
HAL Id: hal-03790499
https://hal.science/hal-03790499

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a User Interface Description Language Based
on Bigraphs

Nicolas Nalpon, Cyril Allignol, Célia Picard

To cite this version:
Nicolas Nalpon, Cyril Allignol, Célia Picard. Towards a User Interface Description Language Based on
Bigraphs. Theoretical Aspects of Computing – ICTAC 2022, Sep 2022, tbilisi, Georgia. �hal-03790499�

https://hal.science/hal-03790499
https://hal.archives-ouvertes.fr

Towards a User Interface Description Language
based on bigraphs

Nicolas Nalpon, Cyril Allignol[0000−0001−7528−5512], and
Celia Picard[0000−0002−8715−4365]

ENAC, Toulouse University, Toulouse, France
{name.surname}@enac.fr

Abstract. User interface description languages (UIDL) are high-level
languages allowing to model user interfaces (UI). Their purpose is to
ease the design of UIs. They are widely used, including to develop crit-
ical interactive systems. Nevertheless, the problem of verifying systems
developed with UIDLs is barely addressed in the literature. The first step
is to provide a formal semantics using an appropriate theory. We claim
that the bigraphs theory is a good candidate theory. In this short pa-
per, presenting a work in progress, we introduce the common features of
UIDLs and show how bigraphs could be used to define UIDLs semantics
and help with UI verification.

Keywords: User Interface Description Language · Graphical User In-
terfaces · formalisation · bigraphs.

1 Introduction

User interface description languages (UIDL) [10] are high-level languages allow-
ing to model user interfaces (UI). Their purpose is to make the design of the UIs
independent and avoid all the difficulties related to their programming such as
spaghetti code due to callbacks [17] and the maintenance of an event loop.

Nowadays, UIDLs are widely used to design UIs for interactive systems, in-
cluding critical systems [13, 19]. This emphasizes the need of formal verification
for the UIDLs [19], both on the language and program aspects e.g. formal se-
mantics, verified compiler and properties verification on written programs. We
focus on the UIDLs specialised on graphical user interfaces (GUI). These UIDLs
allow to describe a scene graph and how it evolves over time according to user
interactions. In safety-critical systems, the specifications of the GUIs expressed
through the UIDLs need to be consistent during all the program lifetime. The
purpose of this article is to present a new idea of formal foundations for UIDLs
with the same objective. Generally, the formal aspect of UIDLs is little studied.
This includes their semantics, except for a few works such as [9]. So, one of the
first questions to tackle is the formalisation of their semantics.

The semantics of UIDLs specialised on GUIs description present two common
features: the representation of the scene graph and the representation of the
control flow. These features relate to the spatial and non-spatial aspects of the

2 N. Nalpon et al.

GUI and we need a suitable formalism to represent these aspects of the semantics.
Bigraphs [16], a diagrammatic framework allowing to represent agents, their
locality, their interactions and how they evolve over time, have the potential to
represent appropriately these features and thus verify GUIs.

This short article, describing a work in progress, aims to motivate the use of
the bigraphs theory to formalise and verify UIDLs semantics and UIs.

We first detail the definition and common mechanisms of the UIDLs in Sec-
tion 2, before briefly presenting the bigraphs theory in Section 3. Then, in Sec-
tion 4, we show on a QML example, how we can model the GUI mechanisms
common to all UIDLs using the bigraphs theory. Furthermore, Section 5 gives
a glimpse of how verification can be done on a bigraphs model. Finally, in Sec-
tion 6, we give an overview of the existing work on GUIs verification and discuss
the concrete benefit to use bigraphs to verify GUIs.

2 UIDLs

UIDLs are programming languages generally used to design UIs. Programming
GUIs has been a tedious task for a long time: they had to be described by se-
quential code, and callbacks were used to handle events. These practices were
criticised [14, 17], in particular because of the causal relationships between the
different program entities that were not clearly represented. UIDLs are the so-
lution to this problem. Firstly, they make a clear distinction between the design
of the UIs and the rest of the application to be developed. Secondly, they only
focus on the design of the UIs and propose a suitable syntax to express graphical
entities location and interactions (as QML signals and slots [8]).

