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logit-based decision-making
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aUniv Gustave Eiffel, Univ Lyon, ENTPE, LICIT-ECO7, F-69675 Lyon, France

Abstract

The literature about tradable credit schemes (TCS) as a demand management system alleviating congestion flourished
in the past decade. Most proposed formulations are based on static models and thus do not account for the congestion
dynamics. This paper considers elastic demand and implements a static TCS to foster modal shift by restricting the
number of cars allowed in the network over the day while remaining easy to understand and implement. A trip-
based Macroscopic Fundamental Diagram (MFD) model represents the traffic dynamics at the whole urban scale.
We assume the users have different OD pairs and choose between driving their car or riding the transit following a
logit model. We aim to compute the modal shares and credit price at equilibrium under TCS. The travel times are
linearized with respect to the modal shares to derive the stochastic user equilibrium with low computation times. We
then present a method to find the credit charge minimizing the total travel time alone or combined with the carbon
emissions. We also show that traffic dynamics and trip heterogeneity lead to different network equilibriums under
TCS. It highlights the limitations of classical static representations. The proposed framework is applied to a realistic
large-scale scenario: the peak hour (7:00-10:00) in Lyon Metropolis, including 384 200 travelers. Under an optimized
TCS, the total travel time decreases by 17% and the carbon emissions by 45% by increasing the PT share by 24 points.

Keywords: tradable credit scheme, trip-based MFD, user equilibrium, logit, mode choice.

Highlights1

• A TCS is introduced in the trip-based MFD framework with elastic demand.2

• The delay induced by one user on the others is analytically derived.3

• Modal equilibrium is computed via iterative quadratic programming.4

• Stochastic user equilibrium with TCS can be derived for real large-scale test cases.5

1. Introduction6

Congestion is a global issue as it increases travel times and vehicle emissions. It induces economic losses, harms7

the environment, and contributes to health problems. Congestion occurs when the number of vehicles exceeds the8

optimal capacity of the existing transportation facilities. Some network operators are using demand management9

strategies to decrease the number of cars in the urban network and increase the share of travelers riding public transport10

(PT). For example, some cities around the world, such as Singapore, London, and Stockholm, have implemented urban11

tolls to increase the travel costs of private vehicles downtown and foster public transport share (see Gu et al. (2018)).12

Levinson (2010) reviews the equity of road pricing. As pricing generates revenues for the regulator, these revenues13

need to be spent in a way the system is profitable for as many users as possible, by cutting taxes or improving the14
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transit network, for example. Alternative approaches are quantity-based regulations based on credits. The regulator15

set a cap on the number of vehicles allowed to drive on the network and let the users trade the driving rights between16

themselves after an initial allocation. Note that they can always choose another means of transportation other than a17

private car, free of credits. The concept of tradable driving rights for congestion management was first mentioned in18

Verhoef et al. (1997). The driving rights take the form of a fixed quantity of credits distributed among the population.19

The advantages are that it is revenue-neutral since the trades occur exclusively between users, and the price is fixed20

by the offer and the demand. The trade mechanism provides more flexibility than the arbitrary policy license plate21

rationing. Yang and Wang (2011) was the first to formulate a Tradable Credit Scheme (TCS) for an urban network22

based on BPR (Bureau of Public Roads) (Bureau of Public Roads (1964)) functions to characterize travel times. Their23

objective was to change the users’ routes over the road network.24

A recent review of TCS and tradable permit schemes can be found in Lessan and Fu (2019). Some contribu-25

tions in the area of TCS for congestion management are further compared in Table 1. The vast majority represents26

the transportation network with links ruled by BPR-like functions or a single generic Vickrey’s bottleneck (Vickrey27

(1969)). With the BPR function, users can choose their paths in the network while overall link loading defines the28

average travel time: the peak hour is considered as a mean steady flow. With Vickrey’s model, departure times are29

the users’ degree of freedom. This model is dynamic, but it assumes all the travelers have the same travel distance30

and share a joint bottleneck. In both cases, some works consider elastic demand, i.e., accounting for transit or trip31

cancellation because of high travel costs. Two types of decision models have been proposed: deterministic (DUE,32

for Deterministic User Equilibrium) or probabilistic (logit-based). In the first case, a user will always take the least33

expensive alternative. In the second case, a user will choose an alternative with a probability related to the cost of this34

alternative compared to the costs of other alternatives. The probability associated with an alternative can be seen as35

the fraction of the flow using this alternative. In most proposed TCS, the price mechanism is not explicit and appears36

as a Lagrangian factor to enforce the credit cap in the equations. It corresponds to the inequality stating that the sum37

of the consumed credits cannot exceed the allocated credits. Furthermore, the price is zero or equality holds. It is38

known as the market-clearing condition (MCC). In some works, the price is determined by an iterative mechanism (Ye39

and Yang (2013), Guo et al. (2019), Liu et al. (2020) (submitted)). In Tian and Chiu (2015), the focus stands with the40

credit market formulation, and the price is determined by a double auction market. In a double-auction market, buyers41

and sellers formulate respectively asks and bids with their own desired prices. The credit price is then determined42

by the offer and demand. Buyers offering higher prices and sellers asking lower prices are making trades, and the43

others do not. Bao et al. (2019) looks at the equilibrium for a TCS when users are free to choose their departure times.44

Two models are investigated: Vickrey’s bottleneck and Chu’s model (Chu (1995)). The last one is close to the BPR45

function but considers the distribution of the departure times. The authors show that the credit price is not always46

unique at equilibrium in Vickrey’s bottleneck case, but it is for Chu’s model. The equilibrium of Vickrey’s bottleneck47

with TCS can be computed analytically. A network of links ruled by BPR functions allows for an explicit formulation48

of the equilibrium and thus the use of optimization software. In the case of an unknown elastic demand, Wang and49

Yang (2012) and Wang et al. (2014) present respectively for a link and a network an iterative method to compute the50

charges per link to minimize the total travel time. Most of the contributions on TCS minimize the total travel time. In51

Wang et al. (2020), the total vehicle emissions are also considered, and the Pareto front is drawn.52

Static models do not account for the congestion dynamics in cities. Relationships between mean speed and density53

for urban networks were formulated in Godfrey (1969) and Mahmassani et al. (1984). Daganzo (2007) introduces the54

Macroscopic Fundamental Diagram (MFD) concept to formalize congestion dynamics while keeping the network still55

tractable at a large urban scale. The network outflow or speed depends on the accumulation. Its trip-based formulation,56

also known as speed-MFD or generalized bathtub (Mariotte et al. (2017), Lamotte and Geroliminis (2018), Jin (2020))57

permits to represent the heterogeneity of trip lengths. In Beojone and Geroliminis (2021), the authors use a trip-based58

MFD framework to propose parking allocation strategies to remove idle ride-sourcing vehicles from the network. A59

simplification of the trip-based MFD is proposed in Sirmatel et al. (2021) with the M-model. The average remaining60

trip length is updated across the time. It is used as a plant model for predictive perimeter control. In Paipuri et al.61

(2021), the trip-based MFD model is extended to account for the stop-and-go of vehicles induced by traffic signals62

and congestion. However, analytical investigations to derive network equilibrium with the MFD are challenging as63

travel times can hardly be explicitly derived. Lamotte and Geroliminis (2018) and Jin (2020) discuss the distribution64

of trip lengths and departure times. Liu et al. (2020) (submitted) is the first work presenting a TCS using a more65

advanced dynamic framework to reproduce traveler behavior. Instead of having a single downstream bottleneck like66
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Table 1: Some TCS investigations in the literature.

Paper Congestion model Equilibrium Elastic demand
Yang and Wang (2011) BPR DUE yes
Ye and Yang (2013) BPR Logit no
Jia et al. (2016) Vickrey DUE no
Miralinaghi et al. (2019) Vickrey DUE no
Nie and Yin (2013) Vickrey DUE yes
Nie (2012) Vickrey DUE yes
Nie (2015) Vickrey DUE no
Xiao et al. (2015) Vickrey DUE no
Xiao et al. (2013) Vickrey DUE no
Tian et al. (2013) Vickrey DUE no
Liu et al. (2020) MFD Logit no
Tian and Chiu (2015) Simulator (DynusT) DUE no
de Palma et al. (2018) BPR Logit no
Guo et al. (2019) BPR DUE yes
Miralinaghi and Peeta (2020) BPR DUE no
Miralinaghi and Peeta (2016) BPR DUE yes
Wang and Yang (2012) BPR (only one link) DUE yes (but function unknown)
Wang et al. (2012) BPR DUE yes
Wang et al. (2014) BPR DUE yes (but function unknown)
Bao et al. (2019) Vickrey/Chu DUE no
Wang et al. (2020) BPR DUE yes
He et al. (2013) BPR DUE no
Shirmohammadi et al. (2013) BPR DUE yes
Xu and Grant-Muller (2016) BPR Logit yes (car or transit)

in Vickrey’s model, the authors represent the congestion dynamics with the MFD framework. The mean speed depends67

on the number of cars in the system, and the users have different trip lengths. The authors optimize a time-varying68

distance-based credit charge to make the users choose departure times to minimize the total travel time. A model-free69

optimization method is used (Bayesian optimization).70

In this paper, we investigate the equilibrium distribution of the users between private cars and transit, considering71

a TCS and traffic dynamics with a trip-based MFD. We aim to investigate how TCS can foster PT when the demand72

is elastic, and user choices are based on the perceived costs of all alternatives. Most of the literature about TCS73

was about driving the users to choose optimal routes or departure times. Some works introduced elastic demand74

but without explicitly considering transit. Re-routing the drivers or spreading the demand over time mitigate the75

congestion and reduce the exhaust gas emissions. However, switching modes can address other externalities, such as76

the scarcity of parking places or the ecological footprint of automotive fleets over their life cycles. It is an auspicious77

research direction and fits with a trip-based MFD framework as it considers the dynamics of the congestion.78

