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Toward Better Fault Characterization Tests

Abstract—Although fault injection is a powerful technique to
exploit implementation weaknesses, this is not without limitations.
An important preliminary step, based on rigorous calibration of
the fault injection equipment, greatly affects the accuracy and
repeatability of the results. Even if equipment calibration can be
performed directly with the target application, it can be more
relevant to use fault characterization tests instead, which are
small programs designed to propagate fault effects, in order to
identify more easily faulty behaviors. However, designing tests
that propagate most fault effects is not an easy task. In this study,
we propose original metrics to evaluate fault characterization
tests based on fault propagation and fault discrimination. These
metrics are used to compare the performance of different fault
characterization tests from the literature, so as to identify the
most important design choices according to a wide range of fault
models. From these observations, we detail a general approach
to design more efficient tests. Finally, we propose a minimal test
set based on these guidelines, to quickly find settings with high
fault probability on a Cortex-M4 32-bits microcontroller, using
voltage fault injection.

Index Terms—Fault Injection, Characterization, Calibration

I. INTRODUCTION

Fault injection is a powerful technique to bypass secu-
rity features of embedded systems, such as code protection
mechanisms [1]. Using electrical glitches [2], focused light
[3], electromagnetic pulses [4] or even nanofocused X-rays
[5], one can locally perturb the chip environment to alter its
behavior and gain access to critical information. Although fault
injection can lead to impressive results, this is not without
limitation. One of the biggest challenges is the calibration of
fault injection equipment. Each fault injection equipment has
multiple specific parameters that must be adjusted precisely,
such as the positions x,y,z of an electromagnetic probe tip.

This preliminary step is required in order to find accurate
and repeatable faults. In academic literature, several optimiza-
tion methods have been proposed to finely tune parameters of a
given fault injection equipment [6]. In practice, these methods
can be used to calibrate the equipment either directly on a
critical section of the target application (e.g. the last rounds
of an AES), or indirectly on an external program designed to
propagate faults. This will be referred as direct and indirect
calibration, respectively.

Direct Calibration consists in focusing on a small code
chunk rather than the whole application; in order to calibrate
the fault injection equipment for a specific attack scenario.
Indeed, direct calibration on the entire application is often
proved to be infeasible in reasonable time. The selected section
is adjudged as critical and can potentially lead to security holes
with fault injections. If necessary, the section can be isolated
from the rest of the application and integrated into a test
environment with built-in target synchronization mechanisms

to help fault injection. Direct calibration implies 1) the eval-
uator has identified the critical section which is challenging,
2) the evaluator has an attack scenario and 3) the evaluator
will not cover the whole application. The main advantage
is that, once a successful fault is injected, the vulnerability
is directly confirmed. However, keep in mind that only the
assumed critical section is covered, so potential vulnerabilities
can be easily missed. Moreover, depending on the application,
lack of feedback makes direct calibration much more difficult
[7]. Furthermore, because direct calibration focuses on attack
success, and not on fault effect understanding, the results are
not necessarily generalizable to different applications (or other
critical sections) of the same microcontroller.

On the other hand, Indirect Calibration attempts to com-
prehend fault effects on the target microcontroller, and then to
generalize the results to the entire target application. To this
end, an external program, called fault characterization test in
this study, is used to maximize the number of effective faults
on the target microcontroller. A fault characterization test is
not the application itself, or a section of the application, but
rather a series of instructions, arranged in such a way as to
highlight the assumed, or adjudged effects of fault injections,
on the target. In other words, a fault characterization test
is designed around one or more fault model assumptions.
The main advantage of indirect calibration by comparison
with direct calibration is that, once these assumptions have
been validated experimentally, the fault models and the fault
injection settings found can be used to evaluate different
security mechanisms of the same microcontroller, thereby
reducing the initial time investment. Moreover, a characteriza-
tion test is often smaller than the target application, reducing
even more the time required in the long run. Furthermore, a
fault characterization test simplifies the equipment calibration
by giving instant feedback on the effectiveness of the fault
injection parameters, in comparison with direct calibration.
Finally, indirect calibration can help in reducing complexity
of multiple fault injections [8], as fault injection parameters
can be observed independently of each other, in comparison
with direct calibration.

Table I sums up the main points of both approaches.
Depending on the objective and the means employed, one
can choose to go either with direct or indirect calibration.
Nevertheless, one question remains, what is a (good) fault
characterization test ? Because unlike direct calibration, whose
test vector is clearly defined (the critical section), indirect
calibration strongly relies on the design of fault character-
ization tests. We will see in section III that depending on
the design, outcomes can be very different, which can be a
problem for indirect calibration. The main issue arises when
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Calibration Test Vector Goal Advantage Drawback

Direct Critical section Calibrate equipment
Validate attack scenarios Effective fault ⇒ vulnerability Not generalizable

Lake of feedback

Indirect Fault characterization test Calibrate equipement
Understand Fault Effects

Generalizable
Instant feedback Effective fault ; vulnerability

TABLE I: Comparison between direct and indirect calibration.

actual fault effects on the microcontroller do not fit the fault
models assumptions taken during the characterization test
design. Therefore, it can be impossible to understand fault
manifestation and propagation. For example, the fault effect
can be entirely masked during execution, due to incorrect
assumptions (see in section III). More generally, we will
show that the characterization test design can be flawed if
the propagation and discrimination properties (detailed in
section II) are not verified w.r.t the fault model assumptions
taken. There is no general framework for characterization test
design yet, and many different designs have been proposed in
the literature. Most of the time, the characterization tests are
empirically designed, which takes time, and can be suboptimal
due to design flaws.

