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Xavier Tunc1

1 IFP Energies nouvelles, 1-4, avenue du Bois-Préau, 92852 Rueil-Malmaison, France
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Abstract. Applications to solve large and complex partial derivative equation systems often
rely nowadays on frameworks like Arcane, Dune, Feel++. Linear solver packages like PETSc
or Trilinos are used to manage linear systems and provide access to a wide range of algorithms.
With the evolution of High-Performance Computing, the variety of the hardware features avail-
able in new architectures has considerably increased. ARM processors, AMD, Intel and Nvidia
GP-GPUs, TPU and FPGA devices are now common. To handle the induced complexity, differ-
ent strategies are adopted in each linear solver framework. One of them consists in introducing
a new layer that provides abstractions to manage the performance portability and to enable
several parallel programming models.

In this paper, we evaluate the performance of linear solver packages that rely on tools like
SYCL [16], Kokkos [8] or HARTS [11] to handle runtime systems like OpenMP, TBB, CUDA,. . . .
A simulator to solve advection-diffusion problems has been developed with ALIEN, a C++
framework that provides a high level and unified API to handle large distributed matrices and
vectors. We have benchmarked different solver algorithms, and have evaluated the efficiency of
their implementations, and their capability to perform on different architectures, for instance,
large number of cores, GP-GPU accelerators, or processors with large SIMD instructions.

1 Introduction

A wide variety of scientific and engineering applications rely on linear algebra algorithms.
Complex physical phenomena such as porous media flow or heat transfer are described using
partial derivative equation systems which require solving large sparse linear systems. For appli-
cations related to reservoir modeling or high energy physics simulations, most of the computing
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time is spent performing linear algebra operations. Using an efficient solver is then mandatory
to achieve performance.

The implementation of efficient algorithms for solving linear systems is a difficult task involv-
ing the knowledge of experts in applied mathematics and computer science. Fortunately, such
algorithms are generally available in highly efficient libraries that developers can plug. However,
selecting the best algorithm for a given problem remains, in practice, delicate as it requires
handling different kinds of issues: i) the numerical methods complexity leads to linear systems
that may be dense or sparse, with different structural properties of symmetry, positiveness, etc.
ii) the complexity of algebraic algorithms which generally perform on a limited family of linear
systems; iii) the computer science challenges of tuning data structures and algorithm implemen-
tations to fit the evolution of the hardware. It is more difficult for multi-physics applications
that couple problems requiring different kinds of linear solvers. The interfacing task with dif-
ferent external solvers becomes even more complex when developers need to maintain different
inconsistent and changing APIs when updating solver libraries.

Alien is a C++ framework that provides a high level and unified API to handle large dis-
tributed matrices and vectors, perform algebraic operations and solve linear systems. This API
has been designed to be accessible and comprehensible to numerical software developers hiding
the complexity and the variability of the algebraic structures used in linear solvers packages. It
differs from the traditional frameworks in its design based on lightweight structures that encap-
sulate multiple coexisting internal representations of algebraic objects. These representations
are dedicated to the algebra operations or linear solver algorithms available through different
linear solver packages or libraries. A mechanism is provided to manage efficiently and trans-
parently conversion between the different object representations. A plugin mechanism based on
converter objects ensures the extensibility of the framework to any kind of external linear solver
library.

In section 2, we present the general issues met in scientific software development to solve large
linear systems in a context where the research community in linear algebra is very active and
where many libraries provide a large panel of efficient methods on recent hardware technologies.
In section 3, we present Alien, a framework for linear algebra libraries, aiming at providing a
flexible, easy to use API for linear algebra. It provides a plugin mechanism that enables users
to easily extend the framework with new functionalities provided by any external solver library.
In section 4, we study performance portability issues in different linear solver packages using
tools like SYCL [16], Kokkos [8] or HARTS [11] providing abstractions above runtime systems
like OpenMP, TBB, CUDA,. . . Finally in section 5, we illustrate the use of Alien evaluating
the performance of popular linear solver implementations. We solve linear systems coming from
the discretization of a heterogenous advection-diffusion problem. We study the scalability of
the tested algorithms regarding the number of cores and GP-GPUs. We analyze the efficiency
of the implementations using hybrid MPI and thread parallelism and their capability to take
advantage of GP-GPUs or large SIMD instructions.

