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Résumé — Cette communication propose une analyse, a partir de simulations, des principales propriétés d’un R-estimateur de la matrice de
forme d’un vecteur symétrique elliptique complexe a distance finie. D’abord proposé par Hallin, Oja et Paindaveine pour le cas des vecteurs réels
puis récemment étendu aux cas de vecteurs complexes par nos soins, cet estimateur est a la fois robuste du point de vue de la distribution et efficace
du point de vue semi-paramétrique. Apres une présentation théorique de cet estimateur, nous étudions ici, a distance finie et pour différentes
configurations possibles, son erreur quadratique moyenne que nous comparons a la borne de Cramér-Rao semi-paramétrique contrainte.

Abstract — This paper aims at presenting a simulative analysis of the main properties of a new R-estimator of shape matrices in Complex
Elliptically Symmetric distributed observations. First proposed by Hallin, Oja and Paindaveine for the real-valued case and then extended to the
complex field in our recent work, this R-estimator has the remarkable property to be, at the same time, distributionally robust and semiparametric
efficient. Here, the efficiency of different possible configurations of this R-estimator are investigated by comparing the resulting Mean Square

Error (MSE) with the Constrained Semiparametric Cramér-Rao Bound.

1 Introduction

Le probleme de I’estimation d’une matrice de covariance ou
d’une matrice de forme a partir d’un jeu d’observations repré-
sente une étape cruciale dans les applications de traitement du
signal ou d’apprentissage statistique telles que la détection ou
le partitionnement de données (clustering). Parmi les différents
modeles de distributions non-gaussiens, la famille des distribu-
tions symétriques elliptiques complexes est connue pour four-
nir une modélisation générale et fiable dans une grande variété
de scénarios [1].

Un ensemble de L vecteurs i.i.d. distribués elliptiquement
CN 32z ~ CESN(po, 20, ho), I =1,..., L, est compléte-
ment caractérisé par un parametre de position ftg, une matrice
de dispersion X, et une fonction dite génératrice de distribution
ho : RY — R* qui joue généralement le role d’une fonction
de nuisance. En effet, les procédures d’inférence pour les don-
nées elliptiques consistent généralement a estimer de maniere
conjointe po et 3y en présence d’une fonction génératrice de
distribution inconnue hg. De manieére remarquable, 1’ajout de
ce parametre de nuisance de dimension infinie nous place na-
turellement dans le cadre des modeles semi-paramétriques. Re-
marquons également que, du fait de I’ambiguité d’échelle bien
connue entre X et hg, seulement une version a 1’échelle de
la matrice de dispersion, appelée matrice de forme, est identi-
fiable. Nous considérons donc ici la matrice de forme Vo =
30/[X0]1,1 comme parametre d’intérét en lieu et place de la

matrice de dispersion (non-contrainte) 3.

Comme récemment mentionné dans la littérature des com-
munautés issues des statistiques [2—5] et du traitement du si-
gnal [6-8], la nature semi-paramétrique des distributions el-
liptiques a permis d’établir a la fois des bornes d’information
semi-paramétriques ainsi que des algorithmes d’estimation ro-
bustes capables de traiter le manque de connaissances a priori
sur la fonction génératrice de distribution hy. Une famille clas-
sique d’estimateurs robustes pour les données modélisées par
des distributions elliptiques est basée sur les M -estimateurs qui
incluent les estimateurs de Huber et de Tyler comme cas par-
ticuliers. Les deux avantages principaux de ces M -estimateurs
de la matrice de forme sont : i) leurs performances ne se dé-
gradent pratiquement pas dans le cas d’un scénario non-gaussien
et ii) ils sont v/L-consistents quelle que soit la fonction incon-
nue hg. Néanmoins, ces estimateurs souffrent d’un inconvé-
nient majeur qui est leur manque d’efficacité du point de vue
semi-paramétrique comme montré dans [6, 7].

Dans leur article fondateur [3], basé sur la théorie de la nor-
malité asymptotique locale de Le Cam ainsi que sur les proprié-
tés d’invariance des statistiques de rang, Hallin, Oja et Pain-
daveine ont montré qu’il était possible d’établir un estimateur
de la matrice de forme capable de réconcilier les deux pro-
priétés dichotomiques que sont robustesse et efficacité semi-
paramétrique. Cet estimateur, établi dans [3] pour des distribu-
tions symétriques réelles appartient a la classe des R-estimateurs.
Dans un travail récent [8], nous avons présenté de maniere tu-



torielle le calcul de cet estimateur ainsi que son extension aux
cas des vecteurs complexes.