The proposed TCS is simple: the credit charge is constant and independent of the travel distance. It is applied on a79

day-to-day basis: each evening, the users choose if they will take the car or ride transit on the next morning depending80

on the expected travel times of each alternative and the credit price. They get an allocation of credits for free from the81

regulator and can trade them between each other using an ad hoc application. The credit price depends on the offer and82

demand. A more advanced (dynamic) credit charge scheme may improve overall system performances. Nevertheless,83

we believe that users would more easily get used to the trading system if a daily credit charge is applied to all car84

trips. In such a case, they do not need to account for their departure time in their decision process. Considering85

our numerical test case, we will show in this paper that such a daily charging scheme significantly improves travel86

conditions compared to the reference scenario without TCS.87

The users are assumed to have given trip lengths and departure times, and their only degree of freedom is their88
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modal choice: car or transit. The analytical properties of the MFD are used in order to compute the gradient of the89

travel times with regard to the modal choices. This information is then used to derive the demand equilibrium. An90

application of this method optimizes the credit charge to reduce the total travel time and the total network emissions.91

No assumptions are made about the credit price regulation mechanism. The credit price is thus treated as a variable92

along the modal shares to reach the modal equilibrium, which needs to satisfy the MCC, as in many contributions.93

The main contribution of this paper is a modeling and calculation framework based on the trip-based MFD to94

derive the stochastic user equilibrium with mode choices. It can be broken into four methodological steps: the first is95

formulating a TCS for an MFD where the degrees of freedom are the modal choices. The second is quantifying the96

relationship between the travel times and the modal shares in a trip-based MFD framework. The third one is a method97

to compute the modal equilibrium of the TCS with MFD by using the linearization of the travel times to quantify the98

delay induced by one user on the other users. The fourth one is a simple method using the previous results to optimize99

the credit charge to improve social welfare.100

The remainder of this paper is organized as follows. In Sect. 2, we present the framework. Sect. 3 formulates the101

modal equilibrium and its computation. The quantification of the marginal delay induced by an user, i.e., the derivation102

of the travel times is presented in Sect. 4. The credit charge optimization is discussed in Sect. 5. A numerical example103

is provided in Sect. 6 for a realistic test case corresponding to the morning commute in Lyon Metropolis. Sect. 7104

concludes this paper. For convenience, the notations are summed up in Appendix A.105

2. Methodological framework106

The network is represented by a trip-based MFD framework considering the whole city as a single region (Mariotte107

et al. (2017), Lamotte and Geroliminis (2018), Jin (2020)). The demand consists of N groups describing different108

clusters of travelers, each cluster having the same OD pair and departure time.109

2.1. Multi-modal traffic dynamics110

Different OD pairs and/or departures times are associated with different groups. If different routes are considered111

for the same OD pair, each route is represented by a different group. All the users of the same group enter the network112

simultaneously (same departure time), follow the same route (same trip length), and have the same travel time for113

each mode. The only degree of freedom is the ratio of car users per group. The car ratio in the group i is noted xi,114

and the vector of car ratio of all the groups is x ∈ [0, 1]N . The number of travelers in group i is γi. It means, when the115

group i is traveling, its contribution to the car accumulation is γixi.116

In the general multi-modal case, the travel time T m
i of group i with the mode m is linked to the trip length lmi , the

departure time ti, and the speed Vm
i by:

lmi =

∫ ti+T m
i

ti
Vm

i dt. (1)

In the MFD framework, Vm
i is assumed to be the same for all users sharing the same mode at the same time. This

speed corresponds to the multi-modal MFD curves, which usually depend on the accumulation of both cars ncar and
PT vehicles (usually buses) nPT: Vm

i = Vm
i (ncar(t), nPT(t)). Here, we further simplify this relationship by assuming that

the PT offer and operations do not change and are defined by the actual functioning of the PT network. PT travel times
change in time based on historical observations corresponding to a typical day. That means we consider the changes
in PT travel times related to the existing adaptation of timetables during the peak hour and usual traffic conditions. We
retrieve PT travel times directly from existing timetables and usual PT travel times in the Lyon Metropolis network
during peak hours with respect to a given OD pair:

VPT
i =

lPT
i

T PT
i

, (2)

where lPT
i and T PT

i are retrieved from the city planner and depend on the departure time and OD pair of the group i.117

Vcar
i (t) should depends on ncar(t) and nPT(t). Because we assume that the PT operation is the same every day, that118

means nPT(t) does not change over days. So, we can directly fit Vcar
i (t) as a function of ncar(t) based on historical data,119
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and this will consider the usual interactions between cars and PT over the network. SO, the car speed MFD reduces120

to a function of the accumulation of cars only. Thus the relationship for cars becomes:121

lcar
i =

∫ ti+T car
i

ti
Vcar

i (ncar(t))dt. (3)

Note that from this point, we omit the super- and subscript ’car’ to lighten the notation and the subscript i in the speed122

as it is common for all the groups because they travel in the same reservoir. Note that all the derivations in the paper123

are made with this simplified representation of the car MFD, but Appendix B shows all required transformations to124

adjust the calculations to the original formulation of the multi-modal MFD (a.k.a. 3D MFD).125

Since the network model is a trip-based MFD, the travel times can be calculated using the virtual traveler intro-
duced in Lamotte and Geroliminis (2018). We follow the trajectory of a fictional traveler who enters the network at the
origin of time. We define t 7→ f (t) the traveled distance of the virtual traveler as a function of the time, and s 7→ n(s)
the accumulation as a function of the traveled distance. The travel time Ti of group i depends on its trip length li and
departure time ti:

Ti =

∫ f (ti)+li

f (ti)

1
V(n(s))

ds. (4)

We assume that the speed on the network is always greater than a minimal speed V0 > 0 to avoid numerical issues.126

It means we assume the network never reaches a complete gridlock.127

2.2. Mode choice128

The users have two alternatives to complete their trips: private car or PT (See Fig. 1).129

City

Regional origin 
 or destination

car alternative
PT alternative

O2

D6

O1

D7

O3

D10

Figure 1: Each OD pair has car and PT alternatives.

The travel costs of group i for each mode are the monetary evaluation of the travel time plus the credit charge for130

the car:131

Ccar
i = αTi(x) + (τ − κ)p;

CPT
i = αT PT

i − κp,
(5)

where α is the Value of Time (VoT), τ the credit charge, i.e., the number of credits one needs to take its car, κ the132

allocation, i.e., the number of credits given by the regulator to each traveler for free, and p the credit price, the money133

spent to buy one credit from another user or the money received after selling one credit to another user. Aside from134
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the travel time difference, a PT user earns money by selling its credits since it does not need them. A car user spends135

money to purchase additional credits to pay the credit charge, since κ < τ. Otherwise, the TCS is useless. The travelers136

are assumed homogeneous in the sense that they all have the same VoT. Considering heterogeneity is possible in this137

framework (with a VoT αi specific to each group i) but not considered in this study. A user taking the car has to spend138

τ credits. The group i then spends in total γixiτ credits.139

Note that even if we do not formerly consider trip cancellation because of high travel costs due to the TCS, the140

current framework makes no difference between a traveler canceling its trip and a transit rider. The PT travel times do141

not depend on the number of passengers, and no credits are needed to ride PT. Thus, trip cancellation is equivalent to142

switching to PT with respect to the traffic conditions and the credit trade.143

The number of cars allowed on the network per day is
∑N

i γi
κ
τ
. It is the parameter chosen by the control authority.144

The authority does not choose the credit price p as it results from the credits trade and is not known a priori. This145

aspect is an essential difference with congestion pricing, where the local authority fixes the price to pay to drive a car.146

In Sect. 5, we assume the allocation κ is fixed and we optimize the credit charge τ. Optimizing the allocation under a147

fixed credit charge is equivalent, as only the ratio matters.148

The decision process follows a logit model. It assumes independent users’ perceiving costs with an added error149

term following a Gumbel distribution. It is a well-established mode choice model that has a single parameter θ. We150

adhere to the independence assumption for error between alternatives as costs for PT and cars do not depend on each151

other directly. The probability of group i to drive a car given the modal shares x and its associated traffic conditions152

and the credit price is:153

ψi(x, p) =
e−θC

car
i

e−θC
car
i + e−θC

PT
i

. (6)

Since each group represents several travelers, ψi is the ratio of users in group i willing to drive their car. A similar154

approach can be found in Ye and Yang (2013), where the logit is used not as a probability but as a ratio of flows taking155

a particular path.156

The travel time Ti is computed by splitting the integral from Eq. 4 every time a new event occurs, see Fig. 2. An
event is either the entry or the exit of a group in the network. Between two consecutive events, the accumulation does
not change. Thus the speed is constant. We can then easily solve the integral as the terms under the small integrals are
constant. Let us note ei,s the event corresponding to the entry of group i and ei,e the event relative to its exit. Then

Ti =

ei,e∑
e=ei,s+1

∫ f (te)

f (te−1)