UIDLs often express GUIs through a tree structure and interactions through
special operators, variables affectation or scripting code. There are many UIDLs,
but for illustration sake, here are some details about three of them:two popular
UIDLs widely used in large projects, FXML and QML, and another one, smala,
used to develop critical systems. A more detailed comparison of UIDLs based
on XML syntax can be found in this survey [10]. FXML [5] based on Java,
describes the graph scene through an XML syntax and represents interactions
by variable affectation (bindings) or scripting code (event handler). QML[7], a
UIDL based on C++ and Python, describes the interactions in the same way as
FXML but JSON is favored to describe the graph scene. Lastly Smala [13], based
on C++, uses a bracket syntax along with the graphical entities definition order
to describe the scene graph and special operators to describe the interactions.

Despite the diversity of UIDLs, two features [20] are shared by all their se-
mantics: 1) the representation of the graph scene, giving explicit information on
the location of each graphical entity; 2) the interactions present in the GUI. To
implement these features, UIDLs always provide the following kind of mecha-
nisms: 1) an encapsulation mechanism, related to the scene graph criteria and
allowing to create a hierarchy among the graphical entities; 2) event handlers
and bindings (stream), allowing to handle GUIs interaction aspect. The hierar-
chy induced by the encapsulation and the entities dependencies induced by the

Towards a UIDL based on bigraphs 3

event handlers and bindings can be respectively represented by a forest and a
graph. This double graph structure is very similar to Milner’s bigraphs one.

3 Bigraphs

Bigraphs [16] are a diagrammatic framework introduced by Robin Milner allow-
ing to model systems that evolve over time and space. They consist of a set
of entites (nodes) shared by two orthogonal graph structures. The place graph,
which is a forest, represents the spatial aspect (by mean of nesting) of a system
and the link graph, which is a hypergraph, represents the interactions (by means
of hyperedges) present in the system.

3.1 Structural aspect and rewriting rules

Bigraphs, illustrated by Fig. 1a and Fig. 1c, are composed of entities, to which
we can associate a control (similar to a type), that in turn associates an arity
(number of links we can connect) to the entity. For example, the control C in
Fig. 1a has arity one and the controls A and B have arity zero. An entity has a
fixed arity. Entities can be nested into other entities (place graph) and can be
linked (through green hyperedges) to other entities (link graph). An entity that
cannot contain another entity is called atomic and is a leaf in the place graph.

Special structures allow bigraphs to be built and decomposed compositionally
as regions (dashed rectangle) and sites (grey rectangle). Regions are the root
container of a bigraph. Sites abstract away a bigraph part. Sites contain an
unspecified bigraph, even possibly the empty bigraph, contained in a region. So,
it is possible to build a bigger bigraph by placing regions into sites. In the same
way, the links allow composition by using names. For instance in Fig. 1b, the
link tagged s can be connected to another link tagged s from another bigraph.
Two types of link can be found in bigraphs: the open links, used to compose
bigraphs, and the close one as in Fig. 1a

C C B

B

A

(a)

C

B
s C

B
s

▶

(b)

B C C B

A

(c)

Fig. 1: (a) inital bigraph, (b) reaction rule and (c) bigraph after reaction

3.2 Bigraphical reactive systems (BRS)

A bigraph corresponds to a state of a system at a certain time. A BRS describes
how bigraphs evole over time using reaction rules, as shown in Fig. 1b. If the left

4 N. Nalpon et al.

hand side of a reaction rule is matched in a larger bigraph then we can replace
the matched part by the right hand side of the rule. Fig. 1b states that whenever
a control B contains a control C we can rewrite it by removing C from B. Fig. 1c
is the result of applying the rule in Fig. 1b to the bigraph in Fig. 1a.

4 Representation of mechanisms with bigraphs

In this section, we present, using QML as an example, the graphical user in-
terfaces mechanisms that most of UIDL specialised on GUI can express. The
encapsulation in QML, is encoded via the type item, inherited by all the graph-
ical entities of the language, and is represented by records from the JSON syntax.
About the event handler and the bindings, the former is encoded by the QML
signals and slots and the latter by affectations of record fields. A bigraphical
representation is provided for each mechanism, to give an idea on how bigraphs
could model a GUI.

