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1. Introduction, State of The Art and Generalities

Most of existing material representations [1], even including the dynamic hysteresis and iron losses [2], ignore local microscopic non 
uniformities. These concern the magnetic structure (domains and walls [3]) and are mainly due to surface effects, anisotropy and exchange. 
This structure has its origin in the possibility of lowering the energy of a system by going from a saturated configuration with high 
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In this contribution, we propose to cope with the problem of soft magnetic materials heterogeneity 
and non-uniformity in terms of domains structure. This non-uniformity expresses itself with space 
variations of domains and walls geometry and characteristic properties from the bulk towards the 
surface. We investigate the possibility to describe and predict these changes from a mesoscopic 
point of view. We begin with an introduction of typical subdivisions and define a tensor state 
variable [2] to represent the diversity of magnetic structures with domains and walls. We then 
explain the material structuring thanks to an energy balance between the mesoscopic magnetic 
exchange, magneto-crystalline anisotropy, self-magnetostriction anisotropy, stress induced 
anisotropy and the dipolar demagnetizing energy. We write every contribution as a function of 
[V2]=[2]-1. After minimizing the total energy, we derive a formulation compatible with classical 
numerical methods. [2] is deduced thanks to a partial differential equation and boundary
conditions. When a time varying field is applied to the material, damping effects occur either in 
the volume or at the surface. Eddy currents induced within domains lead to consider a volume 
dissipation energy. The surface magnetic field is also damped by both the static hysteresis mainly 
due to defects and the dynamic hysteresis due to eddy currents around magnetic walls, added to 
the an-hysteretic field. The surface magnetic field, magnetic structure, and thus the polarization 
being known on the external surface, time variations of the volume magnetic structure can be 
calculated within the mass. Using the static or dynamic magnetic field coupling at the surface, the 
magnetic polarization can be rebuilt in the bulk to calculate the apparent magnetic permeability.
Finally, finding the geometry and frequency dependent vector magnetic behavior and iron losses 
becomes possible. The tensor magnetic phase theory is able to account for the sensitivity of the 
magnetic structure to the geometry, the macroscopic anisotropy partly influenced by the 
metallography, the  residual or induced stress, some surface effects such as the texture, the rugosity 
or even any scribing patterns, at mesoscopic scale. Two test cases for GO and NGO electrical 
steels are presented. Sensitivity analysis on the test case with GO steel are discussed. Results are
then confronted to static and dynamic measurements of GO SiFe sheet samples. This paper 
contributes to the investigations carried out on the geometry dependent magnetic behavior of soft 
magnetic materials. 
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magnetic energy to a domains configuration, with a lower energy. The domains structure found are partially induced by the presence of 

the external surfaces of the crystal, and it is therefore not unexpected to find that it may be altered radically by changes in these surfaces. 
The size of a domain is not a fundamental length of physics, but rather sensitive to geometry and material in hand [4-7]. The microscopic 
scale is associated to the walls and domains; at the macroscopic scale we consider the geometry entirely. We will investigate the possibility 
to account for the sensitivity of the magnetic structure and its characteristic length to the macroscopic geometry at an intermediate scale 
called the mesoscopic one. 

2. The magnetic phase tensor state variable

2.1. Tensor representation of magnetic structures 

The drawings of Figure 1 have been made with the help of experimental observations on various ferromagnetic metals and alloys [4-7] 
and micro magnetic arguments [6,7]. It is hard to imagine being able to identify this natural heterogeneity with the help of only one 
macroscopic global measurement, except if we preliminary know the way the structure will establish itself (The use of deterministic 
methods may moreover permit to limit the number of measurements needed). The dilemma is the same as the one that consists of 
distinguishing two different subdivisions, that cannot be separated by looking at one macroscopic quantity only. Unfortunately, we clearly 
feel that if we fix the property of a material previously homogenised, we may predict the response of one sample, but we also might not 
be able to do it for another geometry [8,9]. Magnetic objects have got typical and characteristic topological and physical properties that 
we propose to describe thanks to one tensor state variable [2], statistically gathering every microscopic information. 

ൣଶ
൧ = ቎

ଵଵ
ଶ ଵଶ

ଶ ଵଷ
ଶ

ଶଵ
ଶ ଶଶ

ଶ ଶଷ
ଶ

ଷଵ
ଶ ଷଶ

ଶ ଷଷ
ଶ

቏ , ቊ
୧୧

ଶ ∝ ୨୩;   j, k ≠ i  and  i = 1. .3

୧୨
ଶ ∝ ୩

ଶ;   k ≠ j ≠ i  and  i, j = 1. .3
ቋ (1) 

Where i, j and k might correspond (with some topological, interaction and averaging corrections) to the typical shape and size of each 
cell constituting the magnetic structure [2, 10, 11]. 

୨ ୩ ≈ ൫2σ௘JୱS୵,୨୩ඥn୵,୨n୵,୩m୵,୨m୵,୩൯
ିଵ

∝ lengthଶ (2) 

e is the electrical conductivity, Js is the saturation magnetic polarisation, nw is the walls volume density, mw is the walls mobility and 
Sw,jk is the walls surface. Each factor of this tensor is homogeneous to a squared length, linked to walls density, surface, mobility, domains 
size [10,11] … The model is inspired from the Néel domains phase model [6]. The use of (1) is not limited to perfect grain-oriented steels 
with domains polarization parallel or anti-parallel to the rolling direction ([2] is a diagonal matrix in this case). It is supposed to describe 
all kinds of magnetic structures in every direction. Of course, using one degree of freedom for three dimensions microscopic objects, we 
still may not discern different magnetic structures that have got comparable space variations and mesoscopic properties. However, it 
should have no consequence because it contains a minimum required information concerning the resulting geometry dependent vector 
behaviour; phenomenon that we aim to consider. Finally, we will need to use the inverse tensor [V] of [] (such that [V]=[]-1 with 
[2]=[]2 and [V2]= [V]2=[]-2=[2]-1). In the next section, we propose a theory that may provide an alternative to foresee and calculate 
this mesoscopic diversity. 

Figure 1: Some heterogeneity and non-uniformity effects. Re-orientation, multiplication and refinement within the microscopic magnetic structure [3-5]. 

Surface, bulk and non-closure domains examples as a function of the texture, i.e. the crystal axes [m,n,p] and the crystal planes (j,k,l). 

2.2. Split Magnetic structure 



 

 

Microscopic magnetic objects have got typical and characteristic topological and physical properties that we have proposed to describe 
thanks to one tensor state variable [2], statistically gathering every microscopic information [20]. It is related to mean length of one pair 
of domains, and so it can be viewed as the sum (3) of two new tensor variables [

2] and [
2] in order to account for the actual 

organisation with opposite neighbouring domains without any loss of generality (i.e. including 90° walls and any kind of walls). 

ൣΛଶ൧ = ൣΛ↑
ଶ൧ + ൣΛ↓

ଶ൧       (3) 

Equation (3) is similar to a volume conservation law. [2], [
2] and [

2] can only be diagonal for magnetic structures containing mainly 
180° walls. With 90° walls and other kinds of walls, non-diagonal terms must be considered. Each tensor varies in space and time like 
[2]; They will be our degrees of freedom. We will then define the magnetic polarisation of a soft material with these two tensors and 
with the natural saturation polarisation (the one carried by each domain of constant magnetisation). 

2.3. Magnetic polarization 

Js being the saturation magnetic polarisation, we can define the the local magnetic polarisation  t,xJ


 by equation (4). 

[Λଶ]J⃗ = ൫ൣΛ↑
ଶ൧ − ൣΛ↓

ଶ൧൯J⃗ୱ ⇔ J⃗ = [Vଶ]൫ൣΛ↑
ଶ൧ − ൣΛ↓

ଶ൧൯J⃗ୱ    (4) 

We saw that if the three tensors involved are symmetrical and written with real coefficients [21], they are diagonalisable [15] (see previous 
paper and definition of [2]). We can also show that the basis in which [

2] and [
2] are diagonal might be exactly the same and at 

every point  t,x
 , even if it can be different from point to point. This assertion simply comes from the fact that there can exist an 

anisotropy and identical easy axes for polarisation vectors that are oriented in opposite directions [8]. When (4) is written in the basis Bd 
that makes all the tensors diagonal, then sJ


 writes sJ


=Js(1,1,1)T. Moreover, even if [

2] and [
2] vary in space and time with different 

values for magnetized materials, as for [2] and sJ


 a magnetic state will be defined with ൣΛଶ൧J⃗ = ൫ൣΛ↑
ଶ൧ − ൣΛ↓

ଶ൧൯J⃗ୱ a vector approximately 
constant in space (with neither divergence nor rotational properties). If we know the temporal and spatial evolutions of tensor [2], then 
we can easily deduce the magnetic polarisation J


 with the help of (4). 