2 Issues with linear solver libraries in scientific software

In the development of numerical software, selecting the more relevant linear solver algorithm
for a given problem is complex. For a chosen linear solver package, implementing efficiently
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the plugin of an appropriate component may be a painful task. The taxonomy, used to classify
linear systems and numerical methods, is large. Choosing the best and most performant lin-
ear solver algorithms and preconditioners requires accurate knowledge at different levels. It is
important, from a numerical point of view, to well analyze the properties of linear systems. A
background in computer science is also necessary to handle the different programming models
used to implement efficient algorithms on the various target hardware platforms.
Considering, for instance, the discretization of partial differential equations, one of the major
issues is to solve efficiently huge linear systems. While there is a variety of numerical discretiza-
tion methods (Finite Difference, Finite Element, Finite Volume methods, etc.), it is well known
that the structural properties of the matrices, inherited from the numerical characteristics of
the used discretization methods, have a tremendous impact on the choice of the best algorithm
to solve the linear problem.
At the PDE domain level, we may have problems classified as elliptic, parabolic or hyperbolic
arising from advection-diffusion equation problems, we have Helmholtz problems as for the
Maxwell equations or boundary-value PDE problem arising for electromagnetism problem. At
a purely algebraic level, matrices may be classified regarding the symmetry of matrix structure,
the sparsity of matrix graph entries, the positiveness of the systems, the M property feature of
matrices, etc. The variety of algebraic methods to solve linear systems is also large. There are
two main families of methods, direct methods and iterative methods. Within each of them, they
can be classified regarding their robustness and their extensibility. In the large family of Krylov
methods, preconditioner algorithms are also classified in subcategories like polynomial methods,
factorization based methods, multi-level methods, etc.
Linear solver algorithms are available in different libraries which provide their own data struc-
tures with various formats (Dense, Compressed Sparse Row, Compressed Sparse Column, Ell-
pack, BlockEllpack, etc.) and various implementations to perform on different hardware plat-
forms. Some of them, like PETSc and Trilinos [14], provide in addition to their own algorithm
implementation, a generic interface to give access to numerous external linear solver libraries
capabilities. For example, PETSc provides access to Hypre [9], SuperLU, . . . and Trilinos
to PETSc, Hypre, MUMPS, etc. Those libraries are a convenient way to have access to a
large panel of solvers. Nevertheless they impose strict requirements on external package versions
for compatibility reason. Therefore using the up to date version of a specific solver or plugging
any in-house linear solver is often challenging as it requires a deep knowledge of libraries internal
structures.
Since the research domain in linear solver methods is very active, mainly driven by the evolution
of hardware that imposes to revisit algorithms, having access to different solver packages is im-
portant, at least for benchmark purpose to evaluate up to date methods. This is also important
in the development of multi-physics models when coupling different physical models. The linear
systems arising from each physical model may have different numerical properties. It may be
then necessary within the same application, to have access to algorithms available in different
libraries.
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3 Alien an open generic and extensible linear algebra framework

Alien is a C++ framework that provides a high level and unified API to handle large dis-
tributed matrices and vectors, to perform BLAS 1 and 2 operations and to solve linear systems or
eigenproblems. This framework differs from the previously cited generic frameworks in its design
based on lightweight structures that encapsulate multiple coexisting internal representations of
algebraic objects available through different linear solver packages or libraries.

Alien has been designed to provide an extensible API, related neither to a specific solver nor
to specific data structures. Its extensibility is ensured by providing closed specialized objects
that perform specific functionalities. Extending the library consists in providing new functional
objects without impacting existing classes.

In Alien’s design, high-level user functional features are separated from back-end data stor-
age implementations. At the user level, operations can be performed without any knowledge of
the underlying data structure implementations.