1
V(ne−1)

ds

=

ei,e∑
e=ei,s+1

f (te) − f (te−1)
V(ne−1)

=

ei,e∑
e=ei,s+1

Te,

(7)

with Te the time elapsed between the event e − 1 and e, and ne−1 = n( f (te−1)).157

2.3. Network equilibrium158

Network equilibrium is reached when the actual mode shares are equal to the modal decisions given the same159

modal shares. The equilibrium is only implicitly defined as we need to know the modal shares to determine travel160

times, while mode shares calculations require travel times estimations. It is a classical fixed-point problem represent-161
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Time

Sp
ee

d
t0 t1 t2 t3 t4 t5 t6

Ti

Figure 2: Decomposition of the travel time following events. In this illustration, group i enters at the event 1 and exits at the event 4.

ing users who are satisfied with their assignments. It can be expressed as:162

x = ψ(x, p); (8a)

τ

N∑
i=1

γixi ≤ κ

N∑
i=1

γi; (8b)

xi ≥ 0 ∀i; (8c)
xi ≤ 1 ∀i; (8d)
p ≥ 0; (8e)

p

 N∑
i=1

γi(κ − τxi)

 = 0. (8f)

Eq. (8a) define the Stochastic User Equilibrium (SUE) under logit decision-making. Eq. (8b) is specific to the TCS:163

the number of consumed credits cannot exceed the overall allocation. Since the groups can trade credits between164

themselves, this constraint is at the system level and not the group level. Eq. (8c), (8d) and (8e) delimit the admissible165

domain for the variables. There is no assumption on the credit price mechanism. It is a positive variable that has to be166

determined along with the modal shares. Eq. (8f) is the MCC as in Yang and Wang (2011): the price is zero or all the167

credits are consumed. TCS is a quantity-based demand management strategy. It means the number of trips by car is168

limited (Eq. (8b)), but the price is not fixed. On the opposite, congestion pricing is a price-based strategy. The price is169

fixed, but the quantity is not limited. To change the proposed framework to congestion pricing, it is enough to remove170

Eq. (8b), (8e), and (8f). The credit price p would then be treated as a parameter.171

Theorem 1. The proposed TCS admits at least one equilibrium state.172

Proof. The proof of existence is inspired by Ye and Yang (2013) and resorts to the fixed-point theorem. First, let us
define the following function Ψ, which represents a possible model for the system dynamics of the system:

Ψ : (x, p) 7→

ψ(x, p),

p −

 N∑
i=1

γi(κ − τψi (x, p))


+

 . (9)

The modal shares are updated following the logit-based decisions, and the price decreases if some credits are not used173

while always been positive. Let us show that Ψ is continuous. The positive part function [·]+ is continuous. The174

accumulation between two consecutive events is the sum of the modal shares of the groups present on the network at175

that time, so the accumulation is continuous with regard to the modal shares. The speed V is assumed continuous in176

the accumulation. The travel times Ti are continuous in the speed V (Eq. (4)). The modal choices ψi are continuous177

in the travel times Ti (Eq. (5) and (6)), so the function Ψ is continuous.178
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Let us find a compact convex Ω such as the image of Ω by ψ stays in Ω, i.e., Ψ : Ω 7→ Ω. As the modal decision
goes to zero when the price goes to infinity: ∀ i ∈ [1,N] and ∀ x,

0 ≤ ψi(x, p) ≤ 1 −
e−θαT PT

i

e−θτp + e−θαT PT
i

p→∞
−−−−→ 0, (10)

we can find a price p∗ ≥ 0 satisfying
∑N

i=1 γi(κ − τψi(x, p)) ≥ 0 ∀ x, p ≥ p∗. Let us set p+ = maxp≤p∗ ([p −179 (∑N
i=1 γi(κ − τψi(x, p))

)
]+). Then setting Ω = [0, 1]N × [0, p+] works. By applying the fixed-point theorem to Ψ on Ω,180

we get a point (x, p) satisfying x = ψ(x, p) and p = [p −
(∑N

i=1 γi(κ − τxi)
)
]+. This couple (x, p) satisfies Eq. (8a-8f),181

which proves the existence of an equilibrium.182

Proving the uniqueness of the solution is challenging because: (i) travel times have no explicit formulation, see
Eq. (4) and (ii) the travel time of one group depends on the modal decisions of many other groups sharing the network
at the same time. This coupling is the main difference with the previous contributions based on BPR-like functions,
where the travel time on a link depends only on the number of vehicles on this link. Here, we prove the uniqueness of
the equilibrium under the condition that the Cartesian product of the difference in car travel times and the difference
of the weighted modal shares is strictly positive. Mathematically, it means that:

(T1 − T2)T · γ · (x1 − x2) > 0 ∀ x1 , x2, (11)

with γ being the matrix N × N with {γi, i ∈ [1,N]} on the diagonal and zeros outside. Each individual term of the183

Cartesian product represents the variation in car travel time multiplied by the weighted corresponding change in mode184

shares. When all groups traveling at the same time experience the same trend in mode shares, all terms are positive185

as an increase of car share for those groups increases the total number of vehicles in the region. So car travel times186

increase for everyone (and when all car shares decrease, so do the car travel times). Note that the logit mode choice187

and the MFD model tend to favor such a collective trend, but it may happen in some specific circumstances that some188

individual terms be negative. For example, it is the case when a group has a very long trip length and may experience189

reverse trending along its trip compared to other groups that stay a shorter period of time in the region. The mean herd190

should generally compensate for this, but it depends on how the simulation goes. For a given test case, we can assess191

if this assumption is valid by randomly sampling multiple couples (x1, x2) and numerically verify through simulation192

that Eq. 11 always holds. It is not an absolute proof of uniqueness (which we believe is hardly possible because of the193

implicit nature and dependencies of T), but, at least this provides a process to check uniqueness for any test case one194

like to study. Note that Appendix C provides such a check for the numerical test case.195

Theorem 2. If Eq. (11) holds, the equilibrium state is unique.196

Proof. Let us take two equilibrium points [x1, p1] and [x2, p2]. Once again, the proof is inspired by Ye and Yang
(2013). MCC and the credit cap tell us that:

(p1 − p2)τ
N∑

i=1

γi
(
x1,i − x2,i

)
= p1

N∑
i=1

τγix1,i − p2

N∑
i=1

τγix1,i − p1

N∑
i=1

τγix2,i + p2

N∑
i=1

τγix2,i

= p1

 N∑
i=1

γiκ −

N∑
i=1

τγix2,i

 + p2

 N∑
i=1

γiκ −

N∑
i=1

τγix1,i


≥ 0.

(12)

By dividing the numerator and the denominator of the logit in Eq. (6) by e−θκp, for i ∈ [1,N]:

ψi(x, p) =
e−θ(αTi(x)+τp)

e−θ(αTi(x)+τp) + e−θαT PT
i

, (13)
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we remark that ψi is decreasing with αTi(x) + τp. Thus,

N∑
i=1

γi ((αTi(x1) + τp1) − (Ti(x2) + τp2)) (ψi(x1, p1) − ψi(x2, p2))

= α(T(x1) − T(x2))T · γ · (ψ1 − ψ2) +

N∑
i=1

(p1 − p2)τγi(ψ1,i − ψ2,i)

= α(T(x1) − T(x2))T · γ · (x1 − x2) + τ(p1 − p2)
N∑

i=1

γi(x1,i − x2,i)

≤ 0.

(14)

Eq. (11) makes the first term strictly positive for x1 , x2. Using Eq. (12), the second term is positive. It implies197

that x1 = x2. As they are equilibrium points, ψ1 = ψ2, and thus p1 = p2 since the function p 7→ ψ(x1, p) is strictly198

decreasing. The equilibrium point is thus unique.199

In the scope of this work, we directly search the modal equilibrium without considering the time dynamics of the200

modal shares and the credit price. To assess the stability of the equilibrium points, we need to have a representation201

of the time (typically day-to-day) evolution of the modal shares and credit price when the modal assignment with202

TCS is not at equilibrium. To discuss the stability of the equilibrium, we provide a simple model to represent the time203

dynamics of the modal shares and credit price. The users update their modal shares to match their decisions, and the204

credit price is updated proportionally to the difference between credit supply and consumption. This representation is205

similar to the one used in Ye and Yang (2013). We prove the asymptotic stability of the equilibrium for our test case206

and different credit charges by calculating the eigenvalues of the Jacobian. See Appendix D for more details.207

208

To conclude this section, let sum up the main assumptions of the modeling framework.209

• The trip lengths and departure times of the users are given for each OD pair.210

• The travel times using PT only depend on departure time and OD pair.211

• The travel times using the car depends on the time evolution of car accumulation, which results from all modal212

shares at the group level.213

• The users’ decisions follow a logit-based rule. They have the same VoT.214

• The control authority uniformly distributes for free among all users a total quantity of credits equal to
∑N

i=1 γiκ.215

They then trade them between themselves.216

• The credit price is zero or all credits are effectively used (MCC).217

3. Computing the modal equilibrium218

Contrarily to works based on Vickrey’s bottlenecks and BPR functions, there is no implicit formulation of the SUE219

for a trip-based MFD formulation. We cannot directly transpose the existing methodology to calculate the equilibrium220

and have to develop a new one. This section presents the proposed workflow to find the modal equilibrium for a given221

credit charge, i.e., the number of credits needed to drive a car. It follows an iterative process based on the linearization222

of the equilibrium problem and the local resolution of a quadratic optimization problem (QP).223