Le but de cette communication est de valider, pour le cas
complexe, les résultats théoriques obtenus dans [8] en propo-
sant une étude des propriétés statistiques de cet estimateur. Plus
particulierement, nous analysons ces performances a distance
finie pour différents scénarios et nous adressons la question
cruciale de son efficacité semi-paramétrique en comparant son
erreur quadratique moyenne (EQM) a la borne de Cramér-Rao
semi-paramétrique calculée dans [6,7].

Notations : nous utiliserons ici les notations introduites dans
[8] dont nous ne rappelons que les plus importantes a propos
des opérateurs et des matrices spéciales utilisés tout au long de
cette communication. vec indique 1’opérateur qui concaténe les
vecteurs colonnes d’une matrice N x NN pour en faire un vec-
teur colonne vec (A) de taille N2. L’opérateur vec(A) définit
un vecteur de taille N2 —1 obtenu en supprimant le premier é1é-
ment de vec (A). En d’autres mots, vec (A)
Une matrice A telle que [A]; 1 £ 1 est notée A;. Nous intro-
duisons également les deux matrices suivantes :

HJ_

vec(In

y = 1INz — N~ vec(Iy)vec(In)7, (1)
T

len2]" @

ol e; est le i-eme vecteur de la base canonique de RV *. Pour

des raisons d’interprétabilité et de consistance avec la littéra-

ture existante, toutes les simulations présentent les versions re-
normalisées de chaque estimateur considéré :

V“’ NV“’ /tr(V 4 3)
ou v et ¢ indiquent I’estimateur conmdere. Comme indice de
perfomance nous utiliserons I’EQM :

W= HE{Vec(V“’ Vo)vec(VE — H}||F, 4)
tandis que pour les bornes de performances nous utiliserons
[6,7]:

P [92|e3| R

ecscrp = ||[CSCRB(Zo, ho)]|| r- %)

De plus, Vo = N3 /tr(X) et, enfin, 3 et hq représentent
les vraies valeurs de la matrice de dispersion et de la fonction
génératrice de distribution, respectivement. Dans toutes les si-
mulations, nous utiliserons le scénario suivant :

— 3o est une matrice de Toeplitz hermitienne dont la pre-
miére colonne est donnée par [1,p,...,p~VN 1T p =
0.8¢72™/5 et N = 8.

— Les données sont générées en utilisant une ¢-distribution
complexe & moyenne nulle Pz (z|3, ho) dont la densité
de probabilité est :

22|30, ho) = [Zo| " ho (2755 '2) et (6)

holt) = S (A (A +1t R @)
TNy \n) ’

ol A € (1,+00) est un parametre de forme qui controle

la queue de distribution, tandis que 7 est un parametre
d’échelle qui rend compte de la puissance des données
o2. Plus précisément, sous hypothése de moments du se-
cond ordre finis, nous avons o2 = \/(n(\ — 1)). Nous
avons choisi 02 = 4.

2 [a11, vee(A)T]T.

— Le nombre de Monte Carlo est de 10°.
On notera ici que le choix spécifique d’une ¢-distribution com-
plexe pour les observations ne représente pas de limitation par-
ticuliere puisque, du fait de la nature semi-paramétrique de
notre R-estimateur, les résultats obtenus pour cette distribu-
tions resteront valides pour n’importe quelle autre distribution.

2 Un estimateur semi-paramétrique ef-
ficace

Dans cette section, on rappelle, d’un point de vue algorith-
mique, le R-estimateur introduit dans [8] pour le cas complexe.
Le lecteur trouvera également dans cet article une étude dé-
taillée de ses propriétés asymptotiques.

Soit z; ~ CESN(0,V19,ho), | = 1,..., L un ensemble
d’observations elliptiques complexes i.i.d.. Un R-estimateur ro-
buste et efficace du point de vue semi-paramétrique de V1 ¢ est
donnée par :

vec(Vy p) = vec(V) + L7271 Ag,, (8)

ou V* est un estimateur prehmmalre v/L-consistent de Vio.

La matrice Y et le vecteur AA* sont définis respectivement
par :

Y £aLg, LY., ©)

L *
3{,; 2 L7121y, ;K (LTJIF 1> vec(ay (a))) (10

et le scalaire & peut étre obtenu par :
& =11Ags, -1/200-Ay; 1/|Lgy L, vee®)l, (1)

ot H est une matrice Hermitienne de “petite perturbation”,
telle que [H°]; ; = 0. Comme dans [8], on pose H’ = (G +
GH)/20u[G]; ; ~ CN(0,v?), [G]11 = 0etv = 0.01.

La fonction K : (0,1) — R™T est appelée fonction score
dont nous précisons les propriétés a la section 4.