A better way to design characterization tests would be to
systematically validate their fault propagation and discrim-
ination, using fault injection simulation. In this regard, we
propose general guidelines to help fault characterization test
design, for a wide range of fault models, based on the first
comprehensive study of popular fault characterization tests
from the literature. Then, with these general guidelines and
a simulation-based fault injection tool, CELTIC, we find
optimal fault characterization tests according to specific fault
models, and combine them to generate a minimal test set
that covers instruction, register and memory corruption fault
models. Accordingly, our contributions are as follows:

• Proposition of metrics to evaluate performance of fault
characterization tests, according to fault model assump-
tions.

• Evaluation of popular fault characterization test designs
according to these metrics.

• Proposition of general guidelines to help fault character-
ization test design according to assumed fault models.

• Proposition of optimized fault characterization tests ac-
cording to our metrics.

In this article, we will first detail the propagation and
discrimination properties and define performance metrics in
section II. Then, in section III, we will evaluate the different
characterization tests from the literature according to our
performance metrics. This first study will give us the main
direction to design a fault characterization test efficiently.
Next, in section IV, we will generate optimal fault charac-
terization tests w.r.t fault models, using results of section III.
In section V, we will present two practical applications of
these tests, using voltage fault injection.

II. PROPERTIES AND METRICS

In this section, we will define two relevant properties of fault
characterization tests, propagation and discrimination. Then,
performance metrics will be derived from these properties.

Fault characterization tests are usually divided into three
parts:

• Initialization of a set of variables V that will be manip-
ulated during the characterization test execution (general
purpose registers, memory locations).

• A sequence of instructions I where the faults are injected.
The operands of these instructions are chosen from V . At
each instruction execution, the current program state is
updated (w.r.t the V values). The current program state is
not observable until the end of I.

• A subroutine that sends back the final values of V at the
end of I, referred to as the final state.

The main goal of fault characterization tests is to gather
as much information as possible about the microcontroller
behavior in response to faults. Therefore, they must propagate
the fault effects on the microcontroller to the end of I. The
fault effect must not be masked during the execution of I,
otherwise the results will not be representative of the actual
microcontroller behavior.

Moreover, in order to understand more easily the fault
effects or to validate fault model assumptions, each final state
must be characteristic of a particular fault effect. Accordingly,
the fault characterization test must discriminate the different
effects induced by fault injections.

In the following, we formalize the propagation and dis-
crimination properties of fault characterization tests. Note that
the propagation and discrimination properties depend on the
assumed fault models. Thus, fault characterization tests can
propagate and discriminate some fault effects, but not others.

Definition 1 (Propagation): Let s? be the final state of
the reference execution trace, that is, an execution trace of I
without fault. Let Sm be the set of final states of all the possible
execution traces of I, given the fault model m. I ensures a
propagation property w.r.t a set M of fault models if:

∀m ∈M,s? 6∈ Sm

Definition 2 (Discrimination): Let Sm be the set of final
states of all the possible execution traces of I, given the fault
model m. I ensures a discrimination property w.r.t a set M of
fault models if:

∀(m,m′) ∈M2,Sm∩Sm′ = /0
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In other words, a characterization program, w.r.t a set M
of fault models, must maximize the number of faulty final
states (i.e. final states different from the expected final state)
and faulty final states must be distinguishable between fault
models. We can derive from these properties performance
metrics to evaluate a characterization test, namely the propa-
gation, discrimination and coverage rates, which are defined
as follows:

Definition 3 (Propagation Rate): N f denotes the number of
faulty final states w.r.t to the set of fault models M. Ne is the
number of expected final states. Nc refers to the number of
crashes. The propagation rate of the characterization test is
defined as:

PR =
N f

N f +Ne +Nc

Definition 4 (Discrimination Rate): N6= denotes the number
of distinct final states and N∩ the number of identical final
states between the set of fault models M. The discrimination
rate of the characterization test is defined as:

DR =
N6=

N6=+N∩

Definition 5 (Coverage Rate): Nc denotes the number of
fault models covered and Nt the total number of fault models
considered. The coverage rate of the characterization test is
defined as:

CR =
Nc

Nt

As we need to maximize N f , N6=, and Nc, the higher PR,
DR, and CR are, the better. We can quickly compare the
performance of two tests with the product of PR, DR, and
CR. PR and CR should be prioritized for equipment calibration
purposes, whereas DR is important to validate fault model
assumptions.

