
HAL Id: hal-03790527
https://hal.science/hal-03790527

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tool-Assisted Approach to Engineer Domain-Specific
Languages (DSLs) using Rust

Léo Olivier, Lou-Anne Sauvêtre, Erwan Bousse, Gerson Sunyé

To cite this version:
Léo Olivier, Lou-Anne Sauvêtre, Erwan Bousse, Gerson Sunyé. A Tool-Assisted Approach to Engineer
Domain-Specific Languages (DSLs) using Rust. 4th International Workshop on Modeling Language
Engineering, 23-25 October, 2022 Co-located with ACM MODELS 2022, Oct 2022, Montréal, Canada.
10 p., �10.1145/3550356.3563133�. �hal-03790527�

https://hal.science/hal-03790527
https://hal.archives-ouvertes.fr

A Tool-Assisted Approach to Engineer Domain-Specific
Languages (DSLs) using Rust

Léo Olivier
Nantes Université
Nantes, France

leo.olivier@etu.univ-nantes.fr

Lou-Anne Sauvêtre
Nantes Université
Nantes, France

lou-anne.sauvetre@etu.univ-nantes.fr

Erwan Bousse
LS2N, Nantes Université

Nantes, France
erwan.bousse@ls2n.fr

Gerson Sunyé
LS2N, Nantes Université

Nantes, France
gerson.sunye@ls2n.fr

ABSTRACT
Domain-Specific Languages (DSLs) are required in a wide range
of contexts, implying different execution environments. The same
DSL may even have to exist in different environments. We pro-
pose in this paper an approach to engineer a DSL using the Rust
language, which can be used to target several environments. Our
approach focuses on selecting an implementation language, Rust,
that provides multiple compilation targets for a DSL definition.
However, this is a rather laborious process because Rust is only
partially object-oriented, while the definition of a metamodel-based
abstract syntax is essentially object-oriented. For this reason, we
offer a complete DSL’s development method beginning with the
metamodel definition in Ecore language, then the abstract syntax
conversion in Rust with a code generation tool, and finally the
deployment of the language in different execution environments.
We evaluated our approach by creating two DSLs with it, a Petri
nets DSL and a Finite State Machine (FSM) DSL. Finally, we discuss
possible improvements for our Ecore2Rust conversion tool.

KEYWORDS
Model-Driven Engineering, Software Language Engineering, Domain-
Specific Languages, Eclipse Modeling Framework, Rust
ACM Reference Format:
Léo Olivier, Lou-Anne Sauvêtre, Erwan Bousse, and Gerson Sunyé. 2022.
A Tool-Assisted Approach to Engineer Domain-Specific Languages (DSLs)
using Rust. In ACM/IEEE 25th International Conference on Model Driven
Engineering Languages and Systems (MODELS ’22 Companion), October 23–
28, 2022, Montreal, QC, Canada. MIL Campus of the University of Montreal,
Montréal, Canada, 10 pages. https://doi.org/10.1145/3550356.3563133

1 INTRODUCTION
“If a particular kind of problem occurs often enough, then it might be
worthwhile to express instances of the problem as sentences in a simple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9467-3/22/10. . . $15.00
https://doi.org/10.1145/3550356.3563133

language” [5]. Defining a Domain-Specific Language (DSL) [4, 10,
13] is a technique widely used in the software industry to help
developping readable, maintainable and flexible applications. Well-
known DSLs include SQL and HTML, but typical simpler examples
include Petri nets or Finite State Machines (FSM).

There are nowadays manifold programming languages, frame-
works and language workbenches to engineer new DSLs [3], such
as Rascal [8], MetaEdit+ [7], the GEMOC Studio [2] or MPS 1, to
name a few. In the realm of modeling languages, a most popular
DSL development environment is the Eclipse Modeling Framework
(EMF) [12], which allows to create efficiently metamodel-based
abstract syntaxes using the Ecore language. EMF targets Java as
an execution environment: its code generation tool can only con-
vert Ecore models to Java source code. However, software industry
needs are evolving and the deployment of the same DSL may occur
in multiple execution environments such as embedded systems
and web applications. Unfortunately, to our knowledge, there is
currently no development environment that meets those needs.

In this context, an interesting idea would be to implement a
DSL using the Rust programming language, which has the follow-
ing features: memory safety, safe parallelism, efficient memory
management, and no garbage collector. Those attributes produce
high-reliability programs with excellent execution speed. Addition-
ally, Rust is designed for a wide range of execution environments
such as embedded systems, network services, command-line tools,
and web applications through WebAssembly.

However, Rust comes with a handful of a rough edges. Thus,
defining a consistent and error-free abstract syntax in Rust is a
difficult task, especially when aiming for a metamodel-based one.
While specific design patterns exist to overcome these difficulties,
they remain laborious to implement.

To overcome these problems, we propose a complete approach
for creating and deploying a DSL, starting with the definition of
an abstract syntax in the form of an Ecore metamodel by the lan-
guage engineer. Then, the abstract syntax is converted into Rust
code thanks to our tool called Ecore2Rust. Then, the operational
semantics must be manually programmed in Rust by the language
engineer. At the end of this process, a Rust DSL is produced and
can be deployed in various execution environments, as a CLI tool

1http://jetbrains.com/mps

https://doi.org/10.1145/3550356.3563133
https://doi.org/10.1145/3550356.3563133
http://jetbrains.com/mps

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Olivier, Sauvêtre, Bousse, Sunyé

on desktop or a web application through the binary format We-
bAssembly. A domain expert can thereby use the DSL in different
execution environments.