Alien architecture, represented in Figure 1a, is based on a Core layer composed of the Ma-
trix and Vector classes representing algebraic objects. Useful concepts like Space, Distribution
are provided to modelize global structural information shared by objects on which algebraic
operations can be performed. The Matrix and Vector classes are multi-representation objects.
They rely on the Multi Representation mechanism illustrated in Figure 1b. This mechanism is
based on the MultiImplObject concepts, kind of handlers on a collection of different implemen-
tations of a same object. Each implementation object has a timestamp which is incremented
on modification. Converter objects are helper tools that implement the conversion between
one implementation to another. They can be registered in a ConverterRegistry manager by the
means of a plugin mechanism. An automatic lazy conversion mechanism between implementa-
tions ensures that, when accessing a specific implementation, for instance ObjImplB in Figure 1b
, the up-to-date version of the specific object is returned, regardless of how the algebraic object
was created, filled or manipulated before. By the means of a timestamp manager, the version
of ObjImplB is compared to the lastest up-to-date version, for instance ObjImplA. ObjImplB
can be updated if necessary, by the means of the A2BConverter Converter object registred in
the ConverterRegistry. The memory footprint of this mechanism is limited to the number of
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implementations concurrently used. The overhead induced by conversion operations is reduced
thanks to the timestamp mechanism. The cost of these operations depends on the implementa-
tion of the converter objects. It is usually equivalent to a few matrix-vector product operations.
Matrices and vectors can be handled as a composition of submatrices and subvectors. This
mechanism is useful for multi-physics simulations where the global linear systems might be
assembled as sub-systems representing different models and their coupling interactions. The
CompositeMatrix and CompositeVectors classes modelize the composition of sub-matrices and
sub-vectors objects that can be addressed independently as Matrix and Vector objects.
At the API level, data structures are not manipulated directly. Some Builders and Accessors
objects are provided to write and read linear algebra objects. This enables to decouple, for
example, the assembly of a matrix to the underlying data structure of a matrix. Assembly
operations, writing a right-hand side, e.g. are generic operations and do not depend on the im-
plementation. Using specialized objects that carry the knowledge on the data structure strives
towards several objectives: i) the simulation code is written without any knowledge of the data
structure; ii) linear systems can be built directly in the expected data structure for one solver, or
in any data structure then converted to the right data structure; iii) changing the data structure
of the linear system corresponds to change the builder object; iv) several building strategies
can be used (keeping the profile or not for example), with different specific builder objects.

Listing 1: Matrices

auto pm = Env : : para l l e lMng ( ) ;
auto s = Space (10 , ”MySpace” ) ;
auto md = Matr ixDi s t r ibut i on ( s , s ,pm) ;
auto A = Matrix (md) ;
{

auto bu i l d e r =
DirectMatr ixBui lder (A, eResetValues ) ;

bu i l d e r . r e s e r v e (30) ;
bu i l d e r . a l l o c a t e ( ) ;
f o r ( In t eg e r row=0;row<10;++ i )
{

bu i l d e r ( row , row ) = 2 . ;
i f ( row+1<10)

bu i l d e r ( row , row+1) = −1.;
i f ( row−1>=0)

bu i l d e r ( row , row−1) = −1.;
}

}

Listing 2: Vectors

auto pm = Env : : para l l e lMng ( ) ;
auto s = Space (10 , ”MySpace” ) ;
auto vd = Vecto rD i s t r i bu t i on ( s ,pm) ;
auto x = Vector ( vd ) ;
{

auto wr i t e r = LocalVectorWriter ( x ) ;
f o r ( I n t eg e r i =0; i<10;++ i )

wr i t e r [ i ] = 1 . ;
}

The Alien API provides LinearAlgebra objects implementing the BLAS 1 and BLAS 2 func-
tionalities with a Lapack, ScaLapack-like API. A mechanism of expressions similar to the one
provided by the Eigen library is also available to perform algebraic operations as unary or
binary operators on Matrix and Vector objects. Listing 3 illustrates how to perform simple
algebraic operations with matrices and vectors with Alien API.

