC/year, and the on-road sector (mostly traffic) dominates the 
city emissions over DC-Balt, accounting for about 45% of the annual 
total (Yadav et al., 2021). The electricity production sector in DC-Balt is 
the second most important contributor, accounting for 19% of annual 
emissions, although this contribution can vary throughout the year 
depending on the heating and cooling demand. Total CO2ff emissions 
from Mexico City are about 21 TgC/year as reported by Emission In
ventory for Mexico City-2016 (SEDEMA, 2018), about 76.8% of which 
are emitted by mobile sources. >4.2 million passenger vehicles repre
sent 61% of criteria pollutants and 44% of GHG (greenhouse gas) 
emissions (Chavez-Baeza and Sheinbaum-Pardo, 2014). 

2.1. Case selection 

We firstly selected several individual cases of asynchronous satellite- 
based NO2 and ΔXCO2 according to data integrity and the co-existence 
of tropospheric column NO2 from TROPOMI and XCO2 from OCO-3 
Snapshot Area Maps (SAMs) mode. The description of OCO-3 and 
TROPOMI retrievals is available in Section 2.2. We scanned all the 
available OCO-3 SAMs (available mostly from January to June 2020) 
and selected three cases over DC-Balt and six cases over Mexico City. 
XCO2 maps (filtered by quality_flag = 0) in OCO-3 SAMs show clear 
spatial gradients of 1.5 ppm above background. The NO2 retrievals 
selected here correspond to the highest quality measurements (quality 
assurance flag (QA_flag) > 0.75) as recommended by Goldberg et al. 
(2021) and cover >50% of our study areas. 

Then we selected February 2020 as our study period for our multiday 
averaging experiment. February 2020 is a cold month for DC-Balt and 
Mexico City, when NO2 lifetime is relatively long (limited chemical 
production and destruction), and biogenic CO2 signals are weaker than 
warm months. Hence, this period is better suited to establish a rela
tionship between anthropogenic CO2 and NO2 than during warm months 
with high photochemistry. Furthermore, mobility restrictions causing a 
reduction in emissions of CO2 and NO2 during the COVID-19 pandemic 
(Liu et al., 2020) occurred later, in mid-March. We selected 17 and 16 
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TROPOMI NO2 images (filtered by the same criteria used for individual 
cases) over DC-Balt and Mexico City, respectively. Due to the lack of 
OCO-3 SAMs XCO2 data, we use XCO2ff simulated by WRF-Chem as a 
proxy of XCO2 enhancements (ΔXCO2) from OCO-3 SAMs mode. To 
validate these simulated XCO2ff fields, we compared WRF-Chem XCO2ff 
to high-accuracy ground-based CO2 measurements and OCO-3 ΔXCO2 
from SAMs in Section 2.3.4. 

2.2. Satellite data 

OCO-3 was launched on May 4, 2019, and started to collect XCO2 
data on September 6, 2019. OCO-3 instrumentation is similar to that of 
OCO-2, but pointing capabilities offer unique images (SAMs mode) that 
cover wider regions compared to traditional nadir and glint modes, by 
collecting multiple swaths using the agile 2-axis pointing mirror as
sembly (PMA). We use the OCO-3 version 10r L2 lite product recently 
publicly available through the NASA Goddard Earth Science Data and 
Information Services Center (GES DISC) (http://disc.sci.gsfc.nasa.gov/). 
This product uses the newest Atmospheric Carbon Observations from 
Space (ACOS, O’Dell et al., 2018) build 10 (b10) software suite using an 
early Ancillary Radiometric Product (ARP). The performance of the 
OCO-3 early version (vEarly) was first evaluated over the Los Angeles 
megacity by Kiel et al. (2021). 

TROPOMI was launched on October 13, 2017, with quality- 
controlled data made available since April 30, 2018. We downloaded 
NO2 data through the European Space Agency (ESA) for the European 
Union’s Copernicus Sentinel 5 Precursor (S5p) satellite mission (http 
://www.tropomi.eu/data-products/data-access). TROPOMI operates in 
a sun-synchronous polar orbit nominally crossing the equator at 
approximately 13:30 local solar time. TROPOMI NO2 VCD has been 
compared to XCO2 from OCO-2 (Nassar et al., 2021; Reuter et al., 2019) 
(overpassing at 13:36 local solar time) thanks to near-synchronous 
overpassing times. Note that OCO-3 onboard the International Space 
Station (Eldering et al., 2019; Taylor et al., 2020) no longer follows sun- 
synchronous polar orbit as OCO-2 and TROPOMI. Here we intend to 
reconcile the asynchronous satellite-based NO2 and ΔXCO2 with meso
scale modeling, validated with ground-based in situ measurements, as 
described in Section 2.3.4. Low biases in TROPOMI NO2 data have been 
detected and estimated using aircraft (Judd et al., 2020) and ground- 
based data (van Geffen et al., 2022), possibly due to the cloud algo
rithm, a priori NO2 profiles, and coarse-resolution surface reflectivity. 
Here, we sampled city plumes beyond city limits and therefore expect 
low biases in NO2 retrievals. The original tropospheric NO2 unit in 
TROPOMI data and CO2 unit in OCO-3 data are mol/m2 and ppm, 
respectively. To intuitively compare them, we converted mol/m2 into 
ppb (10− 3 ppm) using Eqs. (1) and (2): 

VCDair tropo = 1
/

g
/

Mair ×
(
psfc − ptropo

)
× 1000–SCDwater

/
AMF (1)  

