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A B S T R A C T

Erosion processes and the associated static/flowing transition in granular flows
are still poorly understood despite their crucial role in natural hazards such as
landslides and debris flows. Continuum models do not yet adequately repro-
duce the observed increase of runout distance of granular flows on erodible
beds or the development of waves at the bed/flow interface. Discrete Element
Methods, which simulate each grain’s motion and their complex interactions,
provide a unique tool to investigate these processes numerically. Among them,
Convex Methods (CM), resulting from the convexification of Contact Dynam-
ics methods, benefit from a robust theoretical framework, ensuring the con-
vergence of the numerical solution at every time iteration. They are also in-
trinsically more stable than classical Molecular Dynamics methods. However,
although already implemented in engineering fields, CMs have not yet been
tested in the framework of flows on erodible beds. We present here a Convex
Optimization Contact Dynamics (COCD) method and prove that it generates
a numerical solution verifying Coulomb’s law at each contact and iteration.
After its calibration and validation with experiments and another widely used
Contact Dynamics method, we show that our simulations accurately reproduce
qualitative and even many quantitative characteristics of experimental granu-
lar flows on erodible beds, including the increase of runout distance with the
thickness of the erodible bed, the spatio-temporal change of the static/flowing
interface and the presence of erosion waves behind the flow front. Beyond
erosion processes, our study endorses CMs as potential accurate tools for ex-
ploring complex granular mechanisms.

e-mail: martin_hugo@ymail.com (Hugo A. Martin)
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1. Introduction

Granular materials are involved in numerous geophysical flows such as landslides, debris flows, debris and snow
avalanches, pyroclastic flows and rockfalls on Earth and other planetary bodies [1, 2, 3, 4, 5, 6, 7]. These events rep-
resent major natural hazards threatening populations and infrastructures, especially in mountainous, coastal, volcanic
and seismic areas. The risks associated with landslides and potential generated tsunamis increase with increasing
human population and activity and with increasing severity and frequency of rainfall events related to climate change
[8, 6]. These flows occur on steep to gentle slopes and involve complex physical processes such as the presence
of a fluid phase, heterogeneous materials, fragmentation and segregation effects, and erosion/deposition processes
[9, 10, 1, 11]. The lack of understanding of these processes questions physics-based hazard assessment for these
geophysical flows that present a high mobility that is still an open issue despite increasing research on this topic
[2, 12].

A huge amount of work has been performed these last thirty years on granular flows, spanning laboratory experi-
ments, numerical modeling and field observation. As pointed out above, a full understanding of the physical processes
involved in these flows is still however lacking, even for simple lab-scale granular flows. At the particle scale, com-
plex interactions between grains involving nonlinear friction forces and inelastic collisions are involved. There are
also geometrical constraints on a granular material for which the density can typically vary from those of crystal-like
static configurations to those of gas-like flows [13].

Multiple modeling strategies have been proposed to simulate granular materials. A first approach is based on
continuum macroscopic models solving the full Navier-Stokes like equations [14, 15, 16, 17, 18] or the simplified
thin-layer (i.e. shallow-water) equations [19, 20, 21, 22, 23, 24, 25]. The second class of approaches, namely Discrete
Elements Methods (DEM), relies on a microscopic description of the medium. In DEM, the granular material is con-
sidered as an assembly of rigid grains. In DEM, the models are based on variables defined at the scale of individual
particles. These variables are typically the positions/velocities of the grains and contact forces. When considering
these methods, the difficult task is to compute the interactions between the particles. This computation can be done
using different approaches, identified as “soft” and “hard” methods. In the past thirty years, the number of studies in-
volving DEM, especially the “soft” formulation, has considerably increased in all domains of application, in particular
for flows at the laboratory scale [26, 27, 28, 29].

The first discrete element method to model the contacts between grains was the so-called Molecular Dynamics
(MD) method. It dates back to 1979 with the work of Cundall and Strack [30]. For real grains, the contact forces are
modeled with Hertz’s law of contact through functions depending on the elastic particle’s deformation at the contact.
In MD, the contact forces are functions parametrized by the numerical overlap between the grains during the contact
(see [31] for a detailed description). MD is a “soft” discrete method in the sense that grains are considered as slightly
deformable, so that contact forces are differentiable. MD is quite efficient in many situations and various refined
contact force models have been developed. It makes it possible to reproduce a wide range of contact phenomena (see,
for example, [32] for a list of about 40 possible contact models).

However, from a numerical point of view, the time discretization in MD is based on an explicit scheme, raising
stability issues because of the stiffness of the interaction forces. More precisely, to maintain numerical stability, the
time step used must be very small. In many situations, this makes it necessary to artificially decrease the rigidity of
grains [33]. As a consequence, it is difficult to reproduce static configurations, even when adding artificial dissipation
terms. Note also that the acoustic phenomena that appear in actual MD computations do not correspond in general to
realistic wave propagation phenomena because of this artificial decrease of grain rigidity [33].

The first discrete method that can be qualified as “hard” was the so-called Contact Dynamics (CD) method,
developed by Moreau and Jean in the 1990s. Contrary to MD, the contact forces are not modeled explicitly with
functions, but instead they are implicit and are required to satisfy contact laws, which typically express inelastic
collisions together with friction. We refer to the seminal papers [34, 35, 36, 37, 38, 39, 40] for a detailed description
of this approach. Contrary to MD, CD leads to contact forces that are not bounded in time since they are not functions
of time but rather impulses satisfying contact laws. The computational cost at each time steps is usually more than
in MD. However implicit schemes can be used, which makes it possible to use large time steps while still ensuring
stability.

In CD, for systems with contact laws that express non-overlapping and frictional phenomena (Coulomb’s law), the
equations of motion can be written as a combination of Newton’s second law with dynamic and kinematic constraints.
A straight time-discretization of the problem leads to a non-convex Linear Complementarity Problem (LCP) (see
[41, 42]), which is expensive to solve. The most widely spread numerical strategies to deal with the friction cone
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constraint are projection/splitting methods, Gauss-Seidel like relaxations, or generalized Newton methods (see [43]
for a review of these methods). Unfortunately, no convergence results for the corresponding iterative methods are
available. Among these methods, the Non-Smooth Contact Dynamics (NSCD) method [39, 44] has encountered
significant success, especially for comparisons with experiments (see [45, 46]).

In [47], the authors proposed another approach to compute an approximate solution to the LCP. This strategy
consists in solving a fixed-point problem, iterating on parameterized convex optimization problems that are proved to
converge toward the LCP’s solution at each time step. At each step of the fixed-point algorithm, it is required to solve
a conic minimization problem.

The last approach we consider here is based on a convexification of the non-overlapping constraint, in line with
[48, 49]. We refer to these approaches as Convexified Methods (CM). From this convexification, the time sub-
problem obtained can be turned into a conic constrained optimization problem. Therefore, it makes it possible to use
existing and convergent solvers to compute the solution at each time step. From a numerical point of view, several
approaches solve the corresponding Cone Complementarity Problem (CCP) [48, 49, 50, 51, 52], while our strategy is
to take advantage of the minimization problem. This minimization problem can be based on the global force vector
as the unknown [53, 54, 55, 56, 57, 58]. A short review of the different numerical methods introduced above is
presented in Section 2.2 and solver efficiencies are compared in [57]. From a theoretical point of view, all these
studies systematically refer to [48, 49]. In the first one some theoretical developments are proposed in the case of a
facet discretization of the Coulomb friction cone. In the second one, in the framework of the full circular Coulomb
cone, the authors reinterpret the scheme in terms of a minimization problem based on the forces.

In this article, we consider the dual formulation of the optimization problem, based on using the global velocity
vector as the unknown [59] together with the full circular Coulomb cone. In the following, we will refer to the method
presented in this paper as Convex Optimization Contact Dynamics (COCD). It is a convexified velocity based CM
formulation. Let us describe its main properties:

• The conditions verified by the optimal solution of the minimization problem are rigorously proved in the frame-
work of convex analysis. We show that they take the form of a discretization of the continuous problem, with
the Coulomb’s law verified at every contact and at every time step. The error in the local Coulomb’s law scales
like the precision of the optimization solver.

• This method is known to artificially push apart particles at the first order in time. Our validation tests show
that this drawback has no effect on the ability of the scheme to properly reproduce the expected macroscopic
behavior in the context of gravity-driven granular flows.

• Because of its optimization formulation, the numerical solution is ensured to converge at every time integration.

• Since the scheme is implicit, large time step values can be used.

In spite of the artificial gap mentioned above, which is common to all convexified methods (CM), we show the
excellent behavior of such schemes by confronting COCD to multiple validation processes. Indeed, COCD is first
validated through quantitative comparisons with simulations (with NSCD [45, 46], in which the non-convex scheme
is used) and with experimental results [60, 61] in gravity-driven granular flows. In a second step, we use COCD to
investigate how the presence of a basal erodible layer affects granular flows on top of it. To the authors’ knowledge,
it is the first study involving a CM in the framework of granular flows on erodible beds. The particle-scale processes
involved in these erosion phenomena are still open questions for both lab-and field-scale granular flows, even though
they are known to play a crucial role in landslides or avalanches [62, 63, 10, 64, 65, 66].

Several laboratory experiments involving granular flows on erodible beds have been performed. The experi-
mental setups implement, for example, releases of grains on a static erodible layer on horizontal or sloping beds
[20, 60, 61, 67] or constant inflows, leading to erosion-deposition waves [25, 68, 69]. In particular, lab-scale experi-
ments of granular collapses showed that the presence of even a very thin layer of erodible particles can significantly
increase the duration and the maximum distance (runout) reached by granular flows on slopes larger than about half
of the characteristic friction angles of the granular material involved [60, 61]. More precisely, there is no (or only a
minor) increase in the runout distance for horizontal planes, but there can be an increase of 40% for inclined planes.
These papers also showed that the runout distance increases with increasing thickness of the erodible bed and with the
slope angle. Even though the increase of runout distance has been qualitatively reproduced with continuum granular
flow models with the µ(I)-rheology [70, 71, 72], quantitative agreement is still quite poor. This raises the question



4 Hugo A. Martin et al. /Université Paris Cité (2022)

as to whether particle-scale processes, not accounted for in classical continuum models, may be a promising ele-
ment to better reproduce laboratory observations. As it is challenging to make such measurements even in lab-scale
experiments, DEM simulations provide a unique tool to investigate these effects.