Les autres termes utilisés dans la définition du R-estimateur
(8) sont les suivants [8] :

— Qz* ﬁzf[[ Hi 1El7

— = (Qz) VRV 2,

— 77,...,7] sont les rangs des variables aléatoires réelles

continues Ql, ey Q* ,

— Ly, 2P (V1772 @ (Vi) I,

On peut noter que, pour I'implémentation pratique du R-
estimateur (8), seulement deux termes ont besoin d’étre spéci-
fiés : I’estimateur préliminaire V* et la fonction score K € K.

Nous discutons a présent de ces choix.

3 Le choix de V*

Nous étudions ici I’'impact de I’estimateur préliminaire V7
sur les performances a distance finie du R-estimateur (8). En



effet, bien qu’en théorie n’importe quel choix d’estimateur pré-
liminaire v/L-consistent conduit 2 un R-estimateur asymptoti-
quement efficace du point de vue semi-paramétrique, il n’en
est pas de méme pour les performances a distance finie. Nous
étudions ici deux estimateurs préliminaires : la matrice de co-
variance empirique et I’estimateur de Tyler.

3.1 La matrice de covariance empirique comme
estimateur préliminaire

Soit {z;}/;, ~ CESN(0,V1,,ho) un ensemble i.i.d. de
vecteurs aléatoires elliptiquement distribués avec une fonction
génératrice de distribution 7. La matrice de covariance empi-
rique V7 g est donnée par :

S Ssoum
lsom= o
[Bsomia L

. A*
En supposant les moments du second ordre finis, V7 gop est

un estimateur /L-consistent de la matrice de forme V' o quelle
que soit la fonction génératrice de distribution, est peut donc
étre choisi comme estimateur préliminaire. L’estimateur de la
matrice de covariance empirique est connu pour étre d’une com-
plexité calculatoire intéressante mais souffre de performances
faibles en environnement non-gaussien. Dans la figure 1a, nous
tracons ’'EQM en fonction du nombre d’observation L pour
V5o issude (12) ainsi que du R-estimateur de (8) qui utilise
Vgc a comme estimateur préliminaire. Notons que les deux
estimateurs sont re-normalisés comme dans (3). Comme fonc-
tion score, nous avons utilisé le score de van der Waerden [8] : !

Koaw (u) 2 05" (u), (13)

ou <I>(_;1 est la réciproque de la fonction de répartition d’une va-
riable aléatoire Gamma de parametres (N, 1). Le R-estimateur
ainsi obtenu sera noté VA Comme nous pouvons le re-
marquer a partir de la figure la, le terme de correction linéaire

“3une étape” L—1/2 Y-l Ay permet d’augmenter de ma-
1 SCM

niere significative ’efficacité de Iestimateur de la covariance
empirique sans augmenter le cofit calculatoire. En effet, cette
correction peut étre calculée analytiquement et ne requiert pas

d’utiliser un algorithme itératif de point fixe comme, par exemple,

pour 'utilisation d’un M -estimateur.

3.2 DP’estimateur de Tyler comme estimateur pré-
liminaire

Le résultat de la figure 1a a été obtenu en posant comme pa-
rametre de forme A = 2 pour nos observations t-distribuées.
Il est donc également intéressant de vérifier I’efficacité semi-
paramétrique du R-estimateur (8) en fonction de ), c’est-a-dire
en fonction de la non-gaussianité des données (et ceci pour
un nombre fini L de données). Puisque I’estimateur de la co-
variance empirique se dégrade dans le cas non-gaussien, on

1. Le choix de la fonction score est discuté dans la prochaine section.

peut espérer que 'utilisation d’un M -estimateur, par exemple
I’estimateur de Tyler, comme estimateur préliminaire permet-
tra d’améliorer les performances a distance finie. Lestimateur
de Tyler V1, est obtenu comme le point de convergence de
I’algorithme de point fixe suivant :

k+1 - lel
Ty L Z V(k)] (14)
ou linitialisation est, par exemple, V( ) = Iy. Afin d’ob-

tenir un R-estimateur normalisé dans (8) nous 1mposons la
contrainte suivante classique sur le premier élément : Vl)Ty
VTy/[va]l,lo

Apres re-normalisation dans (3), nous avons tracé dans la fi-
gure 1b ’EQM des estimateurs de la covariance empirique et
de Tyler Vo, et V7, ainsi que 'EQM des R-estimateurs

