
HAL Id: hal-03790178
https://hal.science/hal-03790178

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning the Proximity Operator in Unfolded ADMM
for Phase Retrieval

Pierre-Hugo Vial, Paul Magron, Thomas Oberlin, Cédric Févotte

To cite this version:
Pierre-Hugo Vial, Paul Magron, Thomas Oberlin, Cédric Févotte. Learning the Proximity Operator
in Unfolded ADMM for Phase Retrieval. IEEE Signal Processing Letters, 2022, 29, pp.1619-1623.
�10.1109/LSP.2022.3189275�. �hal-03790178�

https://hal.science/hal-03790178
https://hal.archives-ouvertes.fr

Learning the Proximity Operator in Unfolded ADMM

for Phase Retrieval∗

Pierre-Hugo Vial†, Paul Magron‡, Thomas Oberlin§, Cédric Févotte†

Abstract

This paper considers the phase retrieval (PR) problem, which aims to reconstruct a signal from
phaseless measurements such as magnitude or power spectrograms. PR is generally handled as a min-
imization problem involving a quadratic loss. Recent works have considered alternative discrepancy
measures, such as the Bregman divergences, but it is still challenging to tailor the optimal loss for a
given setting. In this paper we propose a novel strategy to automatically learn the optimal metric for
PR. We unfold a recently introduced ADMM algorithm into a neural network, and we emphasize that
the information about the loss used to formulate the PR problem is conveyed by the proximity op-
erator involved in the ADMM updates. Therefore, we replace this proximity operator with trainable
activation functions: learning these in a supervised setting is then equivalent to learning an optimal
metric for PR. Experiments conducted with speech signals show that our approach outperforms the
baseline ADMM, using a light and interpretable neural architecture.

Keywords— Phase retrieval, audio, proximity operator learning, deep unfolding, ADMM.

1 Introduction

Phase retrieval (PR) consists in reconstructing data from phaseless nonnegative measurements. This problem
finds practical applications in various areas such as optical imaging [1, 2] and audio signal processing [3, 4], which
is the domain of interest of this paper. Traditionally, PR is formulated as the following optimization problem:

min
x∈RL

‖|Ax|d − r‖2, (1)

where A ∈ CK×L is the measurement operator, r ∈ RK+ are the phaseless measurements, and ||.|| denotes
the Euclidean norm. In audio signal processing, A is often the short-time Fourier transform (STFT), and the
measurements are either magnitude (d = 1) or power (d = 2) spectrograms. In the seminal work [5], the authors
consider STFT magnitude measurements and propose an iterative procedure, known as the Griffin-Lim algorithm
(GLA) which is proved to converge to a critical point of (1). Other optimization algorithms were proposed to
tackle Problem (1), such as majorization-minimization [6], gradient descent [7] or alternating direction method
of multipliers (ADMM) [8]. PR has also been addressed by replacing the quadratic loss in (1) with alternative
discrepancy measures such as Bregman divergences [9], which have been shown to lead to superior results in many
audio applications [10, 11]. However, prescribing a loss that is optimal for all signal processing problems and
classes of audio signals remains challenging [9].

On the other hand, recent PR approaches have leveraged deep neural networks (DNNs) [12, 13, 14, 15].
Despite their successful performances in a large number of tasks, the enthusiasm for DNNs can be tempered by a
general lack of explainability due to their black box structure, and by their limited ability to generalize to unseen
data or experimental conditions. Deep unfolding (or unrolling) [16, 17] is a promising attempt to alleviate these
limitations with model-based architectures derived from iterative algorithms. This strategy consists in considering
each iteration of an optimization algorithm as a (trainable) layer of a DNN. It has proved very promising when
applied to many algorithms in signal processing [17, 18, 19], including audio PR [20, 21, 22]. However, these
approaches treat the linear layers as trainable parameters while activation functions remain fixed, although recent
studies show that trainable activation functions can upgrade performance [23, 24, 25]. Besides, they do not
address the problem of learning the metric involved in the PR formulation problem.