3. Energy contributions at the mesoscopic scale 

The natural structuring and its space variations stem from a competition between several energy terms [14]. The contributions proposed are all 
expressed in J.m-3 (volume energy density), except dme


 which is homogeneous to a surface energy density (J.m-2) (the symbols like •, , [], 

⊙ሬሬሬ⃗ , and ⁛ are explained in the Appendix [15]). 

3.1. The mesoscopic magnetic exchange energy 

The interaction between neighbouring domains and walls involves an amount of energy eሬ⃗ ୣ୶ that we propose to write as follows 

eሬ⃗ ୣ୶ = Cୣ୶
ஓ౭

ల

୏౗౤
ఱ ( [∇] × [Λଶ]ିଵ ) ⊙ሬሬሬሬ⃗ ଶ      (5) 

w is the walls energy density [J.m-2]. 

Kan=|Kሬሬ⃗ ୟ୬| is the module of the macroscopic anisotropy vector [J.m-3]. 

Cex is a magnetic exchange coefficient without any dimension [n.u.]. 

This energy vector describes a natural tendency of the material (called Mesoscopic Exchange Energy) to make homogeneous its magnetic 
structure and magnetization. This effect may be even more important when the wall energy is strong (w >> Kan) and the anisotropy is 
weak (Kan << w).       12 

  corresponds to a non-divergent magnetic tensor of exchanging walls, that takes part to the energy. 

3.2. The mesoscopic magnetic anisotropy energy 

This second energy vector eሬ⃗ ୟ୬ describes another tendency (called Mesoscopic Anisotropy Energy) that leads the material to orientate its 
domains and walls along one or several directions, determined by the most favourable mesoscopic anisotropy axes. The latter, involved 
in Kሬሬ⃗ ୟ୬, depend on both the crystallographic texture and metallographic assembly in grains, including the defects [16,17]. This energy 
depends on the difference between natural and actual directions, weighted by walls equivalent density (-2) and the ratio (w/Kan) to take 
the walls energy, partly due to the microscopic anisotropy, into account. The accurate formulation of this contribution shall depend on 
the type of anisotropy (uniaxial, bi-axial or tri-axial anisotropy with hexagonal, cubic or more complex symmetry) of the material in use. 

eሬ⃗ ୟ୬ = Cୟ୬
ஓ౭

ర

୏౗౤
య ቌ [Λଶ]ିଵ − ൭ 

୏ሬሬ⃗ ౗౤⋅ቀൣஃమ൧
షభ

⋅୏ሬሬ⃗ ౗౤ቁ
౐

ห୏ሬሬ⃗ ౗౤ห
మ  ൱

୘

 ቍ

 ⊙ሬሬሬሬ⃗ ଶ

     (6) 

Can is a macroscopic anisotropy coefficient without any dimension [n.u.]. 

3.3. The mesoscopic self-magnetostriction energy 

This energy vector eሬ⃗ க describes another tendency (called Mesoscopic Self Magnetostriction Energy) that leads to a magnetization induced 
strain in the material and thus a magneto-elastic energy. The directions of the magneto-strictive strains are determined by the orientations 
of the polarized domains (each domain carries a magnetic polarization which corresponds to the saturation polarization in a direction 
given by the domain orientation). We propose equation (7) to describe the fact that the strains magnitude and the corresponding self-
magnetostriction energy depend on the magnetostriction coefficients 100 and 111 in directions [100] and [111] respectively [22], the 
magnetoelastic properties of the material, and the equivalent size  of domains. 

eሬ⃗ க = +
ଽ

ସ
C

ஓ౭
ర

୏౗౤
ర [Λଶ]ିଵ ⊙ሬሬሬሬ⃗ ൫ ൣଶ൧⁘[C]⁘[Λଶ]ିଵ ൯     (7) 
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[] is a magnetostriction tensor with [100] for the diagonal and [111] for the non-diagonal terms. [C] is a stiffness tensor containing the 

linear elastic properties of an orthotropic or isotropic material [25]. 

ൣଶ൧ = ൦

ଵ଴଴
ଶ ±ଵଵଵ

ଶ ±ଵଵଵ
ଶ

±ଵଵଵ
ଶ ଵ଴଴

ଶ ±ଵଵଵ
ଶ

±ଵଵଵ
ଶ ±ଵଵଵ

ଶ ଵ଴଴
ଶ

൪ and [C] = ൥
C11 − C12 C44 C55

C44 C22 − C23 C66
C55 C66 C33 − C13

൩   (8) 

C is a magnetostriction coefficient without any dimension. 

3.4. The mesoscopic magneto-strictive stress induced anisotropy energy 

This energy vector eሬ⃗  (called Stress Induced Anisotropy Energy) describes the change in anisotropy and in the magnetization due to an 
external stress. The directions of the stresses define the new directions to be considered in the total macroscopic anisotropy [22, 25]. We 
propose equation (9) to describe the fact that the stress induced energy depends on the magnetostriction coefficients 100 and 111, the 
stress value and the equivalent size  of domains in each stress direction. 

eሬ⃗  = −
ଷ

ଶ
C

ஓ౭
ర

୏౗౤
ర [Λଶ]ିଵ  ⊙ሬሬሬሬ⃗  ( []⁘[]⁘[Λଶ]ିଵ )     (9) 

[] is the stress tensor [Pa]. 

3.5. Mesoscopic energy loss due to microscopic eddy currents 

Any physical mechanism that leads to a new magnetic structure costs some energy eሬ⃗ . We know that any change in the magnetic structure 
is not reversible, but rather dissipative with losses. The latter mainly come from eddy currents induced around the walls in motion and in 
magnetic domains with rotating magnetization. Let’s assume that any change in the global magnetic energy minimum, which is 
responsible for the change in magnetization and magnetic structure, can only increase in time due to eddy current losses induced by the 
time variations of [2]. 

eሬ⃗  = +
ஓ౭

ర

୏౗౤
య ୲[Λଶ]ିଵ  ⊙ሬሬሬሬ⃗  [Λଶ]ିଵ      (10) 

 [ms] is a time delay related to the magnetic field damping, which is due to microscopic eddy currents induced around moving walls and 
inside magnetic domains where the magnetization rotates. This effect can be considered as a damper equivalent to a dynamic induced 
anisotropy always perpendicular to the directions given by [2]. 

3.6. The mesoscopic dipolar demagnetizing energy 

Finally, the last energy term is mainly due to the surface dipolar magnetic energy related to magnetic poles. 

nሬ⃗  being the unit vector normal to the outer surface of the geometry considered. Cdm is a metallurgical parameter that can depend on the 
grain’s boundary spacing and any surface treatment (surface laser treatment with a lines’ depth and spacing for example) 

eሬ⃗ ୢ୫ = Cୢ୫
୏౗౤

ర

౭
య

( nሬ⃗ ⋅ ( [Λଶ] ⋅ nሬ⃗ )୘ ) ⊙ሬሬሬሬ⃗ ଶ     (11) 

This vector tends to orientate the magnetic moments [5], multiply and refine the domains, in order to create as few and distant poles as 
possible. The energy vector eሬ⃗ ୢ୫ is different from zero on the surface only (the material often manages to create a minimum charge within 
the bulk, even if it cannot avoid it onto the surface) [12,13]. This energy is even more important that the surface domains are big, the 
anisotropy is strong, and the walls energy is weak. In one of the next sections and in the next deliverable update, we will propose to 
develop a surface and coupling model to describe the surface magnetic structure, minimizing the energy terms that correspond to this 
surface. Cdm is one of the key parameters that determines  at the surface. 