1 Rectangle {

2 width: 200

3 height: 200

4 color: "red"

5 signal mEvent ()

6 Rectangle {

7 width: 100

8 height: parent.height

9 color: "blue"

10 }

11 Button {

12 onClicked:parent.mEvent ()

13 }

14 }

(a) QML program example

200

Width

200

Height

”red”

Color
Signal mEvent

Rectangle Button

Rectangle

(b) Scene graph representation

Fig. 2: QML program example and its partial bigraph representation

4.1 Representation of the scene graph

The scene graph is an abstract representation of the program GUI and controls.
Often, UIDLs are based on markup-languages (e.g. XML, JSON) because a tree
structure is easily induced from their syntax and it also makes the UI design
more intuitive for the developers [10]. Hence, reading the QML program from
Fig. 2a, we understand that its scene graph root is the red rectangle and the
root children are width:200, height:200, color:"red", signal mEvent(), the blue
rectangle and the button. Moreover, the induced tree gives information about

Towards a UIDL based on bigraphs 5

the positioning of the entities on the actual interface. Since the blue rectangle
and the button are children of the red rectangle, the GUI presents them on top
of the red rectangle.

Fig. 2b represents a part of the program scene graph. The nesting of bigraphs
helps representing the hierarchical aspect of a GUI scene graph and therefore
catching all the needed information.

4.2 GUI interactions

UIDLs allow to describe interactions taking place in the GUI. For instance, two
interactions are described in Fig. 2a. The first one, defined at line 8, relates the
red rectangle height and the blue rectangle height and implies the update of the
blue rectangle height each time the red rectangle height is updated. The second
interaction, defined at line 12, relates the implicit clicked signal from the button
and the signal mEvent defined at line 5. It implies that each time the clicked

signal of the button is emitted (i.e. when the user clicks on the button) then the
signal myEvent is also emitted.

State State

Signal clicked

Button

Signal mEvent

(a) Interaction of signal

Act State

State Signal mEvent

Signal clicked

Button

Act Act

State State

Signal clicked

Button

Signal mEvent

▶

(b) Signal activation

Fig. 3: QML Interactions

Generally, interactions are represented by links in a bigraph. Fig. 3a, rep-
resents the interaction from Fig. 2a involving the signals. In this diagram, we
define two linked entities corresponding to both the signals from the program.
An entity State is nested into each signal, corresponding to its emission state i.e.
emitted or not. The activation of a signal by another one can be represented by
a reaction rule (Fig. 3b). This rule matches the signal Signal clicked (implicit sig-
nal of the button) activated and linked to the signal mEvent. Then, it activates
the signal mEvent by nesting an entity Act into its entity State.

4.3 Bigraphs expressiveness

This section gives a glimpse of bigraphs expressiveness through two examples.
The first case deals with an activation condition on entities. If an entity is encap-
sulated, then it can only be activated if its parent is activated. For instance, only
the entities having their parent activated are rendered in a GUI. In other words,
a GUI should never be in a state shown by Fig. 4. This property which defines
semantics dynamic aspect can be covered by bigraphs thanks to reaction rules.

6 N. Nalpon et al.

It could be formalised by a rule similar to Fig. 6. Here, the bigraphs expres-
siveness allows to ensure parent activation (spatial aspect) and signal activation
(non-spatial aspect). This is an original features of bigraphs compared to other
process algebra theories.

The other case deals with types of entity activation. For instance, we could
associate a type to the graphical entities and another one to the signal entities
as shown in Fig. 5. This kind of typing eases the formalisation of the entities
activation process. On the one hand, once activated, a graphical entity remains
activated until the end of the program or until another entity deacticates it
(depending on the UIDL expressive power). On the other hand, a signal entity,
once emitted, is deactivated. Hence, bigraphs allow to define, via reaction rules,
a general signal emission mechanism according to a typing defined on entities.

Deact Act

State State

Rectangle

Rectangle

Fig. 4: Inconsistent GUI state

Persistant Transitional

Type Type

Rectangle Signal clicked

Fig. 5: Process type

Act Deact Act

State State State

Signal mEvent Signal clicked

Rectangle

Act Act Act

State State State

Signal mEvent Signal clicked

Rectangle

▶

Fig. 6: Activation entity only if parent activated

5 Bigraphs verification

Bigraphs develop a general theory which unifies and represents existing calculi
for concurrent communication and mobility. One of the key benefits to formalise
UI using bigraph is the possibility to check properties related by their spatial
and communication aspects. Indeed, BigraphER [2] an open-source framework
for working with bigraphs, allows a transition system, built from a BRS rep-
resenting an UI states and update sequences, to be exported. The transition
system can then be used by existing model checkers to check properties on the
given UI. Here, the model checker PRISM [12], that allows specifying temporal
properties in the PCTL specification language, is used to check properties. As
our model is not probabilistic, we restrict ourselves to the non-probabilistic frag-
ment. In the following, we show through a small example how bigraphs allow us
to automatically check properties on UIs models.