To evaluate our contribution, we applied our approach to engi-
neering complete Rust-based Petri nets and FSM DSLs. We show
that both DSLs can be deployed as a web application and CLI tool,
making it available from any connected terminal through a web
browser but also usable by offline users in the command line.

The rest of this paper is structured as follows. Section 2 intro-
duces terms and concepts which are used in the paper. Furthermore,
we detail why Rust is an interesting candidate for implementing
DSLs. Section 3 gives an overview of our contribution and techni-
cal choices. Section 4 provides a description of the experimental
protocol and discusses our result. Section 5 discusses the related
work. The conclusion in Section 6 sums up our project and proposes
various improvement axes for our work.

2 BACKGROUND & MOTIVATION
In this section, we define what is a metamodel-based DSL, its usage,
and we motivate our approach using an illustrative example. Then,
we explain the opportunities offered by Rust to deploy DSLs in
various execution environments.

2.1 DSLs Considered in This Work
A DSL is a language providing abstractions for a particular domain.
It is used as a high-level tool to increase software development
productivity. In what follows, we present the main components of
a DSL considered in this paper.

Abstract syntax and editing operations. The central piece of a
DSL is the abstract syntax of the language, which formally defines
the rules to create a syntactically valid model. One way to define
an abstract syntax is to create a metamodel using a metamodeling
language such as using Ecore from the EclipseModeling Framework
(EMF) [12]. To supplement the abstract syntax, a DSL can rely on
a set of editing operators. These editing operators can be used to
create and connect instances of the concepts of the abstract syntax,
and are typically used to define a proper model editor for the DSL.

Figure 1 shows an example of abstract syntax of a Petri nets DSL.
A Petri net model consists of Places, Transitions and directed Edges
which are part of a network. Places can contain tokens. Edges have
a weight and can only connect a Place and a Transition to each
other. The Orientation enumeration indicates if an Edge is directed
towards a Place or a Transition. Places and Transitions have a list of
input and output Edges.

Figure 2 shows an example of a Petri nets model using a graphical
concrete syntax. Places are represented by circles, transitions by
rectangles, and edges by arrows. The dots in the circles indicate the
number of tokens in the places.

Editing operations for this Petri Nets DSL would typically in-
clude an operation to create a new Place, an operation to create
a Transition, and an operation to connect a Place and a Transition
through an edge.

Execution semantics. The execution semantics of a DSL can be
defined in at least two different ways: as an operational semantics
(i. e. an interpreter) or as a translational semantics (i. e. a compiler).

Figure 1: Petri nets Abstract Syntax in Ecore

Figure 2: Petri nets Model Example

Algorithm 1: The Method Firing a Transition
input :A Petri nets 𝑃 and a transition 𝑡𝑟𝑎𝑛𝑠 with 𝑡𝑟𝑎𝑛𝑠 ∈ 𝑃
output :A boolean: 𝑡𝑟𝑢𝑒 if the transition has been fired, 𝑓 𝑎𝑙𝑠𝑒

otherwise
1 begin
2 if isFirePossible(𝑡𝑟𝑎𝑛𝑠) is 𝑓 𝑎𝑙𝑠𝑒 then
3 return 𝑓 𝑎𝑙𝑠𝑒

4 foreach 𝑒𝑑𝑔𝑒 ∈ 𝑡𝑟𝑎𝑛𝑠.𝑖𝑛𝑝𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do
5 𝑝𝑙𝑎𝑐𝑒 ← 𝑒𝑑𝑔𝑒.𝑝𝑙𝑎𝑐𝑒

6 𝑝𝑙𝑎𝑐𝑒.𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑝𝑙𝑎𝑐𝑒.𝑡𝑜𝑘𝑒𝑛𝑠 − 𝑒𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡

7 foreach 𝑒𝑑𝑔𝑒 ∈ 𝑡𝑟𝑎𝑛𝑠.𝑜𝑢𝑡𝑝𝑢𝑡𝐸𝑑𝑔𝑒 do
8 𝑝𝑙𝑎𝑐𝑒 ← 𝑒𝑑𝑔𝑒.𝑝𝑙𝑎𝑐𝑒

9 𝑝𝑙𝑎𝑐𝑒.𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑝𝑙𝑎𝑐𝑒.𝑡𝑜𝑘𝑒𝑛𝑠 + 𝑒𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡

10 return 𝑓 𝑎𝑙𝑠𝑒

In this work we focus on operational semantics, even though the
approach could be easily adapted to translational semantics.

Algorithms 1 and 2 describe the operational semantics for the
Petri nets DSL introduced just previously. Algorithm 1 describes
the firing of a transition: it consumes the required input tokens
(defined by the Edge weight), and creates tokens in its output Places.

A Tool-Assisted Approach to Engineer Domain-Specific Languages (DSLs) using Rust MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Algorithm 2: The method checking if it is possible to fire
a transition
input :A Petri nets 𝑃 and a transition 𝑡𝑟𝑎𝑛𝑠 with 𝑡𝑟𝑎𝑛𝑠 ∈ 𝑃
output :A boolean: 𝑡𝑟𝑢𝑒 if the transition can be fired, 𝑓 𝑎𝑙𝑠𝑒

otherwise
1 begin
2 foreach 𝑒𝑑𝑔𝑒 ∈ 𝑡𝑟𝑎𝑛𝑠.𝑖𝑛𝑝𝑢𝑡𝐸𝑑𝑔𝑒𝑠 do
3 if 𝑒𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 > 𝑒𝑑𝑔𝑒.𝑝𝑙𝑎𝑐𝑒.𝑡𝑜𝑘𝑒𝑛𝑠 then
4 return 𝑓 𝑎𝑙𝑠𝑒

5 return 𝑡𝑟𝑢𝑒

The possibility of firing the transition is checked beforehand as
described by the Algorithm 2.