We use a simulation-based fault injection tool (CELTIC)
to evaluate the PR, DR, and CR of a given characterization
test, w.r.t the set M. CELTIC [9] is a dynamic binary code
analyzer which simulates fault injection using fault models,
that describe fault effects at the instruction set architecture
(ISA) level. The tool itself is built around an efficient emulator
for various architectures and designed to meet the needs of the
evaluators, such as the ability to easily add new proprietary
instruction sets or new fault models. Fault models in CELTIC
can be configured and adapted to simulate complex fault
effects throughout the instruction cycle (fetch, decode, exe-
cute) but also on registers and memory. Furthermore, CELTIC
can save traces of faulty execution, useful for analyzing
simulation results in an automated way [8], but also evaluate
the propagation and discrimination rate.

In the following, we will explain how the different char-
acterization test design choices influence PR, DR, and CR,
based on an in-depth study of popular fault characterization
tests from the academic literature.

Category
Fault

Model
Family

Description

Instruction
corruption

F1 Single and multiple
instruction skips

F2 Bit-sets on
fetched opcode

F3 Bit-resets on
fetched opcode

Register
corruption

F4 Bit-sets on
source register value

F5 Bit-resets on
source register value

Memory
corruption

F6 Bit-sets on
memory cell value

F7 Bit-resets on
memory cell value

TABLE II: Fault models used.

III. DESIGN GUIDELINES FOR CHARACTERIZATION TESTS

In this section, we will evaluate, using fault injection sim-
ulation, the fault propagation and discrimination of different
characterization tests with the performance metrics PR, DR,
and CR. Then, we will compare the influence of the different
design choices on performance and derive general guidelines
to design fault characterization tests according to assumed
fault models.

A. Fault Models
We have considered a set of classical ISA fault models. This

set, presented in Table II, covers a wide range of fault effects
that can occur during indirect calibration, from instruction
corruption (F1-F3), through register corruption (F4, F5) to
memory corruption (F6, F7). These fault models have been
implemented in CELTIC and will be used to compare the PR,
DR, and CR of the different fault characterization tests.

B. Fault Characterization Tests Overview
We have selected 8 different and representative fault char-

acterization tests from the literature, presented in Table III.
The sequence of instructions I and initial values V , for each
test, can be found in Appendix (Table X, Table XI, Table XII,
and Table XIII). These tests have been designed to understand
various fault effects on different microcontrollers (e.g. [10],
[11]) and are commonly used for indirect calibration. Note
that we have translated them, if necessary, into the ARMv7-
M 16-bit instruction set to compare performance more easily.
We have classified these tests according to different criteria
in Table III:
• Idempotent versus non-idempotent instructions (I idem-

potence).
• Number of instructions in I (I size).
• Variety of Instructions in I (I variety).
• Type of Instructions I (I type).
• Initial values of the set of variables V (Initial V values).
In the following, we will highlight how these design choices

can influence on the PR, DR, and CR of characterization tests
according to fault models considered in Table II, in order to
conceive better ones.
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Test I
idempotence I size I variety I type Initial V

values
Related
Work

T1 No Large Medium Standard data-processing instructions Distinct [12]
T2 Yes Large Medium Standard data-processing instructions Distinct [11], [13], [14]
T3 No Small Medium Standard data-processing instructions Distinct [15]–[17]
T4 No Large Medium Standard data-processing instructions Identical -
T5 No Large Low Standard data-processing instructions Distinct [12], [18], [19]
T6 No Small Medium Load and Store instructions Distinct [10], [18], [19]
T7 Mixed Large High Standard data-processing instructions Distinct [10]
T8 Yes Large Medium Load and Store instructions Distinct [11]

TABLE III: Characterization tests used.
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Fig. 1: Comparison of the characterization tests in Table III according to PR∗DR∗CR, w.r.t to fault models in Table II.

C. Performance Comparison

The selected tests have been evaluated using a simulation-
based fault injection tool CELTIC. The performance metrics
PR, DR, and CR, according to fault models and for each
characterization test, are detailed in Appendix (Figure 5,
Figure 6, Figure 7), and the product PR ∗DR ∗CR can be
found in Figure 1. We also evaluated the performance between
fault models of the same category, and these results will be
compared with our tests in section IV. Before going into
details, a few general observations can be drawn from the
results:
• Instruction skip fault models (F1) have the highest stan-

dard deviation, which suggests PR, DR and CR are highly
dependent on design choices for these models.

• Bit-set and bit-reset fault models are complementary to
one another, thus the sum of PR for bit-set and bit-reset
fault models of the same category cannot be above 1. For
example, test T5 propagates most opcode bit-sets (F2) but
misses opcode bit-resets (F3) in Figure 5.

• Except for memory corruption fault models, the T1 test
works well on the rest of the benchmark, especially
between fault models of the same category.

By cross-checking simulation results (Figure 1, fault models
(Table II), and the main characteristics of the tests (Table III),
we can identify important design choices, according to as-
sumed fault models, that have an effect on PR, DR and CR.

1) Idempotence: Idempotence is the property of an instruc-
tion to be executed several times without changing the result.
For example, an instruction mov between the same register is
idempotent whereas an addition with an immediate value is
not. Idempotence strongly affects PR, DR and CR as detailed
in Figure 5, Figure 6 and Figure 7. Most characterization tests

are non-idempotent except T2 and T8. Both T2 and T8 tests
get 0 for PR, DR and CR w.r.t instruction skips (F1). The
only situation where an idempotent characterization test can be
used is when faults only affect data (F4-F7) and never disrupt
the program counter nor the fetch/decode pipeline stage (F1-
F3). Therefore, prefer using non-idempotent instructions rather
than idempotent ones for F1, F2 and F3 families.