XNO2 tropo = VCDno2 tropo
/

VCDair tropo × 109 (2) 

Where VCDair_tropo is the tropospheric vertical column density of dry 
air in the unit of mol/m2. g is the gravity acceleration constant, known as 
9.8 m/s2, Mair is the molecular weight of air, set as 29 g/mol. psfc is the 
air pressure at the surface in the unit of Pa. ptropo is the air pressure at the 
tropopause in the unit of Pa. SCDwater is the water slant column density in 
the unit of mol/m2. TROPOMI only provides the water density in the 
total slant column. We assume that most water is in the troposphere. 
AMF is the air mass factor, converting slant column density to vertical 
column density. XNO2_tropo is the tropospheric column averaged mixing 
ratio of NO2 in the unit of ppb. VCDno2_tropo is the vertical column density 
of NO2 in the unit of mol/m2. 

2.3. WRF-chem setup 

We simulated CO2 mole fractions to generate ΔXCO2 using WRF- 

Chem V3.6.1 (Grell et al., 2005; Skamarock et al., 2008) with CO2ff 
emissions and biospheric CO2 fluxes in passive tracer mode (Lauvaux 
et al., 2012). The WRF-Chem configuration (domain size, resolution, 
physics schemes) is described in Ye et al. (2020) and Lei et al. (2021). 

2.3.1. Atmospheric transport model setup 
We use one-way nested domains with resolutions of 9- and 3-km for 

both cities (Fig. 1). For DC-Balt, the 9-km outer domain is set to 
71.92–82.10◦W, 35.03–42.96◦N, ~900 km × 900 km, which includes 
some metropolitan areas in northeast US (e.g., New York in NY, Phila
delphia and Pittsburgh in PA, Cleveland in OH, Charlotte in NC, and DC- 
Balt), and part of Lake Erie and the North Atlantic Ocean. The inner 3- 
km domain is set to 75.2–78.4◦W, 37.20–39.90◦N, ~330 km × 330 
km. This domain centers on DC-Balt and covers the nearby urban areas 
(i.e., part of Wilmington in Delaware and Richmond in Virginia) and 
most of the Chesapeake Bay. For Mexico City, the outer domain is set to 
90.03–108.32◦W, 13.88–24.72◦N, ~1900 km × 1200 km, which in
cludes the South of Mexico, western Guatemala, part of the Gulf of 
Mexico, and the North Pacific Ocean. The inner 3-km domain is set to 
97.47–100.79◦W, 18.15–20.95◦N, of ~350 km × 320 km in size, which 
centers on Mexico City and covers the nearby provinces. 

The WRF-Chem simulations are driven by the hourly ERA5 rean
alysis data (Hersbach et al., 2020) on 0.25◦ × 0.25◦ grids which are also 
used as the initial and boundary conditions of the meteorological and 
land surface fields. A total of 51 vertical levels are set to represent the 
atmospheric column from the surface to 50 hPa. At urban scale, long- 
range transport of CO2 generates only large-scale spatial gradients, 
which preserve the local enhancements; therefore, the initial and 
boundary conditions for the CO2 mole fractions are set constant. Each 
simulation runs for 84 h starting at 00:00 UTC 3 days before the OCO-3 
and TROPOMI overpassing times, including a spin-up time of 12 h. To 
minimize the XCO2 errors caused by model transport errors, the simu
lations are nudged to ERA5 using grid nudging. 

2.3.2. Biogenic CO2 fluxes 
For DC-Balt, biogenic CO2 fluxes are based on hourly Net Ecosystem 

Exchange (NEE) of CO2 from the Vegetation Photosynthesis and Respi
ration Model (VPRM) (Mahadevan et al., 2008), a satellite-based 
assimilation scheme of 12 North American biomes using the Enhanced 
Vegetation Index (EVI) and Land Surface Water Index (LSWI), derived 
from reflectance from the Moderate Resolution Imaging Spectroradi
ometer (MODIS), plus high-resolution sunlight and air temperature data. 
The VPRM NEE data at 0.02◦ × 0.02◦ were provided over the first 6 
months of 2020 (Gourdji et al., 2021) and regridded over the WRF-Chem 
domains using bi-linear interpolation. 

For Mexico City, we use the NEE product Gridded Ensembles of 
Surface Biogenic Carbon Fluxes (Zhou et al., 2020) from an ensemble of 
Carnegie Ames Stanford Approach (CASA) model simulations. This 
ensemble provides CO2 biogenic fluxes and their uncertainties at 3-hour
ly time scales over 2003–2019 on a 463-m spatial resolution grid for the 
conterminous United States (CONUS) and on both 5-km and half-degree 
spatial resolution grids for North America. The biogenic CO2 enhance
ment is much smaller than fossil fuel CO2 enhancement near the urban 
area (Lei et al., 2021), and the average temperature difference in the first 
half of the years 2019 and 2020 is <1 ◦C (https://www.wunderground. 
com/weather/mx/mexico-city/MMMX); thus, we assume that CO2 
biogenic fluxes in February 2020 can be represented by CASA biogenic 
fluxes from 2019 thanks to the reduced vegetation activity in winter. 
The 3-hourly 5-km fluxes are linearly interpolated to 1-hly then 
regridded to WRF-Chem domain resolutions using bi-linear 
interpolation. 