In this paper, we propose to unfold the ADMM algorithm for PR proposed in [9]. Our method builds upon
observing that the choice of the discrepancy measure only affects the computation of a proximity operator in the

∗This work is supported by the European Research Council (ERC FACTORY-CoG-6681839) and by ANITI under grant
agreement ANR-19-PI3A-0004.

†IRIT, Université de Toulouse, CNRS, Toulouse, France (e-mail: firstname.lastname@irit.fr).
‡Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France (e-mail: firstname.lastname@inria.fr).
§ISAE-SUPAERO, Université de Toulouse, France (e-mail: firstname.lastname@isae-supaero.fr).

1

ADMM updates. Therefore, we can recast the problem of metric learning as a problem of proximity operator
learning in the unfolded ADMM. To that end, we replace this proximity operator with a trainable activation
function. We show that the proposed parametrization of the network is connected to the metric involved in
the original optimization problem, which yields an interpretable architecture. Experiments performed on speech
signals demonstrate the efficiency of our method, which outperforms a baseline ADMM [8] with a number of
iterations equal to the number of layers in the unfoldeed ADMM.

The rest of this paper is structured as follows. Section 2 presents the related work. Then, the proposed method
is introduced in Section 3 and tested experimentally in Section 4. Finally, Section 5 draws some concluding
remarks.

Mathematical notation:

• A (capital, bold font): matrix.

• x (lower case, bold font): vector.

• z (regular): scalar.

• |.|, ∠(.): magnitude and complex angle, respectively.

• xH: Hermitian transpose.

• �, (.)d, fraction bar: element-wise matrix or vector multiplication, power, and division, respectively.

2 Related work

2.1 PR with Bregman divergences

In [9], we proposed to reformulate the PR problem by substituting the quadratic loss in (1) with a Bregman di-
vergence. Bregman divergences encompass beta-divergences [26], which include the Kullback-Leibler and Itakura-
Saito divergences, as well as the quadratic loss. They are defined as follows:

Dψ(p |q) =

K∑
k=1

[
ψ(pk)− ψ(qk)− ψ′(qk)(pk − qk)

]
, (2)

where p, q ∈ RK and ψ : R → R is a strictly-convex, continuously-differentiable generating function (with
derivative ψ′). Since Bregman divergences are not symmetric in general (i.e., Dψ(p |q) 6= Dψ(q |p)), we considered
the two following problems, respectively termed “right” and “left”:

min
x∈RL

Dψ(r | |Ax|d) and min
x∈RL

Dψ(|Ax|d | r). (3)

Two algorithms were derived for solving these problems, based on gradient descent and ADMM [9].

2.2 PR via ADMM

In this work we focus on the “left” PR problem using ADMM, since it produced the best reconstruction results
in [9]. Drawing on [8], this approach consists in reformulating (3) into the following constrained optimization
problem:

min
x∈RL,u∈RK+ ,θ∈[0;2π[K

Dψ(u | r) s.t. (Ax)d = u� eiθ, (4)

where u and θ are auxiliary variables for the magnitude and phase of (Ax)d. Then, the augmented Lagrangian
is:

L(x,u,θ,λ) = Dψ(u | r) + R
(
λH((Ax)d − u� eiθ)

)
+
ρ

2

∥∥∥(Ax)d − u� eiθ
∥∥∥2

, (5)

where R is the real part function, λ ∈ CK are the Lagrange multipliers and ρ > 0 is the augmentation parameter.
Alternate minimization of L leads to the following update rules [9]:

ht+1 = (Axt)
d +

λt
ρ

(6)

ut+1 = proxρ−1Dψ(· | r)(|ht+1|) (7)

θt+1 = ∠ht+1 (8)

xt+1 = AH(ut+1 � eiθt+1 − λt
ρ

)1/d
(9)

λt+1 = λt + ρ(Axt+1 − ut+1 � eiθt+1), (10)

2

Figure 1: One layer of the proposed unfolded architecture.

where proxf denotes the proximity operator of a function f , defined as the mapping of a vector y to the solution
of the minimization problem:

proxρ−1f (y) := arg min
z∈RK

f(z) +
ρ

2
‖z− y‖2. (11)

However, a closed-form expression of this operator is not available for every Bregman divergence. To alleviate
this issue, we propose in this paper to replace this proximity operator with a learnable neural activation function,
as detailed in the next section.