2.2 Rust and its Usage for DSL Implementation
Our work focuses on the opportunities offered by Rust to create
and deploy such DSLs in different sorts of execution environments,
to provide end-user tools (editor, executor, etc.) for these different
environments.

2.2.1 Main Concepts and Ideas of Rust. Rust is a fairly-new com-
piled programming language designed for performance, memory
safety, and thread safety. It is a strong and static typed language. It
is said to be multi-paradigms: it carries concepts from functional,
imperative, and object-oriented programming2. It was announced
by theMozilla Foundation in 2010 and its development is now under
the support of the Rust Foundation. It has a growing community
and is, according to the yearly StackOverflow survey, the most
loved language since 20163.

Rust allows low-level memory management and safe parallelism
by a set of rules checked by the compiler based on the concept of
ownership. That way, Rust does not rely on a garbage collector. The
ownership system can be resumed as follows: each value is owned
by at most one variable at a time and when the owner goes out of
scope, the value is dropped. Those attractive properties are useful
in DSL development: strong typing, memory safety and multiple
deployment targets.

2.2.2 Compilation Targets. As Rust is oriented towards network
services, embedded systems, command line tools, and web applica-
tions, it has multiple compilations targets and can run on almost
all platforms4.

Rust provides helpful features to create a command-line appli-
cation, such as automatically-generated documentation5, quick
packaging and distributing thanks to the Cargo package manager6,
and flexible logging configuration7.

For the development of applications running on embedded sys-
tems, Rust emphasizes interoperability and portability: it can be
integrated into an existing C codebase8 and it provides an efficient
2https://doc.rust-lang.org/book/ch17-01-what-is-oo.html#characteristics-of-object-
oriented-languages
3https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-
programming-scripting-and-markup-languages
4https://doc.rust-lang.org/nightly/rustc/platform-support.html
5https://rust-cli.github.io/book/in-depth/docs.html
6https://rust-cli.github.io/book/tutorial/packaging.html
7https://rust-cli.github.io/book/in-depth/human-communication.html
8https://docs.rust-embedded.org/book/interoperability/

Hardware Abstraction layer, allowing to use a driver or a library
with a wide variety of systems9.

A key benefit of implementing a DSL using Rust is that Rust
code can be compiled into a web-runnable binary instruction format
called WebAssembly (abbreviated Wasm). It allows the execution of
applications written in these languages on the web nearing native
performances, taking advantage of hardware capabilities available
on computer, mobile, and IoT devices.

WebAssembly is designed to be memory safe, portable, fast, and
fully integrated. It does not replace JavaScript, which remains the
language for the web, but exposes its modules and offers an API
for communicating with JavaScript. It is possible to build an entire
application with WebAssembly, user interfaces included, or to only
make a library of utility functions called by JavaScript. Although
web deployment is WebAssembly’s key focus, it can be shipped on
non-web embeddings such as Node and used on the server side for
edge computing, for example.

For example, in the context of DSL development, a language en-
gineer could compile a DSL developed using Rust that his company
uses into a Wasm binary and can make it run on the web without
rewriting the language for each execution environment.

2.3 Shortcomings of Rust for Metamodeling
Despite Rust interesting features, some complications arise when
implementing DSLs in this fashion. This is especially apparent
when implementing a metamodel-based abstract syntax: because
of the way Rust manages memory, it is tricky to replicate bidirec-
tional associations and shared references. Indeed, the Rust low-
level memory management enforces thinking in terms of heap and
stack allocation, whereas metamodeling is a high-level activity that
should allow abstract concepts to be expressed simply. By default,
all values in Rust are allocated on the stack because managing mem-
ory is more efficient. On the contrary, heap allocation is used for
dynamically sized data structures, such as vector arrays, or when
programmers explicitly need to control the variable lifetime.

In addition, while Rust does share some similarities with object-
oriented programming, it is not built around a class taxonomy
principle. That makes converting an Ecore-built language into id-
iomatic Rust not straightforward. For instance, Rust has no concept
of abstract classes, polymorphic methods, or class inheritance.

Solving those issues related to Rust design choices is laborious
and requires a systematic approach. Furthermore, the Ecore lan-
guage is more convenient for metamodeling as it is designed for
it and simpler than Rust—it does not require thinking about mem-
ory management. For these reasons, we propose an approach to
automate the conversion of a metamodel-based DSL expressed in
Ecore into Rust code. This way, it is possible to take advantage of
Ecore features while keeping the deployment opportunities offered
by Rust. This approach is the subject of the following section.

3 APPROACH
In this section, we present the design of the approach and its envi-
sioned use by language engineers. We motivate our design choices
for the Ecore2Rust tool and detail how it fits into the approach we
are proposing.
9https://docs.rust-embedded.org/book/portability/

https://doc.rust-lang.org/book/ch17-01-what-is-oo.html#characteristics-of-object-oriented-languages
https://doc.rust-lang.org/book/ch17-01-what-is-oo.html#characteristics-of-object-oriented-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://rust-cli.github.io/book/in-depth/docs.html
https://rust-cli.github.io/book/tutorial/packaging.html
https://rust-cli.github.io/book/in-depth/human-communication.html
https://docs.rust-embedded.org/book/interoperability/
https://docs.rust-embedded.org/book/portability/

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Olivier, Sauvêtre, Bousse, Sunyé

creates

Langage

Engineer

imports

Operational
semantics

(Rust)

Abstract syntax

(Ecore)

use

Ecore2Rust
(Python)

PyEcore

Abstract syntax

(Rust)

Rust compiler

use

Wasm-pack
Web DSL runtime
(WebAssembly,
TypeScript, JS)

Native DSL runtime

(eg. x86, ARM)

imports Textual command-line
editor and executor

imports Graphical web

editor and executor

DSL definition

DSL Rust implementation End-user tools

creates

Data flow

Dependency Automatically generated

ProcessusArtefact

Editing operations

(Rust)

imports

Domain

expert

uses

Figure 3: Approach Overview

3.1 Overview
Figure 3 depicts an overview of the proposed approach. From left to
right, it shows the creation of the language and its usage in different
execution environments.