The Alien API provides some interface classes like ILinearSolver and IEigenSolver to solve
linear systems or eigenvalue problems. Listing 4 illustrates how to solve linear systems or
eigenvalue problems with Alien API.

To extend Alien with external linear solver packages, a plugin mechanism is provided. The
mechanism is based on some common interface functions to implement, some converter objects
that enable the conversion of data structures from one to another implementation, and a registry
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Listing 3: Algebraic expressions

auto pm = Env : : para l le lMng ( ) ;
auto s = Space (10 , ”MySpace” ) ;
auto md = Matr ixDi s t r ibut ion ( s , s ,pm) ;
auto vd = Vecto rD i s t r ibut i on ( s ,pm) ;
auto A = Matrix (md) ;
auto x = Vector ( vd ) ;
auto y = Vector ( vd ) ;
auto r = Vector ( vd ) ;
Real lambda = 0.5 ;
r = y−A∗x ;
y = y+(lambda∗ r ) ;
x = A∗( lambda∗y ) ;

Listing 4: Linear solvers

auto pm = Env : : para l le lMng ( ) ;
auto s = Space (10 , ”MySpace” ) ;
auto md = Matr ixDi s t r ibut ion ( s , s ,pm) ;
auto vd = Vecto rD i s t r ibut i on ( s ,pm) ;
auto A = Matrix (md) ;
auto x = Vector ( vd ) ;
auto y = Vector ( vd ) ;
auto r = Vector ( vd ) ;

auto s o l v e r=c r e a t eSo l v e r ( /∗ . . . ∗/ ) ;
auto s ta tu s = so lve r−>s o l v e (A, x , y ) ;
i f ( s t a tu s . succeed ) {

r = y − A∗ x ;
cout<<” re s2 = ”<<dot ( r , r)<<endl ;

}

Listing 5: Uzawa method

bool solveUzawaMethod ( IL inea rSo lv e r ∗ so lve r ,
Real omega ,
i n t nb i t e r a t i on s ,
CompositeMatrix const& matrix ,
CompositeVector const& b ,
CompositeVector& xk ) {

/∗ [ A B ] [ u ] [ f ]
[ tB 0 ] [ p ] [ g ] ∗/

Matrix const& A = matrix ( 0 , 0 ) ; //subMat M[0,0]
Matrix const& B = matrix ( 0 , 1 ) ; //subMat M[1,1]
Matrix const& tB = matrix ( 1 , 0 ) ; //subMat M[1,0]
Vector const& f = b ( 0 ) ; //subVec B[0]
Vector const& g = b ( 1 ) ; //subVec B[1]
Vector& uk = xk (0) ;
Vector& pk = xk (1) ;

Vector ru (A. rowSpace ( ) . d i s t r i b u t i o n ( ) ) ;
Vector rp ( tB . rowSpace ( ) . d i s t r i b u t i o n ( ) ) ;

f o r ( i n t k=0;k<nb i t e r a t i o n s ;++k) {
//Update velocity
ru = f − B∗pk ;
so lve r−>s o l v e (A, ru , uk ) ;

auto s ta tu s = so lve r−>getStatus ( ) ;
i f ( ! s t a tu s . succeeded ) return f a l s e ;

rp = g − tB∗uk ;
//Update pressure
pk = pk − omega∗ rp ;

}
re turn true ;

}

mechanism that enables the end-user to select the desired functionalities and their specific
implementations. Any external library can then be plugged in and made available as a module
in the Alien framework. Each implementation is identified by a unique string key value and
an associated tag type value. The Core of Alien provides a few intermediate backends, CSR or
DOK, usually used to write converters between different backends.

The Core of Alien provides also some generic implementations of a few Krylov solver al-
gorithms (CG, BiCGStab) and preconditioners (ILU0, Chebychev, Neunman, ILUFP). These
implementations depend only on the abstract backend matrix, the vector structures and their
associated LinearAlgebra objects implementing matrix-vector operations. These algorithms can
be instantiated for instance with a parallel MPI based CSR linear algebra implementation for
CPU, and a SYCL based implementation for Nvidia, Intel or AMD GP-GPU. More details can
be found in the following section 4.