4. Energy driven tensor magnetic structuration 

4.1. Total energy minimization principle 

The magnetic structure will establish itself by minimising the total following energy of the system {volume , outer surface } 
 

Εሬ⃗ ୫ = ම (eሬ⃗ ୫)dଷ𝑥


= ම (eሬ⃗ ୣ୶ + eሬ⃗ ୟ୬ + eሬ⃗ ఢ + eሬ⃗ ఙ + eሬ⃗ )dଷ𝑥


 

+ ∬ (eሬ⃗ ୫ + eሬ⃗ ୢ୫)dଶx
பஐ

    to be lowered     (12) 

This description can be developed thanks to additional contributions due to miscellaneous parameters: volume charges, temperature, 
surface texture, surface or/and volume induced stress… Finally, each contribution appears here quasi-static without any field interactions. 
The coupling with the quasi-static magnetic field can be considered with a border static condition. The dynamic diffusion and the coupling 
with the time varying field may be considered afterwards with the Maxwell Equations [2,10], or with the volume dynamic term eሬ⃗  and 
with a border’s dynamic condition (see [11] and [21]). 

4.2. Physical non divergence assumptions 

We study first the ensemble {Exchange, Anisotropy} weakly varying the tensor [2] (see Appendix for usual identities). We assume that the 
material has succeeded in minimising its magnetic charges, by orientating most of its domains and walls tangentially to the surface, or by 



 

 

multiplying and refining them. So, we also have 

      00xdxdn 23222


  
     (13) 

The divergence of J⃗ is closely linked to the one of [2] (14) (    0Js 


, explanations given in the Appendix) 

∇ሬሬ⃗ ⋅ J⃗ = ∇ሬሬ⃗ ⋅ ቀ[Vଶ]൫ൣΛ↑
ଶ൧ − ൣΛ↓

ଶ൧൯ቁ J⃗ୱ      (14) 

The non-divergence condition on [2] is so closely linked to the one acting on J⃗. In fact, we have the obvious and certain following 
implication (with (3) and ∇ሬሬ⃗ . J⃗ = 0, we can show that the reciprocal relation of (15) is also true) 

∇ሬሬ⃗ ⋅ ൫[Vଶ]ൣΛ↑
ଶ൧൯ = ∇ሬሬ⃗ ⋅ ൫[Vଶ]ൣΛ↓

ଶ൧൯ = 0       

⇔ ∇ሬሬ⃗ ⋅ J⃗ = 0       (15) 

The variational principle applied onto the action Em seems to give us two interesting clues [18]. 

4.3. Borders and physical boundary conditions 

First the matrix [n] ቀ[∇] × ൣଶ൧
ିଵ

ቁ keeps constant at each interface of  surrounding any volume . It does not exist in substances 
without any domains and walls; it will therefore be nil at the edge between such a classical material and a structured one. It means that 
the rotational evolutions within the magnetic structure stop against the outer surface along its normal unit vector. 

It seems that the non-divergence condition on [
2] and [

2] implies the absence of volume charges because then 0J


 (15). However 
there can always exist surface charges depending on the direction of J


 and polarisations of surface domains relative to the normal vector 

of the enclosing surface, even if the divergence theorem [8] tells us that the global surface integrals ∯ ([𝛬ଶ] ⋅ [𝑛])𝑑ଶ𝑥
డఆ

 and ∯ ൫𝐽 ⋅ 𝑛ሬ⃗ ൯𝑑ଶ𝑥
డఆ

 
equal thus 0 [20]. 

4.4. Partial differential tensor equation 

Secondly, the tensor property into any volume  obeys the following partial differential equation: 

[Δ] [Vଶ]-∇ሬሬ⃗ ൫∇ሬሬ⃗ .[Vଶ]൯-
େ౗౤

େ౛౮
ቀ

୏౗౤

ஓ౭
ቁ

ଶ

൭ [Vଶ]- ቆ 
୏ሬሬ⃗ ౗౤൫ ൣ୚మ൧୏ሬሬ⃗ ౗౤൯

౐

୏౗౤
మ  ቇ

୘

൱       

+
ଷ

ଶ

େ

େ౛౮
ቀ

୏౗౤

ஓ౭
ቁ

ଶ

ቀ 
[]⁘[]

୏౗౤
⁘[Vଶ] ቁ- 

ଽ

ସ

େ

େ౛౮
ቀ

୏౗౤

ஓ౭
ቁ

ଶ

ቀ 
ൣమ

൧⁘[େ]

୏౗౤
⁘[Vଶ] ቁ- ቀ

୏౗౤

ஓ౭
ቁ

ଶ

୲[Vଶ] = [0]   (16) 

We call this equation the tensor structuring equation for the magnetic structure. 

We define  [mm-2] the squared ratio between the total anisotropy (either magneto-crystalline, magneto-strictive or stress induced) and 
the magnetic exchange: 

 =    an                   +                   -            

=(Can/Cex)*(Kan/w)2 + (C/Cex)*(Kan/w)2(92C/4Kan) - (C/Cex)*(Kan/w)2(3/2Kan)     

 determines both the preferred components of [V2]=[2]-1 and its space variations in the mass (structuring depth). 

 is always positive and corresponds to an equivalent negative compressive stress. 

 can contain the manufacturing residual stress (rolling and coating processes) or/and induced stress (surface laser treatments). When 
100 > 0 (positive magnetostriction),  is positive for negative compressive stress and negative for positive tensile stress. 

Let’s define s =  - r the natural magnetostriction anisotropy due to either self-magnetostriction and manufacturing stress (r being 
the global residual stress) and si = - i the surface induced stress anisotropy (i = T or m any local surface induced stress). 

4.5. Discussions 

The worry with this deterministic equation is its matrix nature with lots of unknown variables (maximum 9). Fortunately, and as already 
mentioned [11], [2] and [V2] will probably be real and symmetrical and so diagonalisable, which reduces to 6 or 3 the number of unknown 
factors [19]. Nevertheless, its implementation is not quite different from a classical diffusion equation; we just have to solve three of them 
simultaneously. Finally, one initial computation might be enough in most cases. Concerning the determinism, we must say that this 
formalism can only be used with macroscopic bodies for which a homogenised property has got a significant meaning (global size >> 
microscopic magnetic objects dimension). We thus do not calculate the exact structure but only its spatial and statistical average and 
especially its mixed properties related to “mobility”, “characteristic dimensions”, “preferred directions” … It is moreover possible to 
imagine manipulating several powers of tensor [V] in the structuring phenomenon, to be faithful to actual and natural microscopic multiple 
and series-like organisations. This description may be profitable in theoretical exploring for structured soft materials in terms of loss and 
behavioural consequences; attractive for computer-aided design and accurate simulations purposes. Providing a coupled model to describe 
the surface magnetic structure sensitive to the grain boundaries, texture and surface laser treatments, it might be possible to help the 
specification of some aspects of manufacturing processes (laser parameters and patterns for example). 
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5. Surface magnetic field coupling and observables 

When a varying magnetic field is applied to the material, some memory effects (called hysteresis) and eddy currents are induced within the 
microscopic mechanisms around defects and magnetic walls and inside magnetic domains. It manifests itself in a magnetic behaviour, 
characterised by a delayed relationship between the magnetic field Hሬሬ⃗  and the flux density or induction Bሬሬ⃗ . 

5.1. Vector magnetic behaviour 

5 .1 .1 .  The quasi -s ta t ic  an -hys tereti c  f i e ld  𝐻ሬሬ⃗ ெ 
The quasi-static an-hysteretic field Hሬሬ⃗ ୑ corresponds to an equilibrium for the magnetic structure, the one that would induce neither any 
hysteresis nor losses. This equilibrium is usually described with the following magnetic law: 

Hሬሬ⃗ ୑൫Bሬሬ⃗ ൯ = Bሬሬ⃗ = μିଵBሬሬ⃗        (17) 

=-1 and  are the quasi-static magnetic permeability and reluctivity respectively [H/m]. They can be scalar or tensor, linear or not. 