First 3D DEM simulations of granular flows on erodible beds lying on a horizontal plane showed that for granular
columns with a relatively high initial aspect ratio (a = H/D > 3, where H and D are the column height and diameter,
respectively), the runout distance is still observed to increase, as in experiments [73]. However, a deep insight into
the comparison between DEM simulations and laboratory experiments is still lacking.

In this paper, we show that COCD accurately reproduces complex behaviors observed in lab-scale experiments
of granular flows on erodible beds. We complete the results of [73] with different inclination angles of the bed
and different thicknesses of the erodible layer lying on top of it. Furthermore, COCD is quantitatively compared to
granular collapse experiments performed by Mangeney et al. [60] and Farin et al. [61]. The increase in runout distance
is found to be well reproduced by the model. In addition, the static/flowing transition within the granular media and
its evolution inside the erodible layer are in very good agreement with observations. Finally, COCD surprisingly
reproduces the “wave” behavior observed at the interface between the initially flowing and initially static grains [61].
All these comparisons show that such CD models contain the key physical ingredients to reproduce and thus gain
insight into erosion processes in granular flows.

In Section 2, the continuous problem and its time discretization scheme COCD are described. The theoretical
results are presented. Section 3 presents a simple implementation of COCD using the Mosek solver [74]. This section
presents computational aspects such as the termination criteria and the solver tolerance according to time step values
that help COCD to reproduce experiments. It is also shown that the method well reproduces the results obtained with
the NSCD method. In Section 4, our method is compared to column collapse experiments leading to the calibration
of COCD parameters. Finally, the application of COCD to granular flows on erodible beds is presented in Section 5.

2. Continuous problem and time discretization scheme

Let us consider a mechanical system in R3, composed of N rotational rigid spheres with given fixed radii ri > 0
and masses mi > 0, i = 1, . . . ,N. The center of sphere i is denoted by ci ∈ R3, and its instantaneous velocity by
vi ∈ R3. Since we consider spheres only, we shall not follow the orientation of bodies, and simply consider here the
instantaneous rotation vector ωi ∈ R3. We denote by

c = (c1, . . . , cN) ∈ R3N and u = (v1,ω1, . . . , vN ,ωN) ∈ R6N

the generalized position and velocity field vectors.

×ci

×c j

•

Ci

•

C j
ni j

Fig. 1. Notations

The signed distance between spheres i and j is defined by :

Di j(c) =
∣∣∣ ci − c j

∣∣∣ − (
ri + r j

)
,

where | · | is the euclidean norm so that the non-overlapping condition writes Di j ≥ 0.
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For any two grains i and j, with centers ci and c j, we denote by Ci and C j the points which realize the distance
(with Ci = C j if the spheres are in contact, see Fig. 1). We define the associated position vectors ri = Ci − ci,
r j = C j − c j.

We consider the normal direction to the surfaces of the particles at points Ci and C j, which is shared by the two
particles. We introduce the unit vector ni j , defined as the corresponding normal vector pointing to particle i. Since
we consider spherical particles, we have:

ni j =
ci − c j

|ci − c j|
.

We denote by Pi jv = v − (v · ni j )ni j the projection of v on Πi j, the plane taht is orthogonal to ni j and thus parallel
to the tangent planes in Ci and C j.

We also define Ai j as the linear operator which maps the generalized velocity field u ∈ R6N to the relative velocity
between the points Ci and C j at which the distance between spheres i and j is attained , i.e.

Ai ju = vi + ωi ∧ ri − (v j + ω j ∧ r j) ∈ R3.

Straightforward computations show that for any generalized velocity u ∈ R6N and any vector f ∈ R3, we have
Ai ju · f = u · AT

i j f with

AT
i j f = (0, . . . , 0, f , ri ∧ f︸   ︷︷   ︸

position i

, 0, . . . , 0, − f ,−r j ∧ f︸        ︷︷        ︸
position j

, 0, . . . , 0) ∈ R6N ,

so that AT
i j maps a vector f ∈ R3 to the generalized force/moment vector corresponding to the force f exerted on

particle i at point Ci and the opposite force − f exerted on particle j at point C j.
The vector Pi jAi ju represents the tangential relative velocity. As a consequence, when two spheres are in contact

with no relative normal motion , i.e. ni j · Ai ju = 0, then Pi jAi ju = 0 expresses a rolling motion with no slip, while
Pi jAi ju , 0 corresponds to a sliding motion.

At any time, we shall denote by Ic the set of all possible pairs of contacts: Ic = {(i, j) 1 ≤ i < j ≤ N}. Note the
pair of grains i and j is represented only once in Ic through the couple (i, j) if i < j and ( j, i) if j < i.

We consider that no external torque is exerted on the grains. If f ext
i ∈ R3 is the external force exerted on particle

i we define the generalized force vector as fext = ( f ext
1 , 0, . . . , f ext

N , 0) ∈ R6N . We then define the 6N × 6N generalized
mass matrix (masses and moments of inertia) as

M = diag (m1,m1,m1, J1, J1, J1,m2, . . . , JN , JN , JN) .

The equations of motion write:

M
du
dt
= fext +

∑
α∈Ic

AT
α

(
f αn nα + fαt

)
, (1)

f αn ≥ 0 , Dα ≥ 0 , f αn Dα = 0 α ∈ Ic,

If Dα(c) = 0 then (Aαu+) · nα = 0 α ∈ Ic, (2)

If PαAαu+ , 0 (sliding motion) , fαt = −µ f αn
PαAαu+

| PαAαu+ |
α ∈ Ic, (3)

If PαAαu+ = 0 (no slip) ,
∣∣∣ fαt

∣∣∣ ≤ µ f αn α ∈ Ic. (4)

Note that the translational and rotational velocities are likely to be non-smooth, since they undergo instantaneous
jumps during collision. In particular, the post collisional velocity u+ can be different from the pre-collisional velocity
u−. As a consequence, the evolution above is to be understood in a weak, distributional sense.

Let us add a few comments on the previous equations. For a pair of grains α = (i, j) ∈ Ic, in contact, the
corresponding vector f i j

n ni j + f i j
t ∈ R3 is transmitted to both particles i and j through AT

i j. Indeed, let us define

f ji
n = f i j

n , f ji
t = − f i j

t , ∀α = (i, j) ∈ Ic.



6 Hugo A. Martin et al. /Université Paris Cité (2022)

Then, using the expression for AT
i j, Equation (1) can be rewritten:

mi v̇i = f ext
i +

∑
j, j,i

( f i j
n ni j + f i j

t ) ∀i = 1 . . .N,

Ji ω̇i =
∑
j, j,i

(ri ∧ f i j
t ) ∀i = 1 . . .N.

This corresponds to Newton’s second law, for which the contact between two particles i and j induces the force
f i j
n ni j + f i j

t on particle i. From the definition of f ji
n and f ji

t from f i j
n and f i j

t the action of this contact is reciprocal
on both particles. The normal force exerted on sphere i due to this contact is f i j

n ni j and f i j
t ∈ Πi j is the frictional

(tangential) force, which belongs to the plane orthogonal to ni j .
From Equation (2) we have f i j

n = f αn ≥ 0. This, together with the orientation of ni j from particle j to particle
i ensures that this force is repulsive, as expected. Equation (2) also ensures that the distances between the particles
remains positive and that the normal force is null whenever the distance is strictly positive (i.e. the particles are not in
contact).

Finally, Equations (3) and (4) reflect the classical Coulomb law for friction, linking the normal and tangential
contact forces.

2.1. Time-stepping scheme

In the spirit of [48, 49], we follow a strategy based on a semi-implicit discretization for problem (1-4), together
with a convexification of the non-overlapping constraint. It is a first order scheme with a time step denoted ∆t :
tk+1 = tk +∆t . Considering a configuration ck at time k∆t , we define the set Ic and the operators Pα, Aα as previously.
They all depend on the current configuration ck, but we shall drop this explicit dependence to alleviate notation.

Denoting by uk ∈ R6N the generalized velocity at step k, the discrete problem writes: find uk+1 ∈ R6N , f αn ∈ R and
fαt ∈ R3 for α ∈ Ic such that

M
uk+1 − uk

∆t
= fext +

∑
α∈Ic

AT
α

(
f αn nk

α + fαt
)
, (5)

f αn ≥ 0 , Dα(ck) + ∆t∇Dα(ck) · uk+1 − ∆t µ
∣∣∣ Pk
αAαuk+1

∣∣∣ ≥ 0, α ∈ Ic,

f αn
(
Dα(ck) + ∆t∇Dα(ck) · uk+1 − ∆t µ

∣∣∣ Pk
αAαuk+1

∣∣∣) = 0 α ∈ Ic, (6)

If Pk
αAαuk+1 , 0 (sliding motion) , fαt = −µ f αn

Pk
αAαuk+1∣∣∣ Pk
αAαuk+1

∣∣∣ α ∈ Ic, (7)

If Pk
αAαuk+1 = 0 (no slip) ,

∣∣∣ fαt
∣∣∣ ≤ µ f αn α ∈ Ic. (8)

Equation (5) is an Euler discretization of Newton’s law (1). Equations (7) and (8) are the implicit discretization of
Coulomb law (3), (4). Concerning (6), the convexified discrete constraint writes

Dα(ck) + ∆t∇Dα(ck) · uk+1 ≥ ∆t µ
∣∣∣ Pk
αAi juk+1

∣∣∣ . (9)

If ck+1 = ck + ∆t vk+1, using a Taylor expansion, one has

Dα(ck+1) ≥ ∆t µ
∣∣∣ Pk
αAi juk+1

∣∣∣ + O(∆t 2),

which can be seen as a first order implicit approximation of (2). Note that, due to the convexity of the distance
function, this constraint returns feasible configurations. More precisely,

Dα(ck+1) ≥ Dα(ck) + ∆t∇Dα(ck) · uk+1 ≥ ∆t µ
∣∣∣ Pk
αAi juk+1

∣∣∣ ≥ 0,

which may be strictly positive, especially when the tangential velocity is high.
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2.2. Numerical resolution

A straightforward discretization of the non-overlapping constraint Dα(ck) + ∆t∇Dα(ck) · uk+1 ≥ 0 would have led
to a Linear Complementarity Problem. This strategy has been chosen in [34, 35, 36, 37, 38, 39, 40]. Convexifying
the constraint, the discretized problem (5-8) now takes the form of a Cone Complementarity Problem (CCP). Some
authors have proposed an approach based on this formulation, using Projected Jacobi and Gauss-Seidel Jacobi meth-
ods [49, 50, 51, 52]. These methods have a linear convergence rate, and require several iterations on the potential
contacts. The computational cost of these methods are known to become prohibitive for a large number of particles
and contacts.