*ast-ddire VSCM vy
correspondant, ¢’est-a-dire V3~ 5y, et Vp© ;y,,. Comme pour

la figure précédente, nous avons utilisé le score de van der
Waerden K,qw dans (13). Notons que le nombre d’observa-
tion est fixé a L = 5NV afin de garantir un régime a distance
fini.
sz 7Ty :
Comme espéré, V", donne de meilleures performances

que VEEM en présence de données non-gaussiennes (c’est-a-

dire pour les petites valeurs de \). Ceci est sans nul doute due
aux bonnes propriétés de robustesse de 1’estimateur de Tyler.
Bien sir, cette amélioration des performance induit un cofit cal-
culatoire plus important du a I’algorithme de point fixe utilisé
pour obtenir V7, dans I’équation (14). De plus on remarque
que \A/'zy aw ©€st (quasiment) efficace quelle que soit la valeur

de X et ce, méme a distance finie. L'EQM de vy Rwaw atteind
la borne de Cramér-Rao semi-paramétrique (contralnte) a partir
de A > 6. Evidement, dans le régime asymptotique (L — 00),
cette propriété d’efficacité est atteinte pour de plus petite valeur
de A. Enfin, il est intéressant de remarquer que le R-estimateur
sz’v 4w obtient de meilleures performances que I’estimateur
de Tyler pour presque toute les valeurs de A tout en gardant de
bonne propriétés de robustesse et ce, pour un cofit calculatoire
négligeable (par rapport a Tyler).
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FIGURE 1 — EQM et BCR en fonction de A (L = 5N).



4 Sur le choix de la fonction score K

Dans le contexte des statistiques de rang, le terme de fonc-
tion score indique une fonction continue K : (0,1) — R qui
satisfait les deux propriétés suivantes : i) K est de carré som-
mable et ii) K peut étre exprimé comme la différence de deux
fonctions monotones croissantes [2]. Un exemple classique de
fonction score est I’ensemble défini par K,(u) = N(a + 1)u®
ol u € (0,1) et olt @ > 0 est un parametre de réglage [9]. Les
cas ot (a = 1) (score de Wilcoxon) et (¢ = 2) (score de Spear-
man) sont les plus connus. Une autre maniere de construire une
fonction score est celle décrite dans [2], [3] et [8] ol une ap-
proche a base de modele “mal spécifié” est utilisée. Nous nous
limiterons ici a deux exemples qui sont la fonction score de van
der Waerden introduite dans 1’équation (13) et la fonction score
t,, donnée par :

N@2N +v)Fyy ,(u)
v+ 2NF2_]\},D(U)

Ktu (u) = ) S (07 1)a (15)
ol Fon () est la fonction de répartition de Fisher avec 21V et
v € (0, 00) degrés de liberté. On notera que d’apres les proprié-
tés de la distribution de Fisher, nous avons : lim,,_,~, K}, (u) =
Kyaw (u). Dans la figure 2, apres re-normalisation (3), "EQM
de quatre R-estimateurs utilisant les fonctions scores de Wil-
coxon (V?’Wi), de Spearman (V?’Sp), t,- (V%’Ctu) et de van

der Waerden (Vg’v 4w) sont reportées et comparées a la borne
de Cramér-Rao semi-paramétrique (contrainte). Concernant le
score t,, un parametre de réglage v = 5 a été choisi. Enfin,
quel que soit le R-estimateur considéré, nous avons utilisé 1’es-
timateur de Tyler comme estimateur préliminaire. On remarque
sur la figure 2 que, pour A > 6, le score de van der Waerden
conduit a ’EQM la plus basse. De plus, concernant les scores
de Wilcoxon et de Spearman, ’EQM augmente lorsque le para-
metre de réglage a augmente. Cependant, a notre connaissance,
ce résultat est pour le moment un probléme ouvert du point de
vue théorique. Le score ¢,, obtient les meilleures performances
pour des données hautement non-gaussienne (1 < A < 5).
Pour conclure sur cette partie, nous pouvons dire que le score
de van der Waerden est une fonction acceptable puisque qu’elle
conduit a une quasi efficacité semi-paramétrique et ne dépend
pas d’un parametre de réglage supplémentaire.
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FIGURE 2 — EQM et BCR en fonction de A (I = 5N).

5 Conclusions

Nous avons étudié les performances, a distance finie, d’un
R-estimateur de la matrice de forme dans des données ellipti-
quement distribuées pour différents scénarios. Cette étude nu-

mérique a montré que I’utilisation de I’estimateur de Tyler comme

estimateur préliminaire ainsi que du score van der Waerden
conduisent a de meilleures performances en terme d’EQM (par
rapport aux M -estimateurs) dans pratiquement toutes les si-
tuations. Les perspectives envisagées concernent 1’étude de ce
R-estimateur du point de vue de la robustesse.
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