2) Number of Instructions: The number of instructions
influences PR and CR, as presented in Figure 5 and Figure 7.
The T3 and T6 characterization tests contains 8 and 7 instruc-
tions (small) respectively whereas others contain around 80
instructions (large). With regard to the results, using a large
characterization test is better if instruction skips are suspected
(F1). In addition, a larger sequence I is more convenient to
use during practical experiments, as a smaller sequence I tends
to be more difficult to target. Hence, there is no particular
indication to use a small characterization test. For F1 family,
we strongly recommend to consider larger code size.

3) Variety of Instructions: Although most characterization
tests evaluated are based on 7 to 8 different instructions
(medium variety), the T5 characterization test only considers
1 instruction (low variety) whereas the T7 used 80 differ-
ent instructions (high variety). The T7 characterization test
outperforms the rest of the benchmark w.r.t CR especially
for instruction corruption fault models, but it underperforms
in terms of fault discrimination (DR). We can deduce that
increasing variety of instructions improves fault coverage at
the expense of fault discrimination. On contrary, reducing
variety of instructions increases the performance for specific
fault models, as observed with the T5 test for F2 fault models.
In section IV, we will extend this observation to find optimal
tests for each fault model.
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4) Instructions type: Only characterization tests using load
and store instructions (T6 and T8) can propagate memory
corruption fault models (F6, F7). Note that the remaining
characterization tests, that use standard data-processing in-
structions (instructions which manipulate data within regis-
ters), have better performance especially for opcode corruption
models (F2, F3). Therefore, except for memory fault models,
we recommend standard data-processing instructions.

5) Initial Values: Depending on the fault model considered,
initial values can affect PR and CR. The T4 characterization
test initializes all variables (registers) to zero while others
initialize each register with a distinct value. The initial V
values do not affect PR and CR for instruction corruption (F1-
F3). On contrary, we can observe that the initial values of
the variables V influences the results, especially for register
corruption fault models (F4, F5), as shown in Figure 5 and
Figure 7. Although not shown, the initial values loaded and
stored in the manipulated array of the characterization test
T6 and T8, also influence PR and CR for memory corruption
fault models (F6, F7). Accordingly, we recommend to choose
carefully the initial V values for F4-F7 fault model families.

D. Design Guidelines

Category Family Most Important Design Choices

Instruction
corruption

F1
Standard data-processing instructions

Non-idempotence
Large number of instructions

F2, F3 Standard data-processing instructions
Non-idempotence

Register
corruption F4, F5

Standard data-processing instructions
Idempotence

Initial V values

Memory
corruption F6, F7

Load and Store instructions
Idempotence

Initial V values

TABLE IV: Most important design choices w.r.t fault models
in Table II.

To sum up, we have highlighted different design choices that
must be studied during the characterization test conception.
Table IV summarizes the most important choices that strongly
influence PR, DR, and CR according to the simulation results
with CELTIC. For example, we recommend to use a large
number of non-idempotent instructions for instruction skip
fault models. In the following, we will use these guidelines
to find better fault characterization test for each fault model
family, according to our metrics.

IV. FIND BETTER FAULT CHARACTERIZATION TESTS

In this section, we propose optimal fault characterization
tests that maximize PR, DR, and CR for each fault model
family. Then, to reduce the time spent on indirect calibration,
in order to save time for the actual fault attack, we combine
these optimal tests into a minimal set of three tests, while
preserving PR, DR, and CR as much as possible.

A. Find Optimal Test for each Fault Model

To maximize PR, DR, and CR we must find the best
instruction and the initial values for each fault model family.
We found in section III, that the T5 test, based on the
same instruction repeated multiple times, can achieve better
performance (Figure 1) for opcode corruption (F2) than other
tests based on different instructions. We will extend this
observation, and find the instruction i repeated n times and
the initial values V that maximize PR, DR and CR, for each
fault model in Table II.

We propose an approach to solve this problem which is
generalizable to different instruction sets easily. For most
fault model families, the best instruction i is trivial and can
be derived directly from guidelines Table IV. For opcode
corruption fault models (F2 and F3 families), we will use
CELTIC to find automatically the optimal instruction i which
maximizes PR, DR and CR according to opcode corruption
fault models.

a) Instruction Skips (F1):
Proposed test: an addition with immediate value repeated n

times, with n greater than the largest instruction skip assumed.
Initial values V can be chosen randomly.

Justification: The instruction i must update the current state
into a new distinct one, at each execution of i. Therefore,
if any instruction is skipped, the final state will be different
(PR = 1,CR = 1), and also, the final state will depend on
the number of instructions skipped (DR = 1). Note that, the
number of distinct states must be greater than the largest in-
struction skip assumed. For example, an addition or subtraction
with immediate value are good candidates for that purpose;
at each instruction execution, the destination register will be
incremented or decremented (n distinct states). On contrary,
an exclusive or with immediate value is not ideal; at each
instruction execution, the destination register will be toggled
(only two distinct states).

b) Register Corruption (F4, F5):
Proposed test: an instruction mov between the same register.