More efficient strategies can be used, taking advantage of the fact that, as stated in [48, 49], the time-stepping
scheme (5-8) can be identified to the set of Euler conditions associated to a conic constrained optimization problem,
based on the global force vector as unknown. For example, one can use Accelerated Projected Gradient Descent [56,
75] or various Krylov subspace and spectral methods [55] to solve the corresponding optimization problem. These
algorithms still have a linear convergence rate, but they provide significant reductions in the number of iterations.
Finally, to further reduce the number of iterations of the solvers, one can use numerical methods with quadratic
convergence rate. For example, the classical Primal-Dual Interior-Point was used in [53, 76, 54] to solve the conic
optimization problem corresponding to (5-8). As expected, due to the quadratic rate of convergence, the number of
iterations required to achieve a given accuracy is greatly reduced compared to first order methods. However, these
methods require a Newton step to compute the descent direction and can lose their competitive advantage compared
to first order methods for large number of particles. See for example [57] for a comparison of the efficiency of first
and second order methods to solve Problem (5-8). Improving the available algorithms to solve problem (5-8) is still
an active domain of research. One can cite for example the recent works [58, 75] where the authors propose a method
to accelerate the Newton step in second-order methods.

This convexified approach (5-8) is very promising, especially under its optimization-based formulation. Indeed,
compared to soft methods like MD, the implicit treatment of the constraint allows to use large time steps. Moreover,
compared to non-convex hard methods, each time step relies on the resolution of a single conic constrained opti-
mization problem. Therefore, we can take advantage of the many existing solvers for this type of problem and of
any improvement that would be made to them. The good behavior of the convexified discretization has been shown
through theoretical results in [48] and through comparison with experiments for example in [57].

The previous mentioned methods rely on an optimization problem based on the global force vector as unknown.
Following [59], where the contact problem without friction is tackled, we rephrase it as its dual counterpart: an
optimization problem based on the global velocity vector. We prove that this global formulation leads again to the
convexified time discretization (5-8) and propose in Section 3 a parameterization of solver Mosek [74] to solve this
velocity based formulation.

2.3. A velocity based variational formulation

We consider in the following the velocity based constrained minimization problem (referred to as Convex Opti-
mization Contact Dynamics (COCD))

min
u∈K

J(u) (10)

J(u) =
1
2

u · Mu − u · MUk+1 , Uk+1 = uk + ∆t M−1fext ,

K = {u , gα(u) ≤ 0, α ∈ Ic} , gα(u) = −Dα(ck) − ∆t∇Dα(ck) · u + µ∆t
∣∣∣ Pk
αAαu

∣∣∣ .
As stated in [48, 49] for the force-based optimization problem, the local contact properties can be recovered

from (10) by noticing that the discretized scheme (5-8) corresponds the optimality conditions of this global velocity
based optimization problem. In the following, we derive rigorously these optimality conditions for the velocity based
problem and prove that if uk+1 is the solution to this convex minimization problem then, it is solution to (5-8), for
some set of forces ( f αn ni j + fαt )α∈Ic to be determined. To write the Euler equations of this constrained problem, note
that the constraints gα are not differentiable at point u where Pk

αAαu = 0. As a consequence, if the solution verifies
this condition, one will need to use the sub-differential of gα at this point instead of its classical derivatives to write
Euler equations.
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By definition, for h : R3 → R, the sub-differential ∂h[u] of a function h at point u is the set of directions v for
which the line, issued from h(u) and following direction v remains below the graph of h:

∂h[u] =
{
v ∈ R3 / ∀û ∈ R3 , h(û) ≥ h(u) + v · (û − u)

}
It is easy to show from this definition that, if h is differentiable at point u then the set is a singleton: ∂h[u] = {∇h(u)} .
In case of non-differentiable constraints, the optimization problem (10) fits into the framework detailed in [77, Th.
2.1.4 p. 305]. Under the condition that the constraints are qualified (see below), there exist Lagrange multipliers
(γα)α∈Ic such that

∇uJ(u) ∈ −
∑
α∈Ic

γα ∂gα[u] (11)

γα ≥ 0 , γαgα(u) = 0 α ∈ Ic (12)

Note that, when the constraints are differentiable, we recognize here the classical Euler equations for the minimization
problem.

The aforementioned qualification of the constraint can be checked easily in the present situation. It amounts to
show that the interior of the feasible set is non-empty (Slater condition), which is the case here. Indeed, the velocity
vector

u0 = (ϵc1, 0, . . . , ϵcN , 0),

with ϵ > 0, lies in the interior of K.
It now remains to compute the sets ∂gα[u] for any u. To do so, let us first decompose gα in two terms:

gα = gn
α + gt

α , gn
α(u) = −Dα(ck) − ∆t∇Dα(ck) · u , gt

α(u) = µ∆t
∣∣∣ PαkAαu

∣∣∣
Since gn

α is differentiable, it is easy to see that

∂gn
α[u] =

{
−∆t∇D(ck)

}
=

{
−∆t AT

αnk
α

}
To compute ∂gt

α[u], we use the following result: if P : R3 → R3 is the projection on a given plane Π and h is defined
as h(u) = |Pu|

If Pu , 0 , ∂h[u] =
{

Pu
| Pu |

}
If Pu = 0 , ∂h[u] =

{
v ∈ R3 / v ∈ Π and | v | ≤ 1

}
From this we obtain [77, Th. 4.2.1 p. 263]

If Pk
αAαu , 0 , ∂gt

α[u] =

µ∆t AT
α

Pk
αAαu∣∣∣ Pk
αAαu

∣∣∣


If Pk
αAαu = 0 , ∂gt

α[u] =
{
µ∆t AT

αv / v ∈ Πk
α and | v | ≤ 1

}
where we recall that Πk

α is parallel to the tangent plane, perpendicular to nk
α. We finally obtain the sub-differential of

gα:

If Pk
αAαu , 0 , ∂gα[u] =

∆t AT
α

−nk
α + µ

Pk
αAαu∣∣∣ Pk
αAαu

∣∣∣



If Pk
αAαu = 0 , ∂gα[u] =

{
∆t AT

α

(
−nk
α + µv

)
/ v ∈ Πk

α and | v | ≤ 1
}

So from (11),(12), we obtain that, if uk+1 is solution to (10) there exists Lagrange multipliers (γα)α∈Ic such that

Muk+1 − MUk+1 = −∆t
∑
α∈Ic

AT
α

(
−γαnk

α + µγαv
)

γα ≥ 0 , γαgα(u) = 0 α ∈ Ic

If Pk
αAαuk+1 , 0 (sliding motion) , v =

Pk
αAαuk+1∣∣∣ Pk
αAαuk+1

∣∣∣ α ∈ Ic

If Pk
αAαuk+1 = 0 (no slip) , v ∈ Πk

α and | v | ≤ 1 α ∈ Ic
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(a)

(b)

Fig. 2. Influence of the time step variations. These 2D simulations have been carried out with the parameters given in Table A.2, row 1. The
plane is horizontal, and discs are glued on it. The snapshot profiles are taken at times t = 0.02 s, 0.06 s and 0.30 s for ∆t = 10−3 s, 10−4 s and
5.0 10−5 s. The time step values have been varied from ∆t = 10−2 s to ∆t = 5.0 10−5 s.

Using the definition of Uk+1 and setting f n
α = γα and f t

α = −µγαv, we finally obtain that uk+1 is solution to the discrete
problem (5-8), as expected.

3. Computational aspects

In the current section, we present a conic version of the minimization problem (10) that can be adapted in solver
Mosek [74]. First, we describe the conic formulation in Mosek, introduce the Primal-Dual Interior-Point algorithm,
define the solver termination criteria and reduce the number of variables and constraints. We discuss the numerical
parameters values: the time step and the solver tolerance in a second time. Finally, we validate the COCD with
another “hard” method, the Non-Smooth Contact Dynamics (NSCD) method. The complete set of parameters for
each simulation are given in Appendix in Table A.2.

3.1. Implementation in convex solver Mosek

According to Mosek’s documentation, solving a conic version of the Quadratic Program (10) is preferable for
computational efficiency. This Quadratic Program is then reformulated into a Conic Optimization Program as follows.
First, the quadratic term in the objective functional J in (10) is replaced by t, together with a new conic constraint
u · Mu ≤ 2t. Then, the constraints gα(u) ≤ 0 in (10) is also rewritten as a simple conic constraints

∣∣∣ x′α
∣∣∣ ≤ y′α. To do

so, we introduce the new variables x′α and y′α, together with the new affine equality constraints x′α = µ∆t Pk
αAαu and

y′α = Dα(ck) + ∆t∇Dα(ck) · u. This leads to the new equivalent minimization problem

min
t,u,x′,y′

t + u · MUk+1 , (13)

under the constraints
x′α = µ∆t Pk

αAαu , y′α = Dα(ck) + ∆t∇Dα(ck) · u , α ∈ Ic ,∣∣∣ x′α
∣∣∣ ≤ y′α , α ∈ Ic and u · Mu ≤ 2t , .