3 Proposed method

3.1 General architecture

The ADMM updates detailed in 2.2 consist in successive linear and nonlinear computations. As such, this
algorithm can be viewed as a neural network U via unfolding:

(xT , λT) = U(x0, λ0) = U1 ◦ · · · ◦ UT (x0, λ0), (12)

where Ut denotes the t-th layer of the network, mimicking the t-th iteration of the ADMM algorithm, as illustrated
in Fig. 1. The layer Ut can be decomposed into two linear parts denoted by L

(1)
t and L

(2)
t , and a nonlinear part

NLt as follows:

L
(1)
t : (xt−1, λt−1) 7→ ht (13)

NLt : ht 7→ (ut, θt) = (Ft(|ht|, r), ∠ht) (14)

L
(2)
t : (xt−1, λt−1,ut, θt) 7→ (xt, λt), (15)

with ht,xt, λt respectively defined as in (6), (9) and (10). Ft denotes a parameterized sublayer modeling the
proximity operator of equation (7). Since the choice of the discrepancy measure Dψ only affects the proximity
operator (7) in the updates, we can recast the problem of metric learning as the problem of proximity operator
learning. We propose to leverage a trainable activation function in order to model this layer and learn the
proximity operator.

3.2 Proposed parameterization

To build the non-linear sublayers Ft that model proxρ−1Dψ(· | r)
, we first reformulate this operator as follows. Let

v ∈ RK and f(z) =
∑K
k=1[ψ(zk) + vkzk]. We have [27]:

proxρ−1f (y) = proxρ−1ψ̃

(
y − ρ−1v

)
, (16)

where ψ̃(z) =
∑
k ψ(zk). Setting v = −ψ′(r) in (16), with ψ′ applied entrywise, it is straightforward to see that:

proxρ−1Dψ(· | r)(y) = proxρ−1ψ̃(y + ρ−1ψ′(r)). (17)

This formulation of the proximity operator is more convenient than (7) since the measurements r no longer appear
in the input function of the proximity operator, but instead in the argument of the latter (with y). This leads to
a more natural parametrization for unrolling.

Let us first derive the proximity operator (17) in a simple scenario, namely the quadratic loss (ψ̃ = 1
2
‖ · ‖2,

ψ′(r) = r). In this case we have [8]:

proxρ−1 1
2
‖·−r‖2(y) =

y + ρ−1r

1 + ρ−1
. (18)

3

As a result, a first simple approach for proximity operator learning would consist in treating ρ as a learnable
parameter. However, early experiments have shown poor performance with this approach, which is due to the
very low expressive power of such a model (only one scalar value). More generally, one can consider a beta-

divergence with shape parameter β, for which ψ′(r) = rβ−1

β−1
[26]. However, the proximity operator of ψ̃ is not

available for every beta-divergence.
To alleviate this issue, we model this unavailable proximity operator using Adaptive Piecewise Linear (APL)

activations [28]. They are defined by:

APL(y) := max(y, 0) +

C∑
c=1

wc max(−y + bc, 0), (19)

where wc and bc are learnable parameters controlling the slopes and biases of the linear segments, and the max
is applied entry-wise. Then, we propose the following parametrization of the nonlinear layer Ft:

Ft(y, r) = APLt

(
γ

(1)
t y + γ

(2)
t

rβt−1

βt − 1

)
, (20)

with learnable parameters wc,t, bc,t, γ
(1)
t , γ

(2)
t , and βt. Even though ad hoc, this parametrization is motivated by

the following considerations:

• APL can represent any continuous piecewise linear function over a subset of real numbers. As such, it
generalizes the proximity operator obtained in the quadratic case [8].

