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PARTITION GENERICITY AND PIGEONHOLE BASIS THEOREMS

BENOIT MONIN AND LUDOVIC PATEY

Abstract. There exist two main notions of typicality in computability theory, namely, Cohen
genericity and randomness. In this article, we introduce a new notion of genericity, called
partition genericity, which is at the intersection of these two notions of typicality, and show
that many basis theorems apply to partition genericity. More precisely, we prove that every co-
hyperimmune set and every Kurtz random is partition generic, and that every partition generic
set admits weak infinite subsets, for various notions of weakness. In particular, we answer
a question of Kjos-Hanssen and Liu by showing that every Kurtz random admits an infinite
subset which does not compute any set of positive effective Hausdorff dimension. Partition
genericity is a partition regular notion, so these results imply many existing pigeonhole basis
theorems.

1. Introduction

The infinite pigeonhole principle can be considered as the most basic statement from Ramsey’s
theory. The infinite pigeonhole principle for 2 colors can be formulated as “for every set A ⊆ ω,
there is an infinite set H ⊆ A or H ⊆ A.” From a combinatorial viewpoint, the infinite
pigeonhole principle is trivial. On the other hand, the computational analysis of this principle
is very subtle and received the attention of the computability community for decades, motivated
by the reverse mathematics of Ramsey’s theorem for pairs.

1.1. Pigeonhole basis theorems

The computability-theoretic analysis of a mathematical problem consists in understanding,
given an instance, how computably complicated are its solutions. From this perspective, a
lower bound is a statement of the form “There exists an instance such that every solution is
computationally strong”, while an upper bound is of the form “For every instance, there is a
computationally weak solution.” Here, the notions of strength and weaknesses range over many
computability-theoretic properties.

A pigeonhole basis theorem is an upper bound for the pigeonhole principle, that is, a state-
ment of the form: “For every set A ⊆ ω, there is an infinite set H ⊆ A or H ⊆ A which is
computationally weak”. Several pigeonhole basis theorems have been proven:

(1) If B is a non-computable set, then for every set A ⊆ ω, there is an infinite set H ⊆ A
or H ⊆ A such that B ̸≤T H (Dzhafarov and Jockusch [3]).

(2) If B is a non-Σ0
1 set, then for every set A ⊆ ω, there is an infinite set H ⊆ A or H ⊆ A

such that B is not Σ0
1(H) (Wang [21]).

(3) If f is hyperimmune, then for every set A ⊆ ω, there is an infinite set H ⊆ A or H ⊆ A
such that f is H-hyperimmune (Patey [16]).

(4) For every set A ⊆ ω, there is an infinite setH ⊆ A orH ⊆ A of non-PA degree (Liu [12]).
(5) For every set A ⊆ ω, there is an infinite set H ⊆ A or H ⊆ A of non-random degree,

and which does not compute any set of positive effective Hausdorff dimension (Liu [13]).

Asking for an infinite subset of A or of A is important, as there exist sets A such that every
infinite subset is arbitrarily strong. For example, if A is the set of all initial segments of a set
B, then every infinite subset of A computes B. In some cases however, one can fix the side of
the subset. This happens in particular when the set A is sufficiently typical, where typicality
means either randomness or genericity.
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1.2. Randomness subset basis theorems

Randomness is a notion of typicality which was originally defined using measure theory. More
recently, Algorithmic Randomness gave a formal meaning to the notion of random sequence using
effective measure theory and Kolmogorov complexity. This yielded a hierarchy of randomness
notions, among which we should mention (in increasing order) Kurtz randomness, Schnorr
randomness, Martin-Löf randomness, Schnorr 2-randomness, and 2-randomness.

A randomness subset basis theorem is a statement of the form: “For every sufficiently random
sequence A ⊆ ω, there is an infinite subset set H ⊆ A which is computationally weak”. Here, by
“sufficiently random”, we mean that the class of all such sets A has positive measure. One can
then quantify the amount of randomness needed for such a statement, and obtain a theorem
of the form “For every � random sequence A ⊆ ω, there is an infinite subset set H ⊆ A
which is computationally weak”, where “� random” should be replaced by the right notion of
randomness, such as Martin-Löf randomness for example. Subsets of random sequences were
mainly studied as mass problems. For example, the Muchnik degree of the class of infinite
subsets of Martin-Löf random sequences (seen as sets of numbers), is the Muchnik degree of
DNC functions (Kjos-Hanssen [10], Greenberg and Miller [4]). However, a few randomness
subset basis theorems appeared in the literature:

(1) Every 2-random (or even Schnorr 2-random) has an infinite subset which does not
compute a 1-random (Kjos-Hanssen [8]).

(2) Every 1-random has an infinite subset which does not compute a 1-random, or even
which does not compute any set with positive effective Hausdorff dimension (Kjos-
Hanssen and Liu [9]).

Kjos-Hanssen and Liu [9] asked whether these results could be improved to weaker notions
of randomness, such as Schnorr randomness. In this article, we give a strong positive answer
by showing that these results can be improved to Kurtz randomness.

1.3. Genericity subset basis theorems

Genericity is a notion of typicality which can be defined in terms of co-meager sets. The
default notion of genericity considered is Cohen genericity. Later, Jockusch studied effectiviza-
tions of Cohen genericity, yielding again a hierarchy of genericity notions, among which we
mention in increasing order bi-hyperimmunity, weak 1-genericity and 1-genericity. A genericity
subset basis theorem is a statement of the form: “For every sufficiently Cohen generic set A ⊆ ω,
there is an infinite subset set H ⊆ A which is computationally weak”. Genericity subset basis
theorems were not specifically studied per se. One can however mention one such result:

(1) If B is a non-computable set, then every co-hyperimmune set has an infinite subset
which does not compute B (Hirschfeldt et al. [6]).

1.4. Partition genericity

In this article, we define a new notion of genericity, called partition genericity, and prove
many statements of the form “Every partition generic set A has an infinite computationally
weak subset.” We call these statements partition genericity subset basis theorems. Contrary
to Martin-Löf randomness and Cohen genericity, this notion of partition genericity enjoys a
property that one would expect of a subset basis theorem, that is, partition genericity is closed
under supersets.

Theorem 1.1

(1) If B is a non-computable set, and A is partition generic, then there is an infinite set
H ⊆ A such that B ̸≤T H.

(2) If B is a non-Σ0
1 set, and A is partition generic relative to B, then there is an infinite

set H ⊆ A such that B is not Σ0
1(H).

(3) If f is hyperimmune, and A is partition generic relative to f , then there is an infinite
set H ⊆ A such that f is H-hyperimmune.

(4) If A is partition generic, then there is an infinite set H ⊆ A of non-PA degree.
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(5) If A is partition generic, then there is an infinite set H ⊆ A of non Martin-Löf random
degree, and furthermore, which does not compute any set of positive effective Hausdorff
dimension.

In particular, every co-hyperimmune set and every Kurtz random is partition generic. More-
over, we show that partition genericity is almost a partition regular notion (see Corollary 2.34).
It follows that all these partition genericity subset basis theorems imply all the pigeonhole basis
theorems mentioned above.

1.5. Organization of this paper

In Section 2, we introduce the central notion of partition regularity, and study it both from a
combinatorial and a computability-theoretic viewpoint. We then define the notion of partition
genericity. Then, in Section 3, we prove a first range of applications which hold for unrelativized
partition genericity. The two next sections, Section 4 and Section 5 are devoted to the preserva-
tion of hyperimmunity and non-Σ0

1 definitions, respectively. These subset basis theorems require
the definition of alternative notions of genericity. Last, we study lowness for various notions
related to partition genericity in Section 6.

1.6. Notation

We use lower case letters a, b, c for integers, upper case letters for sets of integers, and rounded
letters A,B for classes.

A k-cover of a set X is a k-tuple of sets X0, . . . , Xk−1 such that X0 ∪ · · · ∪Xk−1 ⊇ X. We do
not require the sets Xi to be pairwise disjoint. Given a set X ⊆ ω and some n ∈ ω, we let [X]n

denote the set of all subsets of X of size n. Accordingly, we write [X]ω for the class of all infinite
subsets of X. We write 2=n for the set of all binary strings of length n, and 2<ω =

⋃
n 2

=n. We
write |σ| for the length of the string σ.

A Mathias condition is a pair (σ,X), where σ ∈ 2<ω is a finite binary string, X is an infinite
set of integers, and minX ≥ |σ|. The set X is usually called a reservoir, as it can informally be
seen as a reservoir of elements to add to σ. A Mathias condition (τ, Y ) extends (σ,X) if σ ⪯ τ ,
Y ⊆ X and τ \ σ ⊆ X. Here, we identify a string σ with the set {n < |σ| : σ(n) = 1}.

2. Partition regularity

In this section, we conduct a general study of partition regularity from a computability-
theoretic viewpoint. We introduce several related concepts, including the central notion of
partition genericity, which will be justified by the constructions of Section 3.

2.1. Partition regularity

The central notion we are going to consider in this article is the one of partition regularity
(see Hindman and Strauss [5]). This concept comes from Ramsey theory and can be considered
as a generalization of the infinite pigeonhole principle.

Definition 2.1. A partition regular class is a collection of sets L ⊆ 2ω such that:

(1) L is not empty
(2) If X ∈ L and X ⊆ Y , then Y ∈ L
(3) For every k, if Y0 ∪ · · · ∪ Yk ∈ L, then there is i ≤ k such that Yi ∈ L

Ramsey’s theory is sometimes characterized as the study of which classes are partition regular.
Note that our definition of partition regularity differs from the standard definition in that we
require our classes to be closed under superset. We will make an essential use of this extra
closure requirement all along this article. There are many well-known examples of partition
regular classes in combinatorics:

Example 2.2. The following classes are partition regular.

(1) {X ⊆ ω : X is infinite} by the infinite pigeonhole principle ;
(2) {X ⊆ ω : n ∈ X} for a fixed n ;
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(3) {X ⊆ ω : lim supn→∞
|{1,2,...,n}∩X|

n > 0} ;

(4) {X ⊆ ω :
∑

n∈X
1
n = ∞}.

In the computability-theoretic realm, many pigeonhole basis theorems can be rephrased as
statements about partition regularity.

Example 2.3. The following classes are partition regular.

(1) {X ⊆ ω : ∃Y ∈ [X]ω Y ̸≥T C} for any C ̸≤T ∅ (see Dzhafarov and Jockusch [3])
(2) {X ⊆ ω : ∃Y ∈ [X]ω Y is not of PA degree} (see Liu [12])

(3) {X ⊆ ω : ∃Y ∈ [X]ω Y (n) ̸≥T C} for any non-∆0
n+1 set C (see Monin and Patey [15]) ;

(4) {X ⊆ ω : ∃Y ∈ [X]ω ωY
1 = ωck

1 } (see Monin and Patey [15]).

Dorais [1] was the first to use partition regular classes in the context of reverse mathematics.
More precisely, he worked with a variant of Mathias forcing whose reservoirs avoid a Σ0

2 free
ideal over 2ω. A class is a free ideal iff it is the complement of a partition regular class.

2.2. Non-trivial classes

A partition regular class can be though of as a notion of largeness. Indeed, if we interpret
X ∈ L as “X is large”, then the axioms of partition regularity say that if a set is large, then
any superset of it is large, and if we split a large set into two (or finitely many) parts, then at
least one of the parts is large. There exist however a family of partition regular classes that fail
this intuition. We call them principal classes.

Definition 2.4. A partition regular class L ⊆ 2ω is principal if L = {X ∈ 2ω : n ∈ X} for
some n. A partition regular class L is non-trivial if it contains only infinite sets, otherwise it is
trivial.