In the following example, we illustrate the use of Alien implementing the Uzawa algorithm
to solve the Stokes problem 1 which leads to a saddle point linear system. The Stokes problems
consists in finding u, p(x) x ∈ Ω: 

α∇2u +∇p = f in Ω

∇ · u = 0 in Ω

u = g on ∂Ωd,

∂nu = h on ∂Ωn,

(1)

The discretization of Equation 1 with classical numerical schemes, positioning the degrees of
freedom for the velocity and the pressure on geometrical entities of different types (for instance
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velocity on faces or pressure on cells) leads to a saddle point system with a symmetric indefinite
matrix as follows: (

A B
BT 0

)(
u
p

)
=

(
f
g

)
(2)

with A ∈ Rn×n definite on the kernel of B ∈ Rm×n m < n.
This saddle point linear system can be solved with the iterative Uzawa in algorithm. Listing

5 illustrates how this algorithm can be implemented with Alien.

4 Performance portability layers in linear solver packages

Nowadays, the diversity in computer architectures for HPC is very large with a wide range
of processor and memory technologies, including GPUs, Many-Core Processors, ARM, FPGAs,
and ASICs, as well as new memory technologies High-Bandwidth Memory (HBM), Non-Volatile
Memory (NVRAM). To handle seamlessly at the software level the coming issues, performance
portability tools have been developed for a few years to manage in a unified way parallelism,
heterogeneous and multi level memory in order to write portable parallel algorithms. These tools
provide abstractions such as: MemorySpace models to address Single/Multi Node, LocalHost
memory or Remote memory, ExecutionSpace models to deal with serial execution, multi-threads
execution with OpenMP, Posix, TBB,. . . on standard processors or Cuda, OpenCL, HIP on
accelerators devices (NVidia, AMD, . . . ) They enable writing generic parallel algorithms with
lambda functions using the task programming paradigm. They provide Parallel Loop concepts
and Generic Parallel Collections to hide the specificities of the various available runtime systems.
Among these tools, we can cite Kokkos [8], Raja [4], SYCL [16], HARTS [11].

Kokkos [8] is a modern C++ framework developped at Sandia National Laboratories provid-
ing a model of compute node as a collection of abstractions modeling memory and execution
spaces. It enables to separate the parallel programming paradigm to write efficient algorithms
with C++ functors or lambda expressions, from the execution level on specific back-end. Some
array abstractions model the specificities of memory in a unified way. Generic parallel algo-
rithms such as parallel for, parallel scan, parallel reduce provide dispatch mechanisms to take
advantage of multiple runtime systems like OpenMP, TBB, Cuda, . . . regarding the specificities
of memory and processing units. In the Trilinos linear solver package, algebraic data structures,
provided by the Tpetra package are based on the Kokkos framework. The parallel algorithms
can then be written at a high level with the solver and preconditioner packages, and executed
with different runtime systems, like OpenMP on many-core architectures or Cuda on Nvidia
GP-GPU.

SYCL [16], from the Khronos group, is a standard for heterogeneous computing, originally
proposed as a single source C++ approach of OpenCL programmming. The concepts provided
by SYCL are very similar to the ones of Kokkos. Computing nodes are modelled as a collection of
devices. Parallel algorithms are written with lambda expressions that can be submitted to work
queues. The concepts provided to handle memory are different. They rely on buffer objects
and different kinds of accessors with specific intents (read, write,. . . ) to handle the different
type of memories. This safer memory access mechanism enables the runtime systems to create
a dependency graph of buffer accesses, to better manage automatically data movement walking
along theses graphs. In the Core of Alien, a SYCL backend with Block Ellpack matrix structure
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is provided. The SYCLLinearAlgebra provides efficient BLAS operations implementations on
a large variety of GP-GPU. They have been validated using the HipSYCL framework [1] that
enables to handle Nvidia GP-GPU with Cuda and AMD GP-GPU with HIP.