• The term in the form of rβ−1

β−1
in (20) is reminiscent of ψ′ for beta-divergences, as mentioned above.

• Introducing learnable weights γ
(1)
t and γ

(2)
t allows to increase the model capacity, as it was shown beneficial

in our preliminary experiments.

Note that when wc = 0, γ
(1)
t = 1

1+ρ−1 , γ
(2)
t = ρ−1

1+ρ−1 and βt = 2, Ft is equal to the proximity operator for the

quadratic loss (18). Overall, our parametrization (20) is a good trade-off between tractability, interpretability,
and expressiveness.

Two variants of the proposed architecture will be considered in our experiments. In the “untied” variant, each

layer uses different parameters, and the global set of parameters is
{
{wc,t, bc,t}Cc=1, γ

(1)
t , γ

(2)
t , βt

}T
t=1

, while in the

“tied” variant, the parameters are shared among layers, i.e., constant with t.
In the end, after learning these parameters (see Section 4.1.2), the proposed method, termed unfolded ADMM

(UADMM), estimates a signal xT via (xT ,λT) = U(x0,λ0), where x0 is some initial estimate.

3.3 Discussion about interpretability

Under mild assumptions and as detailed in the supplementary material,1 we can prove that there exists a close-
form function fr,t : RK → R ∪ {+∞} such that Ft(y, r) = proxfr,t(y), (see (32) in the supplementary material).
In the “tied” variant, where fr,t = fr, reconstructing fr from the learned parameters is analogous to identifying
the metric Dψ(· | r) involved in the PR optimization problem. With the relaxation proposed in the “untied” case,
this interpretation is more limited as fr,t is different in each layer of the network.

Note that when replacing (17) with (20), we have disentangled the proximity operator of ψ̃ and the derivative

ψ′, in addition to introducing weights γ
(1)
t and γ

(2)
t . As a result, the function fr is no longer guaranteed to be a

Bregman divergence, strictly speaking. Nevertheless, we can still interpret it as a measure of discrepancy between
y and r.

4 Experiments

In this section, we assess the potential of UADMM for PR of speech signals. Our code is implemented using the
PyTorch framework [29] and is available online for reproducibility.2

4.1 Protocol

4.1.1 Data

We build a set of speech signals from the TIMIT dataset [30]. The dataset is split into training, validation,
and test subsets containing 1000, 10, and 50 utterances, respectively (note that we did not observe a significant
performance improvement when using a larger training set). The signals are mono, sampled at 16 kHz and
cropped to 2 seconds. The STFT is computed with a 1024 samples-long (46 ms) self-dual sine window [9] and
50% overlap. STFT magnitudes (d = 1) are considered as nonnegative observations r.

1In particular, the APL unit must be strictly increasing, something we ensure by imposing the weights to be negative,
using wc,t = −w̃2

c,t.
2https://github.com/phvial/LearningProxPR

4

0 25 50 75 100 125 150 175 200
Epochs

1.02

1.01

1.00

0.99

0.98

0.97

Lo
ss

 (m
ea

n
pe

r e
po

ch
)

15

30

75

150

7501500

Ba
se

lin
e

AD
M

M
 it

er
at

io
ns

UADMM - Untied
UADMM - Tied
ADMM

Figure 2: Training loss (negative STOI) over epochs. Note that pytorch-stoi implementation does not
exactly replicate the original metric and consequently yields values lower than −1.