First, the language engineer defines the abstract syntax of the
DSL using the Ecore metamodeling language. Then, the Ecore2Rust
tool translates this Ecore-based abstract syntax into pure Rust code,
thus enabling the use of the abstract syntax in a Rust program. Fi-
nally, the language engineer defines both the operational semantics
(i. e. the interpreter) and the editing operations of the DSL in Rust,
using the generated Rust version of the abstract syntax.

Once a pure Rust DSL has been completed, the language engi-
neer can rely on different Rust compilation toolchains to generate
DSL runtimes for different execution environments. We call DSL
runtime a software artifact that includes all the elements—libraries,
executables, API, assets, etc.—that are necessary to integrate the
DSL in a end-user tool in a given execution environment. For exam-
ple, from the Rust implementation of the DSL, wasm-pack can be
used to generate a DSL runtime fitting for web environments, and
the Rust compiler can be used to generate a native DSL runtime.

Finally, using a given language runtime, the language engineer is
able to create relevant end-user tools for the corresponding execu-
tion environment. For example, using the web runtime, a web-based
graphical end-user tool can be made to edit and debug models, and
using the native runtime, a textual command-line end-user tool can
be made to execute and debug models in the command line. Both
tools depend on the very same DSL definition, which guarantees
that they remain consistent with one another.

3.2 Ecore2Rust
This subsection presents the central piece of our contribution, which
is a tool to automatically generate Rust code from an abstract syntax
defined using Ecore. The purpose of this tool is to reduce the amount
of intricate Rust code that the language engineer should write to
create a Rust-based DSL.

3.2.1 Presentation. Ecore2Rust performs the conversion of an Ecore
model into corresponding Rust code. This conversion is not straight-
forward as Rust and Ecore do not rely on the same paradigms, goals,
and constraints. Rust is partially object-oriented, while Ecore is
fully object-oriented. Rust is a general-purpose programming lan-
guage, while Ecore is mostly focused on defining data structures.
Rust is considered to be rather “low-level” because it allows pre-
cise and safe memory management at the cost of more stringent
allocation rules—i. e. the ownership system. On the contrary, Ecore
is considered “high-level”, and its official implementation relies
on Java, and thus on a garbage collector. For these reasons, it was
necessary to make technical choices regarding which Rust concepts
to use to convert Ecore concepts.

Table 1 shows the mappings from Ecore to Rust considered for
implementing Ecore2Rust. In what follows, we present and discuss
most important aspects and challenges of this transformation.

3.2.2 Objects in Rust. Rust has the concept of objects owning data
attributes and methods operating on these data. In idiomatic Rust,
object attributes are grouped in structs and a method is an im-
plementation of a function working on a struct. Shared behavior
between structs is defined by traits that are similar to interfaces in
other object-oriented languages. Thanks to traits, duck typing is
allowed in Rust, which means it is possible to reproduce a kind of
polymorphism. For example, if structs A and B implement trait C,
then C can be used as a type accepting structs A and B.

3.2.3 Classes.

Concrete Class. Concrete classes of the Ecore abstract syntax are
converted to Rust structs, and all their attributes and relationships
to other classes become fields of the Rust struct.

Asbtract Class. As there is no abstract class and class inheritance
in Rust, those classes are substituted by traits. A trait specifies
abstract class methods and is implemented by the inherited concrete
class. These are represented by structs and directly have inherited

A Tool-Assisted Approach to Engineer Domain-Specific Languages (DSLs) using Rust MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Ecore Rust
EEnum Enum

EClass Struct

EClass (abstract) Trait

Attribute Detailed in Table 3
Reference Rc<RefCell<T>>

Reference (containment) T

Reference (recursive) Box<T>

Reference (0 or 1) Option<T>

Reference (abstract type) Box<dyn T>

Table 1: Data Structure Conversion Summary Table

Ownership Invariants check Borrows
Rc<T> Multiple Compile time Immutable
Box<T> Single Compile time Immutable or mutable

RefCell<T> Single Runtime Immutable or mutable
Table 2: Some Smart Pointers Properties Explained

attributes in them. Concrete class attributes containing an abstract
type are allowed in Rust thanks to duck typing. But it needs to be
prefixed by the dyn keyword because the compiler does not know
the concrete type being passed. As it is a reference to a concrete
type implementing a trait, it must be nested in a Box<dyn T> smart
pointer10.

3.2.4 Reference. A reference is a relation between two Ecore classes
which means that a class A knows a class B. Each class exists
independently of the other. Ecore2Rust converts all references to a
regular Rust struct field.

An Ecore metamodel is essentially a graph data structure, which
may include different sorts of single or bidirectional references. Un-
fortunately, Rust’s ownership rules make building graph structures
difficult. In particular, it is not straightforward to produce Rust
data structures where there are bidirectional relations—i. e. shared
ownership of data.