2.3.3. Fossil fuel CO2 emissions 
For DC-Balt, we coupled the CO2ff emissions of the Vulcan project 

version 3.0 (Gurney et al., 2019) available from 2010 to 2015 to the 
WRF-Chem model. The Vulcan product is the first bottom-up inventory 
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to report CO2ff plus cement production CO2 fluxes at 1-hour and 1-km 
resolution for all major carbon-emitting sectors for the CONUS and 
the State of Alaska. The Vulcan emissions are categorized into 10 source 
sectors including residential, commercial, industrial, electricity pro
duction, onroad, nonroad, commercial marine vessel, airport, rail, and 
cement. The annual anthropogenic CO2 emission over DC-Balt only 
increased by 1.1% from 2015 to 2020 based on CAMS-GLOB-ANT V4.2 
(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams 
-global-emission-inventories?tab=overview). Thus, we assume that CO2 
diurnal and monthly variations in 2020 remain the same as the corre
sponding weekday/weekend of the year 2015. We also regridded the 1- 
hourly CO2ff emissions to WRF-Chem domain resolutions using bi-linear 
interpolation. 

For Mexico City, fossil fuel CO2 emissions are based on Mexican 
National Emissions Inventory (NEI, https://www.gob.mx/semarnat/do 
cumentos/documentos-del-inventario-nacional-de-emisiones) for the 
year 2016. Considering an annual population growth rate of about 0.4%, 
we also assume that the emissions remain nearly constant by 2020. In 
the NEI 2016, the emissions of CO2 are from the Mexico City Emissions 
Inventory (SEDEMA, 2018) based on the same activity information used 
for producing the criteria pollutant emissions. The emissions activity 
categories are ground transport, airport, solid waste, wastewater, resi
dential combustion, and cattle raising. This emission inventory for 
criteria pollutants has been evaluated by Rodriguez Zas and Garcia 
Reynoso (2021) and Maldonado-Pacheco et al. (2021). We generated the 
CO2ff emission inputs for WRF-Chem by using a program developed by 
the National Autonomous University of Mexico (UNAM) which is pub
licly available through GitHub (https://github.com/JoseAgustin/ 
emis_2016). 

2.3.4. Model validation 
This study focuses on afternoon CO2 enhancements, at TROPOMI 

overpassing time. At that time, model performances reach their best 
scores when CO2 is well mixed in the atmospheric boundary layer. To 
establish model performances, we compare daily afternoon 
(12:00–17:00 local time) CO2 enhancements extracted from WRF-Chem 

outputs with ground-based high-accuracy in situ CO2 measured by Pic
arro Cavity Ring-Down Spectroscopic (CRDS) analyzers (Rella et al., 
2013). Fig. 2 shows the comparison of our 1-month simulation for 
February 2020 and Fig. S1 shows the comparison for individual OCO-3 
SAMs cases selected in Section 2.1. We also compared the model wind 
speeds and directions with NCAR Upper Air Database (NCAR, 2014) 
(Fig. S2-S5). 

For DC-Balt, we use CO2 measurements collected from 13 towers 
(locations shown in Fig. 1a) in the WRF-Chem inner domain, part of the 
North-East Corridor Baltimore/Washington Project (Karion et al., 2020). 
We selected different background sites at different hours based on wind 
directions. We calculated the mean wind direction at each hour based on 
WRF-Chem horizontal mean wind components at 3-km resolution, then 
we selected the tower at the far end of the network, upwind relative to 
the city, as the background site. The CO2 enhancement for both the 
model and observations is defined as the difference in CO2 mole frac
tions between each tower and the selected background site. 

For Mexico City, we used ground-based in situ high-accuracy CO2 
measurements published by (del Castillo et al., 2020), collected from the 
top of a three-story building on the eastern edge of the UNAM main 
campus (19.3262 N, 99.1761 W, 2280 m a.s.l., 13 km south from the city 
center) and at a high-altitude station located at Altzomoni (19.1187 N, 
98.6552 W, 3985 m a.s.l., 60 km southeast from the UNAM site) (loca
tions shown in Fig. 1b). The CO2 enhancement is defined as the differ
ence in CO2 mole fractions between these two sites. 

The WRF-Chem model successfully replicates the hourly variations 
in CO2 enhancements shown by in situ sites for both cities (Fig. 2ab). The 
comparison of daily afternoon average CO2 enhancements confirms the 
model’s capabilities to represent spatial gradients over multiple days for 
both cities (Fig. 2cd). In general, CO2 enhancements simulated by WRF- 
Chem in DC-Balt are slightly larger than observed in situ measurements, 
while CO2 enhancements over Mexico City are slightly lower than in situ 
measurements on average. The coefficient of determination (R2) for CO2 
mole fractions across DC-Balt (0.44) is smaller than Mexico City (0.51). 

As for wind evaluation (Fig. S2-S5), the WRF-Chem model un
derestimates wind speed by 0.22 m/s over DC-Balt and overestimates by 

Fig. 1. Domain settings and in situ site locations in (a) DC-Balt and (b) Mexico City. The whole maps show the range of the outer domain. The red rectangles show the 
range of the inner domain. The red triangles show the locations of in situ sites. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

R. Lei et al.                                                                                                                                                                                                                                       

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview
https://www.gob.mx/semarnat/documentos/documentos-del-inventario-nacional-de-emisiones
https://www.gob.mx/semarnat/documentos/documentos-del-inventario-nacional-de-emisiones
https://github.com/JoseAgustin/emis_2016
https://github.com/JoseAgustin/emis_2016


Remote Sensing of Environment 281 (2022) 113241

5

1.23 m/s over Mexico City at heights of 700 and 800 hPa. At heights 
below 700 hPa, the WRF-Chem overestimates wind speed by 0.52 m/s 
over DC-Balt and 3.37 m/s over Mexico City. The mean wind direction 
biases are 4.05◦ over DC-Baltimore and 14.31◦ over Mexico City at 
heights of 700 and 800 hPa. At heights below 700 hPa, the wind di
rection biases are 1.20◦ over DC-Baltimore and 34.02◦ over Mexico City. 
In general, the WRF-Chem performance at high altitudes is better than 
near-surface. The performance over Mexico City is worse than over DC- 
Balt due to the interference of mountains near Mexico City. 