HARTS [11], yet another runtime system layer, provides abstractions to model memory
spaces, execution spaces and tools to write algorithms as graph of tasks that can be executed in
parallel with various underlying runtime systems. In the HTSSolver linear framework, MCK-
ernel algebra provides a generic API to perform parallel BLAS 1,2 operations, matrix-vector
operations independently of the underlying data-structures and dispatch mechanisms to choose
the more efficient data-structures regarding specific optimisations like AVX512 instructions,. . .

5 Benchmark of preconditioners provided in various popular linear solver packages

In this section, we evaluate the performance of popular preconditioners available in different
linear solver packages. The advection-diffusion problem 3 is discretized with a classical finite
volume two point flux approximation on the unit cube Ω. Find u(x) x ∈ Ω:

v = −κ∇u in Ω,

∇·(−κ∇u) = f in Ω,

u = g on ∂Ωd,

∂nu = f on ∂Ωn,

(3)

We use a Nx×Ny×Nz structured regular grid discretization of Ω and a heterogeneous diffusion
tensor κ with the following values

κ(x, y, z) = κ0e
−α

2
(1+sin(2π x

Lx
)(1+sin(2π y

Ly
))
.

We have plugged in Alien the in-house IFPEN solver libraries MCGSolver [2,3] and HTS-
Solver [12, 13], and the popular open-source solver packages PETSc version 3.10, Trilinos
version 13.2 and Hypre version 2.24. The framework is compiled with GCC 8.3 with the
OpenMP support and activating AVX2 vector instructions. The main solver packages features
are described in Table 1.

We solve the linear system coming from the discretization of problem 3 (α = 10, Lx =
0.125, Ly = 0.25) with a preconditioned BiCGStab solver using a 10−8 stop criteria toler-
ance parameter. We compare the performance of the standard relaxation (SSOR), Chebyshev
polynomial of degree 1, ILU preconditioners and different multi-level algorithms like Algebraic
Multi-Grids solvers (Hypre BoomerAMG [10], Trilinos MueLu solver [15], NVIDIA AmgX
solver [6]). For the ILU preconditioner, we use the classical ILU0 algorithm and the iterative
FILU variant proposed in [5] and provided in the ShyLU package of Trilinos and the ILUFP
option of HTSSolver. In our experiments we use the FILU preconditioner with 3 iterations
for triangular resolutions and 15 iterations for the factorization. For the AMG preconditioner
options, we select the PMIS parameter for the coarsening algorithm of BoomerAMG while Ag-
gregation is used with MueLu and AmgX. The matrix hierarchy level max is set to 25. We use
Gauss-Seidel as smoother for BoomerAMG and MueLu, and Jacobi smoother for AmgX. A V
cycle is used with BoomerAMG and a W cycle for MueLu and AmgX. We select the default
values for the other parameters.
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Packages Hypre PETSc Trilinos MCGSolver HTSSolver AlienCore
Version 2.4 3.7 13.2 2.1.0 2.0.0 1.1.4
Language C C C++ C++ C++ C++
MPI yes yes yes yes yes yes
Threads OpenMP OpenMP OpenMP OpenMP OpenMP no

TBB, Posix Posix TBB, Posix
AVX512 yes yes yes
Cuda yes yes yes yes SYCL
Direct Solver SuperLU KLU2 SuperLU no

MUMPS MUMPS no
Krylov CG,BiCG CG,BiCG CG,BiCG CG,Piepline CG, BiCG CG, BiCG

GMRES GMRES GMRES BiCG, GMRES
Poly Chebyshev Neumann Chebyshev Chebychev

Neumann Neumann
Relaxation Jacobi GS, SymGS Jacobi, GS no
ILU ILU(k,t) ILU(k,t) ILU(k), ILU(0) ILU(0) ILU(0)