Towards a UIDL based on bigraphs 7

5.1 Predicats

To check properties on the generated transition system we require labels on its
states. In BigraphER, labels are defined as bigraph patterns l = B that specify
that a state should be labelled with l if there is a match ofB in that state. In other
words, you can think of these patterns as the left-hand-side of a reaction rule. For
our analysis we specify two predicates : 1) signal clicked that label states when
Signal_clicked is activated and Signal_mEvent is not ; 2) signal mEvent that
label states when both Signal_clicked and Signal_mEvent are activated.

5.2 Properties verification on UI

To show how properties can be checked on a given program we encode the
example of Fig. 2a when the signal signal_clicked is triggered i.e. when the
button has been clicked. Once the button is clicked,the signal signal_clicked
is emitted then the rule from Fig. 3b is applied to the model to trigger the
signal signal_mEvent. We can write a formula in PCTL ensuring that the signal
signal_mEvent is really activated : A[signal clicked =⇒ F signal mEvent].

This states that forall paths (A) if signal clicked is activated then eventually
(at some point in the future; F) signal mEvent must be active.

This feature of bigraphs, can be useful for developers to check the soundness
of the UI described. Indeed, the size of the UI makes the debugging much more
harder [15] which can be eased my automatic verification. This feature could
also be used to check that an UI satisfy semantics properties of the UIDL used.

6 Related and future work

This article gives a glimpse of the bigraphs theory, shows how it could be used to
model common features of the semantics of GUI specialised UIDLs and how to
automatically verify properties on the model. We provide [18] the formalisation
of the example in Fig. 2a and a setup to run the verification from Section 4.

Currently, several works exist on the verification of UIs but none concerns
UIDLs semantics. Verified react [1] is a project offering the possibility to check
logic properties and explore state on react programs. Some work [4, 6] exists on
the framework Djnn/Smala addressing the verification of interactive and graphic
properties by static analysis. Related to UIDLs, Interactive Cooperative Objects
[19] (ICO) is a formalism aimed at describing UIs. It borrows concepts from the
object-oriented approach (i.e. inheritance, encapsulation, dynamic instantiation)
to describe the structural aspect of a system and uses a high-level Petri nets [11]
to describe its dynamic aspect. To reason on this formalism, PetShop [3] will
allow to simulate the model and all verification tools for Petri nets can be used.

Our purpose is more related to the programming language aspect. We aim to
define a generic UIDL based on the bigraphs theory which covering all common
features of GUI specialised UIDLs. The idea is to use this UIDL as an interme-
diate representation for other UIDLs. This would allow to model mobility and
concurrent aspects of a GUI in a unique framework and enable the use of any
tool relates to bigraphs, e.g. BigraphER, to formally verify the GUI.

8 N. Nalpon et al.

References

[1] Dave Aitken. Introducing Verified React. Jan. 2019. url: https://medium.
com/imandra/introducing-verified-react-9c2ef03f821b.

[2] Blair Archibald, Muffy Calder, and Michele Sevegnani. “Conditional bi-
graphs”. In: Springer International Publishing (), pp. 3–19.

[3] Eric Barboni et al. “Bridging the gap between a behavioural formal de-
scription technique and a user interface description language: Enhancing
ICO with a graphical user interface markup language”. en. In: Science of
Computer Programming 86 (June 2014), pp. 3–29. issn: 01676423. doi:
10.1016/j.scico.2013.04.001. url: https://linkinghub.elsevier.
com/retrieve/pii/S0167642313000993 (visited on 06/17/2022).

[4] Pascal Béger. “Vérification formelle des propriétés graphiques des systèmes
informatiques interactifs”. en. In: (), p. 195.

[5] Gail Chappell and Nancy Hildebrandt. Using FXML to create a User In-
terface. English. Sept. 2013. url: https://docs.oracle.com/javafx/2/
get_started/fxml_tutorial.htm.

[6] Stéphane Chatty, Mathieu Magnaudet, and Daniel Prun. “Verification of
properties of interactive components from their executable code”. en. In:
Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interac-
tive Computing Systems. Duisburg Germany: ACM, June 2015, pp. 276–
285. isbn: 978-1-4503-3646-8. doi: 10 . 1145 / 2774225 . 2774848. url:
https://dl.acm.org/doi/10.1145/2774225.2774848 (visited on
06/30/2022).