Let us start from an arbitrary mode choice vector x0 and a credit price p0. The travel time for group i is T0,i and224

its corresponding decision is ψ0,i. The decision vector is noted ψ0. The car travel delay induced by the group j on the225

group i is noted ∇Ti, j.226

The vector of logit choices is linearized according to the change in the modal shares and credit price ∆x̃ = [∆x; ∆p]:

ψ = ψ0 + ∇̃ψ · ∆x̃ + o(∆x̃), (15)
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where the operator ∇̃· represents the gradient with respect to x̃ = [x; p]. The gradient of the decision is defined by:
ψ0,i = e−θ(αT0,i+(τ−κ)p0)

e−θ(αT0,i+(τ−κ)p0)+e−θ(αTPT
i −κp0)

;

∇̃ψi, j = ψ0,i(ψ0,i − 1)θα∇Ti, j;
∇̃ψi,N+1 = ψ0,i(ψ0,i − 1)θτ,

(16)

for i ∈ [1,N] and j ∈ [1,N]. ψ0,i is the decision given the starting point, ∇̃ψi, j is the reaction of the group i to an227

increase of the car share of a group j, and ∇̃ψi,N+1 is the reaction of the group i to an increase of the credit price. We228

note that the sign of the gradient of the decision is opposed to the gradient of time. It confirms the general intuition229

that if the car travel time increases, the car will be less chosen. Similarly, if the credit price increases, the car will be230

less chosen as well.231

The optimization process aims to find an equilibrium point, i.e., a point x̃ satisfying ψ = Ix · x̃, with Ix the matrix232

of size N × (N + 1) with 1 on the diagonal and 0 outside, such that x = Ix · x̃.233

At the same time, the MCC should hold, i.e., the credit price is zero or all the credits are consumed. We integrate234

the MCC in the cost function to not treat it as a quadratic hard constraint. It is numerically advantageous since all the235

constraints are then affine.236

The objective function J to minimize is defined as237

J =
1
2

∥∥∥(∇̃ψ − Ix) · ∆x̃ + ψ0 − x0
∥∥∥2

2 + ηp
1∑N

i=1 γi

 N∑
i=1

γi(κ − τxi)

 , (17)

with η being the weight associated to the MCC.238

The optimization problem is formulated as a quadratic problem:239

1
2
∆x̃T · P · ∆x̃ + q · ∆x̃, (18)

by defining the symmetric matrix P and the vector q withP = (∇̃ψ − Ix)T · (∇̃ψ − Ix) + ηIp;
q = (∇̃ψ − Ix)T · (ψ0 − x0) + ηip,

(19)

where Ip is a symmetric matrix of size (N + 1)2 and ip a vector of size N + 1 defined by240


Ip,i,N+1 = Ip,N+1,i = −

γi∑N
j=1 γ j

τ for i ∈ [1,N] and 0 elsewhere;

ip,i = −
γi∑N

j=1 γ j
τp0 for i ∈ [1,N];

ip,N+1 = 1∑N
i=1 γi

(∑N
i=1 γi(κ − τx0,i)

)
.

(20)

The first terms of P and q stand for the modal equilibrium and the second ones stand for the MCC. The constraints on
the search space and on the credit consumption are then:

∆x̃i ≤ min(1 − x0,i, εx) for i ∈ [1,N]
∆x̃i ≥ max(−x0,i,−εx) for i ∈ [1,N]
∆x̃N+1 ≤ εp

∆x̃N+1 ≥ max(−x0,N+1,−εp)
τ
∑N

i=1 ∆x̃i ≤ κN − τ
∑N

i=1 x0,i.

(21)

As we linearize several terms around a starting point, we do not want to explore the entire solution space but only the241

local neighborhood to find a better local solution. This is why we introduce two thresholds εx and εp that represent the242
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Figure 3: Flowchart of the search for the equilibrium.

maximum variations allowed respectively for the modal shares and the credit price. The new optimal solution x̃ is used243

as the new starting point for the next iteration, and a new QP is formulated and solved. It lasts until a given number of244

iterations occurred or the cost function J has reached a satisfying precision. Fig. 3 summarizes the workflow.245

In the numerical application, the QP (Eq. (18) and (21)) is solved using the Python package CVXOPT (Andersen246

et al. (2021)).247

We also implement the classical MSA algorithm as a benchmark (Sheffi (1985)). For each iteration k, the modal
shares are updated according to:

x[k+1] = x[k] +
1
k

(
ψ(x[k], p) − x[k]

)
. (22)

It is swift to compute and very generic. It can be used for several assignment problems: route, time, or mode248

choice. However, it does not deal with the credit price as it only updates the modal shares. It does not enforce the249

TCS conditions and, in particular, the MCC and the total credit cap as it cannot hurdle specific constraints. It means250

that by using the MSA to find the equilibrium, there is no guarantee that the number of car users does not exceed the251

limit imposed by the credit cap. One could argue that some modifications can be implemented not to violate the TCS252

conditions. For the sake of simplicity, this path will not be investigated as it would add another level of iterations, and253

the MSA in this work only acts as a benchmark.254

4. Derivation of the travel times with respect to the modal shares255

Equilibrium calculation requires the computation of the variables ∇Ti, j. The operator ∇· is the gradient with
respect to the modal shares x. The car travel time of group i can be approximated by

Ti = T0,i + ∇Ti · ∆x + o(∆x). (23)

The {∇Ti,∀ i}, previously defined as the delay undergone by one group because of the others, can also be seen as256

the derivatives of the travel times with respect to the modal shares.257

We aim to quantify how the groups’ modal choices influence the travel times of another group a priori, i.e., without258

running several simulations for testing every possible scenario or search direction. A similar idea was used by Simoni259

et al. (2015) for marginal cost-based pricing: the authors estimated the delay caused by one user for each time step to260

update the pricing scheme. The delay induced by one user on the others was quantified to change the urban toll for261

each period. The estimation was done a posteriori as MATSim was used to simulate the network, and thus analytical262

derivations were limited.263

By calculating the gradient of inter-event times ∇Te, we can find the gradient of travel time of group i ∇Ti by
summing the changes in each inter-event period during group i’s trip:

∇Ti =

ee∑
e=es+1

∇Te. (24)
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Figure 4: (a) Time- and (b) distance-based representations of the inter-event periods.

Let us name le the distance traveled by the virtual traveler during Te, i.e. between the events times te−1 and te and264

let us note Ve = V(ne−1) the speed during this period. The event-scale variables Te, te, le and Ve satisfy the following265

equations:266

le = TeVe, (25)

and

Te = te − te−1. (26)

These relationships can be seen in Fig. 4.267

As the speed appears in the expression of Te, it should be noted that its gradient ∇Ve with respect to the modal
shares x is expressed by:∇Ve,i = γi

dV
dn (ne−1) if group i is in the network between e − 1 and e;

0 otherwise.
(27)

We need to switch cases depending on the nature of the event e − 1 and e. Note that as the departure times are268

assumed to be given, ∇te = 0 if e is an entry. Furthermore, the trip length of a given group i is constant too, so its269

gradient is zero ∇li = 0.270

• Case I: te−1 and te are both entries of groups in the network.271

Since entry times are constant, by Eq. (26),

∇Te = 0. (28)

• Case II: te−1 is an exit and te is an entry.272

Since te−1 =
∑e−1

g=1 ∇Tg,

∇Te = −∇te−1 = −

e−1∑
g=1

∇Tg. (29)

• Case III: te is the exit of a group i, i.e. ei,e = e (te−1 being an entry or an exit).273

We decompose the trip length into the distance traveled between events, starting from the entry of i:

li =

e∑
g=ei,s+1

lg. (30)

12



By using Eq. (25) and knowing that li is constant, applying the gradient gives:

e∑
g=ei,s+1

∇TgVg + Tg∇Vg = 0. (31)

By calculating the gradient of inter-event period one after another in a time ascending manner, we can compute
∇Te:

∇Te = −
1
Ve

Te∇Ve +

e−1∑
g=ei,s+1

∇TgVg + Tg∇Vg

 . (32)

It is worth noticing the two parts of the gradient: a local contribution linked to the speed variation and the274

cumulative shift of the events. This shift is due to earlier or later completion of trips for groups ending their275

trips while group i is in the network.276

The gradient of the travel time is then computed following the algorithm 1. The first loop addresses the events,277

and the inner ones focus on the groups. As there are 2N events (one entry and one exit per group), the number of278

operations to compute the gradient of the travel times ∇T in one point x0 is O(N2), i.e., at most proportional to N2.279

for Each event e in a time ascending manner do
for Each user i present on the network at this time, i.e., ei,s < e ≤ ei,e do

Compute the gradient of the speed ∇Ve,i according to Eq. 27;
end
Compute the marginal times ∇Te with Eq. 28, 29 or 32 depending on the types of the events e − 1 and e;
for Each user i present on the network at this time, i.e., ei,s < e ≤ ei,e do

Add the contribution of this period ∇Te to the gradient of the travel time ∇Ti as in Eq. 24;
end

end
Algorithm 1: Computation of the gradient of the travel times relative to the modal choices.