The following proposition shows that once one excludes the principal partition regular classes,
then the remaining partition regular classes satisfy at least one enjoyable property of largeness,
namely, having only infinite elements.

Proposition 2.5 A partition regular class L is non-trivial iff it contains no principal partition
regular subclass.

Proof. It is clear that if L is non-trivial, it does not contain a principal partition regular subclass.
Suppose now L is trivial, that is, L contains a finite set X = {n1, . . . , nk}. Then in particular
we have {n1} ∪ · · · ∪ {nk} ⊇ X. It follows that we must have {ni} ∈ L for some i ≤ k. Then
any set X containing ni is in L, that is, we have {X ∈ 2ω : ni ∈ X} ⊆ L. □

Non-trivial partition regular classes admit a simple characterization, which will be later used
to generalize the concept of non-triviality to arbitrary classes.

Proposition 2.6 A partition regular class L is non-trivial iff L is included in the Σ0
1 class U2

of sets containing at least two distinct elements.

Proof. If L is non-trivial then every member of L is infinite and clearly L ⊆ U2. If L is trivial
then by Proposition 2.5, it contains {n} for some n ∈ ω and thus we do not have L ⊆ U2. □

The following proposition says that any non-trivial partition regular class must contain many
elements, in a measure-theoretic sense. All the partition regular classes we are going to consider
in the applications are Borel, hence measurable. Given two sets X,Y ⊆ ω, we write X ⊆∗ Y to
say that X \ Y is finite, and X =∗ Y if X ⊆∗ Y and Y ⊆∗ X. We say that a class L is closed
under finite changes if whenever X ∈ L and X =∗ Y , then Y ∈ L.

Proposition 2.7 Let L be a non-trivial partition regular class. Then L is closed by finite
changes. Furthermore if L is measurable it has measure 1.

Proof. Let X ∈ L. By definition, any Y ⊇ X also belongs to L. Thus L is closed under finite
addition of elements, that is, if X ∈ L and F is finite, then X ∪ F ∈ L. Consider now any
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Y ⊆ X such that |X \ Y | is finite. In particular, X = Y ∪ {n0, . . . , nk} for some elements
n0, . . . , nk. As L contains only infinite elements, we must have Y ∈ L. Thus L is closed by
finite suppression, that is, if X ∈ L and F is finite, then X \ F ∈ L. We easily conclude that L
is closed under finite changes.

If L is measurable, by Kolmogorov 0-1 law, L is either of measure 0 or of measure 1. Suppose
for contradiction that L is of measure 0. As L is measurable, if must be included in some Borel
set A of measure 0. Let O be an oracle such that A is included in a Π0

2(O) classes effectively of
measure 0, that is, A ⊆

⋂
e Ue for some uniformly O-computable sequence of Π0

2(O) classes such
that µ(Ue) < 2−e. Then no element of L is O-Martin-Löf random. Let Z be any O-Martin-Löf
random set. We also have that Z is O-Martin-Löf random. Also ω ⊆ Z ∪Z. As ω ∈ L we must
have Z ∈ L or Z ∈ L, which is a contradiction. Thus L is not of measure 0 and therefore it is
of measure 1. □

2.3. Closure properties

We now study some good closure properties enjoyed by the collection of all partition regular
classes. A superclass of a partition regular class is not partition regular in general, even when
the superclass is closed under superset. For example, let A be a bi-infinite set, and let LA =
{X ∈ 2ω : |A∩X| = ∞}. Then LA is a partition regular class, but L = LA∪{X ∈ 2ω : X ⊇ A}
is not. Indeed, let x0 = minA and B = A\{x0}. Then {x0}∪B = A ∈ L, but neither {x0}, nor
B belong to L. On the other hand, an arbitrary union of partition regular classes is partition
regular.

Proposition 2.8 Suppose {Li}i∈I is an arbitrary non-empty collection of partition regular
classes. Then

⋃
i∈I Li is a partition regular class.

Proof. It is clear that
⋃

i∈I Li is not empty. Let X ∈
⋃

i∈I Li. Let Y ⊇ X. There is some i ∈ I
such that X ∈ Li. As Li is partition regular, Y ∈ Li ⊆

⋃
i∈I Li.

Let X ∈
⋃

i∈I Li. Let Y0 ∪ · · · ∪ Yk ⊇ X. There is some i ∈ I such that X ∈ Li. As Li is
partition regular, Yj ∈ Li ⊆

⋃
i∈I Li for some j ≤ k. □

In particular for every class A containing a partition regular class, there is a largest partition
regular class included in A.

Definition 2.9. Given a class A ⊆ 2ω, let L(A) denote the largest partition regular subclass
of A. If A does not contain a partition regular class, let L(A) be the empty set.

The largest partition regular class included in A admits a simple explicit definition that we
shall use to analyse the definitional complexity of the partition regular classes we consider.

Proposition 2.10 Let A ⊆ 2ω be any class. Then

L(A) = {X ∈ 2ω : ∀k ∀X0 ∪ · · · ∪Xk ⊇ X ∃i ≤ k Xi ∈ A}

Proof. Note that by definition, L(A) ⊆ A, as if X /∈ A then itself as a 1-cover is not in A, so
X /∈ L(A). Let us show that L(A) contains every partition regular class included in A. Suppose
L ⊆ A is partition regular. Then given X ∈ L, for every k and every X0 ∪ · · · ∪ Xk ⊇ X we
have Xi ∈ L ⊆ A for some i ≤ k. It follows that X ∈ L(A) and thus that L ⊆ L(A).

Assume L(A) ̸= ∅. Let us show that L(A) is partition regular. Suppose X ∈ L(A). Let
Y ⊇ X. Then for every k, every k-cover of Y is also a k-cover of X. As X ∈ L(A), one element
of the k-cover belongs to A. Thus for every k and every k-cover of Y , one element of the k-cover
belongs to A. It follows that Y ∈ L(A). Let X ∈ L(A) and let Y0 ∪ · · · ∪ Yk ⊇ X for some k.
Let us show there is some i ≤ k such that Yi ∈ L(A). Suppose for contradiction that this is not
the case. In particular for every i ≤ k there are sets Y i

0 , . . . Y
i
ki

⊇ Yi such that ∀j ≤ ki, we have

Y i
j /∈ A. In particular the sets {Y i

j }i≤k,j≤ki are a finite cover of X such that for every i ≤ k and

every j ≤ ki we have Y i
j /∈ A. This contradicts that X ∈ L(A). Thus there must exists i ≤ k

such that Yi ∈ L(A). So if L(A) is non-empty, it is partition regular. □
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Last, partition regular classes enjoy a very useful property: the intersection of an infinite
decreasing sequence of partition regular classes is again partition regular. This property will
be used to propage properties of Π0

2 partition regular classes to arbitrary intersections of Σ0
1

partition large classes.

Proposition 2.11 Suppose {Ln}n∈ω is a collection of partition regular classes with Ln+1 ⊆ Ln.
Then

⋂
n∈ω Ln is partition regular.

Proof. For every n, ω ∈ Ln because Ln is partition regular. It follows that ω ∈
⋂

n∈ω Ln. In
particular

⋂
n∈ω Ln is not empty.

Suppose X ∈
⋂

n∈ω Ln. Let Y ⊇ X. For every n, since X ∈ Ln then Y ∈ Ln as Ln is
partition regular. Thus Y ∈

⋂
n∈ω Ln.

Suppose X ∈
⋂

n∈ω Ln. Let Y0∪ · · · ∪Yk ⊇ X. Suppose for contradiction that for every i ≤ k
the set Yi is not in

⋂
n∈ω Ln. For every i ≤ k, let ni be such that Yi /∈ Lni . Let n be larger than

these numbers. For every i ≤ k, since Lni ⊇ Ln, the set Yi is not in Ln. As X ∈ Ln, it follows
that Ln is not partition regular, which contradicts our hypothesis. Thus for every X ∈

⋂
n∈ω Ln

and for every Y0 ∪ · · · ∪ Yk ⊇ X, there is some i ≤ k such that Yi ∈
⋂

n∈ω Ln. □

2.4. Π0
2 Partition regular classes

The most basic non-trivial partition regular class, the class of all infinite sets, is Π0
2. In this

section, we study a few specific Π0
2 partition regular classes and show that there is no non-trivial

Σ0
2 partition regular class.

Proposition 2.12 Let U be an upward-closed Σ0
1 class. Then L(U) is Π0

2.

Proof. By Proposition 2.10, the largest partition regular subclass of U is defined by

L(U) = {X ∈ 2ω : ∀k ∀X0 ∪ · · · ∪Xk ⊇ X ∃i ≤ k Xi ∈ U}

Since U is upward-closed, then ∀X0∪· · ·∪Xk ⊇ X ∃i ≤ k Xi ∈ U is equivalent to ∀X0∪· · ·∪Xk =
X ∃i ≤ k Xi ∈ U . Since U is Σ0

1, then by compactness, the previous formula is equivalent to
∃n∀X0∪· · ·∪Xk = X∩{0, . . . , n} ∃i ≤ k Xi ∈ U , which is a Σ0

1 formula. Hence, L(U) is Π0
2. □

The previous proposition will be very useful for our computational analysis of partition
regularity, as shows the following corollary.

Corollary 2.13 Let U be a Σ0
1 class. The sentence “U contains a partition regular class” is Π0

2.

Proof. By Proposition 2.10, the class U contains a partition regular class iff ω ∈ L(U), which is
a Π0

2 sentence. □

The partition regular class of all infinite sets can be generalized to a whole family of non-trivial
partition regular classes in the following way.

Definition 2.14. For any infinite set X we define LX as the Π0
2(X) partition regular class of

the sets that intersect X infinitely often.

In particular, Lω is the class of all infinite sets. It is not the only possible kind of Π0
2 partition

regular class. There are examples of Π0
2 partition regular classes L such that LX ⊈ L for any

X ∈ [ω]ω. Consider for instance the class {X ⊆ ω :
∑

n∈X
1
n = ∞}.

We finish this section by proving that there the only Σ0
2 partition regular classes are the

trivial ones. By Σ0
2, we mean a class which is Σ0

2 in the sense of the Borel hierarchy, without any
effectiveness restriction. For this, we need the following proposition by Miller [14, Proposition
4.1].

Proposition 2.15 (Miller [14]) If a Σ0,Z
1 class contains all the finite sets, then it contains all

the Z-hyperimmune sets.
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Proof. Let U be such a Σ0,Z
1 class. Let X ̸∈ U . For any n and every string σ of length n we

have σ0∞ ∈ U . For every n, let f(n) ∈ N be large enough such that for any string σ of length

n we have [σ0f(n)] ⊆ U . Note that the function f is total and Z-computable. It must be that
X ↾n+f(n) contains at least a 1 at a position greater than n. By repeating this we see that we
can Z-computably bound pX . □

Proposition 2.16 There are no non-trivial Σ0
2 partition regular classes.

Proof. Suppose for contradiction that there exists a non-trivial Σ0
2 partition regular class C.

Let Z be such that C is Σ0,Z
2 . In particular, 2ω \ C contains all the finite sets, so by Proposi-

tion 2.15, it contains all the Z-hyperimmune sets. Consider now any set X such that both X
and X are Z-hyperimmune. By partition regularity, at least one of them belongs to C, which is
a contradiction. □

2.5. Partition largeness

As mentioned earlier, a partition regular class represents a notion of largeness. However, a
class containing a partition regular class is not necessarily itself partition regular. These classes
admit a nice characterization.

Definition 2.17. A partition large class is a non-empty collection of sets A ⊆ 2ω such that

(a) If X ∈ A and Y ⊇ X, then Y ∈ A
(b) For every k, if Y0 ∪ · · · ∪ Yk ⊇ ω, there is some j ≤ k such that Yj ∈ A.