5.1 .2 .  S ta tic  hyst ere t ic  f i e ld  𝐻ሬሬ⃗ ௦ 
The static hysteresis is mainly due to hampering and jumps of magnetic walls [24] around defects, grains joints… and local microscopic 
unavoidable magnetic charges. Changes in the applied magnetic field can make the walls move when a threshold is excited to 
counterbalance the opposition of the charges. Then the walls irreversibly jump, inducing eddy currents and losses. It naturally usually 
depends on the history of the material (existing structure and hampered walls on defects plus succession of field applied [11]). Considering 
our purpose which is mainly to model the magnetic structure and the frequency dependent vector behaviour and losses, we decide not to 
add more difficulties to this study by assuming that Hሬሬ⃗ ୱ corresponds approximately to the coercive loss field which depends on Bሬሬ⃗ : 

Hሬሬ⃗ ୱ൫Bሬሬ⃗ ൯
ୡ
Bሬሬ⃗ = jୡBሬሬ⃗        (18) 

c = jc is the complex coercive reluctivity (static hysteresis field that gives the hysteresis loss other the flux density) [m/H]. However, 
the present description can be implemented by starting with a particular and unic initial condition for the magnetic domains (related to 
the past history), i.e. a  distribution in space. 

5.1 .3 .  Dynamic  hystere t ic  f i e ld  𝐻ሬሬ⃗ ௗ௬௡ 
The dynamic hysteresis is mainly due to eddy currents induced with time varying fields and polarisations at the mesoscopic scale within domains 
and at the microscopic scale around moving domain walls [26]. They can be homogenised and included in a behavioural model, dedicated to the 
magnetic field damping and involving the tensor variable [2]. 

Hሬሬ⃗ ୢ୷୬൫Bሬሬ⃗ , ∂୲Bሬሬ⃗ ൯ = σୣൣΛଶ൧൫Bሬሬ⃗ , ∂୲Bሬሬ⃗ ൯ ∂୲Bሬሬ⃗      (19) 

e is the electrical conductivity [S/m]. 

5.1 .4 .  Tota l  magneti c  f ie ld  
All these phenomena “delay” the flux density or the induction Bሬሬ⃗  = 0Hሬሬ⃗ +J⃗ = 0(Hሬሬ⃗ +Mሬሬሬ⃗ ) such that the magnetic field Hሬሬ⃗  (20) becomes the sum 
of the quasi-static magnetic field Hሬሬ⃗ ୑ ([11], the excess static hysteresis field Hሬሬ⃗ ୱ൫Bሬሬ⃗ ൯ due to hysteresis and the dynamic field 𝐻ሬሬ⃗ ௗ௬௡൫Bሬሬ⃗ , ∂୲Bሬሬ⃗ ൯ 
due to motion of domain walls (see Figure 2 and (20)) (0=4.10-7 H/m is the vacuum magnetic permeability.) 

Hሬሬ⃗ ൫Bሬሬ⃗ , History, ∂୲Bሬሬ⃗ ൯ = Hሬሬ⃗ ୑൫Bሬሬ⃗ ൯ + Hሬሬ⃗ ୱ൫Bሬሬ⃗ , History൯ + Hሬሬ⃗ ୢ୷୬൫Bሬሬ⃗ , ∂୲Bሬሬ⃗ ൯    (20) 

Neglecting the static hysteresis (ୡμ ≪ 1), the dynamic relationship between the field Hሬሬ⃗  and the magnetic polarization J⃗ becomes: 

ቀ൫1 − 
଴
൯ − σୣ[Λଶ]

଴
∂୲ቁ Hሬሬ⃗ = (1 + σୣ[Λଶ] ∂୲)J⃗     (21) 

Figure 2: An-hysteretic curve, Static and Dynamic hysteresis (left) / Static and Dynamic Losses (right). 

5.2. Surface magnetic field coupling and polarization 

Coupling the volume structuring model and the magnetic field consists in using the behavioral law (21) at the surface of the material, 
involving the surface magnetic structure [0

2]=[2]surf, which represents the boundary condition of the model. We suggest analysing the 
magnetic behaviour with the help of Bode diagrams (see Figure 9). We assume that [V0

2] is known (next sections for examples) and that 



 

 

[2]J⃗=[0
2]J⃗ୱ୳୰୤ is a constant vector, independent from z, that we can determine using (21) at the surface for time harmonics with angle 

velocity  (Hሬሬ⃗ ୟ = Hሬሬ⃗ ୱ୳୰୤, Hሬሬ⃗ ୱ = 0 neglected, =0r=0 (1+)). 

 

J⃗ = [Vଶ]ൣ଴
ଶ൧

ቂቀ


భశି
ౙ

ஜቁି୨஢౛ൣబ
మ൧బனቃ

ቂቀଵା
ౙ

ஜቁା୨஢౛ൣబ
మ൧னቃ

Hୟ
ሬሬሬሬ⃗

ౙஜ≪ଵ
బ≪ஜ

ሳልልሰ J⃗ ≈ [Vଶ]ൣ଴
ଶ൧ൣ1 + jσୣൣ଴

ଶ൧ω൧
ିଵ
Hୟ

ሬሬሬሬ⃗    (22) 

Whatever the experimental tool used, we can a priori only measure and access the magnetic field Hሬሬ⃗ ୟ applied onto the enclosing surface 
and the mean flux density <Bሬሬ⃗ >r, averaged inside the volume  considered. In some usual and convenient configurations (closed magnetic 
circuit), the mean magnetic polarisation <J⃗>r can also be determined. J⃗ checks (22) and Hሬሬ⃗  can be given by (21). It is finally possible to 
build the magnetic behaviour <Bሬሬ⃗ >r(Hሬሬ⃗ ୟ) and the averaged total loss density <<p>r>t=<Hሬሬ⃗ ୟ<tBሬሬ⃗ >r>t. 

5.3. Definition of macroscopic observables 

5 .3 .1 .  The apparent  magnet ic  permeabi l i ty  
To study the magnetic response, we examine the reduced apparent permeability defined in our case by (23): 

ஜሬሬ⃗ ౗౦౦

ஜ
=

ൻ୎⃗ൿ
౨

ஜୌ౗
=

ଵ

஖
∫

୎⃗

ஜୌ౗
dz

ା஖/ଶ

ି஖/ଶ
      (23) 

5.3 .2 .  The to ta l  magnet ic  losses  
The mean total power loss density becomes the sum of two contributions: 

≪ p >୰>୲=< Hሬሬ⃗ ୱ୳୰୤ < ∂୲J⃗ >୰>୲=≪ pୱ୲ୟ୲ >୰>୲ +≪ pୢ୷୬ >୰>୲ 

=< Hሬሬ⃗ ୱ,ୱ୳୰୤ < ∂୲J⃗ >୰>୲ +< Hሬሬ⃗ ୢ୷୬,ୱ୳୰୤ < ∂୲J⃗ >୰>୲     (24) 

The fields acting are applied onto the enclosing surface. <.>r means a volume average in space and <.>t means a time average operation. 
No classical losses appear here. All the contributions due to varying induced “diffusion” are supposed to be included in the dynamic term 
(see (16), (20) and Figure 2), where Hሬሬ⃗ ୢ୷୬,ୱ୳୰୤ and <tJ⃗>r contain every damping effect due to heterogeneous and non-uniform domain 
walls motion and eddy currents as well. 

6. 1D static and magneto-harmonic test case and sensitivity analysis 

We propose here to apply the previous method onto one simple geometry (1D steel sheet of width , Figure 3) with two materials of different 
anisotropies (§ 6.1.1.: perfectly oriented steel with texture parallel to the lamination plan and with one easy x direction, § 6.1.2.: partially oriented 
steel with texture parallel to the lamination plan and with 2 possible favourable axes, x or y) 

∂୸
ଶ [Vଶ] −

େ౗౤

େ౛౮
ቀ

୏౗౤

ஓ౭
ቁ

ଶ

൭ [Vଶ] − ቆ 
୏ሬሬ⃗ ౗౤൫ ൣ୚మ൧୏ሬሬ⃗ ౗౤൯

౐

୏౗౤
మ  ቇ

୘

൱        

+
ଷ

ଶ

େ

େ౛౮
ቀ

୏౗౤

ஓ౭
ቁ

ଶ

ቀ 
[]⁘[]

୏౗౤
⁘[Vଶ] ቁ- 

ଽ

ସ

େ

େ౛౮
ቀ

୏౗౤

ஓ౭
ቁ

ଶ

ቀ 
ൣమ

൧⁘[େ]

୏౗౤
⁘[Vଶ] ቁ- j ቀ

୏౗౤

ஓ౭
ቁ

ଶ

[Vଶ]=[0]   (25) 

Let’s consider a magnetic sheet of thickness . Let’s use the (x,y,z) or (1,2,3) reference frame for which axis 1 or x corresponds to the 
rolling direction, 2 or y corresponds to the transverse direction and z corresponds to the thickness (see Figure 3). The 1D approximation 
consists in assuming no space variation in directions x and y but only in direction z. We also consider only time harmonics variations. 
The Partial Differential Equation PDE (16) becomes (25). Let’s work with a perfectly (GO) or partially (GO) oriented material of mass 
density d, linear properties (magnetic permeability µ=-1=µrµ0 and electric conductivity e=-1). We will focus onto the average magnetic 
polarisation and the mean power losses within time harmonics (frequency f and =2f). We will highlight the role played by both the 
geometry and the magnetic structure on these global quantities. 

