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LPV-Based Autonomous Vehicle Lateral
Controllers: A Comparative Analysis
Hussam Atoui1,2, Olivier Sename2, Vicente Milanés1 and John Jairo Martinez2

Abstract—This paper presents the design and experimental
validation of grid-based and Linear Fractional Transformation
(LFT) approaches for the lateral control of autonomous vehicles.
These new methodological approaches are compared together
with the classical polytopic approach from the theoretical design
to the real implementation on a real automated Renault ZOE
vehicle. A solution is proposed to deal with both lane change
and lane tracking problems, using a single LPV controller,
by adapting the look-ahead distance. Each LPV controller is
designed based on LPV/H∞ concept. Performance comparison
includes computational costs, vehicle performance (i.e. lateral
tracking error or control effort optimization) and on-board
integration complexity. Simulation and experimental results on
a private test track are included to support main findings.

I. INTRODUCTION AND MOTIVATION

Research on Intelligent Vehicle Highway Systems (IVHS)
and Automated Highway Systems (AHS) has been very active
in the last decades [1]. Two vehicle control tasks were consid-
ered: longitudinal control and lateral control. The former aims
mainly to achieve car-following [2] by regulating the speed of
the vehicle. The latter minimizes the lateral error by adjusting
the steering actuator [3]. Lateral control is used to maintain
lane-keeping and lane-changing, i.e. to handle small and large
lateral errors.

Different control strategies have been proposed for the
lane-keeping task. In [4], a nested PID steering control was
formulated for lane-keeping based on a vision system. A fault
tolerant control for automated vehicle has been designed in
recent researches [5], [6]. A static feedback control was used in
[7] combining the longitudinal and lateral controls. In addition,
a comparison was done between PID, adaptive, H∞ and fuzzy
logic controllers in [8]. Moreover, [9] compares and evaluates
the performance of five path-following algorithms according
to various disturbances like gust wind, drop of road friction
coefficient and inaccurate GPS localization.

Lateral control for overtaking or obstacle avoidance ma-
neuvers has been also tackled in the literature. This concept
took a part of the studies concerning the steering rate and
the forward distance to be covered by ensuring safety with
respect to the vehicles around. Fuzzy logic control [10] and
different optimization techniques, as in [11], [12], and [13],
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were used to maintain better scenarios for lane change and
collision avoidance.

One of the most used schemes for the lateral control
consists of [14], [15]: 1) a feedforward term which generates
the desired yaw rate at a varying look-ahead distance with
respect to the vehicle’s speed; and 2) a feedback compensator
that minimizes the current vehicle yaw rate error to reduce
the lateral error. In [14], the steering rate is defined to be
proportional to both heading and lateral errors, adapting look-
ahead distance accordingly to vehicle speed. Thus, a Linear
Time-Invariant (LTI) controller is designed for a fixed look-
ahead distance and speed. Each one of those obtained LTI
controllers has a different performance to be used in a certain
situation. [16] uses this approach to design a switching LTI
controller based on Youla-Kucera (YK) parameterization. Two
LTI controllers are designed separately having the same speed
but different look-ahead distance parameter d; the first one
with d = 30m for managing larger lateral errors smoothly, and
the second with d = 15m to provide fast tracking capabilities.
When the absolute lateral error increases from 0.6 to 3m, the
controller switches its performance from the second to the first.
Our paper proposes a solution which solves the same problem,
but by adapting the look-ahead distance within the generated
yaw rate reference in terms of the absolute lateral error, and
using a single robust LPV controller.

Additionally, the LPV concept is used in this work to control
the nonlinear lateral dynamics of automated vehicle. Nonlinear
control system research field started in the 70s [17]. From
a practical point of view, linearization at different operating
points was deeply investigated in the literature [18]. LPV con-
cept surged as a control technique that can use LTI synthesis
tools to control a nonlinear model. In addition, the studies
tended to improve robustness in addition to the optimality
which can handle parameter variations in the plant model. If
these parameters can be measured online, a gain-scheduling
between LTI controllers, designed at different operating points,
can be used [19]. Otherwise, the unmeasurable parameters
are considered as model uncertainties in the control design
to reduce their effects on the closed-loop performance [20].

The importance of the LPV approach to control general
nonlinear systems comes from the fact that the system can
be written in the form of a quasi-LPV, where the parameter
can vary as a function of states, inputs or outputs and not
just considered as exogenous inputs. [21] and [22] present
successful application example of LPV/robust techniques to
different domains. Usually, the formulation of an LPV control
problem requires to solve an infinite number of Linear Matrix
Inequalities (LMIs) due to the parameter space. Methods have
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been proposed to reduce the problem to a finite set of LMIs:
polytopic [23], [24], grid-based [25], and LFT [26] approaches
that have been discussed in the literature. An informative
review on the three approaches is drawn in [27].

The three LPV control approaches have been widely used
and experimentally validated in different domains which are
illustrated in the following references: polytopic [28], [29],
[30], grid-based [31], [32], and LFT [33], [34]. On the other
hand, it is worth mentioning that only the polytopic approach
has been implemented and experimented for the lateral control
problem of autonomous driving [35], [36].