The number of instruction n does not matter. Initial values V
must be set to 0x0...0 (0xf...f) for bit-sets (bit-resets)
fault models.

Justification: The instruction i must be idempotent and not
update the current state. Therefore, if any corruption of the
value of the source or the destination register occurred, then
the corrupted value will be propagated (PR = 1,CR = 1), and
also, the final state will depend on the corrupted bit (DR = 1).
For example, a mov instruction between the same register is a
good candidate.

c) Memory Corruption (F6, F7):
Proposed test: an instruction store followed by an instruc-

tion load at the same memory address with the same register.
The number of instruction n does not matter. Initial values V
must be set to 0x0...0 (0xf...f) for bit-sets (bit-resets)
fault models.

Justification: The instruction i must be idempotent and not
update the current state. Therefore, if any corruption of the
value of the cell memory occurred, then the corrupted value
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Algorithm 1: Find Optimal Instruction For Opcode
bit-set (bit-reset) Fault Models (F2, F3)

Input: Instruction set I, Instruction size size
Output: The optimal opcode opbest .

/* Get all encodings w.r.t I sorted by number

of bits already set (reset) */

E← GetEncodingsSorted(I);
opbest ← /0; max← 0; d← 0;
/* While max is below the maximum PR at hamming

distance d */

while max < 1−d/size do
j← 0;
/* While number of bits already set (reset)

are less or equal to d */

while Count(E[ j]) <= d do
/* Get operand bits of encoding E[ j] */

B← GetOperandBits(E[ j]);
/* Init opinit of encoding E[ j] with all

operand bits reset (set) */

opinit ← InitAllOperandBits(E[ j]);
/* Generate all bit-sets (bit-resets) on

B, up to d, minus bits already set

(reset) */

C← Combinations(B,d−Count(E[ j]));
foreach c ∈C do

/* Init optest with operand bits set

(reset) w.r.t c */

optest ← GenOperandBits(opinit ,c);
/* Repeat opcode 2 times, prevent

idempotent solutions */

test← [optest ]∗2;
stats← SimulateFI(test,m);
PR,DR← GetRates(stats);
if PR∗DR > max then

max← PR∗DR;
opbest ← optest ;

j← j+1;

d← d +1;

return opbest ;

Fig. 2: ARMv7-M Instruction encoding of ADDW<c> <Rd>,
<Rn>, #<imm12>.

will be propagated (PR = 1,CR = 1), and also, the final state
will depend on the corrupted bit (DR = 1). Unfortunately,
an instruction that atomically performs a load and a store
operation does not exist. Instead, two instructions are required,
a store then a load at the same memory address.

d) Opcode Corruption (F2, F3):
Overview: with CELTIC and algorithm 1, we can find

the optimal instruction i that depends on the instruction set

Model
Optimal 16-bit Instruction ARMv7-M

Opcode Mnemonic PR DR
F2 3201 adds r2, #1 0.75 1.00
F3 3fff subs r7, #ff 0.875 1.00

TABLE V: Optimal 16-bit Instruction from the ARMv7-M
Instruction Set.

considered. The number of instruction n does not matter and
initial values V can be chosen randomly.

Algorithm: find optimal instruction i for opcode corruption
fault models is more difficult than other families, for several
reasons:
• The optimal instruction depends on the instruction set.
• The opcode must be valid according to the instruction set.
• We have to bruteforce the possible combinations.
Accordingly, we propose algorithm 1 to find the optimal

instruction for opcode bit-set (bit-reset) fault models. The
main idea is that the maximum PR possible for an opcode
at hamming distance of d from the initial opcode 0x0...0
(0xf...f), w.r.t the instruction size, is 1−d/size. In addition,
the maximum DR is 1 as DR does not depend on d, and
CR = PR as the same instruction is repeated multiple times.
Furthermore, if we gradually increase the hamming distance d
from the initial opcode, and as an opcode at d can theoretically
gets a better PR than an opcode at d + 1, the best opcode is
the first one whose PR∗DR is greater or equal to 1−d/size.

Moreover, the algorithm aims to reduce combinatorial ex-
plosion, especially for larger instruction size (32-bit or more).
For example, without optimization, the optimal ARMv7-M
32-bit instruction w.r.t bit-set fault models is at a hamming
distance of 7 from 0x0...0 (Table VI). This can quickly
take times to test every combinations, as ∑

7
k=0

(32
k

)
= 4514873.

Rather than testing every opcode up to a hamming distance
of d, only operand bits B of valid encodings are used. For
example, only operand bits i, Rn, imm3, Rd and imm8 of
the encoding presented in Figure 2 are considered to generate
all the possible bit-sets (bit-resets) up to a hamming distance
d from the initial opcode, minus the number of bits already
set (reset) of that encoding.