Although the Rust ownership system allows only one owner at a
time for a value, there is a way to share a reference to this value with
other variables. This is called borrowing11 and it obeys the following
rules: at any given time, there can be either one borrowed mutable
reference, or any number of immutable borrowed references, and
references must always be valid—unlike a pointer, a reference is
guaranteed to point to a valid value of a particular type. However,
there are some particular cases where special memory containers,
called smart pointers, are needed12.

To solve the graph structure issue, the state of the art in Rust is
to use the Interior Mutability Pattern13. This design pattern consists
in mutating the value inside an immutable value. It allows multiple
owners of mutable data. In practice, it nests two kinds of smart
pointers: RefCell<T> in Rc<T>. Note that T here corresponds to
the type towards which we would like to have a pointer to.

10https://doc.rust-lang.org/book/ch19-04-advanced-types.html
11https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
12https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
13https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

Ecore Rust
EByte i8

EShort i16

EInt i32

ELong i64

EDouble f32

EFloat f64

EBoolean bool

EChar char

EString String

Table 3: Primitive Data Types Table

Table 2 gives an overview of the properties of the three smart
pointers we used in Ecore2Rust. We see that the combination of
the Rc<T> and the RefCell<T> smart pointers makes it possible to
have shared ownership thanks to the Interior Mutability Pattern.

The Reference Counting or Rc<T> is a smart pointer, keeping track
of the number of references to a value. Cloning a Rc<T> increments
the counter and creates a new reference to the value. When it goes
to zero, the value is dropped. Rc<T> allows sharing data between
multiple structures in the program, but is read-only.

Nesting a RefCell<T> in a Rc<T>makes the shared data mutable.
RefCell<T> is another kind of smart pointer. It represents single
ownership over the data it holds. It has the advantage of allow-
ing immutable or mutable borrowings to be checked at runtime.
Checking at runtime offers more possibilities for programs where
compiler static analysis cannot ensure memory safety. Because of
its properties, RefCell<T> lets us mutate the value inside, even
when the RefCell<T> is immutable.

In summary, Ecore2Rust converts Ecore references following the
Interior Mutability Pattern, producing Rust Rc<RefCell<T>> type.

3.2.5 Containment Reference. A containment is a particular case
of reference defining that an instance of class A may contain an
instance of class B. It is directly converted in a regular Rust field,
hence directly typed with T.

3.2.6 Zero-or-one Reference. An Ecore metamodel can depict a
situation where a class can have zero or one reference to an class.
Instead of having a null type, Rust has an enumeration called
Option which encodes the class of a value being present or absent14.
Checking the existence of a value is done by pattern matching. In
case of zero-or-one reference, the converter translates it into an
Option<T> enum.

3.2.7 Primitive Data Types. Table 3 depicts the conversion table for
primitive data types between Ecore and Rust. Some Ecore data types
are not currently supported, such as EMap, and EObject variants.
Ecore data types in Table 3 exactly match their Rust equivalent: for
example, number types have the same ranges15.

3.2.8 Recursive Reference. Recursive reference is when an Ecore
class has a reference towards itself. Rust cannot know at compile

14https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html#the-option-
enum-and-its-advantages-over-null-values
15https://doc.rust-lang.org/book/ch03-02-data-types.html

https://doc.rust-lang.org/book/ch19-04-advanced-types.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html#the-option-enum-and-its-advantages-over-null-values
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html#the-option-enum-and-its-advantages-over-null-values
https://doc.rust-lang.org/book/ch03-02-data-types.html

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Olivier, Sauvêtre, Bousse, Sunyé

time how much space a recursive type takes, possibly looping in-
finitely. Nevertheless, recursive types are possible using a Box<T>
smart pointer16 because Boxes have a compile-time known size.

3.2.9 Collection. We call collection an Ecore reference with an
upper bound superior to one. There are two kinds of array data
structures in Rust: fixed-size arrays denoted [T; N]with T type and
N size, and dynamic length arrays called Vector and denoted Vec<T>.
The first one would be used in the case of a fixed-size collection
greater than one. Otherwise, for an unknown-size collection, a
Vec<T> would be used.

3.2.10 Naming Convention. Although it does not appear in the
Table 1, it should be noted that Rust uses distinct name conventions
for type-definition structures (types, structs, traits), and for variable
names. Therefore, Ecore2Rust translates structure and variable
names during conversion to match Rust conventions.

3.2.11 Example of Ecore2Rust usage. Figure 4 shows the generated
Rust code for the abstract syntax of the Petri nets DSL depicted in
Figure 1. Each Ecore class becomes a Rust struct, and all the class’s
attributes and relationships with the other classes become fields of
the struct. Structs and their fields visibility are set to public with
the keyword pub. Structs and enums names are written in pascal
case (e. g. Petrinet, Orientation), while field names are written
in snake case (e. g. input_edges), as required by Rust naming con-
ventions. Lists of shared references such as Petrinet’s attributes,
and Place and Transition’s input_edges and output_edges be-
come a Vec<Rc<RefCell<T>>. Simple shared references place and
transition in Edge become a Rc<RefCell<T>.

3.2.12 Implementation of Ecore2Rust. Ecore2Rust is implemented
in Python and relies on the PyEcore framework17 to read an Ecore
metamodel previously serialized as an XMI file. It is freely accessible
on a GitLab instance18 under the AGPL license version 3.

In the current version of our prototype, we only support a sub-
set of the Ecore language. Currently supported Ecore features are:
enums, classes (abstract classes included), primitive data type at-
tributes, subpackages, and references. Some parts of Ecore are not
supported, such as methods and attributes inheritance, multiple
inheritance, generic types, and Ecore’s specific primitive data types.
Although the import of used smart pointers is automatically added,
the automatic import of structs between different subpackages is
not supported.