Finally, setting x = (t,u, x′, y′), problem (13) can be written under the form of a Conic Optimization Program:

min
x

c · x, subject to Ax = b, and x ∈ K , (14)

where K is a convex cone which is the cross product of all the conic constraints in (13). The corresponding dual
problem of (14) is

max
y

b · y, subject to Aty + s = c, and s ∈ K⋆, (15)

where K⋆ is the dual cone of K .
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Fig. 3. Kinetic energy rate as a function of the tolerance parameter ε. This 3D test that has been used to study the influence of ε on the stability
of a static configuration where a large assembly of rotational spheres (N = 110 233) stays at rest in a rectangular box. This static state is conserved
for ε ≤ 10−5. The simulation parameters can be found in Table A.2, row 4.

3.2. Definition of Mosek’s termination criteria

Mosek computes a solution with a Primal-Dual Interior Point Algorithm. It consists in solving the following
homogeneous problem:

Ax̃ − bτ̃ = 0,
At ỹ + s̃ − cτ̃ = 0,
−ct x̃ + bt ỹ − κ̃ = 0,

x̃ ∈ K ,
s̃ ∈ K⋆,

τ̃, κ̃ ≥ 0.
(16)

where τ̃ and κ̃ are two additional scalar variables and (x, y, s) = (x̃/τ̃, ỹ/τ̃, s̃/τ̃). Problem (16) is a necessary optimal-
ity condition for the minimization problem (14). The algorithm generates a sequence of trial solution

(
xk, yk, sk, τk, κk

)
of (16). If εp, εd, εg are non-negative user specified tolerances, the termination criteria is

max
(
ρk

p, ρ
k
d, ρ

k
g

)
≤ 1

where

ρk
p = arg min

ρ

{
ρ ∈ R /

∥∥∥∥ A xk

τk − b
∥∥∥∥
∞
≤ ρεp (1 + ∥ b ∥∞)

}
,

ρk
d = arg min

ρ

{
ρ ∈ R /

∥∥∥∥ At yk

τk +
sk

τk − c
∥∥∥∥
∞
≤ ρεd (1 + ∥ c ∥∞)

}
,

ρk
g = arg minρ

{
ρ ∈ R /

(
((xk))t sk

(τk)2 ,
∣∣∣∣ (c)t xk

τk −
(b)t yk

τk

∣∣∣∣) ≤ ρεg

(
1, min(|(c)t xk |,|(b)t yk |)

τk

)}
.

The values we chose for εp, εd, εg are precised in Section 3.4.2.

3.3. Number of variables and constraints

In problem (13), all the constraints between grains are considered, and the problem size dramatically increases
with the number of particles. However, grains far away from each other may not enter in contact during the current
time integration. It is then unnecessary to consider all these potential contacts for every integration step. A simple but
efficient way to reduce the number of contacts is to restrict the constraints to pairs of particles for which the distance
is less than a prescribed threshold value D̄.

Let us define the set Ic(D̄) as the subset of Ic of all pairs of particles closer than the prescribed threshold D̄:

Ic(D̄) =
{
α ∈ Ic / Dα(ck) ≤ D̄

}
.

We then chose to consider, at each time step, the pairs of particles belonging to Ic(D̄) rather than Ic.
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Fig. 4. Comparison of profiles between NSCD and COCD. The reference simulation is a column collapse. In the NSCD simulation [45, 46, 44,
14], there are 6 036 discs and in COCD, N = 7 740; see Table A.2, row 3. Note that the times given in the legend are normalized by

√
H0/g.

3.4. Numerical parameters
3.4.1. Time step

In order to optimize the trade-off between accuracy and computational cost, we investigate here the behavior
of the error related to the choice of the time step for 2D column collapses; see Table A.2, row 1 in the appendix
for the corresponding numerical parameters. We thus compare the snapshot profiles obtained with different ∆t and
measure the error with profiles obtained for the smallest value of ∆t . Fig. 2a represents snapshot profiles at times
t = 0.02 s, 0.06 s and 0.30 s for ∆t = 10−3 s, 10−4 s and 5.0 10−5 s. The relative error between the profiles and
those calculated with the reference value of ∆t = 5.0 10−5 s is shown in Fig. 2b. The errors are computed as e∆t =∥∥∥ y∆t − yre f

∥∥∥ / ∥∥∥ yre f

∥∥∥, where the reference profile is denoted yre f and the other profiles y∆t .
Fig. 2a shows an excellent quantitative agreement between profiles, especially for ∆t = 10−4 s and 5.0 10−5 s.

Even though the value ∆t = 10−3 s is quite large compared to the reference value, the profiles are still very close, with
only slight differences. It comforts us that using relatively large time steps with our method1 does not significantly
impact the flow behavior and deposit. As expected, Table 1 shows that 3D simulations are more time-consuming than
2D. In the following, we set ∆t to 10−3 s for 2D simulations and 10−2 s for 3D. These values are classical in other
“hard” methods; see [78, 79].

1For example here, a few time steps are larger than 10−3 s and this is already very high compared to “soft” methods like MD where largest value
are ∆t ≃ 10−6 s; see [31].

name dimension N Nc ∆t (s) ϵ Nb(iter.) time (s)

1
variation

of N 2 8 308 37 331 10−3 10−8 47 8.85

2 50 772 238 659 61 51.9

3
variation

of µ 3 122 932 829 505 10−2 10−8 21 475.8

4 10−5 11 269.9

Table 1. Statistics on computational time. The first column gives the simulation name. Then N is the number of discs (2D) or spheres (3D), Nc
is the number of potential contacts, ∆t is the time step, ϵ is Mosek’s tolerance parameter, Nb(iter.) is the number of iterations required by Mosek to
complete the computation, and time (in seconds) indicates the time needed by Mosek to complete the problem. Nc, Nb(iter.) and time are computed
on ten iterations, from 0.11 s to 0.12 s for variation of N and from 1 s to 1.1 s for variation of µ. The simulation parameters are given in Table A.2,
rows 2 and 4. Any empty cell is equal to the cell value of the row above. The simulations were performed with two Intel Xeon E5-2650 2.00 GHz
(2 × 8 cores) processors on the S-CAPAD platform, IPGP, France.
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Fig. 5. Comparison of profiles at three different times involving four numbers of grains For a column collapse on a rigid rough plane, all the
simulation parameters are fixed, except for the number of particles N = 1109, 8 308, 20 488, and 50 772; see Table A.2, row 2.

3.4.2. Tolerance parameter
The default tolerance parameters in Mosek are set to εp = εd = εg = ε = 10−8. Table 1 shows statistics about

computational time for 2D and 3D column collapses. These statistics have been generated considering two simulation
cases, named variation of N (2D) and variation of µ (3D), see the values of the parameters in Table A.2, rows 2 and
4. At this stage, we chose these simulations because they are representative of the computational need we have in
our study of granular flows on erodible beds in Section 5. Indeed, our simulations in Section 5 consider grains’ mean
diameters close to those in experiments (1 mm in our simulations against 0.7 mm in the experiments, see Table A.3).
Consequently, the number of grains required in our 2D simulations is N = 44 996, and about 122 000 in our 3D
simulations (Table A.3), and these numbers are close to those of simulations variation of N (50 000), and variation
of µ (112 459).

The results presented in Table 1, rows 1 and 2 show that there is no need to tune the default Mosek’s tolerance
parameter for 2D simulations since for ε = 10−8, one single iteration time is about 51.9 s, which is still reasonable to
us. However, Table 1 shows that 3D simulations (rows 3 and 4) requires more than 475 s for a single iteration, which
is too large according to us. From the time step values that have been chosen for 3D simulations (∆t = 10−2 s), it
is unnecessary and time-consuming to keep the best Mosek’s default tolerance parameter. To efficiently compute the
3D solutions with COCD, we investigated the influence of the tolerance parameter ε. Considering ∆t = 10−2 s, the
choice of ε is made to conserve the stability of a static assembly and is tested for spheres at rest into a box (the box is
the initial state of simulation variation of µ). As shown in Fig. 3, if ε is larger than 10−5, some instabilities can appear,
resulting in non-negligible kinetic energy Ek compared to total energy Etot. Moreover, the mean computational time
for a single iteration is about 270 s (see Table 1), which is 43% faster than for ε = 10−8. Consequently, according
to these arguments, we chose to get a tolerance parameter about ε = 10−5 for all our 3D simulations because it both
maintains a precise computation of assemblies at rest (Fig. 3), while it is sufficiently fast for our study (Table 1).

3.5. Validation: comparison with NSCD
We compared our results with another well-known method (NSCD), extensively studied and compared with lab-

oratory experiments. This method, fully described in [44], is based on a straightforward time-stepping scheme of the
continuous problem (1-4). The constraint is treated using a first-order approximation, and no convexification is added.
The (non-convex) resulting discrete problem is solved using a Gauss-Seidel-like method, iterating on the contacts.

To compare our scheme with this NSCD algorithm, we run a 2D column collapse with the same parameters as
in the simulation published in [45]; both methods parameters are given in Table A.2, row 3. Note that our model is
inelastic while the results in [45] are obtained for an elastic coefficient en = 0.5. The mass profiles simulated with the
two methods are very close obtained as observed in Fig. 4. It shows that considering a purely inelastic model provides
sufficient approximation of the flow dynamics, especially in the context of column collapses. Note that the authors
of [45], in the later publication [46], also did not observe significant changes in the final deposits when varying the
elasticity coefficient for small values. Consequently, the inelastic assumption will still be considered for applications
in the next section, devoted to granular flows on erodible beds.
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(c)

Fig. 6. Comparison between simulations with different values for the friction coefficient. Fig. a (resp. b) represents mass profiles at times
t = 0.18 s (resp. 1.06 s). Fig. c represents the relative volume variation av = (V(t) − V0)/V0. These 3D simulations have been performed with the
parameters given in Table A.2, row 4 and the characteristics of experiments are given in rows M2010 and F2014 of the same table. The experimental
results M2010 ([60]) and F2014 ([61]) are obtained respectively with W = 10 cm and W = 20 cm, while W = 20 cm in our simulations. The rough
plane is horizontal and covered with a layer of glued particles.