3. Results 

3.1. Comparison between WRF-Chem outputs and satellite observations 
for single tracks 

OCO-3 ΔXCO2 should not be directly compared with TROPOMI NO2 
considering the differences in overpass time and interferences from 
other sources (e.g., background, biogenic fluxes). Instead, we compared 
WRF-Chem XCO2 with OCO-3 XCO2 at the exact overpassing time of 
OCO-3 to test whether WRF-Chem is a good proxy of OCO-3, then 
compared WRF-Chem XCO2ff and TROPOMI NO2 at the exact over
passing time of TROPOMI to study the correlation between XCO2 en
hancements and NO2. 

Fig. 3 shows XCO2 from WRF-Chem and OCO-3 over DC-Balt for 13 

Fig. 2. Comparison of afternoon CO2 enhancement in February 2020 between WRF and in-situ site measurements: (a) time series of hourly averaged enhancements 
of all in-situ sites in DC-Balt; (b) time series of hourly enhancements in Mexico City; (c) scatters of daily afternoon averages in DC-Balt. The dots and diamonds in 
different colors represent the different sites; (d) scatters of daily afternoon averages in Mexico City. Note: The blue lines in (a) and (b) are not continuous due to 
missing data. There are 13 sites in DC-Balt, resulting in 12 enhancement values per hour, while there are two sites in Mexico City, resulting in only one enhancement 
value per hour, as one site is selected as the background site in each hour. For DC-Balt, enhancement can be negative because the background site chosen by wind 
direction is not the lowest CO2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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June 2020. Note that the OCO-3 vEarly data contains time-dependent 
residual pointing errors that occasionally exceed OCO-3’s footprint 
size, especially for large azimuth and elevation positions of the PMA (i. 
e., swath bias, Taylor et al., 2020), which may still exist in v10r data. 
Assessment of pointing errors in v10 compared to vEarly suggests that 
they have been reduced but not removed (O’Dell’s presentation at OCO 
science team meeting in March 2022), although it is difficult to be 
quantitative for now. Thus, we adjust the background value of WRF- 
Chem XCO2 separately for each swath, by minimizing the RMSE be
tween WRF-Chem XCO2 and OCO-3 XCO2 for each swath. In the sample 
case (Fig. 3), a large plume (>1 ppm enhancement) crosses the OCO-3 
swaths, simulated by WRF-Chem. But the observed plume originates 
from the north of the simulation domain (i.e., a power plant near Har
risburg in Pennsylvania) instead of being emitted from within the DC- 
Balt domain. Another large plume at the eastern edge of the domain, 
attributed to a power plant near Allentown in Pennsylvania, is not 
captured by OCO-3 swaths. As reported by Mueller et al. (2018), average 
ratios of extra urban inflow to total modeled enhancements at urban 
towers in DC-Balt are 21% to 36% in February and 31% to 43% in July. 

Schuh et al. (2021) also found that the signal-to-noise ratios (SNR) of 
local anthropogenic urban emissions of CO2 versus the background 
inflow remains low (0.17 in summer and 0.21 in winter) over New York 
City, a metropolitan area near DC-Balt. 

As for the other two individual cases (Fig. S6 and Fig. S7), WRF- 
Chem reproduces the XCO2 gradients observed by OCO-3, though no 
clear plume from DC-Balt was captured in the OCO-3 SAMs. Over DC- 
Balt, the lack of detectable ΔXCO2 peaks (i.e., low SNR) in the OCO-3 
swaths impairs our ability to perform inversions of the CO2ff emis
sions. However, spatial structures due to distant sources were correctly 
simulated by WRF-Chem, which confirms the potential of the modeling 
system to capture urban plumes. 

Although the selected cases are of limited use for emission inversion, 
they demonstrate that WRF-Chem CO2ff can be used as a proxy for OCO- 
3 ΔXCO2. Thus, we compare WRF-Chem XCO2ff with TROPOMI NO2 
(Fig. 4, Fig. S6, and Fig. S7) to reconcile the asynchrony of the two 
satellites. The correlation between NO2 and XCO2ff is low, because the 
TROPOMI NO2 does not observe any coherent spatial structures on this 
day. The low correlation may be caused by the interference of distant 