Figure 3: Geometry of the 1D test case studied 

6.1. Calculation of magnetic structures 

6 .1 .1 .  Grain Or ien ted  ele ctr ical  s tee l  
For perfectly grain oriented materials, we assume that the anisotropy vector uሬ⃗ ୟ୬ can be written as follows in the (x,y,z) basis: 
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uሬ⃗ ୟ୬=Kሬሬ⃗ ୟ୬ Kୟ୬ൗ =(1,0,0)T. We are looking for the tensor [V2]=[V2

ij], that obeys equation (25), knowing the boundary conditions acting on its 
components V2

ii0=V2
ii(z=/2), (i=1,2,3). The magnetic structure can be approximately described with a diagonal tensor [V2] = [2]-1: 

 

[Vଶ] = ቎

Vଵଵ
ଶ 0 0

0 Vଶଶ
ଶ 0

0 0 Vଷଷ
ଶ

቏       (26) 

We use the following input parameters and boundary conditions: 

=0.5 mm and κୟ୬ =
େ౗౤

େ౛౮
൬

୏౗౤

γ౭

൰
ଶ

= (4/)ଶ mm-2 with uሬ⃗ ୟ୬=(1,0,0)T. 

110 = 100 µm, 220 = 330 = 200 µm, 120 = 130 = 230 = 104 µm >> at the surface. 

The PDE corresponding to the three unknowns V୧୧
ଶ (i=1..3) are: 

൫∂୸
ଶ. −୧୧(1 + τ୧୧ ∂୲. )൯V୧୧

ଶ = 0      (27) 

With 

ଵଵ = ୗ,ଵଵ and ୧୧ = ୟ୬ + ୱ,୧୧ for i=2,3 

ୱ,୧୧ =
C

Cୣ୶

ቆ
Kୟ୬

γ
୵

ቇ

ଶ

൬
3ଵ଴଴

2Kୟ୬

൰ ൬
3

2
ଵ଴଴ − σ୧୧൰ , σ୧୨ = 0 

τ୧୧ = ቆ
Kୟ୬

γ
୵

ቇ

ଶ

τ ୧୧൘  

 
Figure 4: Calculation of the tensor [V2] in GO steels with the Finite Element Method (left) and analytical formulae given above (right) with s=0 and =0. 

The time harmonic solutions with angle velocity  are given by: 

V୧୧
ଶ(z) = V୧୧଴

ଶ ୡ୭ୱ୦൫ඥ౟౟(ଵା୨த౟౟ன)୸൯

ୡ୭ୱ୦ቌ
ට౟౟൫భశౠಜ౟౟ಡ൯ζ

మ
ቍ

,  i = 1,2,3      (28) 

The model can be implemented either with analytical formulae (linear 1D testcases only) or the finite element method (useful for larger 
dimensions). Results are shown in Figure 4. Looking at the results, we notice as expected, that the highest contribution to the tensor [V2] (and 
consequently to J


), which is constant in steel thickness, might be the first component parallel to the easy direction. But there may be other small 

varying contributions perpendicular to the easy direction because of unavoidable reorganisations, exchanges and surface effects in the magnetic 
structure. The consequences are even more significant when the material is not perfectly oriented, when the field is disorientated or when the 
geometry is thick (see next §). 

6.1 .2 .  Non-Gra in ori en ted  e lec t r ica l  s te el  
For non-grain oriented materials, we work with the anisotropy vector uሬ⃗ ୟ୬ = Kሬሬ⃗ ୟ୬ Kୟ୬ൗ =(a,b,0)T (a2+b2=1, we find the previous case again 
with a=1 and b=0). We are looking for [V2]=[V2

ij], that obeys equation (25), knowing the boundary conditions acting on its components 
V2

ij0=V2
ij(z=/2), (i,j=1,2,3). The magnetic structure can be approximately described with a non-diagonal tensor [V2] = [2]-1. 

[Vଶ] = ቎

Vଵଵ
ଶ Vଵଶ

ଶ 0

Vଶଵ
ଶ Vଶଶ

ଶ 0

0 0 Vଷଷ
ଶ

቏       (29) 

We use the following input parameters and boundary conditions: 

=0.5 mm and κୟ୬ =
େ౗౤

େ౛౮
൬

୏౗౤

γ౭

൰
ଶ

= (4/) mm-2 with uሬ⃗ ୟ୬=(a=(2/3),b=(1/3),0)T. 

V11
2 

V22
2=V33

2 
V12

2 V22
2=V33

2 



 

 

V2
120 = V2

210 = -(0.75/300)2, V2
130 = V2

230 = -(1/10000)2, V2
110 = (2/300)2, V2

220 = (1/300)2, V2
330 = (0.5/300)2 µm-2 at the surface. 

The PDE corresponding to the four unknowns V୧୧
ଶ and Vଵଶ

ଶ  are: 

൝
൫∂୸

ଶ. −୧୧(1 + τ୧୧ ∂୲. )൯V୧୧
ଶ + ୟ୬abV୧୨

ଶ

ቀ∂୸
ଶ. −୧୨൫1 + τ୧୨ ∂୲. ൯ቁ V୧୨

ଶ − ୟ୬abV୧୧
ଶ

ൡ = ቄ
0
0

ቅ    (30) 

We use the following notations 

ଵଵ = ୟ୬(1 − aଶ) + ୱ,ଵଵ 

ଶଶ = ୟ୬(1 − bଶ) + ୱ,ଶଶ 

ଷଷ = ୟ୬ + ୱ,ଵଵ 

ଵଶ = ୟ୬(2−bଶ−aଶ) 

ୱ,୧୧ =
C

Cୣ୶

ቆ
Kୟ୬

γ
୵

ቇ

ଶ

൬
3ଵ଴଴

2Kୟ୬

൰ ൬
3

2
ଵ଴଴ − σ୧୧൰ , σ୧୨ = 0 

τ୧୨ = ቆ
Kan

γ
w

ቇ

2

τ ij൘  

The time harmonic solutions with angle velocity  are shown in Figure 5. Looking at this second result, we see that couplings with, and 
z dependences in, all the components of [V2] can exist. It is still due to arrangements and exchanges taking anisotropies and surface effects 
into account. Therefore, it will somehow template the global static and dynamic magnetic properties. 

 
Figure 5: Calculation of the tensor [V2] in NGO steels with the Finite Element Method (left) and analytical formulae given above (right) with s=0 and =0. 

6.1 .3 .  Sens i t i vi ty  anal ys is  –  case  o f  GO SiFe 
The Figure 6 shows the results of a sensitivity analysis to the main physical parameters an (macroscopic magneto-crystalline anisotropy), 
s (stress induced anisotropy), 0 = surf (surface magnetic structure) and  (eddy current or field damping time delay). 

The default values of the input parameters used are as follow: 

 = 0.23 – 0.5 mm (sheet thickness) 

Js = 2.1 T (saturated magnetic polarization) 

 = e
-1 = 48 .cm (electrical resistivity) 

 = 20 0000 (quasi-static permeability) 

d = 7650 kg.m-3 (volume mass density) 

an = 10-100 mm-2 (macroscopic magneto-crystalline anisotropy coefficient, uሬ⃗ ୟ୬=(1,0,0)T) 

s = s,11 = s,22 = s,33 =-100…+100 mm-2 (stress induced anisotropy) 

 = 1…60 ms (eddy current damping time delay) 

 = 2*pi*300 (time harmonic angle velocity) 
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(a)                                                             (b) 

 
(c)                                                            (d) 

Figure 6: Sensitivity analysis of the GO magnetic structure to the macroscopic magneto-crystalline anisotropy (a), the stress induced anisotropy (b), the 
surface magnetic structure (c) and the eddy currents time delay (d). 