The good agreement between the simulations with the two methods shows that convexifying the constraint in our
numerical algorithm has a very small impact on the macroscopic results for the applications considered in this paper.

4. Comparison and calibration with experiments of column collapses on rigid beds

After having set the numerical parameters such as the time step or termination criteria as indicated in Section 3,
let us calibrate the friction coefficient used in the model by quantitatively comparing the results with lab-scale exper-
iments of granular column collapses over inclined rigid beds performed in [60] and [61] and referred to as M2010
and F2014, respectively. Note that in the COCD model, only one rheological parameter is involved, which is the
grain/grain friction coefficient µ that is assumed to be the same as the grain/walls friction coefficient.

4.1. Calibration of the friction coefficient in 3D
The lab-scale experiments used here to calibrate the model consist in the release of a granular column of thickness

H0 = 14 cm, length R0 = 20 cm (i.e. aspect ratio H0/R0 = 0.7) on horizontal or inclined channels of different slopes
and of width W = 10 cm in M2010 and W = 20 cm in F2014. In these experiments, the initial mass is released
from rest by opening a gate while in our simulations we assume that the mass is released instantaneously. The set-up
parameters can be found in Table A.2, rows 7 (M2010) and 8 (F2014) for experiments and row 4 for our simulations.
Quantitative comparison of DEM simulations and 3D experiments is difficult since the number of grains is generally
too high in the experiments to be accounted for in simulations at a reasonable computational cost.

However, the effects of changing the number of grains have already been studied in [11] for 3D column collapse
simulations realized by Molecular Dynamics (MD). In particular, their Fig. 10 shows that the mass profiles are similar
when considering N ≥ 8000 for α = 0◦ for an aspect ratio a = 0.7 and a volume of 5600 cm3. In these 3D simulations
(with the same box dimensions as in Fig. 10 of [11]), we use 112 459 grains, which is largely sufficient for the results
to be independent of this number. The considered diameter (d = 4 mm) is about six times larger than the grains
used in both experiments (d ≃ 0.7 mm). The initial column is built by a uniform rain in the box and with no friction
coefficient (µ = 0). When the mass is released, the friction coefficient is set to its non-zero value.

Fig. 6a-b compares the simulated and experimental mass profiles at times t = 0.18 s and t = 1.06 s (for which the
mass is at rest) for flows on a horizontal rigid bed within a channel of width W = 20 cm. A series of simulations
were performed by varying the friction coefficient µ from 0 to 0.8. Fig. 6a shows significant differences between the
mass profiles simulated with different friction coefficients and the experimental mass profiles. Whatever the friction
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(a) (b)

Fig. 7. Comparison of simulated 2D and 3D profiles for two slopes. Fig. a represents the mass profiles at time 0, 0.4, and 1 s for a horizontal
plane (α = 0◦) while Fig. b is for an inclined plane of α = 22◦. The 2D simulations are represented by dashed curves while 3D simulation are
continuous curves. Simulation parameters can be found in Table A.2, rows 5 and 6.

coefficient, the simulated mass spreads faster than the experimental mass, partly because the initial removal of the gate
is not accounted for in the simulations (see [15] for detailed analysis of the gate effects). The simulated mass obviously
spreads faster as the friction coefficient decreases, with the flow going much further for frictionless simulations. At
t = 1.06 s, the mass is at rest (except for µ = 0 where the mass is still flowing) and the deposits are in good quantitative
agreement with experiments for simulations with 0.2 ≤ µ ≤ 0.8. The differences between the experiments of M2010
and F2014, mainly due to the different channel widths, are smaller than the differences between the simulated and
experimental results whatever the value of µ. However, there is a relatively good agreement between the mass deposit
simulated with µ = 0.3 and the two experiments.

Fig. 6c represents the time evolution of the relative volume variation av = (V(t) − V0)/V0, where V(t) is the
volume occupied by the flow at time t and V0 is the initial volume. Fig. 6c shows that the dilatation increases with
increasing µ. This is in good agreement with the CD simulations of [80] who showed that the dilatation angle increases
almost linearly with the grain/grain friction coefficient. However, this increase is far greater than in the experimental
measurements [16] (compare the black and colored curves in Fig. 6c). Indeed, in experiments, the relative volume
variation stays in the range av ∈ [−2, 2] %, while it goes up to 10% for the simulation with µ = 0.2. Two reasons
may explain these differences: The first reason is that the initial mass in the column is built with a null coefficient of
friction, as it is usually done in DEM [45, 46], allowing the spheres to organize themselves in a higher compacted
configuration than for simulations with µ , 0. When the gate is removed, the friction coefficient is set to its positive
value, explaining a higher initial dilatation corresponding to bead arrangements obtained in the presence of friction.
For µ = 0, Fig. 6c shows that the volume is more compacted (av ≃ −5%). The second reason for initial dilatation
can also be the fact that COCD is a Convexified Method (see Introduction) since the normal constraint (9) that is
implemented is a convexification of the constraint (6). Consequently, when µ , 0, a gap between particles in contact
may arise, as a numerical artifact of the relaxation process [54]. It is a different process than that at a high granular
temperature. However, this numerical artifact seems negligible when comparing with a non-convexified method such
as NSCD (see Section 3.5).

For our simulations, the best-fit interparticle friction coefficient is µ = 0.3, calibrated by comparing our simula-
tions with experiments M2010 and F2014. This value is relatively close to the friction coefficients measured for a
perfect glass/glass contact (µ = 0.4 [81]) and to those measured with Molecular Dynamics methods( µ = 0.16 [82]).

4.2. Calibration of the friction coefficient in 2D
We compare here 2D and 3D simulations computed with the same grain parameters; see Table A.2, rows 5 and

6. For a granular column with the same thickness H0 and length R0, we considered N = 2 154 discs in 2D and
N = 112 459 spheres in 3D for a channel width W = 20 cm (see Fig. 8). Indeed, in 3D the granular mass flows within
a channel bounded by two lateral walls, as in the laboratory experiments. Fig. 7a and 7b represent the mass profiles
calculated with 2D and 3D simulations for granular collapse on a horizontal and on a 22◦ sloping plane, respectively,
at different times. The 3D simulation dissipates more kinetic energy than the 2D simulation, especially for high slope
angles. For example, at t = 1.00 s, the front position is about 12% longer for 2D than for 3D with α = 0◦ and about
32% longer with α = 22◦.

These differences can be explained by the effects of the lateral walls on the granular flow since walls induce
lateral pressures and thus lateral friction that is not accounted for in 2D. For instance, the authors of [16] proposed
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Fig. 8. Snapshot of 3D simulation. This picture is a snapshot at t = 0.15 s of the 3D simulation given in Table A.2, row 6. The granular assembly
is composed of spheres (with 10% of polydispersity) and the flow is confined by two invisible lateral walls and another wall located at the left of
the domain. Concerning the bottom, the rough bed is composed of glued spheres with the same grain properties and polydispersity. In this picture,
the colors represent the normalized velocity of translation.

an increased friction coefficient to mimic wall effects. The additional degree of freedom for particle motion in 3D
may also partly explain these differences. Indeed, in 3D systems, the forward particle motion can be associated to
with lateral motion which is not the case in 2D. Frictional dissipation also occurs during lateral particle motion, thus
reducing the final distance reached by the particles.

Note that in 2D, the effects of the number of grains in such set-ups has been briefly investigated in (see Fig. 5) and
seems to weakly affect the profiles when N ≥ 20 000. For the initial 2D box dimension R0 × H0 = 20 × 14 cm2 that
is considered for our study of erodible beds (Section 5), this corresponds to the number of grains of mean diameter
d = 1 mm, which is close to the particle size in the experiments. In Fig. 7 we consider 2 154 grains in 2D simulations
because we want to have the same grain size as in our 3D experiments. However, the effect of considering a smaller
grain size is to have a longer runout distance until the difference almost vanishes (compare blue, orange, and green
curves in Fig. 5). Consequently, the front position in 2D simulations is underestimated in Fig. 7, while it is already
much longer than 3D simulations.

As a result, in our 2D simulations, we artificially increase the friction coefficient up to µ = 0.9 to reproduce
the experimental runout distance of granular collapse on a horizontal plane, leading to a much better fitted friction
coefficient than in 3D where µ = 0.3.
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Fig. 9. Evolution of the front position of 2D simulations and experiments. Three inclinations α = 16, 19, and 22◦ and three widths of the
erodible layer hi = 0, 3, and 5 mm are represented. The grain properties are the same in the column and in the erodible layer. In Table A.3, the
simulations correspond to rows 1 to 5 and the experiments to row 10. The experiments were carried out by Farini et al. in [61]. Note that the
vertical scales differ in Figs. a, b, and c. The squares correspond to the times at which the runout distance is reached in experiments while the
circles correspond to the times at which the simulations outdistance the experiments. Note that the final times of simulations are not represented in
the figures and that the simulations continue to flow for more than 6 s (see Fig. 11).

5. Granular column collapses on erodible beds

We now highlight the potential of COCD to gain physical insight into the complex dynamics of granular flows
on inclined shallow erodible beds made with thicknesses of a few to about ten particles. Laboratory experiments
have shown that the runout distance of granular flows increases with increasing thickness of the erodible layer up to a
critical thickness [60, 61]. The interactions between the flowing mass and the erodible bed is expected to depend on
grain scale processes through the complex rearrangement of the contact network and momentum exchanges. In order
to reproduce these experiments with discrete simulations, at least qualitatively, the number of grains in the simulation
and in the experiments should be roughly similar. This is why the grain size in the simulations should be as close as
possible to the real grain size.