Fig. 3. A sample of comparison between XCO2 from WRF-Chem and OCO-3 over DC-Balt on 2020-06-13 (YYYY-MM-DD): (a) WRF XCO2ff at the hour nearest to OCO- 
3 overpassing time. The black squares represent the locations of OCO-3 pixels. (b) WRF 1-s averaged XCO2 at OCO-3 pixel locations. The yellow arrow indicates the 
direction of scanning. The yellow numbers correspond to the order of the different swaths. (c) Time series of XCO2 following the order of OCO-3 scanning time. The 
grey boxes in the background represent the time spans of different swaths. WRF XCO2 is calculated by adding XCO2bio based on Biogenic CO2 fluxes describe in 
Section 2.3.2, XCO2ff in a), and swath background. (d) OCO-3 1-s averaged XCO2. 
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sources and the lifetime difference between CO2 and NO2. 
We examined six OCO-3 SAMs over Mexico City to evaluate the 

performance of the WRF-Chem model. Fig. 5 illustrates the comparison 

between XCO2 from WRF-Chem and OCO-3 over Mexico City on March 
30, 2020. Additional cases corresponding to the different SAMs are 
shown in Fig. S8-Fig. S12. Because CO2 emitted from the urban area 

Fig. 4. A sample of comparison between TROPOMI NO2 and WRF-Chem XCO2ff over DC-Balt on 2020-06-13 (YYYY-MM-DD): (a) TROPOMI NO2; (b) WRF XCO2ff at 
the hour nearest to TROPOMI overpassing time; (c) scatters of TROPOMI NO2 vs WRF-Chem XCO2ff. 

Fig. 5. Same as Fig. 3 but for Mexico City on 2020-03-30 (YYYY-MM-DD).  
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tends to accumulate in the valley (low horizontal wind speed due to the 
surrounding high topography), WRF-Chem roughly reproduces the po
sition of ΔXCO2ff hotspots observed in OCO-3 SAM retrievals. Note that 
the Mexico City plume from WRF-Chem in Fig. 5a,b looks slightly 
spatially misplaced relative to OCO-3 SAMs in Fig. 5d, which may be 
caused by an unrealistic complicated wind pattern in WRF-Chem. A 
similar plume offset was reported by Zheng et al. (2019). 

Fig. 6 illustrates the comparison between TROPOMI NO2 and WRF- 
Chem XCO2ff over Mexico City. Additional cases are shown in Fig. S8- 
Fig. S12. The positive linear relationship between CO2ff and NO2 over 
Mexico City is larger than over DC-Balt due to the high density of 
emission sources and the confinement of the urban plume in the valley. 
The spatial correlation (Fig. 6c) results in a relatively good fit (R2 =

0.57) over the domain. TROPOMI NO2 retrievals present an enhance
ment of about 1 ppb in the central part of the domain. Compared to DC- 
Balt (Fig. 4), despite similar XCO2 enhancements in WRF-Chem, the 
modeled mole fractions match the overall NO2 distribution, possibly due 
to higher NO2/CO2 ratios in Mexico City. We also note that a major 
enhancement (hotspot) located in the eastern part of the domain (Case 
March 26, 2020, in Fig. S9) was not reproduced by WRF-Chem, poten
tially due to the fires detected by MODIS (https://worldview.earthdata. 
nasa.gov). 

3.2. Reconciliation of the NOx-XCO2ff mismatch using multiple tracks 

For individual cases, the relationship between anthropogenic CO2 
and NO2 remains unclear, especially for DC-Balt. Therefore, we exam
ined the correlation between NOx and XCO2 using multiple tracks to 
reduce the noise caused by model transport errors and measurement 
errors. Due to the limited availability of OCO-3 SAMs, we compared 
TROPOMI NO2 with WRF-Chem XCO2ff over the entire month of 
February 2020, a cold month before the first wave of the pandemic of 
COVID-19. We expect a limited impact of the photochemistry and no 
significant emission reduction (mobility restrictions started in March of 
2020) for both cities. Fig. S13 and Fig. S14 show the comparison of 
single cases in February 2020. On many days, the spatial distributions of 
NO2 and XCO2ff are not collocated, especially over DC-Balt, indicating 
that the noise from single tracks remains large, consistent with Section 
3.1. 

Fig. 7a and Fig. 7b show the spatial distribution of both gases when 
averaging over the entire month over DC-Balt. The hotspots of XCO2ff 
and NO2 over Wilmington in Delaware, Baltimore in Maryland, Wash
ington D.C., and Richmond in Virginia are more clearly co-located after 
averaging 17 cases for the entire February 2020 compared to individual 
cases (Fig. S13). We therefore investigated the detectability of homology 
as a function of the number of cases (both in time and space). To 
examine the spatial correlations, we averaged XCO2ff and NO2 maps in n 
cases following the time sequence (referred as n-case averaging time 
window) to get N + 1 − n pairs of averaged maps, where N is the total 

number of TROPOMI NO2 cases (N = 17 for DC-Balt, and N = 16 for 
Mexico City; 1 ≤ n ≤ N) in February 2020. Then for each XCO2ff-NO2 
pair of maps, we calculated the R2 (referred as spatial R2, Rs

2) and slope 
of the linear fit of all pixels of NO2/XCO2ff (referred as spatial ratio, rs). 
Fig. 7c shows Rs

2 as a function of the number of cases (n) (rs as a function 
of n is shown in Fig. 7e). 

To calculate the temporal correlation of NO2 and XCO2ff, we firstly 
averaged N + 1 − n pairs of NO2 and XCO2ff maps (each map is an 
average of n days). For each XCO2ff-NO2 pair of maps, we calculated the 
means of the NO2 and XCO2ff. Then we calculated the R2 (referred as 
temporal R2, Rt

2 in Fig. 7d) and slope (referred as temporal ratio, rt in 
Fig. 7f) of the linear fit of the N + 1 − n XCO2ff-NO2 pairs of means of 
NO2 and XCO2ff. We only show the relationship where n is not greater 
than eight because the sample size (i.e., N + 1 − n pairs) is too small to 
represent the temporal relationship between XCO2ff and NO2 over DC- 
Balt when n > 8. 