3.3 Using the Generated Rust Abstract Syntax
Once the Rust code for the abstract syntax has been generated, it
can be used by the language engineer as a basis to implement both
editing operations and operational semantics in Rust.

Figure 5 shows the methods signatures of the editing operations
manually written in Rust for the Petri nets DSL. These methods
are in an implementation operating on the Petrinet struct. The
new() method works as a constructor, returning a new Petrinet
object. add_transition(), add_place() and add_edge() create
respectively a new Transition, Place, and Edge in the Petri nets.

16https://doc.rust-lang.org/book/ch15-01-box.html
17https://github.com/pyecore/pyecore
18https://gitlab.univ-nantes.fr/E187954Y/ecore2rust

pub enum Orientation {
Transition,
Place,

}

pub struct Edge {
pub place: Rc<RefCell<Place>>,
pub transition: Rc<RefCell<Transition>>,
pub orientation: Orientation,
pub weight: i32,

}

pub struct Place {
pub name: String,
pub tokens: i32,
pub input_edges: Vec<Rc<RefCell<Edge>>>,
pub output_edges: Vec<Rc<RefCell<Edge>>>,

}

pub struct Transition {
pub name: String,
pub input_edges: Vec<Rc<RefCell<Edge>>>,
pub output_edges: Vec<Rc<RefCell<Edge>>>,

}

pub struct Petrinet {
pub places: Vec<Rc<RefCell<Place>>>,
pub transitions: Vec<Rc<RefCell<Transition>>>,
pub edges: Vec<Rc<RefCell<Edge>>>,

}

Figure 4: Rust Abstract Syntax of the Petri Nets DSL, Gener-
ated from the Metamodel Shown in Figure 1.

impl Petrinet {

pub fn new() -> Petrinet {...}

pub fn add_place(
&mut self,
name: String,
tokens: i32

) -> Rc<RefCell<Place>> {...}

pub fn add_transition(
&mut self,
name: String

) -> Rc<RefCell<Transition>> {...}

pub fn add_edge(
&mut self,
rc_place: &Rc<RefCell<Place>>,
rc_transition: &Rc<RefCell<Transition>>,
orientation: Orientation,
weight: i32,

) {...}

...

}

Figure 5: Methods signatures of the Rust editing operations
manually written for the Petri nets DSL.

These methods have a special parameter named self, which is the
Petri nets object itself on whose the methods are called.

Figure 6 shows the methods signatures of the operational seman-
tics manually written in Rust for the Petri nets DSL. These methods
are in the same implementation as the editing operations and have a
similar self parameter. The method is_fire_possible() returns
true, if it is possible to fire the transition given in parameter, and

https://doc.rust-lang.org/book/ch15-01-box.html
https://github.com/pyecore/pyecore
https://gitlab.univ-nantes.fr/E187954Y/ecore2rust

A Tool-Assisted Approach to Engineer Domain-Specific Languages (DSLs) using Rust MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

impl Petrinet {

...

pub fn is_fire_possible(
&self,
rc_transition: &Rc<RefCell<Transition>>

) -> bool {...}

pub fn fire(
&mut self,
rc_transition: &Rc<RefCell<Transition>>

) -> String {...}

}

Figure 6: Methods Signatures of the Rust Operational Seman-
tics Manually Written for the Petri Nets DSL.

pub fn fire(&mut self, rc_transition: &Rc<RefCell<Transition>>) -> bool {
let is_fire_possible: bool = self.is_fire_possible(rc_transition);
if !is_fire_possible {

return false;
}
let trans = rc_transition.borrow();
for edge in trans.input_edges.iter() {

let place = &edge.borrow().place;
place.borrow_mut().tokens -= edge.borrow().weight;

}
for edge in trans.output_edges.iter() {

let place = &edge.borrow().place;
place.borrow_mut().tokens += edge.borrow().weight;

}
return true;

}

Figure 7: Implementation of the fire Method of the Petri
Nets DSL Operations Semantics.

the method fire() fires a given transition—i. e. moves the tokens
from an input to an output place.

Figure 7 shows the implementation of the fire operation. First,
the method checks if it is possible to fire the transition. If it is
not, false is returned. Otherwise, rc_transition is borrowed to
iterate in its input_edges attribute. For each edge, a number of
tokens corresponding to the weight of the edge are removed from
the mutably borrowed place. The same operation is performed on
the places at the end of the output_edges, but instead of being
removed, the tokens are added.

import init, { PetrinetProxy } from "petrinet";

enum Orientation {
toPlace = "toPlace",
toTransition = "toTransition",

}

await init();
const petrinet = new PetrinetProxy();

petrinet.add_place("P1", 1);
petrinet.add_transition("T1");
petrinet.add_edge("P1", "T1", Orientation.toTransition, 1);
petrinet.fire("T1");

Figure 8: Example of TypeScript CodeUsing thewebRuntime
Generated from the Petri Nets DSL Rust Implementation.

Figure 9: Screenshot of a Graphical End-user web Tool Im-
plemented Using the web Runtime Generated from the Petri
Nets DSL Rust Implementation.

At this point, we have a complete Rust implementation for the
Petri nets DSL, which can be given to different toolchains to obtain
different runtimes. For example, a web runtime can be generated
using the wasm-pack toolchain, thus making it possible to integrate
the DSL inside a web application. Such a generated web runtime
includes both WebAssembly binaries and TypeScript glue code
allowing easy use of theWebAssembly part. Figure 8 shows a simple
example of using this web runtime in a TypeScript program. The
module is imported, then initialized and finally, the WebAssembly
functions exposed can be called from TypeScript. Pushing this idea
further, Figure 9 shows a screenshot of a complete web graphical
end-user tool19 implemented in this fashion, which can both create
and execute Petri nets models.