However, with a mean particle diameter of d ≃ 0.7 mm, the experiments from [61] (see Table A.3, row 10)
involve millions of particles (approximately 20 million spheres for the initial column only (for an initial column of
volume V = 5600 cm3, diameter of grains d = 0.7 mm, and a standard volume fraction Phi = 0.64). Considering the
same mass volume in simulations would lead to prohibitive computational times. Therefore, we first performed 2D
simulations (Section 5.1) for an aspect ratio a = 0.7 (R0 × H0 = 20 × 14 cm2) with grains of a mean diameter similar
to that of the experiments: d = 1 mm. Then, with this same mean grain diameter, we reduced the volume of the mass
and ran 3D simulations (Section 5.2), with the same aspect ratio (R0 × H0 × W = 10 × 7 × 0.8 cm3). Therefore,
for 2D (Table A.3, rows 1 to 5) and 3D (Table A.3, rows 7 to 9) simulations, the grain sizes are both close to those
of the experiments (d = 1 mm in the simulations compared to 0.7 mm in the experiments). For the 2D simulation
highlighting the erosion waves (Table A.3, row 6), the grain size is slightly larger (d = 1.8 mm).

5.1. Results in 2D: Evolution of the front and mass profiles, velocity profiles, and wave motion

5.1.1. Evolution of the mass
Fig. 9 represents the evolution of the normalized front position r f /R0. The simulations reproduce quite well the

experiments from [61] (compare continuous and dashed curves for each color in Fig. 9 a-c). Except for α = 16◦

(Fig. 9a), where the simulations go faster than the experiments, the other simulations (at 19◦ and 22◦ (Fig. 9b and
c)) are systematically slower until the time at which the experimental mass front stops (represented by squares in
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Fig. 10. Profile comparison between 2D simulations and experiments. The aspect ratio is a = 0.7 and the slope is α = 22◦ with an erodible bed
of he = 5 mm.

Fig. 9). Subsequently, for α > 16◦, the simulated front overcomes the experimental front already at rest (this time is
represented by circles in Fig. 9).

Similarly to experiments, our simulations show that the thicker the erodible layer, the greater the distance traveled
by the flow (compare the blue hi = 0 mm, orange hi = 3 mm, and green hi = 5 mm curves in Fig. 9). This behavior is
amplified when the slope increases, as observed experimentally. For example, the maximal difference between hi = 3
and 5 mm is about 10% of R0 at α = 16◦ (Fig. 9a), 30% at 19◦ (Fig. 9b), and 110% at 22◦ (Fig. 9c). Note that these
differences are approximately the same as in the experiments with a larger difference in the travelled distance between
hi = 0 mm and hi = 3 mm than between hi = 3 mm and hi = 5 mm.

The main difference between simulations and experiments is that while the experimental granular masses stop
(square dots in Fig. 9), the simulated masses continue to spread and therefore ultimately outdistance the experiments
(circle dots). This is illustrated in Fig. 10 for granular collapse at α = 22◦ on an erodible bed of thickness hi = 5 mm.
At t = 0.18 s (Fig. 10a), the simulation slightly accelerates, probably related to the initial removal of the gate that
is not accounted for in the simulation (see the influence of the gate in [16]). The experimental and simulated fronts
become close at t ≃ 0.48 s (Fig. 10b). Until this time, the mass profiles are very similar. Then, the simulation remains
slightly behind but reaches the experiment at t = 2.7 s (Fig. 9c and 10c) while the experiment has stopped at t = 2.5 s
(Fig. 9c). Finally, the simulation continues to flow while the experiment stays at rest (insert 4 in Fig. 10d). At t = 4 s,
the simulated mass has left the left wall (insert 3 in Fig. 10d). The fact that the simulated mass does not stop is related
to the 2D simulations, as discussed in Section 4.2.

The time evolution of front velocity v f , represented in Fig. 11 for simulations, has been shown to be very sensitive
to the granular flow behavior[60]. The simulation well reproduces the three main phases observed experimentally
in [61]: an acceleration phase from the initial time to the time when the front reaches its maximum velocity, a
deceleration phase from the time when the front velocity is maximal to the beginning of the phase when the front
stops decelerating, and a slow propagation phase where the flow continues its motion with a velocity fluctuating
within a given range that remains roughly constant. The separation between these phases is represented by vertical
dashed and dotted-dashed lines, respectively. Furthermore, Figure 7 of [61] shows that the slow propagation phase is
absent at α = 0◦, starts to be observed at α = 16◦, and is well developed at α = 19◦, in agreement with Fig. 11a,c,e,g.
In particular, for hi = 10 mm (purple curve in Fig. 11), the slow propagation phase is clearly observed with front
velocities of about 20 cm s−1, which represents 10-15% of the maximum velocity of about 1.6 m s−1 in very good
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11. Evolution of the front velocity of 2D simulations. The results are shown for four inclination angles α = 0◦ (a,b), α = 16◦ (c,d), α = 19◦

(e,f) and α = 22◦ (g,h), and five bed thicknesses hi = 0, 3, 5, 7, and 10 mm. The second column highlights the slow propagation phase. All
simulation parameters can be found in Table A.3, rows 1 to 5.

agreement with the experiments in Figure 11 of [60]. Finally, Fig. 11a,c,e,g show that the thickness of the erodible
layer does not affect the acceleration phase, slightly the deceleration phase but significantly the slow propagation
phase (Fig. 11b,d,f,h), in very good agreement with [60]. Note that the fluctuations of the front velocity also increase
with the erodible layer thickness (compare orange and purple curves again).

5.1.2. Velocity profiles

(a) (b) (c)

Fig. 13. Normalized kinetic energy of the erodible bed. Simulations are performed on
three slopes (a) α = 16◦, (b) α = 19◦, and (c) α = 22◦ for erodible beds hi = 3, 5, 7, and
10 mm. The simulation parameters can be found in Table A.3, rows 2 to 5.

Velocity profiles during granular flows
have been measured and simulated, in par-
ticular for flows on erodible beds [83, 70,
71]. Such profiles are shown in Fig. 12 for
our simulations and can be qualitatively
compared to Fig. 15 and 17 of [70]. Sim-
ulations are performed for a slope α = 22◦

and an initial erodible thickness hi = 5 mm
(Table A.3, row 3). Fig. 12a represents
three sets of velocity profiles at positions
x1 = 29.5 cm, x2 = 69.5 cm, and x3 =

119.5 cm, starting at times t = 0.15 s,
0.5, and 1 s, respectively, until 6 s. More-
over, a mass profile is represented at times
t = 0.30 s (red), t = 1.0 s (magenta), and
t = 2.0 s (sky blue), at which the mass
thickness h(xi) is maximum at x1, x2, and
x3, respectively. The erodible layer is represented by a horizontal dashed black line, at hi = 5 mm.

The highest velocities are obtained at position x1. A global decrease of the velocity is observed when moving
forward along the horizontal axis (for instance the maximal velocity at probe x1 is 150 cm s−1 (Fig. 12b) while it is
about 70 cm s−1 at x3 (Fig. 12d)). At x1 and for relatively small times t ≤ 20 s, the velocity profiles have an exponential
shape from z = 0 where the mass is at rest to approximately z ≃ 1 cm (see, for example, the dotted gray arrow in
Fig. 12b)). At later times, the velocity profiles look more like linear functions (at t = 0.15, 0.17, 0.2 s in Fig. 12b).
We clearly observe that the erodible layer has been put into motion (see for example violet and brown profiles at x2
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(a)

(b) (c) (d)

Fig. 12. (a) Velocity profiles at three different positions. Three profiles of the granular mass are represented at times t = 0.3 s, t = 1 s, and t = 2 s
corresponding to the flow when the measured free surface elevation is maximal at the positions x1, x2, and x3, respectively. (b-d) Velocity profiles
along the flow depth at different times (t = 0.15 s to t = 6 s) at the three locations along the slope. The horizontal dashed black curve represents the
initial erodible layer of thickness hi = 5 mm.

(Fig. 12c). The arrest phase can also be observed in Fig. 12b-d where particles near the bed stop before particles near
the free surface.

Erosion processes and associated energy transfer between the flowing grains and the initially static grains of the
erodible bed are highlighted in Fig. 13 which represents the kinetic to potential energy ratio of the erodible bed ek

(normalized by its maximum value ∥ek∥∞ in Fig. 13), defined by

ek =
Ek(bed)
Ep(bed)

,

where Ek(bed) and Ep(bed) are respectively the kinetic and potential energies of the bed. Erosion clearly increases
with the slope angle α (compare the maximal values reached in Fig. 13a, b, and c) and with the bed thickness. Note
that at 22◦, the kinetic energy of the erodible bed at hi = 7 mm (red curve) is larger than at hi = 10 mm (purple curve)
during the first 1.5 s (Fig. 13c). This phenomena has also been observed in the experiments (see blue curve with
diamonds in Figure 9b of [61] where the runout distance saturates and even decreases when hi exceeds 12 particles).
This could be explained by the energy lost in moving the grains deep in the bed without significant down-slope motion
of these deep particles. At t > 1.5 s, the purple curve (hi = 10 mm) is higher than the red one (hi = 7 mm), as observed
for smaller angles in Fig. 13a,b. This is again in very good agreement with experiments (see green and blue curves in
Figure 9a-b of [61]).

Even though our simulations are in good qualitative agreement with experiments, quantitative comparisons are
more difficult as shown in Fig. 14 representing the horizontal velocity profiles ux at x = 110 cm. The dotted curves
represent experimental data measured in [61] and extracted first in [71] while the continuous curves represent data
obtained by our simulations. The time starts (t = 0 s) when the front reaches the position x. Good agreement
is observed at this initial time, corresponding to the front arrival. For larger times, significant differences between
simulations and experiments can be observed. On the other hand, the maximum velocity and the free surface elevation
are roughly well reproduced by the simulations for t ≤ 0.8 s. The main difference is in the static/flowing transition
that rises towards the free surface in the experiments while staying roughly at the surface of the erodible layer in the
simulations. This is partly explained by the absence of wall effects in 2D simulations. Indeed the additional dissipation
related to lateral friction with the walls induces a thicker basal static layer as shown in continuum simulations (see
e.g. Figure 4 of [16]).