Both the Rs
2 and rs increase as the number of images (days) increase, 

then eventually flatten when the number of images (days) within the 
time window is >12. This result implies that the noise interferences in 
NO2 images and the impact of distant sources in CO2 images can be 
partially removed by multitrack averaging using up to 12 images, while 
using >12 images would not be helpful to further remove the in
terferences. The Rt

2 increases from 0.5 to 0.9 when increasing the length 
of the averaging time window from one to eight, indicating that tem
poral variations of XCO2ff may be better traced by the variations in NO2 
using longer temporal averages. Given 17 images available in a month, 
we may trace the 20-day moving average of CO2ff emissions using NO2 
as a proxy. 

Fig. 8 shows the results of multitrack averaging over Mexico City. 
Like DC-Balt, the Rs

2 and rs both increase with the length of our averaging 
time window, then flatten when the window length is greater than ten. 
The averaged rs over DC-Balt is much lower than Mexico City, indicating 
a better control of NO2 emissions in DC-Balt resulting from stricter 
emission restrictions and a more efficient vehicle fleet. Also, the higher 
altitude of Mexico City affects the combustion efficiency and thus pro
duces more NO2. The Rs

2 over Mexico City is much greater than DC-Balt 
due to the valley trapping phenomenon, which is consistent with our 
individual case comparison. The Rt

2 of the whole domain (blue line in 
Fig. 8d) is significantly smaller than DC-Balt, potentially due to the 
intermittent wildfires near Mexico City during February 2020 detected 
by MODIS. We tried to screen the effects of fires by applying a mask 
(average XCO2ff >0.5 ppm), covering the valley of Mexico City 
(Fig. 8ab). The Rt

2 with the mask (orange line in Fig. 8d) is higher than 
without the mask but still smaller than over DC-Balt. It indicates that the 
fire is the main obstacle of tracking temporal CO2ff variations using NO2 
but can be partially screened by the high CO2ff area mask. 

Fig. 6. Same as Fig. 4 but for Mexico City on 2020-03-30 (YYYY-MM-DD).  
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4. Discussion 

We use WRF-Chem output as a proxy between overpassing times of 
OCO-3 SAMs and TROPOMI, but also as a tool to explore current limi
tations in the scanning mode for urban areas. The first limitation is 
related to the spatial coverage of OCO-3 SAMs. With only a few swaths 
over a city target, OCO-3 SAM coverage is much smaller than TROPOMI 
and often excludes a fraction of the surroundings or even a fraction of 
the city plume itself. Because of the limited coverage, the character
ization of background conditions remains highly uncertain, as observed 
over DC-Balt when sampling CO2 enhancements emitted by distant 
sources. Metropolitan areas surrounded by other cities or by large point 
sources are affected by spatial structures in the background, possibly 
leading to a false interpretation of long-distance plumes observed in 
SAMs. This limitation can be addressed with regional models including 
non-local sources but will remain challenging for integrated mass 
enhancement approaches (Kuhlmann et al., 2020). The model accuracy 
also is affected by challenging conditions of high wind speeds (during 
which enhancements are less clear due to mixing and ventilation) or 
challenging conditions of very low wind speeds (in which the relative 
wind speed uncertainties tend to be high, making accurate emission 
estimation difficult). 

Our analysis of WRF-Chem simulations showed that spatial struc
tures can vary significantly between XCO2ff and NO2. Correlation de
creases further when considering the time lag due to the overpassing 
times of OCO-3 and TROPOMI. Until synchronized retrievals become 

available (e.g., the CO2M mission; Bézy et al., 2019), transport models 
will be required to bridge the temporal gap. In addition, variations in 
sectoral emissions further complicate the NO2/CO2 ratios, which needs 
to be addressed in multi-species inventories. Overall, despite the sam
pling differences in time and space, some information relative to fossil 
fuel emissions can be recovered when averaging over multiple cases. 

The in situ evaluation of WRF-Chem CO2 outputs shows that WRF- 
Chem can reproduce hourly variation in near-surface CO2 enhance
ments during afternoon (Fig. 2 and Fig. S1). It suggests that tower-based 
networks observing larger enhancements than satellite retrievals can be 
used to measure shorter temporal variations in emissions. We notice that 
the linear relationship is even more visible when aggregating mea
surements from the 13 tower sites (afternoon hours only) over DC-Balt, 
indicating the multi-case averaging is not only helpful for satellite-based 
measurements but also in situ data. 

While NOx/CO2ff emission ratios have been recently studied and 
quantified, TROPOMI only observes NO2. A fixed 1.33 (Goldberg et al., 
2019b, 2019a) or pre-calculated NOx/NO2 ratios (Lorente et al., 2019; 
Zheng et al., 2020) has usually been adopted by previous studies when 
quantifying NOx emissions based on satellite data. But diurnal and 
seasonal variations in the NOx/NO2 ratio due to emission sources and 
chemistry should be taken into consideration, especially in studies 
aiming to resolve weekly temporal scales. In this study, we only focused 
on short-term emission variations assuming that our NOx/CO2ff emission 
ratio remains constant. But sectoral differences may also affect NOx/ 
CO2ff emission ratios over time, which adds a significant unknown to the 