This paper presents, for the first time, the real implementa-
tion of the grid-based and LFT approaches to solve the lateral
control problem on an electric Renault ZOE vehicle. A com-
parative analysis is shown among the three LPV approaches
to the autonomous vehicle lateral control. The design of the
three approaches from a theoretical point of view as well as
their application on a real vehicle are presented, including a
comparative analysis. Specifically, comparison is carried out
attending to the next criteria: 1) Designing procedure which
is discussed in a theoretical point of view; 2) Controller
performance when dealing with different situations (noise,
disturbance, large lateral errors, low and high speeds, etc...).
This is achieved by analysing the lateral errors (to ensure
safety) and the control input efforts (to ensure comfortability
and actuator limitation) from the simulation and real imple-
mentation results; and 3) Implementation complexities when
applying them on real applications and their effects on the
computational costs.

The main contribution of this paper is to develop, experi-
mentally validate and compare three distinct LPV controllers
which can deal, comfortably, with both lane change and lane
tracking problems of a daily passenger vehicle. This can be
summarized as follows:
• Quasi-LPV models are structured for the three approaches

from the nonlinear bicycle model that vary with respect
to the longitudinal velocity.

• To limit the control input effort and to achieve the
noise/disturbance rejection performance, LPV/H∞ prob-
lems are solved using a set of LMIs.

• The design and experimental validation of grid-based and
Linear Fractional Transformation (LFT) approaches is
carried out for the first time on the lateral control of
autonomous vehicles.

• Input reference is adjusted as a function of the speed and
lateral error, modifying the look-ahead parameter accord-
ingly to deal with large lateral errors (lane changing) and
the small ones (lane tracking).

• Simulation and experimental results (on a Renault ZOE
vehicle) are shown to compare the performance of the
controllers concerning tracking, actuator limitations and
noise/disturbance rejection.

II. MODEL FORMULATION

The lateral vehicle dynamics is modelled using the well-
known bicycle model [37], [38]. Next subsections describe
the plant model and the design of each LPV model.

A. Lateral Bicycle Model

In [37] and [38], the nonlinear lateral bicycle model is
derived as: {

v̇y =
Fyf cos δ+Fyr

m − wvx
ẇ =

Fyf lf cos δ−Fyrlr
I ,

(1)

where vx, vy and w are the longitudinal, lateral and rotational
velocities in the vehicle’s frame, respectively. δ is the control
input, the steering front angle of the front tire. I , m, lf and lr
are the vehicle’s inertia, mass and the distance from the center
of gravity to the front and rear wheel axes respectively. Fyf
and Fyr are the lateral forces applied to the front and rear
tires, respectively.

Considering small side-slip angles and constraint lateral
acceleration (≤ 5m/s2). Then, the lateral forces can be
approximated as follows:

Fyf = Cf (δ − vy
vx

+
lfw
vx

),

Fyr = Cr(− vyvx + lrw
vx

),
(2)

where Cf and Cr are the stiffness of the front and rear
wheel-tires respectively. Notice that the linear bicycle model
with constraint lateral acceleration has been stated as a good
approximation of the nonlinear model [39]. Then this model
could be sufficient for daily passenger vehicles.

B. LPV Model Structures

After choosing ρ(t) = vx ∈ Rnρ as a varying parameter, and
assuming small steering front angles (sin(δ) ≈ δ), and small
slip angles, the LPV state-space representation is written as:

G(ρ)

{
ẋ(t) = A(ρ)x(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3)

where:

x(t) =

[
vy
w

]
∈ Rnx , u(t) = δ, , y(t) = w, B =

[
1
mCf

1
ICf lf

]
,

A(ρ) =

[
−Cr+Cf

mvx
− lfCf−lrCrmvx

− vx
− lfCf−lrCrIvx

− l
2
fCf+l2rCr

Ivx

]
.

(4)
The parameter-dependency of the LPV model differs from

one approach to another [22]. Specifically, the control syn-
thesis of the polytopic approach requires an affine parameter-
dependency. However, the gridding approach does not require
such assumption. Finally, the LFT model is defined to be a
lower or upper Linear Fractional Representation (LFR) be-
tween a known LTI model and a varying-parameter block. The
following discussion shows how each approach is formulated.

1) Polytopic Model
The polytopic model is defined in a convex hull bounded

by the parameters extremums (see Fig. 1a). It is formulated as
a convex combination between the vertices of the polytope.
Two conditions must be satisfied: 1) the input and output
matrices should be independent of the varying parameters, this
is usually solved by pre-filtering the input or output; and 2) the
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model must be affine with respect to the varying parameters.
So, (4) is written as:

Apol(ρ) =

[
−Cr+Cf

m ρ2 −Cf lf−Crlrm ρ2 − ρ1

−Cf lf−lrCrI ρ2 −Cf l
2
f+l2rCr
I ρ2

]
, (5)

where ρ1 and ρ2 are vx and 1
vx

respectively. Figure 1a shows
the polytope formed by the extremums of the two parameters.
Notice that the parameter vector is represented as a convex

combination between the 4 vertices, where ρ =
2np∑
i=1

µiωi and

2np∑
i=1

µi = 1, µi ≥ 0 ∀i being

ω1 = (ρ1, ρ2), µ1 = |ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

ω2 = (ρ1, ρ2), µ2 = |ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

ω3 = (ρ1, ρ2), µ3 =
|ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

ω4 = (ρ1, ρ2), µ4 =
|ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

(6)

(a) The polytope
(b) The LFR

(c) The gridded matrices

Fig. 1: LPV model representations

The LPV model is then written as a convex combination of
the LTI systems obtained at the vertices of the polytope:[

Apol(ρ) Bpol(ρ)
Cpol(ρ) Dpol(ρ)

]
=

2np∑
i=1

µi(ρ)

[
A(ωi) B(ωi)
C(ωi) D(ωi)

]
(7)

where np = 2 is the number of the varying parameters.
2) Grid-based Model
The grid-based LPV model is a model interpolated over a

set of LTI models that are linearized at different operating
points. This approach can be considered when the parameter
dependency of the model is nonlinear (without model refor-
mulation) [27], [25]. So, the only needed parameter here is
ρ = vx. The varying parameter is gridded to a chosen number
of ng grid points as shown in Fig. 1c.