6.2. Calculation and sensitivity analysis of observables – case of a perfectly GO material 

6 .2 .1 .  Macroscop ic vec tor  quasi -s ta t ic  Behaviour  
6 .2 .1 .1 .  Stress  induced  an iso tropy  and  apparent  permeabi l i ty  

By using (22) with  = 0,  >> 0 and Bሬሬ⃗  ≈  J⃗, (23) becomes 

μሬ⃗ ୟ୮୮

μ
=

1

ζ
ቌන [Vଶ]dz

ା
஖
ଶ

ି
஖
ଶ

ቍ [Λ଴
ଶ ]

Hሬሬ⃗ ୟ

Hୟ

 

μୟ୮୮,୧ =
୲ୟ୬୦

ඥ౟౟ಎ

మ
ቇ

ቆ
ඥ౟౟ಎ

మ
ቇ

μ       (31) 

Hሬሬ⃗ ୟ/Ha gives the direction of the magnetic field applied on the surface. In this model  is a scalar, the anisotropy is determined by the 
magnetic structure, the shape and orientation of magnetic domains and so the tensor [2]. However, it is possible to take into consideration 
non-linearities and additional microscopic anisotropy within a tensor []. 

Due to a positive magnetostriction (100>0), Figure 7 shows that a global tensile stress ii increases the quasi-static apparent 
permeability in direction “i” and that a compressive stress jj decreases quasi-static apparent permeability in the direction “j”. 



 

 

 
(a) (b) 

Figure 7: Sensitivity analysis of static apparent permeability to the magneto-crystalline an and stress induced s anisotropies ((a) 11 = 22 (b) 11 = -22). 

6.2 .1 .2 .  Coercive  forc e and s ta t ic  hysteres is  losses  

The general definition of the mean power loss density for any periodic signal is given by (24). For time harmonics, the corresponding 
quasi-static energy loss <<stat>r>t per cycle and per Tesla2 becomes then (in W.s.T-2.kg-1 or J. T-2.kg-1) 
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The relative variation of quasi-static losses as a function of the anisotropies are the same as the ones for the quasi-static apparent 
permeability given in Figure 7. Due to a positive magnetostriction (100>0), a global tensile stress ii increases the quasi-static losses in 
direction “i” and a compressive stress jj decreases quasi-static losses in the direction “j”. Therefore, except if the coercive reluctivity 
depends on the stress, a tensile stress cannot reduce the quasi static losses but rather the dynamic losses (see Figure 10). 
Figure 8 gives results of the sensitivity analysis to the coercive reluctivity. The quasi-static losses are proportional to c, but the slope 
depends on the anisotropies and especially on the stress induced anisotropy. 

 
(a) (b)                        

Figure 8: Sensitivity analysis of static losses to the coercive reluctivity c and the stress induced s anisotropy with an = 100 ((a) 11 = 22 (b) 11 = -22). 

6.2 .2 .  Macroscop ic vec tor  dynamic  Behaviour  
6 .2 .2 .1 .  Frequency dependent  apparent  permeab il i ty  

By using (22) with   0,  >> 0 and Bሬሬ⃗  ≈  J⃗, (23) becomes 
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The low pass filtering behaviour of the apparent magnetic permeability with time harmonics is well described by the model (see Figure 
9). Eddy currents damping can come from the magnetic domains’ rotation (contribution of ) or the walls motion (contribution of 2). 
Comparison between simulations and experiments and with linear assumptions will be carried out in the next section. The aim is to be 
able to fit the experimental data in most of the situations (geometry, polarisation magnitude, frequency), and this partly thanks to the 
intrinsic parameters  (static flux dependent contribution) and the changeable one [surf]=[0] (dynamic frequency dependent 
contribution) making involved the geometry dependent effects. Without changing neither the material () nor the surface property 0, the 
cut frequency would be unchanged (but just the module) with the thickness  (see Figure 17, [21]). This agrees with experiments (see 
next section), but varying  might in most of the cases imply a change in 0 as well (see Figure 9). Finally, an increase in  provokes a 
decrease in |µapp,1/µ|, whereas it stimulates an increase for |µapp,2/µ|, certainly because of more space in favour of the disoriented. 

Figure 9: Sensitivity analysis of dynamic apparent permeability to the surface magnetic structure ((a) magnitude and (b) phase) and to the damping time delay 

((c) magnitude and (d) phase angle) 

6.2 .3 .  Frequency  dependent  magnet ic  losses  
The general definition of the mean power loss density for any periodic signal is given by (24). For time harmonics, the corresponding 
energy <<>r>t per cycle and per Tesla2 becomes (34) then (in W.s.T-2.kg-1 or J. T-2.kg-1). Underlined vectors are complex magnitudes 
and * means conjugation. In the general case, the dynamic quantity in (34) might include several contributions for each scalar product in 
each direction. It may however be possible to identify all the 2

ij,0 by statistically separating every component and by using additional 
internal relationships and connections within [0

2] factors. We now give an example for which there are two contributions in two 
directions only and choosing a complex coercive reluctivity jc. The Figure 10 shows that the total iron losses at frequencies up to the 
quasi-static conditions (f > 10 Hz) are driven mainly by the dynamic losses that can only increase with the frequency (eddy currents losses 
around walls and inside the domains). The results of Figure 10 are in accordance with expected average behaviour of energy losses versus 
the frequency (f=/(2)) and the geometry (). The latter also show the impact of 0, s and , but varying only one parameter at a time. 
It is often hard to distinguish the true origins of experimental loss variations (§ 7) because several parameters can vary at the same time. 
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Figure 10: Sensitivity analysis of losses to the surface magnetic structure (a) , to the eddy currents time delay (b) and to the stress anisotropy ((c) and (d)). 

7. Experimental results and identification of GO SiFe steel properties 

In this section, we identify the material properties of a GO SiFe thanks to sheet samples with various thicknesses and the Epstein 
frame. Quasi-static properties (B,) and c(B,) can be determined with the static losses <<stat>r>t and permeability |µapp/µ| when =2f 
tends towards 0; whereas dynamic properties 0(B,f,) and (B,f,) are found thanks to the frequency dependent dynamic losses 
<<dyn>r>t and apparent permeability |µapp/µ|. In the whole results below, we can estimate the maximum inaccuracies that mainly depend 
on the current I and voltage V measured as follows: 

δI = (±2 ± 1%I)[mA];  δV = (±6.5 ± 1%V)[mV]  

⇒  δH = (±1 ± 2%H)[A/m];  δ(fB) = ൫±0.21 ± 2%(fB)൯[T. Hz] 

δ(fBଶ) = ൫±0.1 ± 3%(fBଶ)൯[mW/kg];  δ൫f μୟ୮୮ μ଴⁄ ൯ = ቀ±26000 ± 4%൫f μୟ୮୮ μ଴⁄ ൯ቁ [Hz] 

⇒  δ(fBଶୡ) = ൫±0.25 ± 3%(fBଶୡ)൯[W/mଷ];  δ ⁄ = ±5%;  δ(fB଴) = ൫±132 ± 3%(fB଴)൯[T. Hz.m]; δ ⁄ = ±5% 

7.1. The samples 

Epstein samples (with dimensions 30*300 mm2) with a stress releasing annealing after cutting were used. Measurements were carried out 
on four thicknesses ( = 0.23 / 0.27 / 0.30 / 0.35 mm) starting from the same initial material composition (SiFe with 3% of Si). The volume 
mass density of this GO steel is 7650 kg.m-3 and its electrical resistivity 48 .cm. The manufacturing processes are adapted for the 
whole samples in order to make disappear any significant differences in terms of typical grains’ dimension (5-35 mm), orientation (6° 
max disorientation), coating material (Inorganic based divided in two layers, one layer of glass-film and one layer of phosphated insulator) 
and coating thickness (2-4 m) and its thermal curing temperature (T>800°C, few minutes). 
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7.2. Quasi-static equilibrium 

7 .2 .1 .  Sta t ic  apparent  permeabi l i ty  
7 .2 .1 .1 .  Mesoscop ic  aniso tropy  constant  

Considering the same material used for the samples with different thicknesses, it is reasonably assumed that the properties , e and an 
are the same for the whole samples. This can be confirmed for  by studies done in [27]. Thus, we propose to explain the differences 
observed on the apparent magnetic permeability for the four thicknesses (see Figure 12) by the self-magnetostriction and stress induced 
anisotropy described by the property s (see Figure 11). We think that a manufacturing tensile residual stress due to the rolling and coating 
processes corresponds to a negative property s<0 at low induction. For higher induction, the material’s self-magnetostriction increases 
with the magnetization, it corresponds to an equivalent induced compressive stress that becomes bigger than the tensile residual stress 
effect. Even if the rolling and coating processes are approximately the same for the four thicknesses, it seems that the thinner the sheet, 
the bigger the residual and magneto-strictive induced stresses. Figure 11 Shows the property s identifications relative to the property s 
of the material with thickness  = 0.35 mm. 