Fig. 7. 1-month multitrack averaging of XCO2ff vs 
NO2 over DC-Balt: (a) all-case averaged TROPOMI 
NO2; (b) all-case averaged WRF XCO2ff; (c) spatial 
correlation coefficient (Rs

2) vs the number of cases 
used for multi-track averaging; (d) same as (c) but for 
temporal correlation coefficient (Rt

2); (e) spatial NO2: 
XCO2ff ratio (rs) vs. the number of cases used for 
multi-track averaging; (f) same as (d) but for tem
poral ratio (rt). The case(s) in (c–f) means the number 
of valid TROPOMI frames used for averaging.   
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inverse problem (Zheng et al., 2020). We adjusted sectoral CO2ff emis
sions in WRF-Chem inputs based on NOx/CO2ff emission ratios from 
CAMS, EDGAR, and NEI but failed to improve the spatial correlation 
between NO2 and CO2ff. Further investigation on sectoral differences is 
needed to simulate both NO2 and CO2 mole fractions within a joint 
modeling system. 

The spatial correlation coefficient (Rs
2) of Mexico City is higher than 

DC-Balt, while the temporal correlation coefficient (Rt
2) of Mexico City 

remains smaller. This discrepancy reveals the subtle differences in fossil 
fuel estimations depending on the city landscape. Because DC-Balt has a 
flat topography, similar to New York as reported by Schuh et al. (2021), 
in addition to potential interferences from nearby cities, it is difficult to 
quantify the CO2ff emissions based on individual cases. But multitrack 
averaging reconciles most of the spatial mismatches. As for Mexico City, 
the infrequent influence of nearby sources and the surrounding moun
tains isolate and trap the CO2ff in the valley, resulting in high spatial 
correlations when trying to quantify CO2ff emissions based on individual 
cases (median difficulty reported by Schuh et al., 2021). But potential 
biases in inverse emissions over Mexico City could be large over time, 
primarily caused by the intermittent wildfires. The bias in ventilation 
rate (overestimates by 3.37 m/s at heights below 700 hPa, Fig. S5c) 
could be another reason for small Rt

2 over Mexico City. Effective 
methods for screening the effects of fires and improving the accuracy of 
the simulated ventilation rate are needed to better track day-to-day 
changes in CO2ff emissions over Mexico City. 

5. Conclusions 

In this study, we reconciled the asynchronous TROPOMI NO2 and 
OCO-3 ΔXCO2 SAMs with WRF-Chem over a multicity region, DC-Balt, 
and a basin city, Mexico City, for single and multiple tracks. DC-Balt 
and Mexico City show different challenges in explaining the relation
ship between NO2 and CO2ff due to different topography and distant 
emissions. 

As a validation of the modeling system, we showed the model suc
cessfully simulates afternoon hourly variations of CO2 enhancements 
observed by in situ sites for both cities. For DC-Balt, WRF-Chem captures 
the ΔXCO2 when a plume crosses the OCO-3 tracks. We also noted 
technical difficulties to invert CO2ff emissions for DC-Balt because the 
detected plume originates from other cities (i.e., Harrisburg, Pennsyl
vania and New York City, New York) instead of DC-Balt. For Mexico 
City, the surrounding mountains trap the NO2 and CO2 in the valley, 
reinforcing the apparent spatial correlations between WRF-Chem and 
satellite images (XCO2 and TROPOMI), clearer than DC-Balt. One hot
spot of NO2 at the east of Mexico City was still missing in WRF-Chem, 
which might be caused by the nearby wildfires. 

Due to the limited availability of OCO-3 SAMs, we tested how 
multitrack averaging helps reconcile the mismatch between NO2 and 
CO2ff by comparing TROPOMI data and WRF-Chem outputs in February 
2020. Rs

2 and rs reached maximum values when averaging >12 contin
uous images for DC-Balt and >10 continuous images for Mexico City, 
indicating that multitrack averaging helps eliminate distant in
terferences. It also implies that tracking the 20-day moving average of 

Fig. 8. Same as Fig. 7 but for Mexico City. Note: the areas with average XCO2ff ≤ 0.5 ppm are shaded by translucent masks in (a) and (b). (d) shows temporal 
correlation coefficient (Rt

2) in the whole domain and the areas within the area with average XCO2ff > 0.5 ppm; (f) same as (d) but for temporal ratio (rt). 
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CO2ff emissions using TROPOMI NO2 is technically feasible considering 
available TROPOMI cases (17 cases over DC-Balt and 16 cases over 
Mexico City) in our selected month. NO2/CO2ff ratios over DC-Balt are 
smaller than Mexico City, indicative of stricter emission restrictions, a 
more efficient vehicle fleet, and higher combustion efficiency due to 
lower altitude in DC-Balt. Rt

2 over Mexico City is smaller than DC-Balt, 
which can be partially improved by screening the effects of intermit
tent fires near Mexico City using a mask of high CO2ff areas. The large 
model transport errors (esp. wind speed) in the Mexico City basin could 
be another reason for the small Rt

2. 
In summary, multitrack averaging using modeled CO2ff as a proxy is 

helpful to filter the noise in single-track images, to cancel the interfer
ence from distant sources, and to magnify correlations between NO2 and 
CO2ff. A basin city like Mexico City has stronger spatial correlations but 
weaker temporal correlations than a multicity region like DC-Balt due to 
intermittent fires and large transport errors caused by the trapping ef
fects of the surrounding mountains. Tracking 20-day moving average of 
CO2ff emissions using TROPOMI NO2 seems technically feasible, 
considering the relationship between correlation coefficients and the 
number of available images. Further work remains to be done to convert 
correlations between satellite-based NO2 and ΔXCO2 to correlations of 
fossil fuel emissions, including building dynamic NOx/NO2 ratios, 
improving the method of extracting fossil fuel signals (urban plumes) 
from satellite images, and minimizing the model transport errors over 
basin cities. 