The gridding approach uses any kind of interpolation (linear
or nonlinear) between the gridded models to compute the LPV
model. Suppose that, at an instant, the longitudinal velocity
ρ ∈

[
ρk, ρk+1

]
m/s, the linear interpolation of the state-space

matrices:[
Agrid(ρ) Bgrid(ρ)
Cgrid(ρ) Dgrid(ρ)

]
=

k+1∑
i=k

αi(ρ)

[
Ai Bi
Ci Di

]
, (8)

where, αk = ρk+1−ρ
ρk+1−ρk and αk+1 = ρ−ρk

ρk+1−ρk .
3) LFT model
The LFT approach defines the model as the upper LFR

between a known LTI model and a parameter block as shown
in Fig. 1b [26]. At each instant, the parameters in the block Θ
are updated being the input of the LTI model M. In general,
the upper LFT interconnection of the shown model is written
as:  ẋzθ

y

 =

A Bθ B
Cθ Dθθ Dθ1

C D1θ D

 xwθ
u


wθ = Θzθ

(9)

where Θ is the time-varying operator block introduced as:

Θ = blockdiag(θ1Ir1 , ..., θkIrk) (10)

being ri > 1 which presents the number of occurrences of
the varying-parameter θi. Notice that θi can be normalized to
be always ∈ [−1, 1], which makes M represents the nominal
model when θi = 0 ∀i.

Let us consider the system model (3), considering the
parameter vx varying as:

vx = vx0 + aθ (11)

where vx0
=

vxmin+vxmax
2 represents the nominal value of vx,

and a =
vxmax−vxmin

2 represents the rate of variation when
θ varies in [-1,1]. Then, (3) can be rewritten under the LFT
form (9) where:

A =

 −Cr+Cf
mvx0

− lfCf−lrCrmvx0
− vx0

− lfCf−lrCrIvx0
− l

2
fCf+l2rCr
Ivx0



Bθ =

[
− a
vx0

0 − a2

vx0
0

0 0 0 − a
vx0

]

Cθ =


−Cr+Cf

mvx0
− lfCf−lrCrmvx0

+ vx0

0 1
0 0

− lfCf−lrCrIvx0
− l

2
fCf+l2rCr
Ivx0



Dθθ =


− a
vx0

0 − a2

vx0
0

0 0 0 0
0 1 0 0
0 0 0 − a

vx0


Dθ1 = 04×1, D1θ = 01×4,Θ = θ × I4

(12)
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Fig. 2: Control design scheme

And finally, the state-space matrices of G(ρ) are scheduled
as:

ALFT (ρ) = A+Bθ∆θCθ
BLFT (ρ) = B +Bθ∆θDθ1

CLFT (ρ) = C +D1θ∆θCθ
DLFT (ρ) = D +D1θ∆θDθ1

∆θ = Θ(I −DθθΘ)−1

(13)

It is worth noting that, in the LFT approach, the LPV model
is converted as in Fig. 1b in a single LTI model feeded by a
parameter dependent input. It differs from the polytopic and
grid-based approach where a set of LTI models is handled.

III. LPV/H∞ CONTROL DESIGN

Fig 2 presents the control block diagram where an LTI
actuator model Gact (first order transfer function + input
delay) is added to the bicycle model dynamics (δc is the
controller output). Note that the input delay is described
as a first order transfer function, so as a result, Gact is a
second order transfer function. Considering this structure, the
controller K(ρ) is designed for the three approaches using
LPV/H∞ concept. Notice that wref represents the yaw rate
reference.

Control performance criteria inH∞ control theory are given
by frequency domain functions. Two weighting functions We

and Wu are used to achieve tracking and actuator limitations
performances respectively. The objective is to achieve both
performances with a trade-off between minimizing the lateral
error and ensuring the driving comfort. Notice that the steering
speed δ̇ could be related to the driving comfort since it
reflects how fast the front wheels are acting (e.g. at high
values of δ̇), and how noisy they appear (when δ̇ oscillates
around zero at high frequencies). We know that when δ̇
increases, the lateral acceleration increases, and consequently
more aggressive actions are achieved. Moreover, a highly
frequent oscillation of the steering speed around zero leads
to noises in the front wheels, which encounters uncomfortable
driving. As a result, Wu is designed in a way to achieve low
steering speeds with noise rejection.

A. Tracking specification (We)

The weighting transfer function is chosen as:

We(s) =
s
Ms

+ wb

s+ wbε
(14)

where the parameters Ms, wb and ε are tuned as follows:
• Ms = 2, to ensure robustness at any frequency.

• wb ≥ 10, to choose the speed of rising time-response.
• ε ≤ 10−4, to represent the steady-state tracking error.