Figure 11: Experimental identification of s, i.e. the product magneto-crystalline anisotropy * magnetostriction anisotropy over the squared exchange energy. 

7.2 .1 .2 .  Stress  s ens i t i ve s ta t i c apparent permeab i l i ty  

Figure 12 gives the quasi-static apparent magnetic permeability of each thickness relative to the thickness  = 0.35 mm. Considering the 
corresponding identification of s (see Figure 11); the data obtained by the calculation fit exactly the data measured with no discrepancy. 

Figure 12: Magnetostriction and stress sensitive quasi-static apparent permeability (measured and calculated). 



 

 

7.2 .2 .  Magnetic  losses  
7 .2 .2 .1 .  Coercive  forc e reluc t iv i t y  

The coercive loss reluctivity c defined by (18), (24) and (32) corresponds to the hysteresis loss coefficient Kh of Bertotti [23]. This 
coefficient has been identified in Figure 13 for the four thicknesses of GO SiFe sheet with the help of the quasi-static hysteresis loss 
measured at varying maximum induction Bmax. As shown in Figure 13 the property depends on Bmax. At low induction, i.e. in the Rayleigh 
zone, the c is relatively high and at is maximum for the thickness  = 0.35 mm. In this area, the magnetic walls are easily pinned and 
bowed by the defects and these effects are increasing when the thickness of grains and walls increase. It is coherent with a low static 
permeability of the first magnetization curve. Then c decreases for medium induction, which might correspond to an increase of the 
quasi-static permeability towards its maximum value. At higher induction, c increases again, probably due to higher field necessary to 
activate, nucleate and multiply the walls from one polarization to the other direction. This time, it is inside the thickest sheets that it seems 
easier to nucleate and activate the walls. Thus, at high induction level, the thinner the sample the higher the coercive loss reluctivity c. 

Figure 13: Experimental identification of c, i.e. the Ratio between the coercive loss field and the flux density as a function of the induction level. 

7.2 .2 .2 .  Coerciv i ty  dependen t  s ta t ic  loss es  

Quasi-static measurements have been carried out at low frequency f = 10 Hz for which the skin depth ( ~ 0.8 mm) is very high compared 
to the biggest thickness. Figure 14 gives the quasi-static hysteresis losses of each thickness. Considering the corresponding identification 
of c (see Figure 13); the data obtained by the calculation fit exactly the data measured with no discrepancy. However, no correlation can 
be proposed for these results. Even though the four thicknesses have got different coercive loss reluctivity, the hysteresis loss per unit 
mass and per squared induction of the four thicknesses are approximately the same and far below the dynamic losses up to 50 Hz. 

Figure 14: Quasi static losses of the four samples with four thicknesses as a function of the induction level (measured and calculated) 
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7.3. Frequency dependent dynamic magnetization 

7 .3 .1 .  Dynamic p ropert ies  
The coupled dynamic properties 0(B,f,) and (B,f,) are found simultaneously thanks to the frequency dependent dynamic losses 
<<dyn>r>t and apparent permeability |µapp/µ| together. Measurements have been carried out from 10 to 600 Hz and the whole induction 
levels. However, accuracy up to 300 Hz is low and only measurements at low induction are exploited to limit any non-linearities. 

7.3 .1 .1 .  Volume  di f fus ion t ime due  to  eddy  curren ts  

Figure 15 gives the identification of the volume diffusion time , also called the damping field time delay or the eddy currents time delay. 
As expected, the diffusion time increases when the thickness increases for frequency up to 30 Hz. Microscopic eddy currents time delay 
increases for domains and wall with bigger dimensions. A domains refinement effect is noticed (Figure 16) for increasing frequency. It 
seems logical to have then a decreasing . Microscopic eddy currents time delay decreases for domains and walls with smaller dimensions. 

Figure 15: Experimental identification of the volume diffusion time, or the eddy currents time delay,   /Ks @0.2 T. 

7.3 .1 .2 .  Sur face magnet i c s truc ture  

Figure 16 shows identifications of the surface structure property 0 = 110 in the rolling direction. For all thicknesses, we notice a domains 
refinement effect when increasing the frequency, probably due to magnetic walls bowing and multiplication. 

Figure 16: Experimental identification of the surface dynamic property 0 = 110 in the rolling direction @0.2 T. 



 

 

7.3 .2 .  Dynamic o bservab les  
7 .3 .2 .1 .  Dynamic  apparent  perme abi l i t y  

Apparent permeability measurements have been carried out at various frequencies. Figure 17 gives the results for each thickness. 
Considering the corresponding identification of  and 0 (see Figure 15 and Figure 16); the data obtained by the calculation fit exactly 
the data measured with no discrepancy. As expected, the magnetic behaviour is a low pass filter and the permeability magnitude decreases 
with both the frequency and the thickness. However, no variation of the cut frequency is noticeable. 

Figure 17: Dynamic frequency dependent apparent permeability (measured and calculated) 

7.3 .2 .2 .  Magnet ic  losses  

Total and dynamic loss measurements have been carried out at various frequencies. Figure 18 gives the results for each thickness. 
Considering the corresponding identification of  and 0 (see Figure 15 and Figure 16); the data obtained by the calculation fit exactly 
the data measured with no discrepancy. As expected, the losses increase with both the frequency and the thickness. The type of variations 
will depend on the frequency dependent properties  and 0. This effect corresponds to the power law of the excess loss by Bertotti [23]. 

Figure 18: Total frequency dependent losses (measured and calculated) 

7.4. Discussions 

Providing some boundary conditions on the surface magnetic structure ([0
2]), it is possible to deduce its variations everywhere else in the 

material, whatever its geometry is. Knowing all this information and considering also static and dynamic phenomena, such as hysteresis, walls 
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motion and magnetic domains’ rotation, computing the heterogeneous magnetic structuring and the geometry and frequency dependent vector 

magnetic behaviour and losses becomes possible. To do so, it is however necessary to know the value of some usual materials’ properties: the 
electrical conductivity (e) and the quasi-static permeability (); and to define new properties: the coercive loss reluctivity (c), the macroscopic 
anisotropy coefficients (either magneto-crystalline an, magneto-strictive or/and stress induced s) and the volume diffusion time delay (). 
Nevertheless, experimental identifications can provide us the required values of all these material parameters. The model and the methodology 
have been checked with four thicknesses of GO SiFe sheet samples, mainly in the rolling direction. It would require more calculations and 
measurements thanks to more samples to validate the complete model in the whole directions. In fact, any identification of every material 
parameters can only be done with several geometries, flux density orientations, levels and frequencies. The formulation can be viewed at present 
for macroscopic polycrystalline materials only. It reproduces the dependence of magnetic domains structures and losses with the geometry.  