Example: We used an initial instruction subset I from the
ARMv7-M instruction set, detailed in Appendix Table XIV.
From that initial instruction subset, we can derive 54 16-
bit and 222 32-bit encodings. The optimal 16-bit and 32-
bit instructions from the ARMv7-M instruction set, according
F2 and F3 fault models families, found with our algorithm
1, are presented in Table V and Table VI. For reference, in
section III, the best evaluated tests have PR∗DR∗CR = 0.56
for F2 (T5 test) and 0.34 for F3 (T1 test). In comparison, our
fault characterization tests based on optimal 16-bit instructions
(Table V) reach 0.56 and 0.77 respectively.

B. Minimal Set of Fault Characterization Tests

As indirect calibration is a preliminary step, and not an
end in itself (in comparison with direct calibration, Table I),
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Model
Optimal 32-bit Instruction ARMv7-M

Opcode Mnemonic PR DR
F2 f1400001 adc r0, r0, #1 0.67 0.90
F3 f57777ff sbcs r7, r7, #0x1fe 0.70 0.94

TABLE VI: Optimal 32-bit Instruction from the ARMv7-M
Instruction Set.

Version Memory Corruption (MC) Test

I

ldr r0, =#0x20002000 ; [r0] = 0x00000000

ldr r2, =#0x20002004 ; [r2] = 0xffffffff

str r1, [r0]

ldr r1, [r0]

str r3, [r2]

ldr r3, [r2]

V
R0 0x20002000 R1 0x00000000

R2 0x20002004 R3 0xffffffff

[R0] 0x00000000 [R2] 0xffffffff

Repeat
n times

TABLE VII: Memory Corruption (MC) Test for the ARMv7-
M instruction set.

the number of test should remain limited to save time for the
actual fault attack.

Accordingly, we propose a minimal set of fault character-
ization tests. The optimal tests found in subsection IV-A can
be grouped into three categories, namely instruction corruption
(F1-F3), operand corruption (F4, F5) and memory corruption
(F6, F7) (Table IV). With only three characterization tests, we
cover all the fault model families presented in Table II. The
three characterization tests are as follows:
• Instruction Corruption (IC) Test (Table IX) contains an

alternation of the optimal instructions generated with
CELTIC for F2 and F3 fault models families (e.g.
Table V), in order to propagate instructions skips and
opcode corruption.

• Register Corruption (RC) Test (Table IX) is based on
idempotent mov instructions which propagate efficiently
register value corruption models (F4 and F5 fault models
families).

• Memory Corruption (MC) Test (Table VII) can help
the propagation of memory corruption (F6 and F7 fault
models families) with load and store instructions.

The code size n, for each test, is arbitrarily large as it is eas-
ier to inject faults in practice with larger characterization tests.
The performance of each test are summarized in Table VIII.

Test Fault Model
Family PR DR CR PR∗DR∗CR

Instruction
corruption F1,F2,F3 0.66 0.93 0.88 0.54

Register
corruption F4,F5 0.50 1.00 1.00 0.50

Memory
corruption F6,F7 0.50 1.00 1.00 0.50

TABLE VIII: PR, DR, and CR of the IC, RC and MC test.

According to our metrics PR, DR, and CR, the tests we propose
get the best performance in each category, instruction, register
and memory corruption.

Note that we tried to combine all the optimal instructions
found in subsection IV-A into one characterization test, but
this drastically reduces PR, DR, and CR. This is mainly due to
the fact that the considered instructions are highly specialized
for one fault model and not for others. For example, if we
combine non-idempotent and idempotent instructions in the
same characterization test, it is more difficult to observe
distinct instruction skips (F1 fault model family). To put
theory into practice, we will conduct indirect calibration with
voltage fault injection using this set of tests to validate fault
models assumptions and force calibration toward specific fault
injection settings.

V. INDIRECT CALIBRATION WITH OUR MINIMAL TEST SET

Our performance metrics are crucial to understanding the
fault effects that are propagated and to what extent, for a
given fault characterization test, before conducting indirect
calibration. Accordingly, we have identified the best minimal
test set according to PR, DR, and CR, that covers instruction,
register and memory corruption.

In this section, this test set is used to calibrate our voltage
fault injection setup for a Cortex-M4 32-bits microcontroller.
Furthermore, we detail two possible applications with the IC,
RC, and MC fault characterization tests to extend the possible
uses of indirect calibration: 1) fault model validation and 2)
fault injection settings specialization.

A. Voltage Fault Injection Setup
Voltage fault injection (VFI) is one of possible techniques to

inject fault. The main advantages of VFI are that equipment is
cheap and almost no target preparation is required. Although
for most VFI equipment, only a few parameters need to be
set (glitch amplitude and length), the VFI technique proposed
by [1] significantly increases the number of parameters con-
sidered, but gives more control over the voltage levels and the
glitch waveform.

Our VFI test bench is similar to the setup described by
Bozzato et al. [1]. We use a custom 30 Msps Digital-to-Analog
Converter (DAC) to generate arbitrary glitch waveforms. The
waveform of the glitch, sent to the DAC, is generated with a
function that takes a set of 8 instantaneous voltage levels, that
are then interpolated with cubic interpolation on a grid, up to
2048-by-256, that depends on the waveform size requested.
This setup is cheap (≈ 100$) and yet offers great versatility
to adapt to different targets with the ability to generate a large
spectrum of glitch waveforms, as shown in Figure 3.