280

5. Optimization of the credit charge281

Previously the credit charge was supposed given. However, the purpose of introducing a TCS is to improve the282

welfare of the society undergoing the externalities of network usage. In this study, we choose to minimize the total283

travel time only or combine total travel time and total network carbon emissions by optimizing the credit charge level.284

Note that minimizing total carbon emissions alone has a trivial optimal point: the credit charge level should be infinite,285

so everyone takes PT. This option has obvious drawbacks in terms of travel times (and acceptability), and this is why286

we better investigate a mixed objective function.287

5.1. Minimizing total travel time288

The first objective function is the total travel time TTT . It is the sum of the travel times per group and per mode,
weighted by the corresponding modal ratio at equilibrium:

TTT =

N∑
i=1

γi

(
xiTi + (1 − xi)T PT

i

)
. (33)

Let derive TTT with respect to τ to determine its sign:289

dTTT
dτ

=

N∑
i=1

γi
dxi

dτ
(Ti − T PT

i ) + γixi∇Ti ·
dx
dτ
. (34)
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Since we assume the network is always at equilibrium, the derivatives of x and ψ are equal. We remind that the290

modal choices ψ depend on the credit charge, credit price, and modal shares:291

dxi

dτ
=

dψi

dτ
=
∂ψi

∂τ
+
∂ψi

∂p
dp
dτ

+ ∇ψi ·
∂ψ

∂τ
. (35)

Since the price mechanism is not explicit, dp
dτ would require numerical approximations. For that, the solution space292

has to be sampled and the modal equilibrium calculated. We would then have the price for different credit charges and293

interpolate the derivative. This process is, however, costly and not fit for directly determining the optimal direction of294

the credit charge. In order to circumvent the costly and prone-to-uncertainty estimation of the gradient of the price, a295

coarser but more robust and intuitive method is introduced. The general principle is to estimate the variations of the296

total travel time over an actual equilibrium for a given credit charge.297

The changes in total travel time are the combined effect of improving the traffic conditions and the modal report.
When the credit charge increases, the number of cars on the network decreases. The users still driving their cars
benefit from better traffic conditions, and users shifting from car to PT usually experience an increase in travel time.
The total travel time variation is estimated by:

∆TTT = Nc∆TTc + ∆Nc(TT w
c − TT w

PT), (36)

with TTc =
∑N

i=1 γi xiTi∑N
i=1 γi xi

the mean travel time per car and Nc =
∑N

i=1 γi
κ
τ

the number of car users supposing the credit cap298

constraint is active, i.e., all the credits are consumed. TT w
c =

∑N
i=1 γiwiTi∑N

i=1 γiwi
and TT w

PT =
∑N

i=1 γiwiT PT
i∑N

i=1 γiwi
are the mean travel299

time per car and per PT of users that are actually shifting from car to PT. The weights are the absolute values of the300

gradient of the logit wi = −
dψi

dCi,car
. These weights give more importance to users prone to modal shift. By increasing301

the credit charge by a tiny quantity ∆τ, the Nc car users will benefit from a reduction of their travel times by ∆TTc302

and ∆Nc car users will be forced to switch to PT, increasing their travel time by TT w
PT − TT w

c .303

By defining the typical accumulation on the network n̄ = Nc
TTc
Tdept

, with Tdept the time windows in which the304

departure times take place; the mean traveled distance by car, weighted by the modal shares Lm =
∑N

i=1 γi xili∑N
i=1 γi xi

; the mean305

speed over the whole simulation V̄ = Lm
TTc

and the local slope of the speed c, such that ∆V̄ = −c∆n̄, we can derive306

the travel time variation of car users ∆TTc = Lmc 1
V̄2 ∆n̄. The increase of the total travel time due to the modal shift307

is (TT w
PT − TT w

c )
∑N

i=1 γi
κ
τ2 ∆τ and the decrease due to the improvement of the travel condition is Lmc 1

V̄2 n̄
∑N

i=1 γi
κ
τ2 ∆τ.308

Thus, the global variation of the total travel time becomes309

∆TTT = −Lmc
1

V̄2
n̄

N∑
i=1

γi
κ

τ2 ∆τ + (TT w
PT − TT w

c )
N∑

i=1

γi
κ

τ2 ∆τ

=

(
−Lmc

1
V̄2

n̄ − TT w
c + TT w

PT

) N∑
i=1

γi
κ

τ2 ∆τ

(37)

Thus the gradient of the total travel time can be approximated by:

dTTT
dτ

≈

(
−Lmc

1
V̄2

n̄ − TT w
c + TT w

PT

) N∑
i=1

γi
κ

τ2 (38)

5.2. Minimizing the total network emissions310

The total network emissions of carbon dioxide is quantified using a macroscopic emission model COPERT IV for311

passenger cars (Ntziachristos et al. (2009)). It quantifies the impact of network usage on global warming. It is also a312

proxy for fuel consumption. The PT part in emissions is supposed constant because we assume that the PT operations313

are unchanged (same number of vehicles and timetables). A straightforward extension would be to correlate the314
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emissions to the change in PT operation to accommodate the demand. However, the contribution compared to personal315

cars is much lower, so this would change neither our conclusion nor the methodology. Only personal cars emissions316

are considered in this work.317

In Ingole et al. (2020), the authors coupled the COPERT IV emissions laws to an accumulation-based MFD
framework. It is very much what we need to do here, and we process the same way. For a given time period, emissions
are the product of the total travel distance by all vehicles multiplied by the emission factor. The emission factor
depends only on the mean speed. The total travel distance according to Edie’s definition between two consecutive
events is neTeVe. The total carbon dioxide emissions E is estimated by summing the contributions from all the inter-
event periods:

E =

2N∑
e=1

neTeVeEdist(Ve), (39)

where V 7→ Edist(V) is the emission model giving the emission per distance as a function of the mean speed.318

The emission function representative for a French typical vehicle fleet is represented by the fourth-order polyno-
mial from Lejri et al. (2018), see Table 2 for the coefficient values:

Edist(V) =c1V4 + c2V3 + (c3 + 2c1c2
0)V2 + (c4 + c2c2

0)V + (c5 +
c3

3
c2

0 +
c1

5
c4

0). (40)

Table 2: Parameters for CO2 emission curve for passenger cars. These numerical values are for speeds in km/h and emissions in g/km.

Coefficient Value
c0 12.5
c1 1.304×10−5

c2 -0.003269
c3 0.3103
c4 -13.52
c5 371.4

As for the total travel time, a coarse but robust estimation of the variation of the emissions is calculated to avoid319

requiring numerical approximations of the price gradient with respect to the credit charge. As before, the changes in320

the network emissions come from the modal report (total traveled distance changes) and the improvement of the traffic321

conditions (mean speed changes). As the credit charge increases, the total emissions decrease on one side because322

fewer users are taking their car and the total travel distance decreases. On the other side, the emission per distance323

decreases because the mean speed globally increases. It means:324

∆E = ∆LtotEdist(V̄) + Ltot
dEdist

dV
(V̄)∆V

= ∆NcLw
mEdist(V̄) − Ltot

dEdist

dV
(V̄)c∆n̄,

(41)

with Ltot =
∑N

i=1 γixili the total traveled distance of all the cars. It is equal to
∑2N

e=1 neTeVe. Lw
m =

∑N
i=1 γiwili∑N
i=1 γiwi

is the mean
travel distance by car of users shifting to PT. It is weighted by the absolute values of the gradient of the logit. When
the credit charge increases by a tiny ∆τ, ∆Nc are forced to shift to PT and thus the total traveled distance per car
decreases by ∆NcLw

m. On parallel, as the typical accumulation decreases by ∆n̄, the traffic conditions are improved,
and the carbon emission per distance decreases by − dEdist

dV (V̄)c∆n̄. The decrease of the carbon emissions due to modal
report is Lw

mEdist(V̄)
∑N

i=1 γi
κ
τ2 ∆τ and the decrease due to the better traffic condition is −Ltot

dEdist
dV (V̄)cn̄ 1

τ
∆τ. The global
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variation of the carbon emissions becomes:

∆E = −Lw
mEdist(V̄)

N∑
i=1

γi
κ

τ2 ∆τ + Ltot
dEdist

dV
(V̄)cn̄

1
τ

∆τ

=

−Lw
mEdist(V̄)

N∑
i=1

γi
κ

τ
+ Ltot

dEdist

dV
(V̄)cn̄

 1
τ

∆τ.