8. Conclusion and forthcoming 

As a conclusion, the tensor magnetic phase theory is a deterministic but energetic and statistical theory to predict space and time 
variations of the domains’ and walls’ organisation and properties everywhere in a soft magnetic material, whatever its geometry is. The 
present model does not make any arbitrary assumption concerning the type and topology of domains. It can also take complex domains 
shapes statistically into account, thanks to its cross-sectional areas and its walls mobility and density. Thus, this method is no more 
confronted to serious limitations due to the huge number of degrees of freedom, considering the infinite variety of magnetic structures. 
The latter might be statistically described thanks to the infinite possible values of the 6 independent terms present in [2]. However, it 
does not always allow to separate from the domains’ and walls’ size effects and their rotation and mobility effects. It can make sense only 
for large enough specimens, i.e. that contain numerous enough domains to be statistically representative. For a steel sheet, the width and 
the length should be very large compared to . The tensor magnetic phase theory is based on structural magnetic domains and walls, but 
statistical state variables have been investigated assuming known the quasi static permeability  and static hysteresis and coercive field 
cB. It also takes the grains, grains size and grains boundaries in the macroscopic anisotropy an into account. It includes the self-
magnetostriction anisotropy  and stress-induced anisotropy  as well. The exchange and anisotropy energy density of walls w being 
involved in the definition of all these macroscopic anisotropy properties (an, , ). Evolutions of the magnetic structure in time does 
not occur instantaneously but with a time delay  that is depends on the volume microscopic eddy currents around walls and inside 
domains that damp the walls’ motion and the domains’ magnetic rotation. Finally, the volume magnetic structure is significantly 
influenced by the surface limit conditions, and it cannot be determined without this condition. The latter limit condition involves a 
coupling to the external magnetic field through a dynamic magnetic behavioral law, that makes the connection between the field and the 
surface magnetic polarization. In this coupling between the magnetic field and the magnetic structure, the surface structural property [0

2] 
has got an essential role to play. At present, this surface property is considered as a model parameter to be identified with measurements, 
like the seven main parameters of the model (e, , c, an, , , ). In the near future, we think that this new model can help us study 
and optimize the impact of any surface treatments (coating, scratching, scribing, irradiation …) and especially the surface laser treatments 
(laser irradiation, scribing, ablation, laser induced shock wave, laser induced polarized sub-structure …) with different patterns on the 
magnetic structure with domains and walls. This goal will be achievable only if further investigations are carried out to develop the surface 
minimization principle (see surface integral of (12)) in addition to the present volume magnetic structure model. Determination of optimal 
surface treatments’ parameters and patterns may be possible by inversing the model and defining its goal criteria. 
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Appendix: Mathematical tools 

Operators 

[𝑌] = ൣ𝑌ሬ⃗ଵ, 𝑌ሬ⃗ଶ, 𝑌ሬ⃗ଷ൧ = ൥

𝑌ଵଵ 𝑌ଵଶ 𝑌ଵଷ

𝑌ଶଵ 𝑌ଶଶ 𝑌ଶଷ

𝑌ଷଵ 𝑌ଷଶ 𝑌ଷଷ

൩ ,   [𝑛] = [𝑛ሬ⃗ , 𝑛ሬ⃗ , 𝑛ሬ⃗ ]: [Y]T means to transpose the matrix [Y] 

ൣ𝛻ሬ⃗ ൧൫𝐴൯ = ൣ𝛻ሬ⃗ ⊗ 𝐴൧, ቂൣ𝛻ሬ⃗ ൧൫𝐴൯ቃ
௜௝

= ൣ𝛻ሬ⃗ ⊗ 𝐴൧
௜௝

: tensor gradient on a vector, 

𝛻ሬ⃗ ⋅ [𝑌] = ൫𝛻ሬ⃗ ⋅ 𝑌ሬ⃗ଵ , 𝛻ሬ⃗ ⋅ 𝑌ሬ⃗ଶ, 𝛻ሬ⃗ ⋅ 𝑌ሬ⃗ଷ൯
்
: vector divergence on a tensor, 

ൣ𝛻ሬ⃗ ൧ × [𝑌] = ൣ𝛻ሬ⃗ ×൧[𝑌] = ൣ𝛻ሬ⃗ × 𝑌ሬ⃗ଵ, 𝛻ሬ⃗ × 𝑌ሬ⃗ଶ, 𝛻ሬ⃗ × 𝑌ሬ⃗ଷ൧
்
: tensor rotational on a tensor, 

[𝛥][𝑌] = ൣ𝛥൫𝑌ሬ⃗ଵ൯, 𝛥൫𝑌ሬ⃗ଶ൯, 𝛥൫𝑌ሬ⃗ଷ൯൧
்
: tensor Laplacian on a tensor, 

𝛻ሬ⃗ ⋅= (𝜕ଵ ⋅, 𝜕ଶ ⋅, 𝜕ଷ ⋅)்: Nabla operator, 

𝛥 ⋅= (𝜕ଵ𝜕ଵ ⋅, 𝜕ଶ𝜕ଶ ⋅, 𝜕ଷ𝜕ଷ ⋅)்: Laplacian operator 

Operations 

ൣ𝐴 ⊗ 𝐵ሬ⃗ ൧, ൣ𝐴 ⊗ 𝐵ሬ⃗ ൧
௜௝

= 𝐴௜𝐵௝: tensor product between two vectors. 

ൣ[𝑌]⁘[𝑍]൧, ൣ[𝑌]⁘[𝑍]൧
௜௝

= 𝑌௜௝𝑍௜௝: tensor product type 1 between 2 tensors. 

ൣ[𝑌] × [𝑍]൧ = ൣ𝑌ሬ⃗ଵ × 𝑍ଵ, 𝑌ሬ⃗ଶ × 𝑍ଶ, 𝑌ሬ⃗ଷ × 𝑍ଷ൧
்
: tensor product type 2 between 2 tensors. 

൫[𝑌] ⊙ሬሬሬሬ⃗ [𝑍]൯ = ൫𝑌ሬ⃗ଵ ⋅ 𝑍ଵ, 𝑌ሬ⃗ଶ ⋅ 𝑍ଶ, 𝑌ሬ⃗ଷ ⋅ 𝑍ଷ൯
்
, ቀ[𝑌] ⊙ሬሬሬሬ⃗ ଶቁ = ൫[𝑌] ⊙ሬሬሬሬ⃗ [𝑌]൯: vector product between 2 tensors. 

[𝑌] ∘ [𝑍] = 𝑌௜௝𝑍௜௝: scalar product between two tensors. 

Derivative and integral properties 

ൣ𝛻ሬ⃗ ×൧ൣ𝛻ሬ⃗ ×൧[𝑌] = ൣ𝛻ሬ⃗ ൧൫𝛻ሬ⃗ ⋅ [𝑌]൯ − [𝛥][𝑌] 

[𝑋] ⊙ሬሬሬሬ⃗ ([𝑌] × [𝑍]) = [𝑍] ⊙ሬሬሬሬ⃗ ([𝑋] × [𝑌]) = [𝑌] ⊙ሬሬሬሬ⃗ ([𝑍] × [𝑋]) 

𝛻ሬ⃗ ⋅ ൫[𝑌]𝐴൯ = ൫𝛻ሬ⃗ ⋅ [𝑌]൯ ⋅ 𝐴 + [𝑌] ∘ ൣ𝛻ሬ⃗ ⊗ 𝐴൧ 

ඵ ൫𝛻ሬ⃗ ⋅ 𝐴൯
  ఆ

𝑑ଷ𝑥 = ඾ ൫𝐴 ⋅ 𝑛ሬ⃗ ൯𝑑ଶ𝑥
 డఆ

 

ඵ ൫𝛻ሬ⃗ × 𝐴൯
  ఆ

𝑑ଷ𝑥 = ඾ −൫𝐴 × 𝑛ሬ⃗ ൯𝑑ଶ𝑥
 డఆ

 

ඵ ൫𝛻ሬ⃗ ⋅ [𝑌]൯
  ఆ

𝑑ଷ𝑥 = ඾ ൫[𝑌] ⊙ሬሬሬሬ⃗ [𝑛]൯𝑑ଶ𝑥
  డఆ

 

ඵ ൫ൣ𝛻ሬ⃗ ൧ × [𝑌]൯
  ఆ

𝑑ଷ𝑥 = ඾ −([𝑌] × [𝑛])𝑑ଶ𝑥
  డఆ

 

ඵ ൫ൣ𝛻ሬ⃗ ൧ × [𝑌]൯
  ఀ

𝑑ଶ𝑥 = ර ൫[𝑌] ⊙ሬሬሬሬ⃗ [𝑛]൯
  డఀ

 𝑑𝑥 