Proposition 2.18 A class A ⊆ 2ω is partition large iff it is upward-closed and contains a
partition regular subclass.

Proof. Suppose A is upward-closed and contains a partition regular subclass L ⊆ A. (a) is
trivially satisfied by hypothesis. By partition regularity of L, ω ∈ L and for every k and every
Y0 ∪ · · · ∪ Yk ⊇ ω, there is some j ≤ k such that Yj ∈ L ⊆ A. So A is partition large.

Suppose now A is partition large. By (a), it is upward-closed. We claim that L(A) is partition
regular. By (b) and Proposition 2.10, ω ∈ L(A), so L(A) ̸= ∅. By definition of L(A), it is
partition regular, hence A contains a partition regular subclass. □

Lemma 2.19 Let L ⊆ 2ω be a non-trivial partition regular class and X ∈ L. Then L ∩ LX is
partition large.

Proof. Let Y0 ∪ · · · ∪ Yk ⊇ ω. In particular we have Y0 ∩X ∪ · · · ∪ Yk ∩X ⊇ X. As X ∈ L we
must have Yj ∩X ∈ L for some j ≤ k. In particular, since L is non-trivial, Yj ∩X is infinite,
so Yj ∩X ∈ LX . Therefore, there is some j ≤ k such that Yj ∩X ∈ L ∩ LX . □

The following proposition yields another definition of L(A) which will be very useful.

Proposition 2.20 Let A ⊆ U2 be a partition large class. Then

L(A) = {X : A ∩ LX is partition large}

Proof. Let L = {X : A ∩ LX is partition large}. Since A is partition large, then by Proposi-
tion 2.18, L(A) is the largest partition regular subclass of A. Moreover, by Proposition 2.6,
L(A) is non-trivial since L(A) ⊆ U2. Thus, by Lemma 2.19, for every X ∈ L(A), L(A) ∩ LX is
partition large. In particular, A∩LX is partition large, hence X ∈ L. It follows that L(A) ⊆ L.

Let us show that L is partition regular. First, A ∩ Lω = A is partition large, so ω ∈ L. Let
X ∈ L and Y0 ∪ · · · ∪ Yk ⊇ X. In particular, A ∩ LX is partition large, so by Proposition 2.18,
L(A ∩ LX) is partition regular. Moreover, X ∈ L(A ∩ LX), so there is some i ≤ k such that
Yi ∈ L(A∩LX). By Lemma 2.19, L(A∩LX)∩LYi is partition large. Since L(A∩LX)∩LYi ⊆
A ∩ LYi , then A ∩ LYi is partition large, so Yi ∈ L.
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Last, let us show that L ⊆ A. Indeed, if A ∩ LX is partition large, then since X ∪X = ω,
either X, or X belongs to A ∩ LX . However, X ̸∈ LX , so X ∈ A ∩ LX . In particular, X ∈ A.
It follows that L is a partition regular subclass of A, so by maximality of L(A), L ⊆ L(A). □

Recall that Proposition 2.6 characterizes non-trivial partition regular classes as those which
are included in the Σ0

1 class U2 of sets containing at least two distinct elements. Since there is
no non-empty Σ0

1 class containing only infinite sets, we take this characterization as the natural
generalization of non-triviality to arbitrary classes.

Definition 2.21. A class A ⊆ 2ω is non-trivial if it is included in the Σ0
1 class U2 of sets

containing at least two distinct elements.

2.6. Partition genericity

Given a Π0
2 partition regular class L and a set X, then either X ∈ L, or X ∈ L. In general,

whether the first or the second case holds depends on the choice of L. For some sets however,
the same case always holds. This yields the notion of partition genericity.

Definition 2.22. Let A ⊆ 2ω be a class. We say that X is partition generic in A if X belongs
to every non-trivial Π0

2 partition regular subclass of A. If X is partition generic in 2ω we simply
say that X is partition generic.

The first and most trivial example of partition generic set is ω. First, note that partition
genericity is closed under finite changes.

Proposition 2.23 If X is partition generic in A and Y =∗ X, then Y is partition generic in A.

Proof. Let L ⊆ A be any non-trivial Π0
2 partition regular subclass of A. Since X is partition

generic in A, then X ∈ L. Since Y =∗ X, by Proposition 2.7, Y ∈ L. Therefore Y is partition
generic in A. □

It follows that every co-finite set is partition generic. Actually, this characterizes the com-
putable partition generic sets. Indeed, if A is a co-infinite computable set, then LA is a non-
trivial Π0

2 partition regular class which does not contain A.

Definition 2.24. Let A ⊆ 2ω be a class. We say that X is bi-partition generic in A if X and
X are both partition generic in A. If X is bi-partition generic in 2ω we simply say that X is
bi-partition generic.

The existence of bi-partition generic sets will be proven in Proposition 2.26. Note that,
contrary to partition genericity, no computable set is bi-partition generic.

Proposition 2.25 Every bi-partition generic set is bi-immune.

Proof. Let A be bi-partition generic. Let X be an infinite subset of A. Then LX is a partition
regular class such that A ̸∈ LX . Since A is partition generic, LX is not Π0

2, so X is not
computable. Similarly, A has no infinite computable subset. □

In particular, every bi-partition generic set is bi-infinite. We now prove that every typical set
is bi-partition generic, that is, every sufficiently random or generic set is bi-partition generic.

Proposition 2.26 Every Kurtz random is bi-partition generic.

Proof. By Proposition 2.7, every non-trivial measurable partition regular class is of measure 1.
It follows that any Kurtz-random belongs to every Π0

2 partition regular class and thus that any
Kurtz-random is bi-partition generic. □

In particular, one can be bi-hyperimmune and bi-partition generic. The following proposition
shows that is actually always the case, in the sense that every bi-hyperimmune set is bi-partition
generic.
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Proposition 2.27 Every co-hyperimmune set is partition generic.

Proof. Let A be a co-hyperimmune set. Suppose for the contradiction that A ̸∈ L for some
non-trivial Π0

2 partition regular class L ⊆ 2ω. In particular, there is a partition large Σ0
1 class

U ⊇ L such that A ̸∈ U . Since U is partition large, for every t ∈ ω, there is some ρ ∈ 2<ω with
min ρ > t such that ρ ∈ U . In particular, for every such ρ, we have ρ ∩ A ̸= ∅. Moreover, such
a string ρ can be found computably uniformly in t. We can therefore compute an array tracing
A, contradicting hyperimmunity of A. □

Corollary 2.28 Every bi-hyperimmune set is bi-partition generic.

Proof. Immediate by Proposition 2.27. □

As mentioned earlier, every sufficiently random set is bi-partition generic. Moreover, every
sufficiently random set is effectively bi-immune. It is natural to wonder whether every effectively
co-immune set is partition generic. The following proposition answers negatively.

Proposition 2.29 There is an effectively co-immune set which is not partition generic.

Proof. Consider the following Π0
2 class L = {X : ∀k ∃n |X ↾n2 | ≥ nk}. Let us prove it is

partition regular : Let X ∈ L and Y1 ∪ . . . Ym ⊇ X. For k ∈ ω there is some n such that
|X ↾n2 | ≥ nmk. Then, there is some ek ≤ m such that |Yek ↾n2 | ≥ nk. Let e ≤ m be such that
e = ek for infinitely many k. We then have for infinitely many k that there exists n such that
|Ye ↾n2 | ≥ nk. This is therefore true in particular for every k. Thus Ye ∈ L, so L is partition
regular.

It suffices to construct an effectively co-immune set A such that for every n, |A ↾n2 | < n for
every n. Then A ̸∈ L, hence A is not partition generic. To construct such a set, for every e, let
xe be the e

2th element of We (in the <ω order), if it exists. Assume by convention that W0 = ∅,
so e0 does not exist. Let A = {xe : e ∈ ω}. Then A is an infinite set, which is effectively
co-immune, as witnessed by the fonction n 7→ n2. Last, for every n, A ↾n2⊆ {xe : e < n}, so
|A ↾n2 | < n. □

We have seen so far three classes of partition generic sets: co-finite sets, co-hyperimmune sets
and Kurtz randoms. Let us construct a bi-partition generic set which belongs to none of these
categories.

Proposition 2.30 There is a bi-partition generic set A such that for every n, A(2n) ̸= A(2n+1).

Proof. Consider the notion of forcing whose conditions are strings σ of even length, such that
for every n < |σ|/2, σ(2n) ̸= σ(2n + 1). The conditions are partially ordered by the suffix
relation. Let us show that every sufficiently generic set G is bi-partition generic.

Let σ be a condition, and let U be a non-trivial Σ0
1 partition large class. Let X0 = {2n : 2n >

|σ|} and X1 = {2n+1 : 2n+1 > |σ|}. Since {0}∪· · ·∪{|σ|}∪X0∪X1 ⊇ ω, then either X0 ∈ U ,
or X1 ∈ U . Say the former case holds as the other case is symmetric. Since U is Σ0

1, then there is
some k such that [X0 ↾2k] ⊆ U . Let τ = σ ∪X0 ↾2k. Note that τ is a valid condition. Moreover,
since U is closed under superset, then [τ ] ⊆ U . Therefore, every sufficiently generic set G for
this notion of forcing belongs to every non-trivial Σ0

1 partition large class. By symmetric, so
does the complement of G, so G is bi-partition generic. □

Corollary 2.31 There is a bi-partition generic set which is neither co-hyperimmune, nor Kurtz
random.

Proof. Consider the set A of Proposition 2.30. It is clearly neither hyperimmune nor co-
hyperimmune since F0, F1, . . . defined by Fn = {2n, 2n + 1} is a c.e. array tracing both A
and A. Furthermore, A is not Kurtz random, since A ∈ {X : ∀nX(2n) ̸= X(2n+ 1)} which is
a Π0

1 class of measure 0. □
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The following lemma is a sort of pigeonhole principle, from which we will derive partition
regularity of the class of sets which are partition generic in some non-trivial Σ0

1 partition large
class.

Lemma 2.32 Let A ⊆ 2ω be a class and X be a set which is partition generic in A. For every
Y0 ∪ Y1 ⊇ X, if Y0 /∈ L(A) then Y1 is partition generic in A.

Proof. Suppose for contradiction that there is a non-trivial Π0
2 partition regular class V ⊆ A

such that Y1 /∈ V. In particular, V ⊆ L(A), so Y0 /∈ V. By partition regularity of V, since
Y0 ∪ Y1 ⊇ X, then X /∈ V, which contradicts partition genericity of X in A. □

Proposition 2.33 Let A be a partition large class. Suppose X is partition generic in A. Let
Y0 ∪ · · · ∪ Yk ⊇ X. Then there is a Σ0

1 class U such that U ∩A is partition large, together with
some i ≤ k such that Yi is partition generic in U ∩ A.

Proof. We prove the statement by the lemma by induction on k. For k = 0, Y0 ⊇ X so Y0 is
partition generic in A by upward-closure of partition genericity. Take U = 2ω and we are done.