(42)

The gradient of the total network emissions is then approximated using

dE
dτ
≈

−Lw
mEdist(V̄)

N∑
i=1

γi
κ

τ
+ Ltot

dEdist

dV
(V̄)cn̄

 1
τ
. (43)

As the mean speed decreases with the network accumulation (c ≥ 0) and the emission per distance decreases with325

speeds on the typical range for urban network
(

dEdist
dV (V̄) ≤ 0

)
, the gradient of the total network emissions is always326

negative.327

Note that this estimation and gradient method can be applied to other pollutants such as NOx or PM as the emission328

functions are similar. Emission curves with coefficient values can be found in Lejri et al. (2018).329

5.3. Mixed objective function considering both emissions and travel times330

The objective function is the monetary evaluation of the total travel time and network emissions. It is chosen331

as αTTT + ΓPcarbonE. Pcarbon is the price of the carbon per weight and Γ is the coefficient associated to the CO2332

emissions. It is used to compensate for the difference in the order of magnitude between the total CO2 emissions and333

the total travel time.334

Once again, since the trip-based MFD relies on an implicit formulation of the travel times, the optimal credit335

charge will not be explicitly given. However, we can compute an approximation of the derivative of the objective336

function. We propose to solve this minimization problem by dichotomy: the search domain is halved at every step by337

looking at the sign of the derivative α dTTT
dτ + ΓPcarbon

dE
dτ . A lower and higher bounds are chosen at the initialization,338

and the first credit charge is the average. The recursive process goes through the following steps:339

• The equilibrium is computed;340

• The approximation of the gradient of the objective function with respect to the credit charge is computed;341

• If negative, the new credit charge is the average of the previous credit charge and higher bound. The lower342

bound takes the value of the previous credit charge. If positive, the new credit charge is the average of the343

previous credit charge and the lower bound. The higher bound takes the value of the previous credit charge;344

• When the higher and lower bounds are equal, the process stops as a local minimum has been found.345

As the credit charge value is taken as an integer, the process always ends in a finite number of steps. The same346

process is used when minimizing TTT only. Repeating the process with different starting points mitigates the risk of347

finding only a local minimum.348

6. Numerical example349

In order to illustrate the proposed method, we design a large-scale scenario using representative data from a regular350

morning peak hour in Lyon Metropolis.351
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(a) (b)

Figure 5: (a) The urban area under consideration (Mariotte et al. (2020),©OpenStreetMap); (b) The IRIS areas merged in 10 regions and the access
points merged in five boundaries (circles).

6.1. Case study352

We use the network of Lyon Metropolis to calculate the travel times. The individual travelers are gathered into353

groups departing from an identical region at the same time and traveling to another common region. The MFD for the354

whole region has been experimentally determined in a previous study (Mariotte et al. (2020)). The demand is based355

on IRIS areas, which are French administrative areas with between 1 800 and 5 000 inhabitants. We regroup the OD356

pairs into a city partition of 10 regions to massify the demand and define relevant groups departing simultaneously.357

Furthermore, the perimeter is split into five regions to characterize trips starting or ending outside of Lyon Metropolis.358

Thus 224 OD pairs are considered because one OD pair has no demand for the considered period. The trip lengths359

and PT travel times are estimated using the average of those values at the IRIS level weighted by the demand. The360

considered road network, along with the regions and the boundaries forming the 15 origins and destinations, is to be361

found in Fig. 5.362

A scenario is developed to test the proposed methodology. We consider the demand between 7:00 and 10:00 and363

split it into 15 minute subperiods (Ameli et al. (2021)). Each period has its own PT travel time obtained from the364

navigator HERE and demand level per OD pair. The PT travel times for the trip from and to Lyon Metropolis are365

obtained using the HERE API (HERE Developer (2020)). For every subperiod and OD pair, the PT travel time is366

retrieved by sending a request to the navigator. The data from the navigator HERE considers the historical traffic367

conditions for each PT trip at a given hour of the day. Regarding the PT travel times for trips originating or ending368

outside of Lyon Metropolis, an average PT speed of 3 m/s (10.8 km/h) is used. This value is chosen to match the369

mean PT speed obtained from the navigator while being slightly lower to account for the inconvenience of switching370

mode at the city border (Park+Ride). We perform a sensitivity analysis with the PT travel times in Appendix E. The371

departure times are generated uniformly for each subperiod. This scenario has 384 200 trips (or travelers). We use372

heterogeneous groups to ensure we have a proper granularity both in trips and departure times. They are aggregated373

with a maximum of 250 travelers per group and a minimum of two groups per OD pair and per hour. Thus, 2 163374

groups are generated. The distributions of the departure times, trip lengths, and PT travel times are shown in Fig. 6.375

It can be seen that there are no overlapping of the PT travel times and the trip lengths, meaning that the attractiveness376

of the PT strongly depends on the OD pair.377

The default parameters used for the simulation can be found in Table 3. The VoT is chosen based on the work of378

Fosgerau et al. (2007). The carbon price is based on the European Union Emissions Trading Scheme (see International379

Carbon Action Partnership (2021)). The maximum allowed variations εx and εp are taken as the inverse of the current380

iteration index (See Appendix F for a comparison with constant values). Practically, this reduces the exploration space381

size at each iteration to narrow the search when we come close to the modal equilibrium. The iteration process stops382

once the cost function J is below the desired precision JGoal, i.e., when the modal equilibrium is reached.383
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Figure 6: (a) Departure times, (b) trip lengths, and (c) PT travel times distributions.

6.2. Preliminary analysis384

First, we present the simulation results without and with TCS. It shows the congestion dynamics and helps to385

apprehend the scenario better. The speed, accumulation, and production at the modal equilibrium along the simulation386

time are to be found in Fig. 7. The production is the product of the mean speed and the accumulation. It is the distance387

traveled by all the vehicles in the network per unit of time.388

The traffic does not enter the hyper-congested regime, as the production does not decrease because of high ac-389

cumulation. Under hyper-congestion, the PT alternative would be highly attractive, and thus, the car shares would390

decrease. Nevertheless, it undergoes clear loading, congested, and unloading stages. It permits to demonstrate the391

method capabilities for a realistic peak hour scenario.392

Second, before investigating in details the equilibrium process, we assess the errors made by the linearization393

of the travel times. 50 pairs of modal shares (x0, x1) are randomly and separately generated following a uniform394

distribution. Simulations are carried out to define the exact values of T(x1) and T(x0). Then, the travel times and395

modal decisions are linearized around x0. Their values are approximated at x1 with the linearization. The norm of the396

error is normalized using the norm of the differences: ‖T(x1)−T(x0)‖2 and ‖ψ(x1)−ψ(x0)‖2. The results are presented397

in Fig. 8. The error of the linearization of the travel time and logit is lower than 45%, with most of the occurrences398

below 25%. It is satisfying as x1 is not always in the neighborhood of x0.399

6.3. Results400

6.3.1. Comparing methods for computing equilibrium401

We directly feed the MSA with the optimal price derived by the new method based on travel times linearization.402

We do this because this method can only derive the modal shares and not the equilibrium price. Thus using another403

price value may lead to a different equilibrium and prevent us from a fair benchmarking. Note that, as MSA fails to404

calculate equilibrium prices, it greatly reduces the potential of this method in practice.405

Each method is run with 20 iterations. The modal errors 1
2‖x − ψ‖

2
2, modal shares, and computation times are406

compared in Fig. 9 with an initial price of 0.00551 EUR/credit. The MSA is fast to compute but fails to reach high407

precision. The proposed methodology increases the computation burden by about one order of magnitude to increase408
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Figure 7: Speed (a), accumulation (b) and production (c) at the modal equilibrium for a credit charge of 200 credits and no TCS.
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Figure 8: (a) Error on the travel times, and (b) error on the modal decisions.
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Table 3: The default parameters used for the simulation.

Parameter Notation Value
VoT α 10.8 EUR/h
Endowment κ 100 credits
Credit charge τ 200 credits
Price weight η 1
Cost function goal JGoal 10−3

Initial price p(0) 0.01 EUR/credit
Initial modal shares x0(0) 0
Logit parameter θ 1 1/EUR
Emission weight γ 50
Carbon price Pcarbon 20 EUR/tonne

the precision by about ten orders of magnitude. Both methods found almost the same modal shares and credit price at409

equilibrium. The error between the modal share is only 4%.410

To further highlight the limits of the MSA, we run another equilibrium computation with another initial price of411

0.001 EUR/credit. The equilibrium number of car users is then 217 695 with the MSA, which violates the credit cap412

as the limit is
∑N

1 γiκ/τ = 192 100.413

6.3.2. Importance of departure times and trip lengths414

Most of the TCS frameworks proposed in the literature are based on Vickrey’s bottleneck and BPR functions. They415

cannot account for the congestion dynamics and trip heterogeneity at the same time. We generate some alternative416

scenarios to highlight the importance of considering the heterogeneity in departure times and trip lengths. We show417

that the behavior of the TCS is greatly affected by a change in the departure time distribution or by the homogenization418

of the trips.419

As Vickrey’s bottleneck assumes that every traveler has the same trip, we create a scenario named ST, where all420

travelers have the same trip length and PT travel time. These parameters are computed by averaging the trip lengths421

and PT travel times weighted by the demand. As the BPR function does not consider the departure times, we create422

a scenario named DT where the departure times are generated with a different distribution. In the reference scenario,423

the departure times follow the distribution given in Fig. 6. In scenario DT, they follow the normal distribution of mean424

5400 s and standard deviation 1800 s. See Fig. 10 for the differences between the reference scenario, ST, and DT.425

The corresponding credit prices and modal shares at equilibrium are compared in Table 4 and Fig. 11. With

Table 4: The credit prices and differences in modal shares at equilibrium for the three scenarios with the demand SC2.