A native runtime can also be generated for the DSL using the Rust
compiler, which can be directly imported into a Rust program to
provide a native tool. Figure 10a and Figure 10b show an example
of textual command-line end-user tool implemented using this
runtime, which is also able to create and execute a Petri net model.

4 EVALUATION
In this section we present an initial evaluation of our approach
through the following three research questions:
• RQ 1: Is the approach generic, i. e. can it be used to create
different sorts of DSLs in Rust?
• RQ 2:Howmuch manual development effort is avoided using
the automated part of the approach (Ecore2Rust)?
• RQ 3: Can the approach be used to obtain different sorts of
runtimes for a DSL, and can these runtimes be used to build
tools for different environments?

4.1 Evaluation protocol
Considered DSLs. For this initial evaluation, we considered two

common DSLs: a Petri nets DSL and a Finite State Machines (FSM)
DSL. The considered Petri nets DSL was already presented and
used as a running example in the previous section. The considered

19Code available under the Apache Licence 2.0: https://gitlab.univ-nantes.fr/E187954Y/
petrinet-player.

https://gitlab.univ-nantes.fr/E187954Y/petrinet-player
https://gitlab.univ-nantes.fr/E187954Y/petrinet-player

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Olivier, Sauvêtre, Bousse, Sunyé

(a) Creation of a Petri net Model.

(b) Firing a Transition of the Created Model.

Figure 10: Screenshots of a Textual Command-line End-user Native Tool Implemented Using the Native Runtime Generated
from the Petri Nets DSL Rust Implementation.

FSM DSL is centered on the concepts of State and Transition, with
a semantics describing how the current state of the FSM changes
based on the executed transitions.

Considered execution environments and target tool. We consid-
ered the same two execution environments that have been used
as examples in previous sections: a native environment, where the
DSL runtime must be a native library (e. g. x86 instructions), and a
web environment, where the DSL must be a library executable in
a browser (e. g. JS and WebAssembly). For each environment, we
aim to implement an end-user tool able both to create a model and
execute it.

Considered metrics. To estimate development effort, we relied
on measuring the number of lines of code using the cloc tool with
default options, i. e. not counting empty lines and comments.

Evaluation process. We followed the following process for each
considered DSL:

(1) We used the Ecore language to create an abstract syntax in
the form of a metamodel.

(2) We applied Ecore2Rust on the Ecore abstract syntax to gen-
erate a Rust version of the abstract syntax.

(3) Using the abstract syntax generated code, we manually im-
plemented an operational semantics fully in Rust, thus yield-
ing a complete Rust implementation of the DSL.

(4) We measured both the amount of code generated and the
amount of code manually written.

(5) Finally, for each considered execution environment:
(a) We used the Rust compiler for generating a DSL runtime

if considering a native environment, or wasm-pack if con-
sidering a web environment.

(b) Using the resulting runtime, we manually implemented
the considered end-user tool.

4.2 Results
In the following, we present the obtained results and discuss how
they answer the considered research questions.

RQ 1: The approach was successfully applied to obtain the ab-
stract syntax, the editing operations and the operational semantics
in Rust of both considered DSLs. The resulting Rust implementa-
tions are publicly available on a GitLab instance2021.

RQ 2: Table 4 shows the amount of Rust code obtained for each
DSL. We count separately the lines that were automatically gen-
erated (i. e. the abstract syntax) and the lines that were manually
written (i. e. operational semantics and editing operations). We note
that the approach generates between 23.68% and 26.98% of the
total amount of code to get a complete DSL using Rust. Although

20https://gitlab.univ-nantes.fr/E187954Y/fsm-player
21https://gitlab.univ-nantes.fr/E187954Y/petrinet-player

https://gitlab.univ-nantes.fr/E187954Y/fsm-player
https://gitlab.univ-nantes.fr/E187954Y/petrinet-player

A Tool-Assisted Approach to Engineer Domain-Specific Languages (DSLs) using Rust MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

FSM Petri nets
Generated rows 17 27

Manually written rows 43 87
Percentage of generated code 26.98 % 23.68 %

Table 4: Proportion of Automatically Generated Code

the approach requires the developer to write a significant part of the
code, it should be noted that the remaining part requires less design
work because it relies on automatically generated data structures.

RQ 3: Each DSL was successfully compiled in two forms: a native
runtime and a web runtime. We built a variant of the considered
tool for each runtime of each DSL: a textual command-line tool
for the native environment and a graphical tool for the web envi-
ronment. The tools obtained for the Petri nets DSL were already
presented with Figures 9, 10a, and 10b. Figure 11 shows a screen-
shot of the graphical web end-user tool made for the FSM DSL
using the generated web runtime, and Figures 12a and 12b screen-
shots of the textual native end-user tool made using the generated
native runtime. All four end-user tools are available on a Gitlab
instance2223.

Also note that for each DSL, resulting end-user tools rely on
the same Rust implementation of the DSL, thus avoiding any error-
prone re-implementation of the DSL for each new environment.

5 RELATEDWORK
The Eclipse Modeling Framework (EMF), provides the official code
generator for Ecore, targeting Java [12]. A few other approaches
propose translations and implementations of Ecore in different
programming languages. The .NET Modeling Framework (NMF)
is able to generate C# code from Ecore [6]. The CrossEcore cross-
platform modeling framework is also able to generate C#, but also
TypeScript, JavaScript, and Swift from Ecore models with embedded
OCL [11]. The PyEcore24 framework provides an implementation of
EMF in Python, making it possible to manipulate Ecore metamodels
and models in Python. However, to our knowledge, we are the first
approach targeting Rust, which focuses on generating different
runtimes from the same DSL implementation.