Suppose now that the property holds for k − 1. Suppose Yk is not partition generic in A.
Thus there is a non-trivial Π0

2 partition regular class
⋂

e∈C Ue ⊆ A such that Yk ̸∈
⋂

e∈C Ue. In
particular, there is some e ∈ C such that Yk /∈ Ue. Note that

⋂
e∈C Ue ⊆ A ∩ Ue, so A ∩ Ue is

partition large. By Lemma 2.32, Y0 ∪ · · · ∪ Yk−1 is partition generic in Ue ∩ A. By induction
hypothesis on Ue ∩A and Y0 ∪ · · · ∪ Yk−1, there is a Σ0

1 class V such that V ∩Ue ∩A is partition
large, together with some i < k such that Yi is partition generic in V ∩ Ue ∩ A. The property
therefore holds with the Σ0

1 class V ∩ Ue. □

Corollary 2.34 The following class is partition regular :

P = {X : X is partition generic in some non-trivial Σ0
1 partition large class}

Proof. First, ω is partition generic in U2 = {X : |X| ≥ 2}. Suppose X ∈ P and let Y0∪· · ·∪Yk ⊇
X. Let U ⊆ 2ω be a non-trivial Σ0

1 partition large class in which X is partition generic. By
Proposition 2.33, there is a Σ0

1 class V such that U ∩ V is partition large, together with some
i ≤ k such that Yi is partition generic in U ∩ V. Note that U ∩ V ⊆ U , hence is non-trivial. It
follows that Yi ∈ P. □

Partition genericity within a large class is not an interesting notion of typicality whenever
one does not put effectiveness restrictions on the large classes. Indeed, we shall see that every
infinite set is partition generic relative to itself within a large class. Given an infinite set X, let
UX,2 = {Y : |Y ∩X| ≥ 2}.

Lemma 2.35 For every set X, L(UX,2) = LX .

Proof. First, let us show that LX ⊆ L(UX,2). Suppose that Y ∈ LX . By definition, |Y ∩X| = ∞,
so Y ∈ UX,2. So LX is a partition regular subclass of UX,2. Since L(UX,2) is the largest partition
regular subclass of UX,2, then LX ⊆ L(UX,2).

Then, let us show that L(UX,2) ⊆ LX . Let Y ∈ L(UX,2). We claim that |Y ∩X| = ∞. Indeed,
otherwise, consider the |Y ∩ X|-cover of Y ∩ X made of singletons. By partition regularity
of L(UX,2), one of the parts belongs to UX,2, but UX,2 contains no singleton, contradiction.
Therefore |Y ∩X| = ∞, so Y ∈ LX . □

Lemma 2.36 For every infinite set X, UX,2 is a non-trivial Σ0
1(X) partition large class.

Proof. UX,2 is clearly non-trivial, upward-closed and Σ0
1(X). By Lemma 2.35, L(UX,2) = LX .

Since X is infinite, X ∈ LX , so L(UX,2) ̸= ∅. By Proposition 2.18, UX,2 is large. □

The following lemma shows, as promised, that every infinite set is partition generic relative
to itself within a large class.
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Lemma 2.37 For every set X, X belongs to any partition large subclass of UX,2.

Proof. Let V be a partition large subclass of UX,2. Suppose for the contradiction that X ̸∈ V.
By largeness of V, X ∈ V ⊆ UX,2. Then |X ∩X| ≥ 2, contradiction. □

By Patey [17], if f is a hyperimmune function, then for every set A, there is an infinite
subset H ⊆ A or H ⊆ A such that f is H-hyperimmune. Is it also the case if one replaces
hyperimmunity by partition genericity? We answer negatively by constructing a specific bi-
partition generic set which is neither Kurtz random, nor bi-hyperimmune.

Lemma 2.38 For every set A and every infinite set H ⊆ A, then A is not H-partition generic.

Proof. By Lemma 2.36, UH,2 is a non-trivial Σ0
1(A) partition large class. In particular, L(UH,2)

is a non-trivial Π0
2(H) partition generic class. However, A ̸∈ UH,2 ⊇ L(UH,2), so A is not

H-partition generic. □

Proposition 2.39 There is a bi-partition generic set A such that for every infinite set H ⊆ A
and H ⊆ A, neither A nor A is H-partition generic.

Proof. Let A be the bi-partition generic set of Proposition 2.30. Let H ⊆ A. By Lemma 2.38,
A is not H-partition generic. Let P = {2n + 1 : 2n ∈ H} ∪ {2n : 2n + 1 ∈ H}. Then P ⊆ A.
By Lemma 2.38, A is not P -partition generic, hence not H-partition generic. The case H ⊆ A
is symmetric. □

If we consider partition genericity in a non-trivial partition large open class, then the answer
is positive, but in unsatisfactory manner.

Proposition 2.40 Let B be an infinite set. For every set A, there is an infinite subset H ⊆ A
or H ⊆ A such that B is H-partition generic in a non-trivial Σ0

1(H) partition large class.

Proof. Let H = A∩B if it is infinite, otherwise H = A∩B. By Lemma 2.36, UH,2 is a non-trivial
Σ0
1(H) partition large class. We claim that B is H-partition generic in UH,2. By Lemma 2.37,

H is H-partition generic in UH,2. Since B ⊇ H, then A is also H-partition generic in UH,2. □

3. Applications

We now justify the study of partition genericity by proving several partition genericity subset
basis theorems. All these basis theorems are proven with the same notion of forcing, that we call
partition generic Mathias forcing. A condition is a tuple (σ,X,U), where (σ,X) is a Mathias
condition, that is, σ is a finite string and X is an infinite set such that minX > |σ|. Moreover,
U is a non-trivial large Σ0

1 class within which X is partition generic. A condition (τ, Y,V)
extends another condition (σ,X,U) if (τ, Y ) Mathias extends (σ,X), that is, σ ≺ τ , Y ⊆ X and
τ \ σ ⊆ X. Moreover, we require that V ⊆ U .

Note that we do not impose any effectivity restriction to the reservoir X. In particular, if
A is a set which is partition generic in a non-trivial Σ0

1 large class U , then we will consider
sufficiently generic filters containing the condition (∅, A,U). Indeed, any such filter F induces
a subset GF =

⋃
(σ,X,V)∈F σ of A.

The first property we prove is that GF is an infinite set.

Lemma 3.1 Let F be a sufficiently generic filter. Then GF is infinite.

Proof. Let us show that for any n, the set of conditions (τ, Y,U) such that τ(x) = 1 for some
x > n is dense. Let (σ,X,U) be a condition. Since X is partition generic in U and U is non-
trivial, then X ∈ L(U), hence X is infinite. Let x ∈ X be greater than n, let τ be string σ∪{x}
and let Y = X \ {0, . . . , |ρ|}. By Proposition 2.23, Y is partition generic in U . Therefore,
(τ, Y,U) is a valid extension of (σ,X,U). □

We now turn to the various partition genericity subset basis theorems.
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3.1. Cone avoidance

The first one is the cone avoidance partition genericity subset basis theorem. Recall that
Dzhafarov and Jockusch [3] proved that if B is a non-computable set, then for every set A ⊆ ω,
there is an infinite set H ⊆ A or H ⊆ A such that B ̸≤T H. We prove the corresponding
partition genericity theorem.

Lemma 3.2 Let B be a non-computable set and let Φe be a Turing functional. Then for every
condition (σ,X,U), there is an extension (τ, Y,U) forcing ΦG

e ̸= B.

Proof. A split pair is a pair of strings ρ0, ρ1 such that there is an input x ∈ ω for which
Φσ∪ρ0
e (x) ↓̸= Φσ∪ρ1

e (x) ↓. We have two cases.
Case 1: the following class is large:

A = {Y ∈ U : Y contains a split pair }

Since A is a non-trivial Π0
2 large subclass of U and X is partition generic in U , then X ∈ A.

Let ρ0, ρ1 ⊆ X be a split pair, with witness x. In particular, there is some i < 2 such that
Φσ∪ρi
e (x) ̸= B(x). Let Y = X \ {0, . . . , |ρi|}. By Proposition 2.23, Y is partition generic in U .

Then (σ ∪ ρi, Y,U) is an extension of (σ,X,U) forcing ΦG
e (x) ̸= B(x).

Case 2: there is some k ∈ ω such that the following class is non-empty:

C = {Z0 ⊕ · · · ⊕ Zk−1 : Z0 ∪ · · · ∪ Zk−1 = ω ∧ ∀i < k Zi ̸∈ U or Zi contains no split pair }

Note that C is a Π0
1 class. By the cone avoidance basis theorem [7], there is an element Z0 ⊕

· · · ⊕Zk−1 ∈ C such that B ̸≤T Z0 ⊕ · · · ⊕Zk−1. By Proposition 2.33, there is a Σ0
1 class V such

that V ∩ U is large and some i < k such that Zi ∩X is partition generic in V ∩ U . Note that in
particular, Zi ∩X ∈ V ∩ U , so Zi ∈ U , hence Zi contains no split pair.

The condition (σ, Zi ∩X,V ∩ U) is a valid extension of (σ,X,U).
We claim that (σ, Zi∩X,V ∩U) forces ΦG

e ̸= B. Suppose for the contradiction that ΦGF
e = B

for some generic filter F . Let f : ω → 2 be the partial Zi-computable function which on input x,
searches for some ρ ⊆ Zi such that Φσ∪ρ

e (x) ↓. If such a ρ is found, then f(x) = Φσ∪ρ
e (x) ↓.

Since ΦGF
e = B, then f is total. Since Zi contains no split pair, then f = B, which contradicts

the assumption that B ̸≤T Zi. □

Theorem 3.3 Let A be a set which is partition generic in a non-trivial Σ0
1 large class U ⊆ 2ω.

Then for every non-computable set B, there is an infinite set G ⊆ A such that B ̸≤T G.

Proof. Let F be a sufficiently generic filter containing (∅, A,U). By Lemma 3.1, GF is infinite.
By construction, GF ⊆ A. Last, by Lemma 3.2, B ̸≤T GF . □

Corollary 3.4 (Dzhafarov and Jockusch [3]) Let B be a non-computable set. Then for every
set A ⊆ ω, there is an infinite set H ⊆ A or H ⊆ A such that B ̸≤T H.

Proof. By Corollary 2.34, either A or A is partition generic in a non-trivial Σ0
1 large class. Apply

Theorem 3.3. □

3.2. PA avoidance

We now turn to a PA avoidance partition genericity subset basis theorem. Liu [12] proved
that for every set A ⊆ ω, there is an infinite set H ⊆ A or H ⊆ A of non-PA degree. We prove
the corresponding partition genericity theorem.

Lemma 3.5 For every condition (σ,X,U) and every Turing functional Φe, there is an extension
(τ, Y,V) forcing ΦG

e not to be a DNC2 function.

Proof. For every k, let Sk be the set of pairs (x, v) ∈ ω×2 such that for every k-cover Z0⊔ · · ·⊔
Zk−1 ⊇ ω, there is some j < k such that Zj ∈ U , and some ρ ⊆ Zj such that Φσ∪ρ

e (x) ↓= v.
Note that the set Sk is Σ0

1 uniformly in k. We have two cases:
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Case 1: for every k ∈ ω, there is some x ∈ ω such that (x,Φx(x)) ∈ Sk. Then the following
class is large:

{Y ∈ U : ∃x ∃ρ ⊆ Y Φσ∪ρ
e (x) ↓= Φx(x)}

Since X is partition generic, then it belongs to this class, so there is some x and some ρ ⊆ X
such that Φσ∪ρ

e (x) ↓= Φx(x). Let Y = X \ {0, . . . , |ρ|}. Note that Y is again partition generic
in U , so (σ ∪ ρ, Y,U) is an extension forcing ΦG

e (x) ↓= Φx(x).
Case 2: there is some k ∈ ω such that for every x ∈ ω, if Φx(x) ↓, then (x,Φx(x)) ̸∈ Sk.

Then there must be some x such that (x, 0), (x, 1) ̸∈ Sk, otherwise we would compute a DNC2

function by waiting, for each x, for some v < 2 such that (x, v) is enumerated in Sk. Let x be
such that (x, 0), (x, 1) ̸∈ Sk. By definition of Sk, there are two k-covers of ω, Z0

0 ∪· · ·∪Z0
k−1 = ω

and Z1
0 ∪ · · · ∪Z1

k−1 = ω such that for every i < 2 and every j < k such that Zi
j ∈ U , and every

ρ ⊆ Zi
j such that Φσ∪ρ

e (x) ↓, then Φσ∪ρ
e (x) ̸= i.