UADMM
Untied

UADMM
Tied

ADMM
(15)

ADMM
(1500)

GLA
(1500)

0.86

0.88

0.90

0.92

0.94

0.96
ST

OI

Figure 3: Performance on the test set. Each box-plot is made up of a central line indicating the me-
dian, box edges indicating the 1st and 3rd quartiles, whiskers indicating the extremal values, and circles
representing the outliers.

4.1.2 Training

The network is trained with the ADAM algorithm [31] using a learning rate of 10−4. We use a structure with
T = 15 layers and C = 3, as these values have shown to be a good trade-off between performance and number
of parameters in preliminary experiments. Batches of 10 signals with a maximum of 200 epochs are used for
training. Training is stopped when the loss function on the validation subset starts increasing. Given that
we consider speech signals, we train the network by minimizing the negative short-term objective intelligibility
measure (STOI) [32] between the estimated and ground truth signals. Indeed, this strategy was shown to be
efficient for speech enhancement applications [33, 34]. The negative STOI metric used for training the network is
implemented in PyTorch via the pytorch-stoi library [35].

4.1.3 Methods

As baselines, we consider GLA [5] (run for 1500 iterations), and ADMM using a quadratic loss and ρ = 10−3,
since this setup has exhibited good performance in our previous study under similar conditions [9]. ADMM is
run for a variable number of iterations, with a maximum of 1500 (performance does not further improve beyond).
For fairness, the linear parts of UADMM use the same value for ρ, and it is initialized such that Ft replicates
the quadratic proximity operator (cf. Section 3.2). All methods use the same initial signal estimate x0 computed
using the ground truth magnitudes r and a random uniform phase, and λ0 = 0.

4.1.4 Evaluation

Reconstruction performance is assessed with the STOI metric (which ranges between 0 and 1, higher is better)
computed on the test set with the pystoi library [36].

4.2 Results

First, we display the training loss over epochs in Fig. 2. Both UADMM variants outperform the baseline ADMM
with 15 iterations on the training set. UADMM-untied reaches a lower loss value than its tied counterpart, which
was expected since this variant contains more learnable parameters. They reach a performance comparable to
that of ADMM using 150 and 75 iterations, respectively. The results on the test set presented in Fig. 3 confirm
that the proposed UADMM approach significantly outperforms the classical ADMM using the same number of

5

15 30 75 150 750 1500
Total amount of layers/Iterations

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

ST
OI

UADMM - Untied
UADMM - Tied
ADMM

Figure 4: Evaluation with STOI over test dataset with iterated model. The solid lines denote the mean
STOI and the light colored areas the values between the first and the third quartile.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0 UADMM - Untied
UADMM - Tied
Quadratic
Kullback-Leibler

Figure 5: Learned metrics fr,t(y) with r = 1. The quadratic loss and Kullback-Leibler divergence
DKL(y | r) are also displayed for the sake of comparison. In the “tied” case, fr in analogous to Dψ(· | r)
involved in the PR optimization problem. For clarity, only 3 of the 15 trained layers fr,t are displayed
for the “untied” case.

iterations, as well as the GLA baseline. A fully-converged ADMM algorithm (using 1500 iterations) exhibits a
higher STOI than our 15 layers-based approach. Nonetheless, a more fair comparison would involve that both
approaches use the same total number of iterations/layers.

To that end, we consider an ad hoc extension of our method, where we duplicate the 15-layer trained UADMM
network in order to increase the total amount of layers without additional training. The results presented in
Fig. 4 show that this method consistently and significantly outperforms ADMM for any number of iterations. In
particular, the performance of the fully-converged ADMM (after 1500 iterations) is reached at only 30 “iterations”
for UADMM-untied (i.e., twice the number of trained layers), which exhibits the computational advantage of the
proposed approach.

Finally, let us point out that UADMM-tied with T layers is equivalent to applying T iterations of a standard
ADMM algorithm using a learned metric fr (note however that it differs from the ADMM baseline used in these
experiments, which uses a quadratic loss). Following the derivations in the Supplementary, we compute these
metrics (fr in the tied case and fr,t in the untied case) from the trained activation functions, and display them
in Fig. 5. These resemble beta-divergences with β ∈ [1.5, 2.5]. This is consistent with previous results from the
literature [37], where this range of values has shown good performance for audio spectral decomposition.