FAST ILU ILUFP ILU0PF ILUFP
AMG BoomerAMG BoomerAMG MueLu BoomerAMG BoomerAMG no

AmgX AmgX AmgX

Table 1: External linear solver features

We study the numerical robustness of the tested algorithms and their scalability regarding the
number of cores and GP-GPUs. The experiments have been run on Topaze, a multi-node Linux
cluster of the CCRT, the French Computing Centre for Research and Technology. This cluster is
composed of 6 144 dual-socket Nodes with 2x64-cores AMD Milan at 2.45GHz, 256Go per node,
2Go per core. Some of these nodes are equipped of GP-GPU Nvidia Ampere A100 The bench-
mark is realized with the following hardware configurations: full Mpi, full threads (OpenMP),
and hybrid MPI + Cuda with one Mpi process and one GPU. We realize the experiments on
a single node of the cluster with linear systems of 106 rows obtained using a 100 × 100 × 100
regular mesh. The elapsed time T in seconds of the full resolution and the number of iterations
at convergence Niter are gathered in table 2a. The throughputs, given by the inverse 1

T of the
resolution times, are compared in Figure 2a.

The analysis of Figure 2a shows that within one node, the best performances are obtained
using GP-GPU version of the AMG preconditioner available with the AmgX library provided by
both in house solver packages MCGSolver and the MueLu package of Trilinos. With config-
uration using only CPUs, the best performance are obtained with the BoomerAMG algorithm
provided by our in house solver packages MCGSolver and HTSSolver.

The Trilinos and HTSSolver framework are based on, respectively Kokkos [7] and the
HARTS layer [11] that enable to design data structures and to write algorithms with high
level abstractions that encapsulate various parallel paradigms. So when algorithms are writ-
ten with those abstractions, some dispatch mechanisms enable to handle in a transparent way
parallelism on distributed memory with Mpi, parallelism on shared memory with threads using
either OpenMP, Posix threads, or TBB, and parallelism on GP-GPU accelerator devices with
Cuda. We evaluate these performance portability features, benchmarking the FILU, Chebyshev
polynomial and SOR preconditioners on one node with the following hardware configurations
denoted mpi, omp and gpu for respectively full Mpi, full threads OpenMP, one Mpi process and
one GP-GPU. These preconditioners are interesting despite their lack of robustness regarding
AMG preconditioners for their good smoothing properties in multi-level algorithms. We have
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Figure 2: Throughput performance results for a 100× 100× 100 test case. Higher is better.

gathered the elapsed times and iteration numbers results in Table 2b.
The analysis of the results shows that the best performances are usually obtained either

with one MPI process and a GP-GPU either with the full Mpi configuration with 64 or 128
cores. It shows also the interest of the hybrid MPI+X configuration which enables to fully take
advantage of computing power offered by the GP-GPUs and extra available cores. When a main
application is run with a small number of MPI processes per node, the performance of the solvers
can then be increased using the extra available cores of the many-core processors with threads.
The analysis of the results in figure 2a shows that the best performances are obtained with AMG
preconditioners performed on 128 cores with the MPI configuration. The performances obtained
using 1 MPI process and a GP-GPU are equivalent to those performed on 64 cores with the
MPI configuration. In figure 2b and table 2b, we can notice that single source code algorithm’s
implementation based on a performance portability layer, do not present really any overhead
regarding their equivalent specific hand written implementations in packages like PETSc and
MCGSolver. The performance of GP-GPU implementations based on Kokkos or SYCL are
quite the same.

6 Conclusion

In this paper, we have presented Alien, a C++ framework that provides a high level and uni-
fied API to handle large distributed matrices and vectors, to perform algebraic operations and
to solve linear systems or eigenproblems. We have detailed its design based on lightweight struc-
tures that encapsulate multiple coexisting internal representations of algebraic objects available
through different linear solver packages or libraries.