Then ⟨Z0
s ∩Z1

t : s, t < k⟩ is a k2-cover of ω such that for every s, t < k, either Z0
s ∩Z1

t ̸∈ U , or
for every ρ ⊆ Zi

j , Φ
σ∪ρ
e (x) ↑. By Proposition 2.33, there is a non-trivial large Σ0

1 class V ⊆ U and

some s, t < k such that Z0
s ∩Z1

t ∩X is partition regular in V. The condition (σ, Z0
s ∩Z1

t ∩X,V)
is an extension forcing ΦG

e (x) ↑. □

Theorem 3.6 Let A be a set which is partition generic in a non-trivial large Σ0
1 class U ⊆ 2ω.

Then there is an infinite set G ⊆ A of non-PA degree.

Proof. Let F be a sufficiently generic filter containing (∅, A,U). By Lemma 3.1, GF is infinite.
By construction, GF ⊆ A. Last, by Lemma 3.5, GF is of non-PA degree. □

Corollary 3.7 (Liu [12]) For every set A ⊆ ω, there is an infinite subset H ⊆ A or H ⊆ A of
non-PA degree.

Proof. By Corollary 2.34, either A or A is partition generic in a non-trivial Σ0
1 large class. Apply

Theorem 3.6. □

Remark 3.8. In all the arguments above, one could have worked with a generalized notion
of condition (σ,X,L) where L is a non-trivial Π0

2 partition regular class. Then, for every
sufficiently generic filter F and every condition (σ,X,L), GF ∈ L. This implies in particular
that all these partition generic basis theorems also hold if one replaces “there exists an infinite
subset H ⊆ A” by “there exists a subset H ⊆ A such that H ∈ L” for any non-trivial Π0

2

partition regular class L.

3.3. Constant-bound trace avoidance

Soon after proving his PA avoidance pigeonhole basis theorem, Liu proved a constant bound
trace avoidance pigeonhole basis theorem, with several consequences, such as the existence, for
every set A ⊆ ω, of an infinite subset H ⊆ A or H ⊆ A which does not compute any Martin-Löf
random, or even no set of positive effective Hausdorff dimension.

Definition 3.9. A k-trace is a sequence of finite sets of strings F0, F1, . . . such that for every
n, |Fn| = k and every string σ ∈ Fn is of length n. A constant-bound trace is a k-trace for some
k ∈ ω. A k-trace of a class C ⊆ 2ω is a k-trace F0, F1, . . . such that [Fn] ∩ C ̸= ∅ for every n,
where [Fn] =

⋃
σ∈Fn

[σ].

Liu [13] proved that if C ⊆ 2ω is a non-empty Π0
1 class with no computable 1-trace, then for

every set A ⊆ ω, there is an infinite subset H ⊆ A or H ⊆ A which does not compute any
1-trace of C. We prove the corresponding partition genericity subset basis theorem.

Lemma 3.10 Let C ⊆ 2ω be a non-empty Π0
1 class with no computable 1-trace. For every

condition (σ,X,U) and every Turing functional Φe, there is an extension (τ, Y,V) forcing ΦG
e

not to be a 1-trace of C.
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Proof. For every k, let Sk be the set of strings µ ∈ 2<ω such that for every k-cover Z0 ⊔ · · · ⊔
Zk−1 ⊇ ω, there is some j < k such that Zj ∈ U , and some ρ ⊆ Zj such that Φσ∪ρ

e (|µ|) ↓= µ.
Note that the set Sk is Σ0

1 uniformly in k. We have two cases:
Case 1: for every k ∈ ω, there is some µ ∈ Sk such that [µ]∩ C = ∅. Then the following class

is large:

{Y ∈ U : ∃µ ∃ρ ⊆ Y Φσ∪ρ
e (|µ|) ↓= µ ∧ [µ] ∩ C = ∅}

is large. Since X is partition generic, then it belongs to this class, so there is some µ ∈ 2<ω and
some ρ ⊆ X such that Φσ∪ρ

e (|µ|) ↓= µ and [µ] ∩ C = ∅. Let Y = X \ {0, . . . , |ρ|}. Note that Y
is again partition generic in U , so (σ ∪ ρ, Y,U) is an extension forcing ΦG

e (|µ|) ↓= µ.
Case 2: there is some k ∈ ω such that for every µ ∈ Sk, [µ]∩C ̸= ∅. Then there must be some

n such that Sk contains no string of length n. Indeed, otherwise, one would compute a 1-trace
of C, contradicting our hypothesis. For every string µ of length n, let Zµ

0 ∪ · · · ∪ Zµ
k−1 = ω be

a k-cover such that for every j < k such that Zµ
j ∈ U , and every ρ ⊆ Zµ

j such that Φσ∪ρ
e (n) ↓,

then Φσ∪ρ
e (n) ̸= µ.

Let ⟨Pj : j < k2
n⟩ be the k2

n
-cover of ω refining all the k-covers above. Then for every

j < k2
n
and every ρ ⊆ Pj , Φ

σ∪ρ
e (n) ↑. By Proposition 2.33, there is a non-trivial large Σ0

1 class
V ⊆ U and some j < k2

n
such that Pj ∩X is partition regular in V. The condition (σ, Pj ∩X,V)

is an extension forcing ΦG
e (n) ↑. □

Theorem 3.11 Let A be a set which is partition generic in a non-trivial large Σ0
1 class U ⊆ 2ω.

For every countable collection of non-empty Π0
1 classes C0, C1, . . . with no computable 1-trace.

Then there is an infinite set G ⊆ A such that none of the classes Cn admits a G-computable
1-trace.

Proof. Let F be a sufficiently generic filter containing (∅, A,U). By Lemma 3.1, GF is infinite.
By construction, GF ⊆ A. Last, by Lemma 3.10, none of the classes Cn admits a GF -computable
1-trace. □

Corollary 3.12 (Liu [13]) Let C0, C1, . . . be a countable collection of non-empty Π0
1 classes with

no computable 1-trace. For every set A ⊆ ω, there is an infinite subset H ⊆ A or H ⊆ A such
that none of the classes Cn admits an H-computable 1-trace.

Proof. By Corollary 2.34, either A or A is partition generic in a non-trivial Σ0
1 large class. Apply

Theorem 3.11. □

Corollary 3.13 Let C0, C1, . . . be a countable collection of non-empty Π0
1 classes with no com-

putable 1-trace. For every Kurtz random A ⊆ ω, there is an infinite subset H ⊆ A such that
none of the classes Cn admits an H-computable 1-trace.

Proof. By Proposition 2.26, every Kurtz random is bi-partition generic. Apply Theorem 3.11.
□

We obtain in particular the following theorem, which improves the result of Kjos-Hanssen
and Liu [9] from Martin-Löf randomness to Kurtz randomness.

Theorem 3.14 For every Kurtz random A, there is an infinite subset H ⊆ A which does not
compute any set of positive effective Hausdorff dimension.

Proof. For every m, c, let Cm,c = {X : ∀kK(X ↾k) ≥ k/m − c}. A set X has positive effective
Hausdorff dimension iff X ∈ Cm,c for some m, c ∈ ω. For every m, c ∈ ω, Cm,c has no computable
1-trace (see Corollary 1.4 in [9]). By Corollary 3.13, there is an infinite subset H ⊆ A such that
none of the classes Cm,c admits an H-computable 1-trace. In particular, H does not compute
any set of positive effective Hausdorff dimension. □
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3.4. Lowness

It is clearly not the case that for every set A ⊆ ω, there is an infinite subset H ⊆ A or
H ⊆ A of low degree. One can simply pick A to be any bi-immune set relative to ∅′. Then A
has no even ∆0

2 infinite subset in it or its complement. Therefore, there is no low or even ∆0
2

partition genericity subset basis theorem. More interestingly, Downey, Hirschfeldt, Lempp and
Solomon [2] constructed a ∆0

2 set with no low infinite subset in it or its complement, using a
very involved infinite injury priority argument. Thus, there no hope of proving that every ∆0

2

partition generic sets has a low subset. On the other hand, if A is a ∆0
2 set such that A is not

partition generic, then A is partition generic in a non-trivial Σ0
1 partition large class in a strong

sense, in which case A admits an infinite low subset.

Theorem 3.15 Let A be a ∆0
2 set such that A is not partition generic. Then there is an infinite

subset G ⊆ A of low degree.

Proof. Let
⋂

n Vn be a Π0
2 partition regular class such that A ̸∈

⋂
n Vn. In particular, there

is some m ∈ ω such that A ̸∈ Vm. Define a ∆0
2 decreasing sequence of Mathias conditions

(σ0, X0) ≥ (σ1, X1) ≥ . . . such that for every s ∈ ω

(1) σs ⊆ A ; Xs is low ; Xs ∈
⋂

n Vn ;
(2) σs+1 ∈ Ve if s = 2e ;
(3) (σs+1, Xs+1) ⊩ ΦG

e (e) ↓ or (σs+1, Xs+1) ⊩ ΦG
e (e) ↑ if s = 2e+ 1

Start with the condition (∅, ω).
Satisfying (2): Given a condition (σs, Xs) at a stage s = 2e, search ∅′-computably for some

finite ρ ⊆ X ∩A such that ρ ∈ Vs. We claim that such a ρ must exist. Indeed, since X belongs
to the partition regular class

⋂
n Vn, then either X ∩ A or X ∩ A belongs to

⋂
n Vn. However,

A ̸∈ Vm, so by upward-closure of partition regular classes, X∩A ̸∈
⋂

n Vn, hence X∩A ∈
⋂

n Vn.
The condition (σs ∪ ρ,Xs − {0, . . . ,max ρ}) satisfies (2).

Satisfying (3): Given an condition (σs, Xs) at stage s = 2e+ 1, consider the Π0,Xs
1 class C of

all B such that B ̸∈ Vm and (σs, Xs∩B) ⊩ ΦG
e (e) ↑. Decide ∅′-computably if C is empty or not.

If C = ∅, then in particular A ̸∈ C, so (σs, Xs ∩ A) ̸⊩ ΦG
e (e) ↑. Search ∅′-computably for some

ρ ⊆ Xs ∩ A such that Φσs∪ρ
e (e) ↓. The condition (σs ∪ ρ,Xs − {0, . . . ,max ρ}) forces ΦG

e (e) ↓,
hence satisfies (3). If C ̸= ∅, then by the low basis theorem, there is some B ∈ C of low degree.
In particular, B ̸∈ Vm so B ∩ Xs ̸∈ Vm. However, Xs ∈

⋂
n Vn, so by partition regularity of⋂

n Vn, B ∩Xs ∈
⋂

n Vn. The condition (σs, Xs ∩B) forces ΦG
e (e) ↑, hence satisfies (3).

This completes the construction. Let G =
⋃

s σs. In particular, by (1), G ⊆ A. By (2)
G ∈

⋂
n Vn, hence G is infinite. By (3), G′ ≤T ∅′. This completes the proof. □

The previous theorem gives us a characterization of the ∆0
2 sets with no low infinite subset

in them or their complements.

Corollary 3.16 A ∆0
2 set A has no low infinite subset in it or its complement iff it is bi-partition

generic relative to every low set.

Proof. Suppose A is bi-partition generic relative to every low set. By Proposition 2.25, A is
bi-immune relative to every low set, hence has no low infinite subset in it or its complement.