Scenario Price (EUR/credit) Difference price Difference modal shares
Reference 0.00551 - -
ST 0.00820 +48.8% 46.3%
DT 0 -100% 43.0%

426

a more concentrated distribution of the departure times in DT, the traffic is significantly more congested. A credit427

charge of 200 credits is not a constraint anymore, as even without TCS, the PT is more attractive than the car. Thus428

the credits in DT do not have any monetary value. The difference of the modal shares is more than 40%. Neglecting429

the congestion dynamics and assuming homogeneity of the trips leads to significant errors in estimating the modal430

shares at equilibrium. This simulation proves the necessity to consider both the heterogeneity in trip lengths and431

departure times.432

6.3.3. Sensitivity analysis433

Different credit charges are investigated to assess the impact of different TCS on the transportation system. The434

equilibriums are computed for credit charges between 100 and 460 credits with a step size of 20 credits. The number435

of car users and the toll equivalent p(τ − κ), i.e., the money a group has to spend to purchase the credits (on top of436
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Figure 9: (a) Error between modal shares and decisions vs. iteration, (b) vs. computation time, (c) evolution of the credit price, and (d) modal
shares at equilibrium.
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Figure 10: (a) Trip lengths and (b) PT travel times for ST and (c) departure times for DT.
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Figure 11: Modal shares at the equilibrium for the three scenarios with SC2.
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Figure 12: (a) Number of car users, (b) toll price in EUR, and (c) total travel time for different credit charges.

its allocation, which is for free) needed to take its car, are presented in Fig. 12 for the different credit charges. The437

TCS is only active from a credit charge of about 180 credits. Before, it does not constraints anyone on switching from438

car to PT. It can be seen that the price is zero when the credit cap is not constraining. It is in line with the MCC.439

As expected, the toll equivalent increases with the credit charge. It is expected: by augmenting the credit charge, the440

number of cars allowed on the network is reduced, and the ability to drive a car, here seen as a commodity, becomes441

scarce and thus more expensive. For a credit charge of 460 credits, which means less than one-quarter of the users can442

drive their private cars, the toll equivalent is around 3.5 EUR. Such a price is reasonable. For comparison, a transit443

ticket costs about 2 EUR in Lyon Metropolis as of 2021. The evolution of the total travel time combines the increase444

of travel times for users switching from car to PT and the decrease caused by better traffic conditions for those still445

traveling by car. The behavior of the total travel time as a function of the credit charge is not intuitive as it results from446

those two different phenomena which drive the sum in opposite directions. There seems to be a minimum for the total447

travel time at around 300 credits.448

The impact of the TCS on network carbon emissions is also investigated in Fig. 13. The emission per distance449

decreases with the credit charge, as the lower accumulation permits better traffic conditions and a more efficient450

operating of the internal combustion engines. The total network emissions decrease even more as the improvement of451
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Figure 13: (a) CO2 emission per distance and (b) CO2 total emissions for different credit charges.
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Figure 14: Total travel time vs. CO2 emissions for different credit charges. The green and red points are found by minimizing total travel time and
the mixed objective function.

the performance of the combustion engines is coupled with a diminution of the number of cars on the network, i.e.,452

the total traveled distance. A credit charge of 340 credits cuts the total network carbon emissions by two.453

In Fig. 14 , we investigate the trade-off between total travel time and carbon emissions. The Pareto front for454

minimizing simultaneously total travel time and carbon emissions, i.e., the set of non-dominated solutions, starts at a455

credit charge of about 300 credits.456

6.3.4. Optimize the credit charge457

The credit charge optimization process by dichotomy is launched with an initial higher bound of 500 credits and458

an initial lower bound of 100 credits. The convergence of the process can be found in Fig. 15 for minimizing the459

total travel time only and the mixed objective function. In this particular case study, only one initialization is enough460

because both objective functions are convex. However, it may not be the case for other case studies and demand461

scenarios. In such cases, considering multiple uniformly distributed starting points over the full range of possible462

values can still guarantee optimality.463

By trying to minimize the total travel time, the optimization process finds a credit charge of 260 credits, corre-464

sponding to a total travel time of 107 082 h. The optimal credit charge is actually 295 credits for a total travel time465

of 105 237 h. The error is only 2%. It decreases the total travel time by 15% by increasing the PT share by 20 points466

from 42% to 62%. The optimization process with the mixed objective ends with a charge of 297 credits for a social467

cost of 1 290 878 EUR. The actual optimal credit charge is 330 credits for a social cost of 1 283 803 EUR. The468

proposed method found a value for the social cost 0.2% away from the optimum in only nine iterations. To put it into469

perspective, using a greedy method and testing every credit charge between 100 and 500 credits would require 400470

iterations, which means increasing the computation time by one to two orders of magnitude. Although the difference471

between the found and the optimal credit charge is relatively large, the difference with the objective function is mini-472

mal because the function is flat around the optimum. As expected, the credit charge found by minimizing the mixed473

objective is higher than the one minimizing the total travel time. It decreases the carbon emissions by 45% and the474
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Figure 15: (a) Total travel time and (b) mixed objective function optimizations.

total travel time by 17% by decreasing the car share by 24 points.475

The total travel time and carbon emissions are compared in Table 5 for the credit charges found by minimizing the476

total travel time (260 credits) and the mixed objective function (297 credits). When minimizing the total travel time,

Table 5: Total travel time and carbon emissions with the two objective functions.

Objective Total travel time (h) Carbon emissions (t)
No TCS 126 369 279.2
Total travel time 107 082 179.3
Mixed objective 105 239 154.3

477

the total travel time and the carbon emissions are higher than when minimizing the mixed objective. We would expect478

the total travel time to be lower. By looking at those operating points in Fig. 14, the credit charge of 260 credits found479

by minimizing the total travel time is not part of the Pareto front. However, relative to the total travel time without480

TCS, the error stays small.481

We now look at the consequences for the different groups in Fig. 16 in terms of money earned with the credit
trade:

p(κ − xiτ), (44)

time gain:

xi|no TCSTi|no TCS + (1 − xi|no TCS)T PT
i −

(
xiTi + (1 − xi)T PT

i

)
(45)

and net gain composed of the money balance from the trade of credits plus the change in travel times:

p(κ − xiτ) + α
(
xi|no TCSTi|no TCS + (1 − xi|no TCS)T PT

i −
(
xiTi + (1 − xi)T PT

i

))
. (46)

Positive values for these three indicators are gains, which means the implementation of the TCS brings benefits482

(additional revenue, reduced travel time). On the opposite, negative values are losses, which means the group suffers483
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Figure 16: (a) Trade balances, (b) time gains, and (c) net gains for the credit charges found by minimizing the total travel time and the mixed
objective.

from the TCS (additional expenditure, increased travel time). The groups spend up to 2 EUR and earn up to 1 EUR484

with the credit trade. Most of the groups save travel times, and the TCS increases some travel times by at most only485

five minutes. When it comes to the net gain of the system, most groups are net winners with a gain up to 1 EUR. Few486

travelers are losing up to 2 EUR.487

7. Conclusions488

A TCS is implemented within a trip-based MFD framework. The users are assumed to have fixed departure times489

and routes. They can choose between driving their private car and paying a credit charge or riding the PT using a logit490

model. No assumptions are made about the credit price mechanism. Such a framework account for the time evolution491

of traffic dynamics, including congestion effects and heterogeneous trip characteristics, unlike most existing modeling492

frameworks about TCS in the literature that resort to Vickrey’s bottleneck approaches and BPR functions.493

We linearized travel times with respect to modal shares in the trip-based framework. We then derived an iterative494

solution method to determine the network equilibrium under the TCS constraints. Iterations consist of a local search495

around the last best solution following the linearized descent gradient. This method reaches model equilibrium with496

fewer iterations and greater precision than the classical MSA. Furthermore, it directly determines the equilibrium497

price value, which is not possible with the MSA. After deriving the modal equilibrium for a given credit charge,498

we looked for the optimal credit charge value related to the best compromise between total travel time and carbon499

emissions using a dichotomy-based approach. A scenario based on the network and the demand of Lyon Metropolis500

are presented to illustrate the TCS and the methods to compute the travel times gradient, modal equilibrium, and501

optimal credit charge. Depending on the chosen objective function, the optimized credit charge decreases the total502

travel time by about 17% and the carbon emissions by about 45%. Minimizing a mixed objective of total travel time503

and network emissions results in a higher credit charge than minimizing the total travel time alone. We believe that504

the proposed methodology is a good compromise between traffic dynamics resolution and easiness to implement and505

calibrate the framework for real large-scale cases. It permits not only to assess and optimize the results of the TCS at506

the network level (total travel time, emissions) but also to determine the consequences of the trading and choices at507
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the individual level. This is essential to investigate the acceptability of such a scheme and look for refined tuning of508

the initial credit allocation. By considering the distribution of the gains, we highlight that the TCS benefits most of509

the users. However, there is still a minority for which the travel costs are increasing with the TCS. In this work, the510

credits are uniformly allocated. Especially, the allocation does not consider the heterogeneity of the OD pairs. Future511

work should consider leveraging the credit allocation to make the TCS profitable for as many users as possible.512

One of the reviewers mentioned that the credit charge scheme looks too simplistic as it is constant over the day.513

We agree that a dynamic charging scheme with different charging values over the peak hours would undoubtedly lead514

to an even better collective optimum because it would also influence the user departure time choices. Investigating515

such a setting is indeed very promising for future research. Nevertheless, considering a single daily charging value516

already improves the overall network performances (congestion and pollution) significantly while being much easier517

to implement in practice. Here, we focused on final equilibrium states, but practical implementation of TCS requires518

setting up a market for trading credits. Users can more easily get used to the system with a daily charging scheme as519

they can trade credits in advance, e.g., the day before, without deciding their departure time. The same reviewer also520

questions the trip-based framework’s advantage over more simplistic static cost functions. Indeed, the fundamental521

mechanisms that trigger the modal shift and push the network into a different equilibrium state are similar when522

considering both modeling frameworks. As we stated earlier, we are convinced that considering the traffic dynamics523

improves the quantitative assessment of the modal share over time and the network externalities. Also, the trip-based524

framework provides insights at the individual level, which may be interesting to characterize user acceptability for525

TCS better.526

Finally, the linearization method we have developed in this paper to approximate the trip-based model outputs527

locally can have many other applications. It can be used to determine how the system responds to changes in control528

actions, e.g., traffic lights management, traffic management strategies, e.g., congestion pricing, or in users’ behaviors,529

e.g., mode choices or departure times. One possible valuable extension of the proposed framework is to consider530

multi-reservoir settings to refine the spatial description of traffic conditions.531
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Appendix A. Notations653

Parameters, variables, and other notations are respectively summed up in Tables A.1, A.2, and A.3.654

Table A.1: Summary of parameters notations.