We have illustrated the capability of the framework to write at a high level algebraic algo-
rithms. Thanks to a plugin mechanism, the framework has been easily extended with other
in-house and external software packages. We have performed a benchmark of a large variety
of linear solver algorithms with different hardware configurations. We have studied the perfor-
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Package MCGSolver HTSSolver PETSc Trilinos Hypre
Precond ILU0 AMG ILU0 AMG ILU0 AMG ILU0 MueLu ILU0 AMG
Nb Cores Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T
1 186/6.933 7/4.25 90/4.51 3/3.87 387/17.9 5/6.18 172/11.0 13/9.46 125/11.2 3/4.29
2 205/4.792 7/3.08 194/6.40 3/3.85 351/9.24 5/6.03 92/4.26 12/5.99 66/5.95 3/2.89
4 212/4.227 7/1.96 102/3.16 4/2.26 463/9.68 5/3.66 126/3.32 9/3.29 65/4.48 4/1.72
8 197/4.011 8/1.42 191/5.11 3/1.43 151/3.31 6/3.15 207/4.30 8/2.34 57/3.89 4/1.15
16 198/3.043 8/1.04 194/4.54 3/0.97 346/5.90 7/2.92 198/3.32 7/1.80 58/3.21 4/0.78
32 218/1.005 8/0.48 106/1.08 3/0.65 660/3.58 7/1.85 229/1.41 7/1.26 85/1.92 5/0.41
64 222/0.204 8/0.30 194/0.92 3/0.47 688/0.90 7/1.27 107/0.39 10/1.50 58/0.87 4/0.27
128 240/0.234 8/0.26 196/0.80 3/0.53 387/0.34 6/1.23 241/0.49 6/3.33 72/0.65 4/0.20

(a) Single-node results : ILU0 and AMG preconditioners

Package MCGSOLVER HTSSolver Trilinos AlienCore
Precond ILU0 ILUFP ILU0 ILUFP Chebychev ILUFP Chebychev SSOR ILUFP Chebychev
Nb Cores Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T Niter/T
1 mpi 186/6.93 189/25.7 90 /4.51 287/20.1 600/12.1 235/22.8 646/13.8 67/6.46 294/53.9 555/10.3
gpu 309/0.54 - - - - 239/1.41 511:0.54 143/15.9 269/0.80 626/0.69
2 mpi 205/4.79 214/16.0 194/6.40 282/15.8 464/8.01 - 570/8.63 70/4.21 304/35.6 542/7.81
omp 323/7.47 224 17.0 190/6.23 286/23.6 532/9.59 238/12.6 282/4.12 143/12.6 -
4 mpi 212/4.22 206/11.0 102/3.16 300/15.8 604/8.97 - 599/8.19 81/3.50 262/18.0 625/8.63
omp 283/5.49 213/11.8 103/4.01 292/23.6 537/9.59 224/9.28 648/8.10 87/7.53 - -
8 mpi 197/4.01 198/11.0 191/5.11 274/15.1 550/8.40 - 604/8.62 89/5.02 267/14.8 536/7.94
omp 321/3.24 264/7.45 174/5.94 270/18.8 536/6.74 228/9.56 527/6.78 69/5.96 - -
16 mpi 198/3.04 207/7.51 194/4.54 276/10.5 417/4.51 - 613/6.56 69/1.76 275/11.3 588/7.25
omp 221/2.14 224/4.77 204/7.29 286/15.7 526/8.70 238/6.87 597/5.41 143/12.8 - -
32 mpi 218/1.00 228/1.67 106/1.08 275/3.23 600/2.13 - 534/1.68 92/0.46 332/4.86 328/1.12
omp 358/1.98 302/2.97 205/9.93 295/17.6 528/9.49 225/2.72 530/1.20 86/7.46 - -
64 mpi 222/0.20 229/0.63 194/0.92 294/1.54 592/0.71 - 531/0.60 74/0.22 283/1.83 564/0.36
omp 350/0.37 249/0.72 102/9.02 275/8.28 372/12.7 240/1.00 671/0.49 135/11.5 - -
128 mpi 24/0.23 243/0.37 196/0.80 283/1.31 594/0.51 - 271/0.63 155/0.86 276/1.04 572/0.25
omp 385/0.32 271/0.52 122/17.4 292/8.98 531/23.8 229/1.16 563/0.41 67/5.74 - -

(b) Performance portability results : ILU0, ILUFP, Cheb, SSOR preconditioners

Table 2: Performance results

mance of algorithms written with abstractions to hide the underlying hybrid MPI+X parallelism
with OpenMP for threads and Cuda for GP-GPU.

Alien, part of an open-source project is available at :
https://github.com/arcaneframework/alien
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