Suppose A is not bi-partition generic relative to a low set L. By symmetry, say A is not
partition generic relative to L. By Theorem 3.15 relativized to L, there is an infinite subset H ⊆
A such that H ′ ≤T L′ ≤T ∅′, hence A has an infinite low subset. □

Corollary 3.17 There is a ∆0
2 set which is bi-partition generic relative to every low set.

Proof. Immediate by the previous corollary and the existence of a ∆0
2 set with no low infinite

subset in either it or its complement [2]. □
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4. Preservation of hyperimmunity

The purpose of this section is to find the right genericity notion admitting a preservation of
hyperimmunity genericity basis theorem, implying the preservation of hyperimmunity pigeon-
hole basis theorem. More precisely, the following theorem was proven by Patey [16]:

Theorem 4.1 (Patey [16]) If B is a hyperimmune set, then for every set A ⊆ ω, there is an
infinite set H ⊆ A or H ⊆ A such that B is H-hyperimmune.

Partition genericity is not the right notion to reprove this pigeonhole basis theorem. In-
deed, the following proposition shows that there is no preservation of hyperimmunity partition
genericity basis theorem.

Proposition 4.2 There is a hyperimmune set B and a partition generic set A such that B is
hyperimmune relative to no infinite subset of A.

Proof. Let A be a bi-hyperimmune set and let B = A. Since A is co-hyperimmune, by Proposi-
tion 2.27, A is partition generic. Let H be an infinite subset of A. Then, H is an infinite subset
of B, so B is not H-hyperimmune. □

The remainder of this section is devoted to the design of a notion of genericity which admits
a preservation of hyperimmunity basis theorem, implying Proposition 4.2.

4.1. Hyperimmunity genericity

From now on, fix a set B ⊆ ω. All the following definitions hold for any B, but because
of Proposition 4.14, the only interesting case is when the set B is hyperimmune. In what
follows, recall that we identify a string σ with the set {n < |σ| : σ(n) = 1}. Hence, Y \ σ
denotes the set {n ∈ Y : n ≥ |σ| ∨ σ(n) = 0}.

Definition 4.3. A class L ⊆ 2ω × 2ω is H-regular if it is non-empty, upward-closed, and for
every (X,Y ) ∈ L, every k, every k-cover Z0 ∪ · · · ∪Zk−1 ⊇ X and every σ ∈ 2<ω, there is some
j < k such that (Zj , Y \ σ) ∈ L.

Proposition 4.4 Suppose {Li}i∈I is an arbitrary non-empty collection of H-regular classes.
Then

⋃
i∈I Li is H-regular.

Proof. It is clear that
⋃

i∈I Li is not empty. Let (X0, X1) ∈
⋃

i∈I Li. Let Y0 ⊇ X0 and Y1 ⊇ X1.
There is some i ∈ I such that (X0, X1) ∈ Li. As Li is H-regular, (Y0, Y1) ∈ Li ⊆

⋃
i∈I Li.

Let (X0, X1) ∈
⋃

i∈I Li. Let Y0 ∪ · · · ∪ Yk ⊇ X and σ ∈ 2<ω. There is some i ∈ I such that
(X0, X1) ∈ Li. As Li is H-regular, (Yj , X1 \ σ) ∈ Li ⊆

⋃
i∈I Li for some j ≤ k. □

Definition 4.5. Given a class A ⊆ 2ω × 2ω, let LH(A) denote the largest H-regular subclass
of A. If A does not contain a H-regular class, let LH(A) be the empty set.

Proposition 4.6 Let A ⊆ 2ω × 2ω be an upward-closed class. Then

LH(A) =

{
(X,Y ) ∈ 2ω × 2ω :

∀k∀X0 ∪ · · · ∪Xk ⊇ X
∀σ ∈ 2<ω ∃i ≤ k (Xi, Y \ σ) ∈ A

}
Definition 4.7. A class A ⊆ 2ω × 2ω is H-large if it is upward-closed and for every co-finite
set X1, {X0 : (X0, X1) ∈ A} is partition large.

Proposition 4.8 A class A ⊆ 2ω×2ω is H-large iff it is upward-closed and contains a H-regular
subclass.

Proof. Suppose A is upward-closed and contains a H-regular subclass L ⊆ A. Upward closure
is trivially satisfied by hypothesis. By H-regularity of L, (ω, ω) ∈ L and for every k-cover
Y0, . . . , Yk−1 of ω, and every σ ∈ 2<ω, there is some j < k such that (Yj , ω \ σ) ∈ L ⊆ A. So A
is H-large.
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Suppose now A is H-large. It is upward-closed by definition. We claim that LH(A) is H-
regular. By definition of H-largeness and Proposition 4.6, (ω, ω) ∈ LH(A), so LH(A) ̸= ∅. By
definition of LH(A), it is H-regular, hence A contains a H-regular subclass. □

Definition 4.9. Let A ⊆ 2ω × 2ω be a class. We say that X is H(B)-generic in A if (X,B)
belongs to every non-trivial Π0

2 H-regular subclass of A. If X is H(B)-generic in 2ω × 2ω, we
simply say that X is H(B)-generic.

Proposition 4.10 If X is H(B)-generic in A and Y ⊇ X, then Y is H(B)-generic in A.

Proof. Let L ⊆ A be any non-trivial Π0
2 H-regular subclass of A. Since X is H(B)-generic in

A, then (X,B) ∈ L. Since Y ⊇ X, then by upward-closure of L, (Y,B) ∈ L. Therefore Y is
H(B)-generic in A. □

Proposition 4.11 If X is H(B)-generic in A and Y =∗ X, then Y is H(B)-generic in A.

Proof. Let L ⊆ A be any non-trivial Π0
2 H-regular subclass of A. Since X is H(B)-generic in

A, then (X,B) ∈ L. Since Y =∗ X, then there is a finite set F such that Y ∪ F ⊇ X. By
H-regularity of L, either (Y,B) or (F,B) belongs to L. Since L is non-trivial, (F,B) /∈ L, so
(Y,B) ∈ L. Therefore Y is H(B)-generic in A. □

Lemma 4.12 Let A ⊆ 2ω × 2ω be a class and X be H(B)-generic in A. For every Y0 ∪Y1 ⊇ X,
if (Y0, B) /∈ LH(A), then Y1 is H(B)-generic in A.

Proof. Suppose for contradiction that there is a non-trivial Π0
2 H-regular class V ⊆ A such that

(Y1, B) /∈ V. In particular, V ⊆ LH(A), so (Y0, B) /∈ V. By partition H-regularity of V, since
Y0 ∪ Y1 ⊇ X, then (X,B) /∈ V, which contradicts H(B)-genericity of X in A. □

Proposition 4.13 Let A ⊆ 2ω × 2ω be a non-trivial H-large Σ0
1 class. Suppose X is H(B)-

generic in A. Let Y0 ∪ · · · ∪ Yk ⊇ X. Then there is a non-trivial H-large Σ0
1 subclass U ⊆ A

together with some i ≤ k such that Yi is H(B)-generic in U .

Proof. We proceed by induction on k. For k = 0, Y0 ⊇ X, so by Proposition 4.10, Y0 is
H(B)-generic in A. Take U = A and we are done.

Suppose now that the property holds for k − 1. Suppose Yk is not H(B)-generic in A. Thus
there is a non-trivial Π0

2 H-regular class
⋂

e∈C Ue ⊆ A such that (Yk, B) ̸∈
⋂

e∈C Ue. In particular,

there is some e ∈ C such that (Yk, B) /∈ Ue. Note that
⋂

e∈C Ue ⊆ A ∩ Ue, so A ∩ Ue is H-large.
By Lemma 4.12, Y0 ∪ · · · ∪ Yk−1 is H(B)-generic in Ue ∩A. By induction hypothesis on Ue ∩A
and Y0 ∪ · · · ∪Yk−1, there is a non-trivial H-large Σ0

1 class V ⊆ Ue ∩A, together with some i < k
such that Yi is H(B)-generic in V. □

Proposition 4.14 Suppose B is hyperimmune. Then ω is H(B)-generic.

Proof. Let L ⊆ 2ω×2ω be a non-trivial Π0
2 H-regular class. We can assume L =

⋂
n Un for some

decreasing sequence of Σ0
1 H-large classes. Fix n ∈ ω and let W ⊆ 2<ω × 2<ω be a c.e. set such

that Un = {(X,Y ) : ∃(ρ0, ρ1) ∈ W ρ0 ⊆ X ∧ ρ1 ⊆ Y }. Let P be a cofinite set.
Fix some s ∈ ω. Since Un is H-large, then (ω, {s + 1, s + 2, . . . }) ∈ Un. Therefore, there is

some (ρ0, ρ1) ∈ W such that min ρ1 > s. Let Fs = ρ1. Note that Fs can be found computably
uniformly in s. Since B is hyperimmune, there is some s such that Fs ⊆ B. It follows that
(ω,B) ∈ Un. Since this holds for every n, then (ω,B) ∈

⋂
n Un = L. □

Proposition 4.15 Suppose B is hyperimmune and A is partition generic relative to B. Then
A is H(B)-generic.

Proof. Let L ⊆ 2ω × 2ω be a non-trivial Π0
2 H-regular class. By Proposition 4.14, (ω,B) ∈ L.

Since L is H-regular, then for every k, every Z0 ∪ · · · ∪ Zk−1 = ω, there is some j < k such
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that (Zj , B) ∈ L. Thus the class L0 = {X : (X,B) ∈ L} is partition large. Moreover, L0 is

Π0
2(B), so since A is partition generic relative to B, A ∈ L0. It follows that (A,B) ∈ L. □

4.2. Applications

We now turn to the main application of H(B)-genericity, that is, a partition genericity subset
basis theorem for preservation of hyperimmunity. As mentioned earlier, the basic preservation of
hyperimmunity statement fails for partition genericity. However, when one considers relativized
partition genericity, then one can prove such as basis theorem.

Theorem 4.16 Suppose A is H(B)-generic in a non-trivial H-large Σ0
1 class U ⊆ 2ω ×2ω. Then

there is an infinite subset H ⊆ A such that B is H-hyperimmune.

Proof. Consider the notion of forcing (σ,X,V) where (σ,X) is as Mathias condition, and V ⊆ U
is a H-large Σ0

1 class within which X is H(B)-generic. A condition (τ, Y,W) extends another
condition (σ,X,V) if (τ, Y ) Mathias extends (σ,X) and W ⊆ V.

Any filter F induces a subset GF =
⋃

(σ,X,V)∈F σ of A. The first property we prove is that

GF is an infinite set.

Lemma 4.17 Let F be a sufficiently generic filter. Then GF is infinite.

Proof. Let us show that for any n, the set of conditions (τ, Y,V) such that τ(x) = 1 for some
x > n is dense. Let (σ,X,V) be a condition. Since X is H(B)-generic in V and V is non-trivial,
then X ∈ L(V), hence X is infinite. Let x ∈ X be greater than n, let τ be string σ ∪ {x} and
let Y = X \ {0, . . . , |ρ|}. By Proposition 4.11, Y is H(B)-generic in V. Therefore, (τ, Y,V) is a
valid extension of (σ,X,V). □

In the following lemma, we interpret ΦG
e as a partial G-c.e. array {ΦG

e (n) : n ∈ ω}. An array
{Fn : n ∈ ω} intersects a set C if ∀n Fn ∩ C ̸= ∅.

Lemma 4.18 For every condition (σ,X,V), there is an extension (τ, Y,W) forcing ΦG
e not to

be a G-c.e. array intersecting B.