5 Conclusion

In this paper, we have addressed the problem of metric learning for phase retrieval by unfolding the recently
proposed ADMM algorithm [9] into a neural network. We proposed to replace the proximity operator involved
in this algorithm with learnable activation functions, since this operator conveys the information about the
discrepancy measure used in formulating the PR problem. Experiments conducted on speech signals show that
this approach outperforms the ADMM algorithm while keeping a light and interpretable structure.

6

References

[1] A. Walther, “The question of phase retrieval in optics,” Optica Acta: International Journal of Optics, vol.
10, no. 1, pp. 41–49, 1963.

[2] R. W. Harrison, “Phase problem in crystallography,” Journal of the Optical Society of America A, vol. 10,
no. 5, pp. 1046–1055, 1993.

[3] T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux, “Phase processing for single-channel speech enhance-
ment: History and recent advances,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 55–66, March
2015.

[4] P. Mowlaee, R. Saeidi, and Y. Stylianou, “Advances in phase-aware signal processing in speech communica-
tion,” Speech Communication, vol. 81, pp. 1–29, July 2016.

[5] D. Griffin and J. Lim, “Signal estimation from modified short-time Fourier transform,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 32, no. 2, pp. 236–243, April 1984.

[6] T. Qiu, P. Babu, and D. P. Palomar, “PRIME: Phase retrieval via majorization-minimization,” IEEE
Transactions on Signal Processing, vol. 64, no. 19, pp. 5174–5186, October 2016.

[7] E. J Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger flow: Theory and algorithms,”
IEEE Transactions on Information Theory, vol. 61, no. 4, pp. 1985–2007, April 2015.

[8] J. Liang, P. Stoica, Y. Jing, and J. Li, “Phase retrieval via the alternating direction method of multipliers,”
IEEE Signal Processing Letters, vol. 25, no. 1, pp. 5–9, January 2018.

[9] P.-H. Vial, P. Magron, T. Oberlin, and C. Févotte, “Phase retrieval with Bregman divergences and application
to audio signal recovery,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 1, pp. 51–64,
January 2021.

[10] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization with the Itakura-Saito diver-
gence: With application to music analysis,” Neural computation, vol. 21, no. 3, pp. 793–830, March 2009.

[11] J. Le Roux, H. Kameoka, N. Ono, A. de Cheveigné, and S. Sagayama, “Computational auditory induction
as a missing-data model-fitting problem with Bregman divergence,” Speech Communication, vol. 53, no. 5,
pp. 658 – 676, May-June 2011.

[12] S. Takamichi, Y. Saito, N. Takamune, D. Kitamura, and H. Saruwatari, “Phase reconstruction from amplitude
spectrograms based on von-Mises-distribution deep neural network,” in Proc. International Workshop on
Acoustic Signal Enhancement (IWAENC), September 2018, pp. 286 – 290.

[13] L. Thieling, D. Wilhelm, and P. Jax, “Recurrent phase reconstruction using estimated phase derivatives from
deep neural networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), June 2021, pp. 7088–7092.

[14] N. B. Thien, Y. Wakabayashi, K. Iwai, and T. Nishiura, “Two-stage phase reconstruction using DNN and von
Mises distribution-based maximum likelihood,” in Proc. Annual Summit and Conference of the Asia-Pacific
Signal and Information Processing Association (APSIPA ASC), December 2021, pp. 995–999.

[15] S. Ö. Arık, H. Jun, and G. Diamos, “Fast spectrogram inversion using multi-head convolutional neural
networks,” IEEE Signal Processing Letters, vol. 26, no. 1, pp. 94–98, January 2018.

[16] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. International Conference
on Machine Learning (ICML), June 2010, pp. 399–406.