B. Specification on the control input limitations (Wu)

A filter is used to minimize the effort of the steering actuator
control δc. This filter is designed as:

Wu(s) =
s+

wbu
Mu

εus+ wbu
(15)

The parameters Mu, wbu and εu are adopted as:
• Mu represents the limitations on the maximum allowed

effort of the actuators.
• wbu , is related to the actuator bandwidth.
• εu ≤ 10−2, is concerned with the noise rejection from

the control inputs at high frequencies.

C. Generalized Plant

(a) Polytopic and gridding

(b) LFT

Fig. 3: General control configuration

Using the plant model and the weighting functions, Fig. 2 is
converted to build a general control configuration as in Fig. 3a.
The generalized plant P (ρ) is structured to consider the chosen
weights in addition to the LPV model (G(ρ)×Gact). Thus the
state vector of P (ρ) is xP =

[
x xact xWe

xWu

]T
, and

the controlled output z =
[
e1 e2

]T
represents the objective

function to be optimized when designing the controller. w =[
r d n

]T
is the exogenous input, where r, d and n are the

desired reference, input disturbance and the measurable noises
respectively.

For the polytopic and the gridding approaches, the state-
space representation of P (ρ) (see Fig. 3a) has the form:

ẋP
e1

e2

r − y − n

=


AP (ρ) B1 B2 B3 B4

0 We 0 −We −WeG(ρ)
0 0 0 0 Wu

0 1 0 −1 −G(ρ)



xPrd
n


u

.

(16)
In the polytopic approach, there exist four generalized plants,
each one is related to a corresponding vertex of the polytope.
However, a set of ng Pi’s are formulated along the gridded
points for the gridding approach.

Fig. 3b shows the generalized plant P (ρ) as an upper LFR
between a parameter-invariant P and the parameter block Θ
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for designing an LPV/LFT controller. Using this approach, P
is then structured as:

ẋP
zθ
e1

e2

r − y − n

=


AP BΘ B1 B2 B3 B4

Cθ Dθθ Dθ1 Dθ2 Dθ3 Dθ4

0 0 We 0 −We −WeG(ρ)
0 0 0 0 0 Wu

0 0 1 0 −1 −G(ρ)




xP
wΘrd
n


u

.

(17)

D. LPV/H∞ Control Synthesis

For the rest of the paper, the longitudinal speed is considered
to be bounded as:

vx ∈
[
3, 30

]
m/s (18)

The main objective of the H∞ control is to minimize the L2

induced gain from the external input w to the controlled output
z=
[
e1 e2

]
T . This is achieved by solving the following L2

induced minimization problem:

‖z‖2 ≤ γ∞ ‖w‖2
and γ∞ > 0, to be minimized, represents how much the
demanded performance is achieved. If γ∞ < 1, the demanded
performance is totally achieved by the controller. Among the
three approaches, each controller is designed by solving its
corresponding LMI-based optimisation problem. A complete
overview of the synthesis and implementation complexity of
LPV approaches can be found in [40]. For each approach,
the complexity of LPV controller existence conditions is
determined in terms of the size of LMIs and the number of
decision variables. Note that the obtained controller K(ρ) is
an LPV Dynamic Output Feedback Controller.

1) Polytopic Approach
Fig. 1a shows that the polytopic approach is considering

the parameters vx and 1
vx

as two independent parameters.
However, they depend on each other as a function of the
black curve (i.e. y = 1/x). Since the polytope is a very large
set compared to the real parameter variation rule (and mainly
due to w4), this may lead to conservatism when solving the
optimisation problem on the 4 vertices. Thus, a solution to
this problem is drawn in [41], where the number of vertices
is reduced from 2np to np+1. So, the polytope in Fig. 1a can
be reduced to CO{w1, w2, w3}, and then, the coefficients µ′is
will be:

µ1 = 1− (µ2 + µ3), µ2 =
|ρ2−ρ2|
|ρ2−ρ2| , µ3 =

|ρ1−ρ1|
|ρ1−ρ1| (19)

In the polytopic approach, the problem is solved in the
framework of quadratic stability of the closed-loop system.
This is obtained by solving a set of LMIs at the vertices of
the polytope with a constant Lyapunov function [23]. The
existence conditions of this approach show the number of
LMIs to grow by O(2np). Also, the number of decision
variables is computed to be nx(nx + 1) [40]. As a result, a
controller Ki is obtained at each vertex and K(ρ) is computed
as (in the case of non-reduced polytope and ∀ρ inside the
polytope of Fig. 1a):[

AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

]
=

2np∑
i=1

µi(ρ)

[
AKi BKi
CKi DKi

]
(20)

2) Grid-based Approach
Grid-based approach formulates the problem in the context

of robust stability [42] by using a parameter-dependent Lya-
punov function along the gridded axis [25]. Notice that a basis
function is chosen to write the Lyapunov function in terms
of the varying parameters. An example on the lateral vehicle
control problem, the Lyapunov function X(ρ) is chosen to be
linearly dependent (order 1) on the varying parameter ρ = vx:

X(ρ) = X0 + ρX1, (21)

where X0 and X1 are unknown constant matrices to be
computed from the LMIs. From this point of view, one can
see an advantage in the optimisation problem of this approach
where it reduces the conservatism of the polytopic approach.
Notice that the LMIs include the absolute maximum rate-
change of the parameter. Studying the existence conditions
of this control approach, the number of LMIs grows with
O(n

nρ
g ). To determine the number of decision variables, let

us assume that the parameter-dependent Lyapunov matrix is
parameterized as:

X(ρ) = X0 +

s∑
i=q

ai(ρ)Xi, (22)

then the number of decision variables is 1
2nx(nx + 1)(nXρ +

+1), where nXρ = s − q + 1. For more details, the LMIs
are derived in Theorem 4.3.1 in [25]. As a result, a set
of controllers is obtained where each one corresponds to a
frozen value in the gridded axis of the parameter. When
ρ ∈ [ρk, ρk+1], the controller K(ρ) can be linearly interpolated
as [27]:[

AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

]
=

k+1∑
i=k

αi(ρ)

[
AKi BKi
CKi DKi

]
, (23)

where, αk = ρk+1−ρ
ρk+1−ρk and αk+1 = ρ−ρk

ρk+1−ρk .
3) LFT Approach
The LPV/LFT controller synthesis mainly relies on the S-

procedure [43]. The solution of the LMI-based optimization
problem is detailed in [26], where continuous and discrete-
time LMI problems are discussed. The LMI size is typically
smaller than that in the polytopic approach since there is no
anymore a set of LMIs to be solved for a set of parameter
values (see Fig. 2 in [27] for more details). However, a
trade-off is found where the number of decision variables of
LFT is much bigger than the polytopic approach when nρ
increases (nx(nx + 1) + 2nΘ(2nΘ + 1) where Θ ∈ RnΘ×nΘ ).
Control synthesis is formulated in two steps: 1) A quadruple
(R,S, L3, J3) is found - by solving 2 LMIs - to ensure the
solvability of the control problem (check Theorem 5.1 in [26]);
and 2) The gain-scheduling controller is then computed using
the quadruple and solving another LMI with one decision
variable containing the controller matrices (Algorithm 6.1 in
[26]). Then, the designed controller is written in the form of
a lower LFR Fl(K,Θ), and obtained as follows:

K(ρ) = Fl(K,Θ) = K11 +K12Θ(I −K22Θ)−1K21 (24)
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being K(ρ) defined as:[
u
z̃θ

]
=

[
K11 K12

K21 K22

] [
r − y − n

w̃θ

]
(25)

where K11, K12, K21 and K22 are obtained from the LMI’s.
Thus, the state-space matrices of K(ρ) are computed as:

AK(ρ) = AK +BKθ∆θCKθ
BK(ρ) = BK +BKθ∆θDKθ1

CK(ρ) = CK +DK1θ
∆θCKθ

DK(ρ) = DK +DK1θ
∆θDKθ1

∆θ = Θ(I −DKθθΘ)−1

(26)

E. Frequency Domain Analysis
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Fig. 4: Sensitivity Functions

This subsection analyses the designed controllers in
frequency-domain in order to check if the requirements are
satisfied by the controllers. This is achieved using several sen-
sitivity functions compared to the weights designed previously.
Additionally, an LTI controller designed at the fixed-nominal
speed vx=14 m/s is added to the analysis to show the benefits
of using parameter-varying approaches.

To observe the tracking performance, the error sensitivity
function S is drawn as shown in Fig. 4a. Sensitivity func-
tions of the tracking error to the reference are drawn with
the required performance 1

We
. Notice that each of the LPV

approaches has several sensitivity functions where each one
is referred to a corresponding value of speed (in gridding
and LFT approaches) or a corresponding vertex (in polytopic
approach). At low frequencies, all the controllers achieve the
demanded steady-state tracking error. Also, all the controllers
are respecting the requirements at high frequencies related to
robust margin (max

∀w

∥∥ r−y
r

∥∥ < 6 dB).
On the other hand, the analysis of the control input is carried

out to evaluate the sensitivity to the noise. To do so, the
control sensitivity function KS of each controller is computed.

Fig. 5: Control implementation scheme
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Fig. 6: Reference Trajectory

Fig. 4b shows the sensitivity functions of the control input
δ with respect to the reference, and the requirements on the
actuator limitations 1

Wu
. It is shown that all the controllers are

respecting the demanded limitations with a small exceeding in
the bandwidth of the LFT approach. One can appreciate how
the gridding approach shows the best noise rejection at high
frequencies compared to the others.

IV. SIMULATION RESULTS

The simulations are employed by a Renault simulator
considering the electric Renault ZOE vehicle, developed in
MATLAB/Simulink, and considering nonlinear vehicle and
tire models. The simulations are performed in discrete-time
domain with a sampling time Ts = 10 ms. The proposed
control strategies are implemented in simulation following the
scheme in Fig. 5. The look-ahead system block is added to
perform smoothly both lane-keeping and lane-changing (i.e.
small and large lateral errors respectively). It modifies the yaw
rate reference when having large lateral errors (initial error in
autonomous starting mode, sudden lane-changes, etc.). Since
the desired curvature is inversely proportional to the look-
ahead distance [14], a smooth or aggressive steering can be
obtained by changing the look-ahead distance. Specifically, as
much as the lateral error ye increases, the look-ahead distance
d is increased linearly as a function of the lateral error as
follows:

d(vx, ye) = sat(
dnom(vx)

2
×(1+abs(ye)), [dnom(vx), dmax])

(27)
where dnom(vx) is the nominal look-ahead distance tuned at
each speed vx for small lateral errors (ye ≤ 0.6m), dmax is
the maximum saturation of look-ahead distance chosen when
ye ≥ 3m. dmax is chosen depending on the facing situation
where it should ensure that the vehicle is not losing forward
information (we choose it here as dmax = 40m).
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Fig. 7: Speed profile measured from a real test (m/s)