Data availability 

The following data in this study is available from public sources: 
NCAR Upper Air Database: https://rda.ucar.edu/datasets/ds370.1/ 
OCO-3_L2 Lite v10r CO2: https://disc.gsfc.nasa.gov/datasets?key 

words=oco-3%2010r&page=1 
TROPOMI NO2: http://www.tropomi.eu/data-products/data-access 
ERA5 climate reanalysis: https://climate.copernicus.eu/climate-r 

eanalysis 
CAMS global emissions: https://ads.atmosphere.copernicus. 

eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=form 
Vulcan Fossil Fuel CO2 Emissions: https://daac.ornl.gov/NACP/gu 

ides/Vulcan_V3_Annual_Emissions.html 
North-East Corridor Baltimore/Washington Project CO2 data: https 

://www.nist.gov/topics/northeast-corridor-urban-test-bed/data 
UNAM tower data: https://www.ruoa.unam.mx/ 
UNAM emission: https://github.com/JoseAgustin/emis_2016 
VPRM: https://data.nist.gov/od/id/mds2-2382 
Gridded Ensembles of Surface Biogenic Carbon Fluxes: https://daac. 

ornl.gov/cgi-bin/dsviewer.pl?ds_id=1675 
CAMS-GLOB-ANT V4.2: https://ads.atmosphere.copernicus.eu/cds 

app#!/dataset/cams-global-emission-inventories?tab=overview 

CRediT authorship contribution statement 

Ruixue Lei: Writing – original draft, Methodology, Investigation, 
Visualization. Sha Feng: Conceptualization, Supervision, Methodology, 
Writing – review & editing. Yang Xu: Data curation. Sophie Tran: Data 
curation. Michel Ramonet: Writing – review & editing. Michel Grut
ter: Writing – review & editing. Agustin Garcia: Data curation, Writing 
– review & editing. Mixtli Campos-Pineda: Writing – review & editing. 
Thomas Lauvaux: Conceptualization, Supervision, Methodology, 
Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work has been funded jointly by the NASA grants 
#80NSSC18K1313 (subcontracted from the Universities Space Research 
Association #05783-01 to Penn State) and #80NSSC19k0093. S. Feng is 
also supported by NASA grant #80HQTR21T0070 at Pacific Northwest 
National Laboratory (PNNL). PNNL is operated for the Department of 
Energy by Battelle Memorial Institute under contract DE-AC06- 
76RL01830. T. Lauvaux has been supported by the French research 
program Make Our Planet Great Again (Project CIUDAD). 

Financial support for measurements in Mexico-City came from the 
CONACYT-ANR project 290589 ‘Mexico City’s Regional Carbon Impacts 
– MERCI-CO2’ (ANR-17-CE04-0013-01). The RUOA network (Red Uni
versitaria de Observatorios Atmosféricos) operated by UNAM is 
acknowledged for providing the data. M. Campos-Pineda was funded by 
DGAPA-UNAM. 

Computing resources supporting this work were provided by the 
NASA High-End Computing (HEC) Program through the NASA 
Advanced Supercomputing (NAS) Division at Ames Research Center. 

We also thank Anna Karion, Sharon Gourdji, and Kim Mueller at 
National Institute of Standards and Technology for the guidance on 
using CO2 measurements in the North-East Corridor Baltimore/Wash
ington Project and Andrew Pitman (PNNL) for editing this manuscript. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2022.113241. 

References 

Ammoura, L., Xueref-Remy, I., Gros, V., Baudic, A., Bonsang, B., Petit, J.-E., Perrussel, O., 
Bonnaire, N., Sciare, J., Chevallier, F., 2014. Atmospheric measurements of ratios 
between CO2 and co-emitted species from traffic: a tunnel study in the Paris 
megacity. Atmos. Chem. Phys. 14, 12871–12882. https://doi.org/10.5194/acp-14- 
12871-2014. 

Andres, R.J., Boden, T.A., Higdon, D., 2014. A new evaluation of the uncertainty 
associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B: 
Chem.Phys.Meteorol. 66, 23616. https://doi.org/10.3402/tellusb.v66.23616. 

Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 
2063–2101. https://doi.org/10.1016/S1352-2310(99)00460-4. 

Beirle, S., Borger, C., Dörner, S., Eskes, H., Kumar, V., de Laat, A., Wagner, T., 2021. 
Catalog of NOx emissions from point sources as derived from the divergence of the 
NO2 flux for TROPOMI. Earth Syst.Sci.Data 13, 2995–3012. https://doi.org/ 
10.5194/essd-13-2995-2021. 

Berezin, E.V., Konovalov, I.B., Ciais, P., Richter, A., Tao, S., Janssens-Maenhout, G., 
Beekmann, M., Schulze, E.-D., 2013. Multiannual changes of CO2 emissions in 
China: indirect estimates derived from satellite measurements of tropospheric NO2 
columns. Atmos. Chem. Phys. 13, 9415–9438. https://doi.org/10.5194/acp-13- 
9415-2013. 
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Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., 
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. 
D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., 
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., 
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