Proof. We have two cases.
Case 1: the following class is H-large:

A = {(Y,C) ∈ V : ∃ρ ⊆ Y ∃n Φσ∪ρ
e (n) ⊆ C}

Since A is a non-trivial Π0
2 H-large subclass of U and X is H(B)-generic in U , then (X,B) ∈ A.

Therefore there is some ρ ⊆ X and some n such that Φσ∪ρ
e (n) ⊆ B. Let Y = X \ {0, . . . , |ρ|}.

By Proposition 4.11, Y is H(B)-generic in V. Therefore (σ∪ ρ, Y,V) is an extension of (σ,X,V)
forcing ΦG

e (n) ⊆ B.
Case 2: there is a co-finite set P and some k such that the following class is non-empty:

C =

{
Z0 ⊕ · · · ⊕ Zk−1 :

Z0 ∪ · · · ∪ Zk−1 = ω∧
∀i < k (Zi, P ) ̸∈ V ∨ ∀n∀ρ ⊆ ZiΦ

σ∪ρ
e (n) ↑ ∨Φσ∪ρ

e (n) ̸⊆ P

}
Note that C is a non-empty Π0

1 class. Pick any element Z0⊕· · ·⊕Zk−1 ∈ C. By Proposition 4.13,
there is a H-large Σ0

1 subclass W ⊆ V and some i < k such that Zi ∩X is H(B)-generic in W.
In particular, (Zi ∩X,B) ∈ LH(W ) ⊆ W, so (Zi ∩X,B ∩ P ) ∈ W ⊆ V and by upward-closure
of V , (Zi, P ) ∈ V, so for every n and every ρ ⊆ Zi, Φ

σ∪ρ
e (n) ↑ ∨Φσ∪ρ

e (n) ̸⊆ P . The condition
(σ, Zi ∩X,W) is an extension of (σ,X,V) forcing ΦG

e not to be a c.e. array. □

We are now ready to prove Theorem 4.16. Let F be a sufficiently generic filter containing
(∅, A,U). By Lemma 4.17, GF is infinite. By construction, GF ⊆ A. Last, by Lemma 4.18, B
is GF -hyperimmune. □

Corollary 4.19 Suppose B is hyperimmune and A is partition generic relative to B. Then
there is an infinite subset H ⊆ A such that B is H-hyperimmune.
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Proof. By Proposition 4.15, A is H(B)-generic. By Theorem 4.16, there is infinite subset H ⊆ A
such that B is H-hyperimmune. □

Corollary 4.20 Suppose B is hyperimmune and A is Kurtz random relative to B. Then there
is an infinite subset H ⊆ A such that B is H-hyperimmune.

Proof. By Proposition 2.26, A is partition generic relative to B. Apply Corollary 4.19. □

Corollary 4.21 Let B be a hyperimmune set. Then for every set A ⊆ ω, there is an infinite
set H ⊆ A or H ⊆ A such that B is H-hyperimmune.

Proof. By Proposition 4.14, ω is H(B)-generic. By Proposition 4.13, there is a H-large Σ0
1

class U ⊆ 2ω×2ω within which either A or A is H-generic. By Theorem 4.16, there is an infinite
set H ⊆ A or H ⊆ A such that B is H-hyperimmune. □

5. Preservation of non-Σ0
1 definitions

The purpose of this section is to find the right genericity notion admitting a preservation
of non-Σ0

1 definitions genericity basis theorem, implying the preservation of non-Σ0
1 definitions

pigeonhole basis theorem. More precisely, the following theorem was proven by Wang [21]:

Theorem 5.1 (Wang [21]) If B is a non-Σ0
1 set, then for every set A ⊆ ω, there is an infinite

set H ⊆ A or H ⊆ A such that B is not Σ0
1(H).

Partition genericity is not the right notion to reprove this pigeonhole basis theorem. Indeed,
the following proposition shows that there is no preservation of non-Σ0

1 definitions partition
genericity basis theorem.

Proposition 5.2 There is a non-Σ0
1 set B and a partition generic set A such that B is Σ0

1 in
every infinite subset of A.

Proof. Fix any computable linear order L = (ω,<L) of order type ω + ω∗ with no infinite
computable ascending or descending sequence (see Rosenstein [18]). Let A be the ω part of
this order. Note that A is the ω∗ part of this order. First, note that A is bi-hyperimmune.
Indeed, suppose F0, F1, . . . is a c.e. array such that for every n, Fn ∩ A ̸= ∅. Then the
set X = {min<L Fn : n ∈ ω} is an infinite c.e. subset of A. By thinning out the set X, one can
compute an infinite increasing sequence, contradicting our assumption. Thus A is hyperimmune.
By a symmetric argument, A is co-hyperimmune.

By Proposition 2.27, since A is co-hyperimmune, it is partition generic. Let B = A. Since A
is hyperimmune, then it is not c.e. Let H be any infinite subset of A. Then B = {x ∈ ω : ∃n ∈
H, x <L n}. Thus B is c.e. in every infinite subset of A. □

The remainder of this section is devoted to the design of a notion of genericity which admits
a preservation of non-c.e. definitions basis theorem, implying Theorem 5.1.

5.1. Enumeration genericity

From now on, fix a set B ⊆ ω. All the following definitions hold for any B, but because
of Proposition 5.4, the only interesting case is when the set B is non-Σ0

1. Contrary to hyper-
immunity genericity, we need to work with largeness rather than regularity, for some reasons
which will become clear when proving Proposition 5.4.

Definition 5.3. A class A ⊆ 2ω × ω is E(B)-large if

(1) If (X,n) ∈ A and X ⊆ Y , then (Y, n) ∈ A
(2) For every finite set F ⊆ B and every k-cover Y0, . . . , Yk−1 of ω, there is some j < k such

that ∀n ∈ F (Yj , n) ∈ A.

The definition of E(B)-largeness ensures that the class {X : ∀n ∈ B (X,n) ∈ A} is partition
large. If B is not c.e. but A is Σ0

1, then there must be some “overflow”, in the sense that for
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every k-cover Y0, . . . , Yk−1 of ω, there must be some n ∈ B and some j < k such that (Yj , n) ∈ A.

Such an n however depends on k. Therefore, there does not exist in general an n ∈ B such that
the class {X : (X,n) ∈ A} is partition large, but one still have the following proposition:

Proposition 5.4 Suppose B is not c.e. For every E(B)-large Σ0
1 class U ⊆ 2ω × ω, the class

{X : ∀n ∈ B (X,n) ∈ U ∧ ∃n ∈ B (X,n) ∈ U} is partition large.

Proof. Suppose B is non-c.e. Let U ⊆ 2ω × ω be any non-trivial E(B)-large Σ0
1 class. For every

k, s, let Ak,s = {m : ∀Z0 ∪ · · · ∪Zk−1 = ω ∃i < k (Zi,m) ∈ U ∧∀n ∈ B ↾s (Zi, n) ∈ U}. Since U
is E(B)-large, for every k, s, the set Ak,s is a c.e. superset of B, so since B is not c.e., there is
some ns ∈ Ak,s \ B. By the infinite pigeonhole principle, for every Z0 ∪ · · · ∪ Zk−1 = ω, there
is some i < k such that for infinitely many s, ns ∈ Zi and ∀n ∈ B ↾s (Zi, n) ∈ U . It follows
that for every Z0 ∪ · · · ∪ Zk−1 = ω, there is some i < k such that ∃n ∈ B (Zi, n) ∈ U and
∀n ∈ B (Zi, n) ∈ U . Thus the class {X : ∀n ∈ B (X,n) ∈ U ∧ ∃n ∈ B (X,n) ∈ U} is partition
large. □

A class A ⊆ 2ω × ω is non-trivial if for every (X,n) ∈ A, |X| ≥ 2.

Definition 5.5. Let A ⊆ 2ω × ω be a class. We say that X is E(B)-generic in A if for every
non-trivial E(B)-large Σ0

1 class U ⊆ A, X ∈ L({Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ U}).
If X is E(B)-generic in 2ω × ω, we simply say that X is E(B)-generic.

Proposition 5.6 Suppose B is not c.e. and A is partition generic relative to B. Then A is
E(B)-generic.

Proof. Fix a non-trivial E(B)-large Σ0
1 class U ⊆ 2ω×ω. Since B is not c.e., by Proposition 5.4,

the class V = {X : ∀n ∈ B (X,n) ∈ U ∧ ∃n ∈ B (X,n) ∈ U} is partition large. Note that
V is Π0

2(B). By Proposition 2.18, V contains a partition regular subclass, so L(V) is partition
regular. By Proposition 2.10, L(V) is Π0

2(B), so since A is partition generic relative to B,
A ∈ L(V). □

Proposition 5.7 Suppose B is not c.e. Then ω is E(B)-generic.

Proof. Immediate from Proposition 5.6, since ω is partition generic relative to B. □

Proposition 5.8 If X is E(B)-generic in a non-trivial E(B)-large Σ0
1 class A ⊆ 2ω ×ω, then X

is infinite.

Proof. Let V = {Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ A}. Since X is E(B)-generic in A,
X ∈ L(V). Since A is non-trivial, for every X ∈ V, |X| ≥ 2. Therefore, by Proposition 2.6,
L(V) is non-trivial, so since X ∈ L(V), X is infinite. □

Proposition 5.9 If X is E(B)-generic in A and Y ⊇ X, then Y is E(B)-generic in A.

Proof. Let U be a non-trivial E(B)-large Σ0
1 subclass of A. Since X is E(B)-generic in A, then,

letting V = {Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ U}, X ∈ L(V). Since L(V) is closed
upward, Y ∈ L(V). Therefore Y is E(B)-generic in A. □

Proposition 5.10 If X is E(B)-generic in A and Y =∗ X, then Y is E(B)-generic in A.

Proof. Let U ⊆ A be any non-trivial E(B)-large Σ0
1 subclass of A. Let V = {Z : Z : ∀n ∈

B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ U}. Since X is E(B)-generic in A, then X ∈ L(V). Since
Y =∗ X, then there is a finite set F such that Y ∪ F ⊇ X. By partition regularity of L(V),
either F ∈ L(V), or Y ∈ L(V). Since U is non-trivial, then L(V) is non-trivial, so F ̸∈ L(V). It
follows that Y ∈ L(V). Therefore Y is E(B)-generic in A. □
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Lemma 5.11 Suppose X is E(B)-generic in a class A ⊆ 2ω × ω. For every Y0 ∪ Y1 ⊇ X, if
Y0 ̸∈ L({Z : ∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ A}), then Y1 is E(B)-generic in A.

Proof. Fix any non-trivial E(B)-large Σ0
1 class U ⊆ A and let V = {Z : ∀n ∈ B (Z, n) ∈ U∧∃n ∈

B (Z, n) ∈ U}. Since X is E(B)-generic in A, then X ∈ L(V). Since Y0 ∪ Y1 ⊇ X, then by
partition regularity of L(V), either Y0 ∈ L(V), or Y1 ∈ L(V). Since U ⊆ A, then V ⊆ {Z : ∀n ∈
B (Z, n) ∈ U ∧∃n ∈ B (Z, n) ∈ A}, so L(V) ⊆ L({Z : ∀n ∈ B (Z, n) ∈ U ∧∃n ∈ B (Z, n) ∈ A}).
If follows from hypothesis that Y0 ̸∈ L(V), so Y1 ∈ L(V). Therefore, Y1 is E(B)-generic in A. □

Proposition 5.12 Let A ⊆ 2ω × ω be a non-trivial E(B)-large Σ0
1 class. Suppose X is E(B)-

generic in A. Let Y0 ∪ · · · ∪ Yk ⊇ X. Then there is a non-trivial E(B)-large Σ0
1 subclass U ⊆ A

together with some i ≤ k such that Yi is E(B)-generic in U .