B. Target of Evaluation
We have evaluated the IC, RC and MC characterization tests

under same conditions on the same target device. We choose an
ultra-low-power ARM Cortex-M4 32-bit microcontroller run-
ning at 48 Mhz, which implements the architecture ARMv7-M
which includes a three-stage pipeline, cache mechanisms and
Thumb-2 instruction set compatibility.
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Version Instruction Corruption (IC) Test Register Corruption (RC) Test

I

adds r2, #1 mov r0, r0

subs r7, #ff mov r1, r1

adds r2, #1 mov r0, r0

subs r7, #ff mov r1, r1

V

R0 0x00000000 R1 0x11111111 R0 0x00000000 R1 0xffffffff

R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333

R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555

R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777

Repeat
n times

Repeat
n times

TABLE IX: Instruction Corruption (IC) Test and Register Corruption (RC) Test for the ARMv7-M instruction set.
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Fig. 3: Glitch waveform with the highest fitness w.r.t IC, RC and MC fault characterization tests, after 600 generations.

C. Experimental Protocol

We conduct an indirect calibration with our minimal test
set, using an evolution based optimization method, due to the
complexity of the parameter space. The evolutionary algorithm
optimizes fault injection parameters, each genome represents
a possible set of 8 instantaneous voltage levels, along with
the size of the glitch. Bozzato et al. [1] show that they
can explore the parameter space and converge to the most
interesting settings faster with an evolutionary-based approach
than classical grid search. However, the overall performance of
fault characterization tests, in terms of PR, DR, and CR, does
not depend on the method. We perform 750 generations with a
population of 50 individuals. Nearly 200,000 faults have been
injected during 12 hours for the IC, RC and MC tests.

D. Results

Experiment results have been summarized in Figure 4,
which shows the evolution of fault probability over first 600
generations, for each test; and Figure 3 which details the
glitch waveform with the highest fitness (the highest fault
probability) for each test. The main takeaways are discussed
in the following:

1) Fault Model Validation: Experiment results (Figure 4)
are used to validate (or refute) fault model assumptions. Given
the properties of propagation and discrimination according to
assumed fault models (subsection IV-B) of the IC, RC and
MC fault characterization tests, we can deduced that it is
unlikely that injected faults corrupt register values, as the fault
probability of the RC test is very low (0.15 on average). On
contrary, the high probability of fault with the IC test, tells
us that it is very likely that injected faults induce instruction

skips and/or opcode corruption. As IC test has a DR = 0.93,
we can distinguish easily one fault model from others. We
have investigated and we have found that 90% of the faulty
final states have been caused by instruction skips (F1 family)
during the indirect calibration with the IC test.

2) Fault Injection Settings Specialization: We use the prop-
erties of our fault characterization tests to force indirect
calibration toward different settings. Figure 3 presents three
different glitch waveforms. These glitches must induce differ-
ent fault effects, because each test only propagates specific
fault models. That means it is possible to act on the indirect
calibration results with the fault characterization test design.
For example, we get completely different fault effects with
the best glitch waveforms found during indirect calibration
with the IC and RC tests, presented in the Figure 3. A set
of different fault injection settings (e.g. glitch waveforms)
mapped to different fault effects is useful to bypass complex
security mechanisms [8].

3) Convergence: For each fault characterization test, within
only 100 generations (25,000 fault injections), we identify
relevant fault injection settings. For example, in Figure 4,
the 66th generation of the IC test is the first generation with
average fault probability above 0.6. With a reasonable number
of fault injections, the best parameters according to each test
are found, reducing the time spent on each test, and therefore
on indirect calibration. Accordingly, indirect calibration can
be conducted with three different characterization tests even
for time-constrained security evaluations. In addition, results
can be transferred between microcontrollers sharing same
reference, thus the initial time investment spent on indirect
calibration quickly pays off. It is possible to reuse the results
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Fig. 4: Evolution of fault probability over 600 generations w.r.t
IC, RC, MC fault characterization tests, using voltage fault
injection. Red lines are moving averages with 50 generations
window size.

to evaluate various sections of the target application, or to
assess a completely new application, saving several days of
testing.

VI. CONCLUSION

Fault injection requires preliminary equipment calibration.
In this article, we have proposed optimal fault characterization
tests in order to fine-tune a given fault injection equipment and
to better understand fault effects on the target microcontroller.
More precisely, we have evaluated the design influence of
fault characterization tests on fault propagation and fault
discrimination, which are properties we have defined. From
these properties, we have derived performance metrics PR,
DR, and CR to compare fault characterization tests from the
literature using fault injection simulation, in order to highlight
the most important design choices according to assumed fault
models. Based on these observations and a simulation-based
fault injection tool CELTIC, we have found optimal fault char-
acterization tests that maximize PR, DR, and CR for specific
fault models. Then, we have combined these optimal tests into
a minimal set of three tests which covers a wide range of
fault effects that can occur during practical experiments. Our
approach to design fault characterization tests is generalizable
to any instruction sets, although not shown in this study.
Furthermore, we have presented two possible applications of
these tests, on a Cortex-M4 32-bit microcontroller, using a
state-of-the-art voltage fault injection setup. In less than 20,000
fault injections, we can identify glitch waveforms with high
fault probability and validate fault model assumptions. The
possibility to converge quickly toward relevant settings can
significantly help in carrying out complex multi-fault attacks,
which depends a lot on equipment calibration. As future work,
it will be interesting to apply our tests on microcontrollers
with different instruction sets, and using other fault injec-
tion techniques, to investigate on the fault propagation and
discrimination with more unusual fault effects. For example,
laser fault injection allows the perturbation of specific parts