[17] J. R. Hershey, J. Le Roux, and F. Weninger, “Deep unfolding: Model-based inspiration of novel deep
architectures,” arXiv preprint arXiv:1409.2574, 2014.

[18] C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, and M. Prato, “Deep unfolding of a proximal
interior point method for image restoration,” Inverse Problems, vol. 36, no. 3, pp. 034005, February 2020.

[19] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and
image processing,” IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 18–44, March 2021.

[20] Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, “Deep Griffin–Lim iteration,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 61–65.

[21] Z.-Q. Wang, J. Le Roux, D. Wang, and J. R. Hershey, “End-to-end speech separation with unfolded iterative
phase reconstruction,” in Proc. Interspeech, September 2018.

[22] G. Wichern and J. Le Roux, “Phase reconstruction with learned time-frequency representations for single-
channel speech separation,” in Proc. International Workshop on Acoustic Signal Enhancement (IWAENC),
September 2018, pp. 396–400.

[23] S. Qian, H. Liu, C. Liu, S. Wu, and H. San Wong, “Adaptive activation functions in convolutional neural
networks,” Neurocomputing, vol. 272, pp. 204–212, January 2018.

[24] A. Apicella, F. Isgrò, and R. Prevete, “A simple and efficient architecture for trainable activation functions,”
Neurocomputing, vol. 370, pp. 1–15, December 2019.

7

[25] S. Scardapane, S. Van Vaerenbergh, S. Totaro, and A. Uncini, “Kafnets: Kernel-based non-parametric
activation functions for neural networks,” Neural Networks, vol. 110, pp. 19–32, February 2019.

[26] R. Hennequin, B. David, and R. Badeau, “Beta-divergence as a subclass of Bregman divergence,” IEEE
Signal Processing Letters, vol. 18, no. 2, pp. 83–86, February 2011.

[27] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale
Modeling & Simulation, vol. 4, no. 4, pp. 1168–1200, November 2005.

[28] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning activation functions to improve deep neural
networks,” in Proc. International Conference on Learning Representations (ICLR) workshop, May 2015.

[29] “PyTorch,” https://pytorch.org/.

[30] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, and V. Zue, “TIMIT
acoustic-phonetic continuous speech corpus,” Linguistic data consortium, 1993.

[31] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimization,” in Proc. International Conference
on Learning Representations (ICLR), May 2015.

[32] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for intelligibility prediction of
time–frequency weighted noisy speech,” IEEE Transactions on Audio, Speech, and Language Processing, vol.
19, no. 7, pp. 2125–2136, February 2011.

[33] Y. Zhao, B. Xu, R. Giri, and T. Zhang, “Perceptually guided speech enhancement using deep neural
networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
April 2018, pp. 5074–5078.

[34] G. Naithani, J. Nikunen, L. Bramslow, and T. Virtanen, “Deep neural network based speech separation
optimizing an objective estimator of intelligibility for low latency applications,” in Proc. International
Workshop on Acoustic Signal Enhancement (IWAENC), September 2018, pp. 386–390.

[35] M. Pariente, “PyTorch implementation of STOI,” https://github.com/mpariente/pytorch_stoi, 2021,
[Online; accessed 13-February-2022].

[36] M. Pariente, “PySTOI,” https://github.com/mpariente/pystoi, 2018.

[37] D. Fitzgerald, M. Cranitch, and E. Coyle, “On the use of the beta divergence for musical source separation,”
in Proc. of IET Irish Signals and Systems Conference (ISSC), June 2008, pp. 1–6.

[38] J.-J. Moreau, “Proximité et dualité dans un espace hilbertien,” Bulletin de la Société mathématique de
France, vol. 93, pp. 273–299, 1965.

[39] P. L. Combettes and J.-C. Pesquet, “Proximal thresholding algorithm for minimization over orthonormal
bases,” SIAM Journal on Optimization, vol. 18, no. 4, pp. 1351–1376, 2008.