Notation Meaning
α VoT
γi Number of travelers in group i
Γ CO2 weight for the credit charge optimization
κ credit allocation
τ credit charge
η price weight for the QP
θ logit parameter
CPT

i travel cost of group i by PT
T PT

i travel time per PT of group i
li trip length of group i
ti departure time of group i
Pcarbon carbon price
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Table A.2: Summary of variables notations.

Notation Meaning
c local slope of the gradient of the speed (taken as positive)
Ccar

i travel cost of group i by driving its car
e, g event: either the entry or the exit of an group on the network
ei,e event when group i ends its trip
ei,s event when group i starts its trip
E total network CO2 emissions
Edist CO2 emission per distance
f (t) distance traveled by the virtual traveler until time t
i, j index of an group, which represents a group of travelers
le distance traveled between the events e and e + 1
Lm mean traveled distance by car
Lw

m mean traveled distance by car weighted by the absolute values of the gradient of the logit
Ltot total traveled distance
n accumulation at a given time
n̄ typical accumulation
Nc number of car users
p credit price
te time at which the event e occurs
Te time between the events e and e + 1
Ti travel time per car of group i
Tdept departure time window
TTc mean travel time per car
TT w

c mean travel time per car weighted by the absolute values of the gradient of the logit
TT w

PT mean travel time per PT weighted by the absolute values of the gradient of the logit
TTT total travel time
V mean speed in the network at a given time
V̄ mean speed in the network over the whole simulation
wi absolute value of the gradient of the logit
x shares of groups taking the car
x̃ concatenation of modal shares and credit price
ψ modal decisions of the groups

Table A.3: Other notations.

Notation Meaning
·0 starting value
∆· difference of the value of the variable compared to its reference
∇· gradient of the variable related to the modal shares
∇̃· gradient of the variable related to the modal shares and the credit price

Appendix B. Equilibrium derivation with multi-modal MFD655

In a complete multi-modal congestion model, the speeds of the PT vehicles and of the cars depend on the accu-656

mulation of the PT and of the cars. The proposed methodology can be extended to this case, and the main changes are657

presented below.658
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Figure C.1: Computation of the dot product of the car travel time differences and weighted modal share differences.

In the derivation the logit decision model in Eq. (16), the variation of the PT travel time should be considered:
ψ0,i = e−θ(αT0,i+τp0)

e−θ(αT0,i+τp0)+e−θαT0,i,PT
;

∇̃ψi, j = ψ0,i(ψ0,i − 1)θα∇Ti, j + ψ0,i(1 − ψ0,i)θα∇T PT
i, j ;

∇̃ψi,N+1 = ψ0,i(ψ0,i − 1)θτ.

(B.1)

It can be seen that the car ratio augments with the PT travel time, which is expected.659

The gradient of the speed Eq. (27) is extended to:

∇Vm
e,i = γiδi(e)

∂Vm

∂n
(ne−1, nPT

e−1) +
1

CPT
γiδ

PT
i (e)

∂Vm

∂nPT
(ne−1, nPT

e−1), (B.2)

for the mode m being the car or the PT. δi(e) = 1 if the users of group i are in the network between e−1 and e with their660

cars and 0 otherwise. δPT
i (e) = 1 if the PT alternative of group i is in the network between e− 1 and e and 0 otherwise.661

CPT is a correction factor to link the number of travellers riding PT to the accumulation of buses. Indeed a bus serves662

several travelers and part of the travelers will ride subway or tramway, without impacting the traffic conditions on the663

road network.664

The case distinctions to compute the gradient of inter-event times ∇Te need to account for events linked to entry665

and exits of buses (i.e. PT riders) as well. The entry times of buses are the same as the cars’ ones, but the exit times666

are different since the travel times are different. Eq. (28), (29), and (32) still hold.667

When accounting for additional modes (bikes, scooters), it becomes necessary to introduce another mode ratio per668

group and increase the size of the problem, but the methodology still holds.669

Appendix C. Numerical evaluation for the condition of uniqueness670

We evaluate numerically the assumption Eq. (11) for the numerical use case in Sect. 6. 20 000 modal share671

vectors x are generated using a Latin Hypercube sampling. It represents about ten points per dimension. The Eq. (11)672

is computed for every pair of different points. The distribution of the dot product is represented in Fig. C.1. The673

assumption Eq. (11) seems to hold for our numerical example. The equilibrium might be unique.674

Appendix D. Stability analysis of the equilibrium675

In this study, we do not consider a day-to-day adjustment process where the users learn from previous days to676

define their mode choices and their credit buying strategy. We instead develop a semi-analytical framework to define677

the equilibrium state of the considered transportation system directly. Investigating the stability of such an equilibrium678

requires introducing a time-dependent (day-to-day in practice) process reproducing the evolution of mode choice and679

credit price when deviations from the equilibrium are observed.680
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As we look for deviations from the equilibrium, we can assume the credit price is non-zero. The credit price is then
adjusted based on the difference between credit offer (allocation) and demand (credit charge times modal decision).
Mode shares adapt with time following the differences between modes shares and the logit-based decisions associated
with the actual mode share vector. In other words, the dynamics process tends to match the fixed-point observed at
the equilibrium. The two following equations give the system time dynamics:ẋ = ψ(x, p) − x;

ṗ =
∑N

i=1 γi(τψi(x, p) − κ).
(D.1)

Around the equilibrium x̃∗, the linearization gives an estimation of the dynamics and the time derivative of ∆x̃ = x̃− x̃∗
is approximated by

∆̇x̃ = A∆x̃, (D.2)

with the Jacobian A defined by
Ai, j = ∇ψi, j − δi, j ∀ i ∈ [1,N], j ∈ [1,N + 1];
AN+1, j = τ

∑N
i=1 γi∇ψi, j ∀ j ∈ [1,N];

AN+1,N+1 = τ
∑N

i=1 γi∇ψi,N+1,

(D.3)

with δi, j = 1 if and only if i = j and 0 otherwise.681

Stability is ensured when the real parts of the eigenvalues are all strictly negative (see Theorem 4.7 in Khalil682

(2002), knowing the chosen evolution function defined by Eq. (D.1) is continuously differentiable). While we cannot683

verify that such a condition holds for any equilibrium state, because the system dynamics x 7→ T(x) and thus the logit684

decision-making (x, p) 7→ ψ(x, p) has no explicit formulation. However, it is straightforward to check if this condition685

holds when the equilibrium state values have been derived. We calculated the eigenvalues of the Jacobian for all credit686

charges between 100 and 460 credits with a step size of 20 credits considering the equilibrium values for x∗ and p∗687

for our numerical test case (see Sect. 6). In all cases, the real parts of the eigenvalues are all strictly negative, and the688

equilibrium is then asymptotically stable with respect to modal shares and credit price.689

Appendix E. Sensitivity of the PT travel times690

To assess the effect of the PT level of service on the whole network, we change all the PT travel times by -20%,691

-10%, 10%, and 20%. A negative change means the transit alternative becomes faster, and thus the PT level of service692

is improved. We assess the effect on total travel time, carbon emissions, and toll equivalent p(τ − κ) in Fig. E.1.693
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Figure E.1: (a) Total travel time vs. carbon emissions and (b) toll equivalent for different variations of the PT travel times. The numbers in (a) are
the credit charges.

The results are intuitive: with a reduction of the PT travel times, the total travel time decreases because (i) transit694

alternatives are faster and (ii) more travelers switch from car to PT because it is more competitive and there are fewer695
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Figure F.1: Cost function values vs. computation time for different maximum allowed variations with (a) no TCS; (b) a credit charge of 200 credits;
and (c) a credit charge of 300 credits.

car drivers. Thus the traffic conditions are improved. A variation of the PT level of service of 20% leads to a total696

travel time variation of about 10%. The carbon emissions slightly decrease thanks to the better competitiveness of697

PT. The Pareto fronts are different, and we can quickly compute them thanks to our framework. The equivalent toll698

decreases because the transit service is more attractive, and the advantage of driving a personal vehicle becomes less699

valuable. For a credit charge of 500 credits, the equivalent toll increases by about 1 EUR when the PT travel times700

increase by 20%, and it decreases by about the same when the PT travel times decrease by 20%.701

Appendix F. Sensitivity of the threshold for the search space702

To assess the sensitivity of the search for a modal equilibrium with regard to the maximum allowed variations εx703

and εp, different constant thresholds 0.01, 0.05, 0.1, 0.5, and 1 are compared to the inverse of the time step (Ref.) in704

Fig F.1 for no TCS, credit charge of 200, and 300 credits.705

Setting the allowed maximum variation too low makes the convergence more difficult. When convergence occurs,706

all the values lead to the same equilibrium. There is no best value for the maximum allowed variations in terms of707

computation time. The chosen approach with the inverse of the step size is a good compromise.708
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