As discussed in subsection III-D, the LPV approaches have
different ways of implementation and interpolation. Each one
differs with respect to its complexity and time consuming,
which makes it worthy to see how they can be simplified and
what will be the effects of such simplifications. Due to the
limited number of real tests which can be done, this section
discusses different ways of implementations for each approach
separately and their impact on the system performance. The
trajectory in Fig. 6 is used to test the lateral control per-
formance. Vehicle speed input is recovered from a real test
(see Fig. 7). Some critical situations were chosen to show the
functionality of the look-ahead system and to compare the
response of the different designed controllers, where:
• a large lateral error is presented at the initialization time,
• the reference positioning system (X ,Y ) is recovered from

a real test with noises.
• the rate of the varying parameter vx is increased to be

large enough at some times (t ∈ [70, 80]s),
• a high speed vx = 25 m/s is reached at time t = 80s,
• two successive aggressive maneuvers (with high lateral

acceleration greater than 5 m/s2) at high speed (around
23 m/s) are carried out between t = 105s and t = 115s.

A. LPV Approaches Limitations

This subsection describes the main limitations of each
approach from the implementation point of view.

1) Polytopic Approach
As mentioned in paragraph III-D1, the polytope is reduced

to decrease its problem conservatism. Thus, to analyse the
benefit of this reduction, two polytopic LPV controllers (one
with four vertices and the other with three vertices) are
designed. Both of them are simulated separately and the results
of the obtained lateral errors and steering input angles are
represented in Fig. 8 and 9.

Table I, Fig. 8 and 9 show that both controllers achieve
approximately the same lateral error and steering performance.
This result is due to the fact that the bicycle model is not
highly nonlinear in terms of the speed vx. Moreover, Fig. 8
and 9 show that the initial lateral error is minimized smoothly,
thanks to the look-ahead system which adapts the look-ahead
distance as the lateral error increases (see Fig. 10). Notice
that the look-ahead distance is no more adapted for t > 6s,
i.e. d = dnom(vx) ∀t > 6s except when lateral error exceeds
0.6m.

Finally, Table I shows the lateral error RMS for both poly-
topic controllers. One can appreciate the benefits of reducing
the polytope, especially when having varying-parameters that
depend on each other.

TABLE I: RMS of the lateral error using the polytopic
approaches

4-Vertices Polytope Reduced Polytope
RMS 0.98 1.01
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Fig. 8: Lateral error using the polytopic approaches (m)

2) Gridding Approach
The gridding approach reduces the problem of conservatism

by using a parameter-varying Lyapunov function. Gridded
controllers are often interpolated either linearly or nonlinearly
to obtain the current-state controller. The benefit of this
interpolation is that even if the parameter goes out of its
extremum bounds that was considered in the control design
(i.e. vx < 3 m/s), the controller still can be interpolated
with negative coefficients. Designing a gridded-based LPV
controller, the gridded axis of the varying parameter should
be drawn. This axis can be gridded starting from two grid-
points until infinity. Thus, it is worthy to study the effect of
increasing the number of gridding points on the performance
of the system.

A set of tests is done at each chosen number of gridding
points and the RMSs of the lateral errors are computed. The
chosen number of gridding points are the even numbers from 2
to 40 grid-points (2,4,...,38,40). Fig. 11 shows the normalised
RMS of the lateral errors from each test. Notice that all of
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different number of gridding points ng

them are normalized with respect to the test of ng = 2 to
make it easier for comparison, being the first test RMS equals
to 0.263. It is clearly shown that increasing the number of
gridding points may not always improve the performance.

Thus, it can be concluded that, in the used model, the
performance of the gridded controller is not significantly
affected by the number of gridding points.

3) LFT Approach
The implementation of the LFT controller (26) is simpler

where it consists of a state-space control system which varies
with an input parameter ∆θ, unlike the previous approaches
that have a set of controllers to be interpolated between each
other. However, an online inverse must be done at each sample
time. This may lead to a limitation during simulation or
specifically in real implementations. Thus, a method has been
used in [44] to avoid online calculations. A look-up table of the
inverted matrix is computed at each chosen grid-point along
the parameter range, and then, an interpolation is done during
simulation.

The controller with online inverse, the one with interpolation
and the nominal controller (at vx = 17.5m/s) are tested (see
Fig. 12 and 13 for details). Table II presents the RMS lateral
error, where there is no significant difference between the
tracking performances of the tested controllers. Fig. 12 shows
that the performance of the interpolated controller (yellow
line) differs a bit from the one with online inverse (red line)
when the parameter variation rate increases (i.e. t ∈ [40, 60]s).
On the other hand, it can be clearly observed that when the
speed approaches the nominal speed (vx = 17.5m/s), the
nominal LFT controller (blue line) acts more closely to the
one with online inverse (red line) (t ∈ [135, 140]s). Notice
that at high speeds (t ∈ [90, 100]), the nominal LFT controller
is showing a small difference in the lateral error, whereas the
other two controllers are having exactly the same performance
regarding also the steering action (see Fig. 13). As a result, the
interpolated LFT controller showed a similar performance as
the actual one which may help in reducing the computational
cost in real implementations.