Proof. We proceed by induction on k. For k = 0, Y0 ⊇ X, so by Proposition 5.9, Y is E(B)-
generic in A. Take U = A and we are done. Suppose now that the property holds for k − 1.
Suppose Yk is not E(B)-generic in A. Thus there is a non-trivial E(B)-large Σ0

1 class U ⊆ A
such that Yk ̸∈ L({Z : ∀n ∈ B (Z, n) ∈ U ∧∃n ∈ B (Z, n) ∈ U}). By Lemma 5.11, Y0∪· · ·∪Yk−1

is E(B)-generic in U . By induction hypothesis on U and Y0 ∪ · · · ∪ Yk−1, there is a non-trivial
E(B)-large Σ0

1 subclass V ⊆ U together with some i < k such that Yi is E(B)-generic in V. □

5.2. Applications

We now turn to the main application of enumeration genericity, which is a partition genericity
subset basis theorem for preservation of non-Σ0

1 definitions.

Theorem 5.13 Suppose A is E(B)-generic in a non-trivial E(B)-large Σ0
1 class U ⊆ 2ω × ω.

Then there is an infinite subset H ⊆ A such that B is not Σ0
1(H).

Proof. Consider the notion of forcing (σ,X,V) where (σ,X) is as Mathias condition, and V ⊆ U
is a E(B)-large Σ0

1 class within which X is E(B)-generic. A condition (τ, Y,W) extends another
condition (σ,X,V) if (τ, Y ) Mathias extends (σ,X) and W ⊆ V.

Any filter F induces a subset GF =
⋃

(σ,X,V)∈F σ of A. The first property we prove is that

GF is an infinite set.

Lemma 5.14 Let F be a sufficiently generic filter. Then GF is infinite.

Proof. Let us show that for any n, the set of conditions (τ, Y,V) such that τ(x) = 1 for some x >
n is dense. Let (σ,X,V) be a condition. Since X is E(B)-generic in V, then by Proposition 5.8,
X is infinite. Let x ∈ X be greater than n, let τ be string σ∪{x} and let Y = X\{0, . . . , |ρ|}. By
Proposition 5.10, Y is E(B)-generic in V. Therefore, (τ, Y,V) is a valid extension of (σ,X,V). □

Lemma 5.15 For every condition (σ,X,V), there is an extension (τ, Y,W) forcing WG
e ̸= B.

Proof. We have two cases.
Case 1: the following class is E(B)-large:

A = {(Y, n) ∈ V : ∃ρ ⊆ Y n ∈ W σ∪ρ
e }

SinceA is a non-trivial E(B)-large Σ0
1 subclass of U andX is E(B)-generic in U , thenX ∈ L({Z :

∀n ∈ B (Z, n) ∈ U ∧ ∃n ∈ B (Z, n) ∈ A}). Therefore there is some ρ ⊆ X and some n ∈ B
such that n ∈ W σ∪ρ

e . Let Y = X \ {0, . . . , |ρ|}. By Proposition 5.10, Y is E(B)-generic in V.
Therefore (σ ∪ ρ, Y,V) is an extension of (σ,X,V) forcing WG

e ̸= B.
Case 2: there is some finite set F ⊆ B and some k ∈ ω such that the following class is

non-empty:

C =

{
Z0 ⊕ · · · ⊕ Zk−1 :

Z0 ∪ · · · ∪ Zk−1 = ω∧
∀i < k ∃n ∈ F (Zi, n) ̸∈ V ∨ ∀ρ ⊆ Zi n ̸∈ W σ∪ρ

e

}
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Note that C is a non-empty Π0
1 class. Pick any element Z0⊕· · ·⊕Zk−1 ∈ C. By Proposition 5.12,

there is a non-trivial E(B)-large Σ0
1 subclass W of U and some i < k such that Zi ∩X is E(B)-

generic in W. In particular, ∀n ∈ B (Zi ∩X,n) ∈ W ⊆ V, and by upward-closure of V, ∀n ∈
B (Zi, n) ∈ V. By choice of Zi, there is some n ∈ F such that (Zi, n) ̸∈ V ∨ ∀ρ ⊆ Zi n ̸∈ W σ∪ρ

e .
Since F ⊆ B, (Zi, n) ∈ V, so ∀ρ ⊆ Zi n ̸∈ W σ∪ρ

e . The condition (σ, Zi ∩X,W) is an extension
of (σ,X,V) forcing n ̸∈ WG

e , with n ∈ B. □

We are now ready to prove Theorem 5.13. Let F be a sufficiently generic filter containing
(∅, A,U). By Lemma 5.14, GF is infinite. By construction, GF ⊆ A. Last, by Lemma 5.15, B
is not Σ0

1(GF ). □

Corollary 5.16 Let B be a non-Σ0
1 set. Let A be partition generic relative to B. Then there

is an infinite subset H ⊆ A such that B is not Σ0
1(H).

Proof. By Proposition 5.6, A is E(B)-generic. By Theorem 5.13, there is an infinite subset H ⊆
A such that B is not Σ0

1(H). □

Corollary 5.17 Let B be a non-Σ0
1 set. Let A be Kurtz random relative to B. Then there is

an infinite subset H ⊆ A such that B is not Σ0
1(H).

Proof. By Proposition 2.26, A is partition generic relative to B, so by Corollary 5.16, there is
an infinite subset H ⊆ A such that B is not Σ0

1(H). □

Proof of Theorem 5.1. Let B be a non-Σ0
1 set and A be a set. By Proposition 5.7, ω is E(B)-

generic. By Proposition 5.12, there is a non-trivial E(B)-large Σ0
1 class A ⊆ 2ω×ω within which

either A or A is E(B)-generic. By Theorem 5.13, there is an infinite subset H ⊆ A such that B
is not Σ0

1(H). □

6. Partition genericity and computability

We conclude this study of partition regularity and partition genericity by considering the
corresponding notions of lowness, and constructing a partition generic set which is both com-
putably dominated and of non-DNC degree.

Definition 6.1.

(1) A setX is low for partition genericity if every partition generic set is partitionX-generic.
(2) A set X is low for partition regularity if for every Π0

2(X) partition regular class L, there
is a Π0

2 partition regular subclass M ⊆ L
(3) A set X is low for partition largeness if for every Σ0

1(X) partition large class U , there is
a Σ0

1 large subclass V ⊆ U .

It is clear that if X is low for partition regularity or low for partition largeness, then it is low
for partition genericity. Actually, all three notions are trivial, in the sense that the only degree
which is low for partition genericity is the computable one.

Proposition 6.2 If X is low for partition genericity, then X is computable.

Proof. Let X be a non-computable set. Let A = {σ ∈ 2<ω : σ ≺ X}. Then A ≡T X and every
infinite subset of A computes A. Either A is partition generic in a non-trivial partition large
Σ0
1 class, or A is partition generic in 2ω. In the first case, by Theorem 3.3, there is an infinite

subset of A which does not compute A, contradiction. Therefore A is partition generic.
Let us show that A is not partition generic relative to X. Since A is infinite, LA is a non-

trivial Π0
2(X) partition regular class. However, A ̸∈ LA. Therefore, X is not low for partition

genericity. □

The degrees of partition generic sets are not fully understood. In Section 2.6, we proved that
every co-hyperimmune set and every Kurtz random is partition generic. By the computably
dominated basis theorem, there are Kurtz randoms of computably dominated degree. Since
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every weakly 1-generic is Kurtz random, there are Kurtz randoms of non-DNC degree. On the
other hand, Stephan and Yu [19] proved that the degrees which are low for Kurtz-randomness
are precisely the computably dominated non-DNC degrees, which implies that no Kurtz random
is of both degrees simultaneously. We now prove the existence of a partition generic set which
is low for Kurtz-randomness. This is done using a perfect tree forcing starting from a suitable
tree.

Definition 6.3 (Terwijn and Zambella [20]). Fix a canonical coding of all finite sets D0, D1, . . . .
A set X is computably traceable if there is a computable function p such that, for each function
f ≤T A, there is a computable function h satisfying, for all n, |Dh(n)| ≤ p(n) and f(n) ∈ Dh(n).

Terwijn and Zambella [20] proved that the computably traceable degrees are precisely those
which are low for Schnorr randomness. It is clear that every computably traceable set is com-
putably dominated. Moreover, by Kjos-Hanssen, Merkle, and Stephan [11], every computably
traceable set is of non-DNC degree.

Proposition 6.4 There is a partition generic set which is computably traceable and of minimal
degree.

Proof. A function tree is a function T : 2<ω → 2<ω such that for every σ ∈ 2<ω, T (σ0) and
T (σ1) are incompatible extensions of T (σ). Any such function T : 2<ω → 2<ω induces a function
T : 2ω → 2ω by defining T (X) =

⋃
σ≺X T (σ). We then write [T ] = {f(X) : X ∈ 2ω}. A function

tree S extends a function tree T (written S ≤ T ) if [S] ⊆ [T ].

Lemma 6.5 There is a computable function tree T0 such that for every X,Y ∈ 2ω with X ̸= Y ,
then T0(X) ∪ T0(Y ) =∗ ω.

Proof. Let T0(ϵ) = ϵ. Suppose T0 is defined on 2≤n for some n. Let σ0, σ1, . . . , σ2n+1−1 be the
list of all strings of length n+1. For every i < 2n+1, let τi be the string of length 2n+1 which has
a 0 at position i, and 1 everywhere else. Let T0(σi) = T0(σi ↾n)⌢τi. For instance, T0(0) = 01,
T0(1) = 10, T (00) = 010111, T (01) = 011011, T (10) = 101101, T (11) = 101110. Note that
every two strings of same length is sent to strings of same length.

Let X,Y ∈ ω be such that X ̸= Y , and let σ be the longest common substring. We claim
that for every n > |T0(σ), then either n ∈ T0(X), or n ∈ T1(Y ). Indeed, let t be the smallest
length such that n < |T0(X ↾t)|, or equivalently such that n < |T0(Y ↾t)|. Let i and j < 2t

be such that X ↾t and Y ↾t are respectively the ith and the jth string of length t. Note
that since n > |T0(σ)|, then X ↾t and Y ↾t are incomparable, hence i ̸= j. By definition,
T0(X ↾t) = T0(X ↾t−1)

⌢τi and T0(Y ↾t) = T0(Y ↾t−1)
⌢τj , where τi and τj do not have a 0 at

the same position. By choice of t, n ≥ |T0(X ↾t−1)| = |T0(Y ↾t−1)|, so either n ∈ T0(X ↾t), or
n ∈ T0(Y ↾t). □

Consider the notion of forcing P whose conditions are computable function trees extending
T0. Any sufficiently generic filter F induces a set GF which is the unique member of

⋂
T∈F [T ].

A condition T forces a formula φ(G) if the formula hods for every G ∈ [T ].

Lemma 6.6 For every non-trivial partition large Σ0
1 class U ⊆ 2ω and every condition T there

is an extension S ≤ T forcing G ∈ U .

Proof. Pick two X,Y ∈ 2ω with X ̸= Y . Since T ≤ T0, then T (X) ∪ T (Y ) =∗ ω. Since U is a
non-trivial partition large class, either T (X) ∈ U , or T (Y ) ∈ U . Assume the first case holds, by
symmetry. Since U is Σ0

1, there there is a finite string σ ≺ X such that [T (σ)] ⊆ U . Let S be
the extension of T defined by S(τ) = T (στ). Then for every G ∈ [S], G ∈ U . □

Let F be a sufficiently generic filter. By Lemma 6.6, GF is partition generic. It is well known
that every sufficiently generic filter for computable Sacks forcing produces sets of minimal
degree. Terwijn and Zambella [20] proved that these sets are also computably traceable. □
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