We can also cite the work of Besnard et al. [1], where a native
runtime and tool for the UML language was developped in C , thus
making it able to execute UML models in a bare-metal embedded
environment. However the code was written manually, and can-
not be automatically generated from a DSL definition as with our
approach.

6 CONCLUSION
We presented an approach to engineer a DSL using Rust, up to
the generation of different DSL runtimes using the existing Rust
toolchains. The approach includes a tool, Ecore2Rust, able to auto-
matically translate an abstract syntax described in Ecore into Rust.
To evaluate our solution, we applied it to two DSLs: FSM and Petri
nets. Results show that the approach works for both DSLs, reduces
22https://gitlab.univ-nantes.fr/E187954Y/petrinet-player
23https://gitlab.univ-nantes.fr/E187954Y/fsm-player
24https://github.com/pyecore/pyecore

the amount of code to write manually, and can indeed be used to
create tools for different execution environments (native and web).

To pursue this work, different research directions are possible.
The evaluation should include a greater diversity of DSLs, including
more complex cases such as parts of the UnifiedModeling Language
(UML). The Ecore2Rust tool can be extended to support more parts
of the Ecore language. It would also be interesting to automatically
generate (part of) the Rust operational semantics, for instance using
a metalanguage such as ALE [9] as source language.

REFERENCES
[1] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, and Philippe

Dhaussy. 2018. Unified LTL Verification and Embedded Execution of UML
Models. In Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (Copenhagen, Denmark) (MOD-
ELS ’18). Association for Computing Machinery, New York, NY, USA, 112–122.
https://doi.org/10.1145/3239372.3239395

[2] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien Dean-
toni, and Benoit Combemale. 2016. Execution framework of the GEMOC studio
(tool demo). In Proceedings of the 2016 ACM SIGPLAN International Conference on
Software Language Engineering. ACM. https://doi.org/10.1145/2997364.2997384

[3] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser, Kevin
van der Vlist, Guido Wachsmuth, and Jimi van der Woning. 2015. Evaluating and
comparing language workbenches. Computer Languages, Systems and Structures
44 (Dec. 2015), 24–47. https://doi.org/10.1016/j.cl.2015.08.007

[4] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design

Patterns: Elements of Reusable Object-Oriented Software. AddisonWesley Profes-
sional.

[6] Georg Hinkel. 2018. NMF: A multi-platform Modeling Framework. In Theory
and Practice of Model Transformations: 11th International Conference, ICMT 2018,
Held as Part of STAF 2018, Toulouse, France, June 25-29, 2018. Proceedings, Arend
Rensink and Jesus Sanchez Cuadrado (Eds.). Springer International Publishing.

[7] Steven Kelly, Kalle Lyytinen, and Matti Rossi. 1996. MetaEdit+ A fully config-
urable multi-user and multi-tool CASE and CAME environment. In Notes on
Numerical Fluid Mechanics and Multidisciplinary Design. Springer International
Publishing, 1–21. https://doi.org/10.1007/3-540-61292-0_1

[8] Paul Klint, Tijs van der Storm, and Jurgen Vinju. 2009. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In 2009 Ninth
IEEE International Working Conference on Source Code Analysis and Manipulation.
IEEE. https://doi.org/10.1109/scam.2009.28

[9] Manuel Leduc, Thomas Degueule, Benoit Combemale, Tijs van der Storm, and
Olivier Barais. 2017. Revisiting Visitors for Modular Extension of Executable
DSMLs. In 2017 ACM/IEEE 20th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS). IEEE. https://doi.org/10.1109/models.
2017.23

[10] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005),
316–344.

[11] Simon Schwichtenberg, Ivan Jovanovikj, ChristianGerth, andGregor Engels. 2018.
CrossEcore: An Extendible Framework to Use Ecore and OCL across Platforms. In
Proceedings of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings (Gothenburg, Sweden) (ICSE ’18). Association for Computing Ma-
chinery, New York, NY, USA, 292–293. https://doi.org/10.1145/3183440.3194976

[12] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

[13] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-
lander, Lennart CL Kats, Eelco Visser, and GHWachsmuth. 2013. DSL engineering-
designing, implementing and using domain-specific languages. (2013).

https://gitlab.univ-nantes.fr/E187954Y/petrinet-player
https://gitlab.univ-nantes.fr/E187954Y/fsm-player
https://github.com/pyecore/pyecore
https://doi.org/10.1145/3239372.3239395
https://doi.org/10.1145/2997364.2997384
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1109/scam.2009.28
https://doi.org/10.1109/models.2017.23
https://doi.org/10.1109/models.2017.23
https://doi.org/10.1145/3183440.3194976

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Olivier, Sauvêtre, Bousse, Sunyé

Figure 11: Screenshot of a Graphical End-user web Tool Implemented Using the web Runtime Generated from the FSM DSL
Rust Implementation.

(a) Creation of an FSM Model.
(b) String Matching on the Created Automaton.

Figure 12: Screenshots of a Textual Command-line End-user Native Tool Implemented Using the Native Runtime Generated
from the FSM DSL Rust Implementation.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 DSLs Considered in This Work
	2.2 Rust and its Usage for DSL Implementation
	2.3 Shortcomings of Rust for Metamodeling

	3 Approach
	3.1 Overview
	3.2 Ecore2Rust
	3.3 Using the Generated Rust Abstract Syntax

	4 Evaluation
	4.1 Evaluation protocol
	4.2 Results

	5 Related Work
	6 Conclusion
	References