In [61], erosion waves were observed near the flow head, emphasizing the exchange processes between the flow
and the erodible bed. The authors assumed that this wave-like motion could be compared to Kelvin-Helmholtz
instabilities when two fluids of different velocities and densities are moving one above the other. Such a wave motion
is also observed in our simulations (Fig. 15).
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Fig. 14. Comparison between velocity profiles obtained by our simulations and profiles obtained by experiments. In this figure, the time
t = 0 s corresponds precisely to the time when the front reaches the position x = 110 cm. The velocity profiles are measured starting at this time.

5.1.3. Wave motion

Fig. 15. Snapshots at different times The red grains are initially from
the column and the blue grains from the bed. The simulation parameters
can be found in Table A.3, row 6.

As in [61], we investigate here as to whether the
Kelvin-Helmholtz conditions are fulfilled in our sim-
ulations. The flowing and erodible layers can be as-
similated to two different fluids of different densities
(Fig. 16a), and different down-slope velocities (16b).
In fluids, a slight perturbation at the interface is ampli-
fied by the local velocity difference and a correspond-
ing local decrease of the flow pressure. If the velocity
of the superjacent fluid is sufficient, the amplified per-
turbation transforms into a breaking wave. We will use
the criterion developed by [9] that gives the minimum
velocity difference u1 − u2 between the upper (1) and
lower (2) layers for a given wavelength λ. It also re-
quires two different granular volume fractions Φ1 and
Φ2 for the growth of so-called Kelvin-Helmholtz in-
stabilities:

u1 − u2 ≥

√
gλ
2π

(
Φ2

Φ1
−
Φ1

Φ2

)
, (17)

where g is acceleration due to gravity. In the ex-
periments for the specific case of granular flows at
α = 22◦, V = 12 600 cm3, and a = 0.7, the wavelength
λ that is observed is about 7 cm (see Fig. 20 in [61]).
With Φ1 ≃ 6400 grains per cm3 ≃ 0.8Φ2, they obtain
that the righthand term in (17) is about 0.4 m/ s.

In our numerical experiment, the ratio between Φ1
and Φ2 is also about 0.8 (Fig. 16a), representing the
granular volume fraction (see the colorbar). Further-
more, the wavelength λ in our simulations is about
8 cm (Fig. 16c), again close to that of the experiments.
This leads to a critical value of ≃ 24 cm/ s for the
righthand term of inequality (17). The criterion to
observe Kelvin-Helmholtz instabilities is thus fulfilled
in our simulations since the maximum front velocity,
around u1 − u2 ≃ 1.4 m/ s, is much higher. Further-
more, the difference of velocities u1 − u2 between the
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Fig. 16. Wave motion characteristics near the front at t = 1.33 s. (a) Difference between Φ1, the solid volume fraction of the flowing layer, and
Φ2, the solid volume fraction of the erodible bed. (b) Difference of horizontal velocities between the flowing layer and the erodible layer, arbitrarily
separated by a dashed black curve. (c) Granular profile and velocity vectors (black arrows) of each particle of the erodible layer. The wave motion
can be identified visually with a wavelength of approximately 8 cm.

moving and the erodible layer seems to also satisfy the criterion, (16b, representing the velocity along the slope).
Indeed, the grains in the flowing layer above the transition between erodible and fast moving layers (arbitrarily repre-
sented by a dashed curve) have down-slope velocities higher than 40 cm/ s while the mean velocity within the erodible
layer stays under 15 cm/ s. As a result, according to criterion (17), the observed erosion waves may also be Kelvin-
Helmholtz instabilities. However, the analogy with Kelvin-Helmholtz is not straightforward because a well-developed
instability requires a velocity difference to be maintained between the two fluids. In the experiments as well as in the
simulations, the velocity difference is sufficiently high only at the flow head and during a relatively short time (in
simulations, they can be observed for t in 0.9 s ≥ t ≥ 2.2 s). In experiments, the waves are indeed observed mostly in
the flow head and when the front velocity exceeds 0.4 m/ s.

Fig. 16d shows that grain geometrical arrangements seem to act as obstacles to the flow. Indeed, the flowing
particles seem to have to move over these static zones, contributing to the wave like oscillations. Whatever its origin,
the wave-like motion seems to have a signature on the free surface as observed in the experiments of [60] (see their
Figures 19 and 20).

In our simulations and in the experiments of [61, 60], there is no clear signature of these waves in the deposit since
they disappear as the flow decelerates, contrary to the experiments of flows on erodible beds performed by [9, 84]
in different configurations. Indeed, their experimental setup ends on a subhorizontal surface where the flow rapidly
stops, thus freezing the waves within the deposit. As a result, if such waves exist in natural geophysical flows at the
substrate interface, they may or may not be visible in the deposits.

5.2. 3D simulations: static/flowing transition and compaction effects

5.2.1. Effect of initial solid volume fraction
Initial compaction and associated dilatancy effects may change the behavior of dry granular flows [85, 86, 87]

even though this effect is more dramatic in the presence of a fluid [88]. For instance, for identical volumes, an
initially compacted mass released on a compacted bed spreads less than a compacted mass on a loose bed [61]. It
is expected that the initial compaction of the erodible layer will change the depth at which the flow will put the



22 Hugo A. Martin et al. /Université Paris Cité (2022)

Fig. 17. Snapshots of the compact/loose simulation. The parameters of this 3D simulation can be found in Table A.3, row 7. The initial column
dimensions are R0×H0×W = 10×7.0×0.8 cm3. The erodible thickness is about 0.5 cm, corresponding to five mean grain parameters d = 1.0 mm.
This simulation involves N = 122 434 grains and the slope is 22◦. The mass is at rest in Fig. f at t = 6.0 s. The three main phases are represented
here: the acceleration (a) and (b), deceleration (c), and slow propagation phase (d), (e), and (f).

beads of the erodible bed into motion. We therefore investigate the simulated evolution of the static/flowing transition
that we qualitatively compare with the experimental observations given in [61]. This transition that we denote hs f
corresponds to the thickness of the static layer within the initial erodible bed.

Three simulations were performed, with identical parameters (see Table A.3), except for the initial solid volume
fraction. The compaction was modified when preparing the initial granular column and erodible bed by changing the
value of the friction coefficient between grains. The initial mass is built up through a uniform rain. This process leads
to a pressure field on the ground with qualitatively hydrostatic profiles [89]. In our simulations, the initial compaction
is then a function of the friction coefficient µ used to prepare the initial set-up.

We refer to these three simulations as follows: loose/loose when both the column and the bed are built with a
friction coefficient µ = 0.3, compact/compact when both the column and the bed are built without friction (µ = 0),
and compact/loose when the granular column is built with µ = 0 and the granular bed with µ = 0.3. An example of
an initial set-up can be found in Fig. 17a for the compact/loose simulation. In these simulations, the aspect ratio is
a = H/L = 0.7, with a granular bed elevation of hi = 5 mm corresponding approximately to five sphere diameters and
a channel width W = 0.8 cm, corresponding approximately to ten sphere diameters. All parameters can be found in
Table A.3, rows 7 to 9, at corresponding names.

In the experiments of [61], relatively similar grain sizes, flume slopes, initial bed elevations, and aspect ratios are
used. However, the volumes are quite different since the dimensions of the flowing mass at the initial time is a box of
dimensions H0 × R0 ×W = 14 × 20 × 20 cm3, involving approximately 9 million spheres. Since our computational
capacities cannot handle such number of spheres, we reduced the box dimensions by two and dramatically decrease
the flume width W, leading to a simulated mass dimension of H0 × R0 × W = 10.0 × 7.0 × 0.8 cm3. Shortening
the channel width and lowering the initial volume of the column is known to reduce mass entrainment leading to a
smaller runout distance [61]. Note that in these simulations, no friction is imposed on the wall and there is a layer of
glued beads on the rigid plane under the erodible bed. The compaction in our simulations does not change the runout
distance, possibly because the channel width is too small (Fig. 19). The compaction of the initial column mainly
changes the mass profiles upslope as was observed in the DEM and continuum simulations of [85, 87]. The thickness
of the compact column upslope is larger than the loose column thickness.
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Fig. 18. Velocity profiles and time evolution of the static/flowing transition. The slope is α = 22◦ and the bed thickness is hi = 5 mm (five grains
of mean diameter). There are five points where measurement have been performed. Two in the acceleration phase x1, x2, two in the deceleration
phase x3, x4, and one more in the slow propagation phase x5. Simulation parameters can be found in Table A.3, rows 7 to 9, named compact/loose,
loose/loose and compact/compact. In the third row, we represent the horizontal velocity in the granular media at a given position x. These horizontal
velocities have been measured at time t0 at which the transition hs f has reached its minimal value (meaning that the static/flowing transition is the
deepest in the erodible layer).