of the microcontroller, in order to induce a wide range of
fault effects. Finally, our ongoing research is focused on direct
applications of our minimal test set, such as fast equipment
calibration using novel optimization approaches.
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Fig. 5: Propagation Rate of characterization tests in Table III, w.r.t to fault models in Table II.
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Fig. 7: Coverage Rate of characterization tests in Table III, w.r.t to fault models in Table II.

Version Characterization Test T1 Characterization Test T2

I

adds r0, #2 mov r0, r0

adds r1, #3 mov r1, r1

adds r2, #5 mov r2, r2

adds r3, #7 mov r3, r3

adds r4, #11 mov r4, r4

adds r5, #13 mov r5, r5

adds r6, #17 mov r6, r6

adds r7, #19 mov r7, r7

V

R0 0x00000000 R1 0x11111111 R0 0x00000000 R1 0x11111111

R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333

R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555

R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777

Repeat
n times

Repeat
n times

TABLE X: The characterization tests T1 and T2
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Version Characterization Test T3 Characterization Test T4

I

adds r0, #2 adds r0, #2

adds r1, #3 adds r1, #3

adds r2, #5 adds r2, #5

adds r3, #7 adds r3, #7

adds r4, #11 adds r4, #11

adds r5, #13 adds r5, #13

adds r6, #17 adds r6, #17

adds r7, #19 adds r7, #19

V

R0 0x00000000 R1 0x11111111 R0 0x00000000 R1 0x00000000

R2 0x22222222 R3 0x33333333 R2 0x00000000 R3 0x00000000

R4 0x44444444 R5 0x55555555 R4 0x00000000 R5 0x00000000

R6 0x66666666 R7 0x77777777 R6 0x00000000 R7 0x00000000

Repeat
n times

TABLE XI: The characterization tests T3 and T4

Version Characterization Test T5 Characterization Test T6

I

adds r0, #2 ldr r0, =array ; [0,1,2,3,...]

adds r0, #2 ldr r1, [r0]

adds r0, #2 ldr r2, [r0, #4]

adds r0, #2 ldr r3, [r0, #8]

adds r0, #2 ldr r4, [r0, #12]

adds r0, #2 ldr r5, [r0, #16]

adds r0, #2 ldr r6, [r0, #20]

adds r0, #2 ldr r7, [r0, #24]

V

R0 0x00000000 R1 0x11111111 R0 0x20005000 R1 0x11111111

R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333

R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555

R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777

Repeat
n times

TABLE XII: The characterization tests T5 and T6

Version Characterization Test T7 Characterization Test T8

I

sub r7,r5 ldr r0, =array ; [r1,r2,...]

add r8,r4 str r1, [r0]

subs r0, #0xff ldr r1, [r0]

... ...

lsl r1, r5, #8 str r7, [r0, #24]

mov r2,r6 ldr r7, [r0, #24]

V

R0 0x00000000 R1 0x11111111 R0 0x20002000 R1 0x11111111

R2 0x22222222 R3 0x33333333 R2 0x22222222 R3 0x33333333

R4 0x44444444 R5 0x55555555 R4 0x44444444 R5 0x55555555

R6 0x66666666 R7 0x77777777 R6 0x66666666 R7 0x77777777

n standard
data-

processing
instructions

Repeat
n times

TABLE XIII: The characterization tests T7 and T8
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Instruction Description
ARMv7-M Opcode Example

Opcode Mnemonic
ADC Add with carry 0xEB410503 adc.w r5, r1, r3

ADD Add 0xEB010203 add.w r2, r1, r3

ADR Form PC-relative address 0xA301 adr r3, #4

AND Bitwise AND 0xF402497F and sb, r2, #0xff00

BIC Bitwise bit clear 0xF02100AB bic r0, r1, #0xab

EOR Bitwise exclusive OR 0xF09B3718 eors r7, fp, #0x18181818

MOV Copies operand to destination 0x0008 movs r0, r1

MVN Bitwise NOT 0xEA6F0807 mvn.w r8, r7

ORN Bitwise OR NOT 0xEA6B173E orn r7, fp, lr, ror #4

ORR Bitwise OR 0xEA400205 orr.w r2, r0, r5

RSB Reverse subtract 0xF5C464A0 rsb.w r4, r4, #0x500

SBC Subtract with carry 0x418B sbcs r3, r1

SUB Subtract 0xF1B608F0 subs.w r8, r6, #0xf0

ASR Arithmetic shift right 0xFA48F709 asr.w r7, r8, sb

LSL Logical shift left 0x4091 lsls r1, r2

LSR Logical shift right 0xFA25F406 lsr.w r4, r5, r6

ROR Rotate right 0xFA65F406 ror.w r4, r5, r6

TABLE XIV: The 17 Instructions considered.
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