TABLE II: RMS of the lateral error using the LFT approaches

Nominal LFT LFT with online inverse Interpolated LFT
RMS 0.1849 0.1683 0.17

B. LPV Approaches Robustness Test
The most promising result of each LPV approach is retained

and tested again with the LTI one (at vx = 17.5m/s) by
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modifying some vehicle parameters (vehicle mass and tire
stiffness). The mass of the vehicle changes by the number of
passengers. Moreover, the tire stiffness is hard to be estimated
(see [45] for instance), and it varies by time when the tire
loses its quality. Then, the following test is important to study
the robustness of the designed controllers in terms of such
uncertainties. In this test, the mass of the vehicle is chosen
arbitrarily to be increased by 400Kg and each front and rear
tire stiffness is adjusted by 30%.

The obtained results are shown in Fig. 14 and 15. Again,
one can appreciate the success of the look-ahead system which
helps in minimizing the initial lateral error smoothly, i.e. low
steering actuation (see Fig. 15). Fig. 14 and Table III show that
the tested controllers achieve comparable minimization of the
lateral error, with the best tracking performance achieved by
the gridded controller. The interpolated LFT seems to have the
lowest robustness where it maintains the highest RMS lateral
error with more steering overshoots as observed in Fig. 15. The
steering rate RMS of the reduced polytopic controller shows
the highest value in Table III, and it has the highest overshoot
when performing the initial lateral error (Fig. 15). Finally, all
the compared controllers are considered to be robust to the
injected uncertainties thanks to the used H∞ concept.

TABLE III: RMS of the lateral error for robustness comparison

LTI Reduced Polytopic Gridding
(ng = 16) Interpolated LFT

RMS 0.257 0.266 0.251 0.33

TABLE IV: RMS of the steering front rate for robustness
comparison

LTI Reduced Polytopic Gridding
(ng = 16) Interpolated LFT

RMS 0.017 0.018 0.017 0.017
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V. REAL IMPLEMENTATION

The four last controllers compared in simulation are then
tested on a robotized electric Renault ZOE shown in Fig. 16.
This automated vehicle is adapted for lateral and longitudinal
controls by computer-controlled steering and pedal actuators.
Vehicle speed and the global coordinates are measurable using
GPS and IMU. The vehicle is employed using a dSPACE
MicroAutoBox. As previously stated, actuator dynamics are
modelled using an LTI model which influence uncertain dy-
namics between the real plant and the designed model. The test
results of the designed controllers are discussed concerning
their implementation, the acceptability of the resulted perfor-
mance and the actuator limitations.

The tests are done in the closed track Satory shown in
Fig. 17. This track contains bad road conditions and road-
inclinations which allows to evaluate the controller robustness.
The first part of the test describes the response of the con-
trollers at high speeds. The second part concerns the precision
of lateral control at optimal speeds chosen coherently depend-
ing on the road curvature. Fig. 18 shows the longitudinal
speed evolution over time which is considered as an external
parameter of the LPV mode. For the coming analysis, the

Fig. 16: Renault ZOE automated vehicle
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Fig. 17: Satory trajectory plan and vehicle position

0 20 40 60 80 100

Time (s)

0

5

10

15

20

25

L
o

n
g

it
u

d
in

a
l 

V
e

lo
c

it
y

 v
x
 (

m
/s

)

Fig. 18: Experimental longitudinal speed (m/s)

limitations of the used steering actuator are as follows:

|δ̇|max = 0.2, |δ|max = 0.4, (28)

Fig. 19 and Table V show that all the controllers succeed
to minimize the lateral error, however Fig. 20 and 21 show
that the control input effort is quiet different. One can observe
that both the polytopic and the LTI controllers are sensitive
to noises, especially at high speeds (when t ≤ 60 s). This
can be justified by the conservatism problem of the polytopic
approach, and the highly uncertain dynamics reached at high
speeds worsen the LTI performance. In fact, this uncertainty
is not caused only by the bicycle model, but by the actuator
model. Since Gact is used as an LTI system where actually
it varies with speed and quiet changes at high speeds. Then,
reaching speeds around 13 m/s and below, both controllers
performs better with lower sensitivity to noises. On the
other hand, the LFT and the gridding controllers show better
performance in all situations with a little difference in the
minimization of the lateral error. Regarding the steering front
angle in Fig. 20, these two controllers have the same evolution
with less noises even at high speeds.

Fig. 21 shows the steering rate input for the tested con-
trollers. Again the LFT and the gridding controllers are less
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controllers (rad/s)

noisy than the one obtained by the LTI and the polytopic
controllers. Table VI presents that the gridding approach shows
the less control effort. Notice that these results support the
frequency domain analysis in paragraph III-E, especially the
analysis of noise sensitivity at high frequencies.

VI. SUMMARY OF COMPARISON

This section presents a general review on the comparison
done between the three approaches under the main proposed
criteria. It is divided into two main parts, each one discusses
the main collected comparisons introduced above:

A. About The Three LPV Approaches

1) LPV Formulations
In section II, the nonlinear model was reformulated using

the LPV approaches. It has shown that the type of parameter-
dependency of the model affects the shape and the complexity
of the LPV state-space representation.