5.2.2. Static/flowing interface and velocity profiles
Fig. 18, which must be studied in parallel to Fig. 17 in [61], highlights the evolution of three main quantities: the

front velocity v f as a function of the space position x (Fig. 18a), the time evolution of the static/flowing transition
elevation hs f , (Fig. 18b-f), and the horizontal mean velocity ux as a function of the normal elevation to the plane z
(Fig. 18g-k).2 In Fig. 18a, the three main phases defined in Section 5 can be distinguished in the spatial evolution of
v f . The acceleration phase (see for example snapshots a and b in Fig. 17 for compact/loose) is quite independent of
compaction (of the granular mass and bed), from approximately x = R0 = 10 cm to x ≃ 16 cm. The maximal front
velocity is about 75 cm/ s at x = 16 cm. The deceleration phase (Fig. 17c), observed from x = 16 cm to 26.5 cm,
significantly depends on the compactness of the initial set-up (Fig. 18a). The smallest deceleration (i.e. highest
velocities) is observed in the compact/compact simulation (orange curve) which is the only case where the erodible
layer is compact. This could be related to the smaller dissipation of moving grains in the deep part of the erodible bed
compared to in the loose bed. For flows on a loose bed, the loose column front (loose/loose simulation) decelerates
less than the compact column (compact/loose simulation) for front positions up to about 20 cm and then decelerates
more (the blue curve drops below the green curve). The slow propagation phase (Fig. 17d, e and f) characterized by
a quasi-steady small front velocity starts at x = 26.5 cm with v f ≃ 15 cm s−1 (Fig. 18a). In this phase, the velocity of
the compact column and bed is still higher than the front velocity of the compact column on a loose bed, itself higher
than in the loose column and bed case.

The time evolution of the transition hs f is represented in Fig. 18b-f. We measured it at two points in the accel-
eration phases: x = 12.5 and 15 cm, two others in the deceleration phase x = 20 and 25 cm and another one in the
slow propagation phase x = 27.5 cm.3 In our simulations, three typical behaviors can be observed depending on the

2The relation linking the horizontal velocity ux and the static/flowing transition hs f can be written thanks to a criterion c, through the definition
hs f := min z(x), such that 0 ≤ z(x) ≤ hi and ux(z) ≤ c, where hi represents the initial granular bed elevation (here about five mean sphere diameters
hi = 5d), and c = 1 cm s−1, as in [61].

3Remark that the point where the maximal velocity of the front has been measured is x = 15 cm.
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Fig. 19. Profile comparison for different compactions. There are no notable differences in front position. However, it can be seen that the
maximal height at x = 0 cm is smaller in the loose case. This is probably caused by a compaction of the column during its collapse.

considered phase.
In the acceleration phase, the penetration of the static/flowing interface hs f within the erodible bed is sharp,

reaching the smallest elevation very quickly (for example, at t = 0.1 s in Fig. 18c). The interface elevation then
increases (i.e., rises) until the value of the initial bed thickness hi = 5d. Furthermore, it can be observed that for
faster velocities, the interface seems to penetrate deeper (note the value of v f in Fig. 18a and of hs f in Fig. 18b-
f). We also observe that the granular bed restabilizes more rapidly when it is initially compact. In the deceleration
phase, the change of the interface elevation hs f is smoother than in the acceleration phase and its minimal value is
smaller (compare Fig. 18d,e with b,c). The biggest difference between the curves is observed at x = 20 cm with a
smaller penetration of the static/flowing interface hs f in the compact/compact case, followed by the loose/loose and
compact/loose cases. The static/flowing interface hs f penetrates deeper at position x = 20 cm (the middle of the
deceleration phase) than those at x = 25 cm, (the end of this phase). At this latter position, the penetration is almost
the same whatever the initial compaction while the duration of the motion of grains in the erodible bed is smaller for
flows on a compact bed (orange curve). During the slow propagation phase, differences similar to those observed at
x = 20 cm between the curves start to become visible again (Fig. 18f).

In the third row of Fig. 18, we represent the horizontal velocity in the granular media at a given position x. These
horizontal velocities have been measured at time t0 where the transition hs f has reached its minimal value (meaning
that the static/flowing transition is the deepest in the erodible layer). For example, the velocity profile shown in
Fig. 18h has been measured at t = 0.11 s, when hs f is the smallest in Fig. 18c.

During the acceleration phase Fig. 18g and h, we observe profiles as in Fig. 12b at t = 0.15 s decomposed into
an exponential shape around the erodible bed surface z ≃ 5 mm connecting above to a roughly constant velocity up
to the free surface. Surprisingly, Fig. 18g and h show that the horizontal velocity is maximal in the middle of the
granular layer at the initial instants, as observed for example in Fig. 17b for the compact/loose case. This maximum
velocity is about 75 cm s−1 and is obtained when the front velocity is maximal (also about 75 cm s−1), as shown
in Fig. 18a at x = 16 cm. Note that this value is about two times smaller than the maximal velocity of the fastest
spheres that move at about 1.5 m/ s. These high-speed spheres are located slightly above the free surface and have a
collisional behavior. In the deceleration phase, almost linear velocity profiles are observed in Fig. 18i and j, except for
loose/loose at x = 25 cm (blue curve), which is still similar to profiles from the acceleration phase. At x = 20 cm, the
horizontal velocity is still relatively high, similar to the front velocity (Fig. 18i). These velocities get globally smaller
at x = 25 cm. During the slow propagation phase, the only significant velocity is obtained for the compact/loose case
with a maximum of 12 cm s−1 within a very thin layer of flowing particles.

5.2.3. Insight into erosion process
During the mass acceleration, the flow interaction with the erodible bed is quick and highly energetic since the

flow velocity is high. This leads to profound rearrangements in the granular bed (Fig. 18b and c) with deep particles
put into motion. However, the short-duration of this interaction leads to relatively small mass entrainment in the
down-slope direction compared to what happens during the deceleration phase. For example, the erosion process lasts
0.1 and 0.2 s in Fig. 18a and b, respectively, compared to 0.45 and 0.35 s in Fig. 18d and e, respectively.

During the deceleration phase, the interface seems to stay approximately in the middle of the bed (Fig. 18d and
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e). The most important part of the mass that is displaced belongs to the first upper half of the granular bed. Beyond
x = 26 cm, the stopping phase appears (Fig. 18a), where the mass flows on the erodible bed without significant
entrainment (the maximal depth of the static/flowing interface is about one diameter only (Fig. 18f). After that, no
further mass displacement can be observed in the bed. During these three phases, the initial solid volume fraction
plays a role in the dynamics, especially in the evolution of the static/flowing interface hs f , which penetrates deeper
within the loose erodible bed. Despite the difference in the dynamics for flows on a compact bed, the runout distance
is almost unaffected.

When comparing our observations with those given in [61], a lot of similarities can be found. The same three
phases are observed along with the main characteristics of the static/flowing interface evolution and velocity profiles,
at least qualitatively but also partly quantitatively. However, as expected from the different geometry of the domain,
the precise values of velocity and interface thicknesses differ. For example, the static/flowing interface hs f in the
experiments is systematically deeper than in the simulations. Unfortunately, our computational capacities prevent us
from reproducing exactly the experiments (number of grains and dimensions of the set-up). As mass entrainment
decreases with smaller volumes of the granular mass and narrower flume width W [60, 61], the differences between
our simulations and the experiments lie in the good direction since our simulations involve a lower volume and a
narrower channel.

6. Conclusion

In this paper, we have presented the COCD method that simulates the motion of each grain and the complex
interactions between them. It belongs to the Discrete Elements Methods, in particular to the convexified contact
dynamics methods (CM) [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. Indeed, in COCD, the computation of the
numerical solution involves solving a convex optimization problem at each time step, based on the global velocity as
the unknown. After explaining the method, describing its implementation in the Mosek solver (with its Primal-Dual
Interior Point Method) and its calibration, we validated COCD by confronting it with experiments and the non-convex
contact dynamics method NSCD [45, 46, 44]. We finally tested COCD in the context of granular flows on erodible
beds.

Our work demonstrates the interest of the convexified contact dynamics methods for three main reasons:

• From a theoretical point of view, a high level of confidence can be given to the numerical result. In this respect,
we have presented theoretical results for a convexified scheme based on the full circular Coulomb cone and a
velovity based optimization formulation. It certifies that Coulomb’s law is well verified locally at each contact
and at each iteration in time.

• From a computational performance point of view, the efficiency of COCD is derived from existing convex
solvers, benefiting from the performance gains obtained in this research field (see, for example, the algorithms
presented in [53, 54, 55, 56, 57, 58]).

• Convexified methods have already proven efficient in various engineering fields (see, for example [90, 91]).
This study advocates for their relevance in the field of geophysical sciences. Indeed, our tests of COCD in
the context of granular flows on erodible beds show that COCD reproduces qualitative and many quantitative
features of laboratory experiments such as erosion processes associated with the complex interaction between
a flowing and a static layer.

In conclusion, we showed that the convexified method COCD is suitable for reproducing physical phenomena
involving granular flows at the laboratory scale. Such validation steps are essential because the models can then
be trusted to access quantities that could be very difficult to measure in laboratory experiments, like, for example,
velocity fields, static fluid transitions, and flow interaction with the erodible bed within the domain.
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initial column aspect number of slope friction time step mean diame- final
dimensions ratio particles coefficient ter of grains time

R0 × H0 ×W a N α µ ∆t d t f

(cm× cm× cm) (gain) (◦) (s) (mm) (s)

1
variation

of ∆t
15 × 15 1.0 952 0 0.3 0.01→ 5.0 10−5 7.0 0.5

2
variation

of N
500→
50 000 0.001 7.6→ 0.78 3.0

3
comparison
with NSCD

10.8 × 71.928 6.66 7 740 0.5 5.0 2.0

4
variation

of µ
20 × 14 × 20 0.7 112 459 0.0→ 0.8 0.01 4.0 2.04

5 2D 20 × 14 0.7 2 154 0, 22 0.3 0.01 4.0 2.04
6 3D 20 × 14 × 20 112 459

7 M2010 20 × 14 × 10 0.7 ≃ 9 106 0 / / 0.7 /

8 F2014 20 × 14 × 20

Table A.2. Simulation parameters for computational aspects and comparison with NSCD and experiments. The units of quantities in the
table are: H0, R0, W ( cm), α ( ◦), ∆t ( s), d ( mm), t f ( s). The other parameters are unitless. In all our simulations, the gravity constant is
g = 9.81 ( m s−2, the grain density is ρ = 2 500kg m3 and there is a polydispersity of 10% for grains size. The friction coefficient with the walls is
µ. The last two rows provide information about the experiments. Any empty cell is equal to the cell value of the row above.
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