[7] Qt Company. QML Tutorial. 2022. url: https://doc.qt.io/qt-5/qml-
tutorial.html.

[8] Qt Company. Signals & Slots. 2022. url: https://doc.qt.io/qt-
6/signalsandslots.html.

[9] Calvary Gaëlle et al. User Interface eXtensible Markup Language SIG. en.
Ed. by Pedro Campos et al. Vol. 6949. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 693–695. doi:
10.1007/978-3-642-23768-3. url: http://link.springer.com/10.
1007/978-3-642-23768-3 (visited on 06/24/2022).

[10] Josefina Guerrero-Garcia et al. “A Theoretical Survey of User Interface
Description Languages: Preliminary Results”. en. In: 2009 Latin American
Web Congress. Merida, Yucatan, Mexico: IEEE, Nov. 2009, pp. 36–43.
isbn: 978-0-7695-3856-3. doi: 10.1109/LA- WEB.2009.40. url: http:
//ieeexplore.ieee.org/document/5341626/ (visited on 06/17/2022).

[11] Kurt Jensen and Grzegorz Rozenberg. High-level Petri Nets : Theory and
Application. Springer Berlin, Heidelberg. 1991.

[12] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of
Probabilistic Real-time Systems”. In: Proc. 23rd International Conference
on Computer Aided Verification (CAV’11). Ed. by G. Gopalakrishnan and
S. Qadeer. Vol. 6806. LNCS. Springer, 2011, pp. 585–591.

[13] Mathieu Magnaudet et al. “Djnn/Smala: A Conceptual Framework and a
Language for Interaction-Oriented Programming”. en. In: Proceedings of

Towards a UIDL based on bigraphs 9

the ACM on Human-Computer Interaction 2.EICS (June 2018), pp. 1–27.
issn: 2573-0142. doi: 10.1145/3229094. url: https://dl.acm.org/doi/
10.1145/3229094 (visited on 06/29/2022).

[14] Ingo Maier, Tiark Rompf, and Martin Odersky. “Deprecating the Observer
Pattern”. en. In: (), p. 18.

[15] Alice Martin, Mathieu Magnaudet, and Stéphane Conversy. “Causette:
User-Controlled Rearrangement of Causal Constructs in a Code Editor”.
In: Proceedings of the 30th IEEE/ACM Conference on Program Compre-
hension (2022). doi: 10.1145/3524610.3527885. url: https://hal-
enac.archives-ouvertes.fr/hal-03659579.

[16] Robin Milner. The Space and Motion of Communicating Agents. Cam-
bridge University Press. USA, 2009.

[17] Brad A. Myers. “Separating application code from toolkits: eliminating
the spaghetti of call-backs”. en. In: Proceedings of the 4th annual ACM
symposium on User interface software and technology - UIST ’91. Hilton
Head, South Carolina, United States: ACM Press, 1991, pp. 211–220. isbn:
978-0-89791-451-2. doi: 10.1145/120782.120805. url: http://portal.
acm.org/citation.cfm?doid=120782.120805 (visited on 06/29/2022).

[18] Nicolas Nalpon, Cyril Allignol, and Célia Picard. “Toward a User Interface
Description Language based on bigraphs (model files, supplemental mate-
rial)”. In: (Aug. 2022). url: https://hal.archives-ouvertes.fr/hal-
03754387.

[19] David Navarre et al. “ICOs: A model-based user interface description tech-
nique dedicated to interactive systems addressing usability, reliability and
scalability”. en. In: ACM Transactions on Computer-Human Interaction
16.4 (Nov. 2009), pp. 1–56. issn: 1073-0516, 1557-7325. doi: 10.1145/
1614390.1614393. url: https://dl.acm.org/doi/10.1145/1614390.
1614393 (visited on 06/24/2022).

[20] Carlos Eduardo Silva and José Creissac Campos. “Can GUI Implementa-
tion Markup Languages Be Used for Modelling?” en. In: Human-Centered
Software Engineering. Ed. by David Hutchison et al. Vol. 7623. Series Title:
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 112–129. doi: 10.1007/978-3-642-34347-6_7.
url: http://link.springer.com/10.1007/978-3-642-34347-6_7
(visited on 06/30/2022).