For the polytopic approach, the system should be written
in a way to be affine with respect to the varying parameters,
and the input and output matrices should be constant. This
may increase the number of parameters which increases the
conservatism of the optimisation problem. Regarding the LFT
model in (12), a varying parameter leaded a 4-dimensional

TABLE V: RMS of the lateral error for experimental compar-
ison

Polytopic LTI Gridding LFT
RMS 0.1473 0.1105 0.1025 0.1096

TABLE VI: RMS of the steering front rate for experimental
comparison

Polytopic LTI Gridding LFT
RMS 0.0263 0.0149 0.0107 0.0129

parameter block Θ by the cause of its number of occurrences.
This explains a real problem facing the applications of LFT
approach. Some research studies are done on how to reduce
the LFT state-space model [46], especially by the researchers
working on aircraft control. Finally, the gridding approach
showed a simplicity in model formulation where a set of
state-space matrices are obtained at a chosen number of
operating points, regardless of the parameter-dependency and
its occurrences.

2) LPV/H∞ Control Design
Section III introduced the H∞ control design applied to the

studied LPV approaches. It has stated the complexity of the
existence conditions of each approach in terms of its LMI size
and the number of decision variables. Regarding those LMIs,
the polytopic approach has the simplest optimisation problem
where the known concept of LTI/H∞ is applied at the vertices
of the polytope with a constant Lyapunov function. However,
its LMI size grows exponentially when np increases, O(2np).
This leads to conservatism which is decreased by reducing
some vertices [41], but still can not be totally erased. The
LFT approach comes to decrease the size of LMIs in polytopic
approach, but it requires bigger number of decision variables
[27]. The problem of conservatism can be solved using a
parameter-dependent Lyapunov function which exists in the
grid-based approach. The LMI size in this approach grows by
Onρg , so it is much bigger than that in the polytopic and LFT
approaches when having ng > 2. Also, the complexity of the
grid-based approach appears significantly when increasing the
order of the parameter-dependent Lyapunov function (nXρ ).

B. Experimental Part

This part plays a vital role in choosing the suitable controller
of real applications, where there are many limitations in terms
of computer power and costs.

1) Simulation Results
Section IV has presented the performance of each control

approach with its implementation limitation. The main con-
cluding remarks obtained are:
• The reduction of the polytope decreases the conservatism

of the optimisation problem, and thus obtaining better
performance.

• Using the gridding approach, the system performance is
independent from the number of chosen grid-points.

• The interpolated LFT controller could be used instead of
its gain-scheduling (with inverse (26)) without losing its
performance.

2) Real Implementation Procedure
Starting with the way of implementation of each approach,

the polytopic controller is known to be interpolated as a
convex combination of the designed LTI controllers at the
polytopic vertices. Thus, those LTI controllers must be saved
in a look-up table and then interpolated at each sampling
time. It is similar with the gridding approach, but the set of
gridded controllers will be linearly interpolated. However, the
scheduling of the LFT approach is different, where the matrix
∆θ contains a matrix which must be inverted online at each
sample time, and this increases the computational time. Since
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TABLE VII: Overview of discussed approaches

Controller Parameter
dependency

Conservatism
with large np

LMI size/
memory growth Number of decision variables Simulation results Experimental

results

Polytopic Affine High O(22) 6
Polytopic reduction leads

better performance
High sensitivity

to noises

LFT Rational Medium O(2) 78
Matrix inverse can be replaced by
interpolation using a look-up table

Low sensitivity
to noises

Grid-based General Low O(ng) 9
Performance and ng
are not proportional

Low sensitivity
to noises

the interpolated LFT shows a performance close to the gain-
scheduling, it can be implemented using linear interpolation
as the gridding approach.

3) Experimental Results
The last figures show how the studied controllers deal with

different situations. For example, the LTI and the polytopic
controllers are more sensitive to noises at high speeds, i.e.
when the system dynamics change significantly. However, the
LFT and the gridding controllers are more robust to handle
this kind of uncertainty when the approximated model used in
the control design differs from the actual system.

As a result, although the grid-based approach needs to
solve more LMIs for more decision variables compared to
the polytopic one, it provides a general formulation for any
parameter-dependency, and it is has the lowest conservatism
among the three discussed approaches. On the other hand, the
gain-scheduling structure of the LFT approach seems to be the
most complex, and its LMIs contain huge number of decision
variables compared to the other two. Thus, the grid-based
approach could be proposed as a powerful and performant
for LPV control applications. That is why it is widely used in
aerospace applications [47], [48].

VII. CONCLUSIONS

This paper has proposed a theoretical and experimental
comparison of the LPV approaches for the lateral control of
autonomous vehicle. The gridded-based model has the sim-
plest structure with less conservatism in optimisation among
the others. The weighting parameters used in control design
can physically translate the real actuator limitations to a filter
added to the optimisation problem.

The practical limitations of each approach was discussed
by observing the simulation results which were obtained from
different chosen critical scenarios. Then the results obtained
in real implementation showed interesting results regarding
the minimization of the lateral error, which encourages the
application of LPV/robust approaches on autonomous vehi-
cles. In fact, such approaches help to control parameter-variant
systems and to handle with environmental disturbances (wind
speed, bad road conditions/slopes, etc...).

As future work, a parameter varying actuator model will
be investigated to improve the performance. Moreover, a
nonlinear bicycle model will be used as a control plant,
and the designed controller will be tested in more complex
environment (friction drop, gust wind) with higher lateral
accelerations.
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struction of islanded nonlinear dc microgrids: An lpv-based sliding mode
observer approach,” IEEE Journal of Emerging and Selected Topics in
Power Electronics, pp. 1–1, 2020.

[31] V. T. Vu, O. Sename, L. Dugard, and P. Gáspár, “The design
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