[40] R. Gribonval and M. Nikolova, “A characterization of proximity operators,” Journal of Mathematical Imaging
and Vision, vol. 62, no. 6, pp. 773–789, July 2020.

8

Supplementary: Characterization of F(y, r) as a proximity oper-
ator.

In this supplementary, we address the problem of identifying a function fr : RK → R ∪ {+∞} such that
F(y, r) = proxfr(y), with F defined in (20) of the main paper. Note that we ignore here the layer index t for
simplicity.

First, we present in Section A sufficient conditions for the existence of such a function in a general setting.
Then, in Section B we consider more particularly the case of APL units. Finally, in Section C we recover the
function fr corresponding to our sublayer F.

5.1 Proximity operators

First, let us recall that the proximity operator of a real-valued convex function σ : RK → R∪ {+∞} is defined as
the mapping of a vector z to the solution of the minimization problem:

proxρ−1σ(z) := arg min
p∈RK

σ(p) +
ρ

2
‖p− z‖2. (21)

This definition can be extended to nonconvex functions, resulting in a possibly set-valued operator. Following
[38, 39, 40], a function g : Z ⊂ RK → RK can be characterized as the proximity operator of a convex function
when it is strictly increasing over each coordinate. More precisely, the authors in [40] show that if there exists a
convex, lower semi-continuous function g̃ : RK → R such that g(z) is a subgradient of g̃(z) for all z ∈ Z, i.e.,

g(z) ∈ {v ∈ RK | ∀p ∈ RK , 〈p− z, v〉+ g̃(z) ≤ g̃(p)}, (22)

then there exists σ such that g(z) ∈ proxσ(z) and the following relation stands:

∀z ∈ Z, σ(g(z)) = 〈z, g(z)〉 − 1

2
‖g(z)‖2 − g̃(z). (23)

Finally, when g is invertible and with y = g(z), we have:

σ(y) = 〈g−1(y), y〉 − 1

2
‖y‖2 − g̃(g−1(y)). (24)

5.B Characterization with APL

We now address the case of (strictly increasing) APL functions as defined in (19), with negative weights (cf. 3.3)
and at least one nonnegative bias bc. Let us consider the following convex, lower semi-continuous function APL
such that ∀z ∈ R:

APL(z) =
z2

2
χ[0;+∞](z) +

C∑
c=1

wc

(
−z2

2
+ bcz

)
χ]−∞;bc](z), (25)

where χΠ is the indicator function of set Π. Since for any z ∈ R, APL(z) is a subgradient of APL(z), and

denoting ÃPL(z) =
∑K
k=1 APL(zk), it is straightforward to show that the relation (22) stands for g(z) = APL(z)

and g̃(z) = ÃPL(z). Besides, since APL is invertible we can use the relation (24) to identify σ:

σ(y) = 〈APL−1(y), y〉 − 1

2
‖y‖2 − ÃPL(APL−1(y)), (26)

with:

APL−1(y) =
y −

∑C
c=1 wcbcχ]−∞, APL(bc)](y)

χ[APL(0),+∞[(y)−
∑C
c=1 wcχ]−∞, APL(bc)](y)

. (27)

5.C Characterization with F

Finally, let us retrieve fr : RK → R ∪ {+∞} such that F(y, r) = proxfr(y). Drawing on the previous section and
using the definition of F from (20), we have:

F(y, r) = proxσ

(
γ(1)y + γ(2) r

β−1

β − 1

)
. (28)

To fully identify fr, we first need to reformulate (28) so that the argument of the right hand side term simply
becomes y. To that end, we leverage a property from [27], which consists in first rewriting (28) as follows:

F(y, r) = proxσ

(
y − q

2α+ 1

)
, (29)

with α =
1− γ(1)

2γ(1)
and q = −γ

(2)

γ(1)

rβ−1

β − 1
. The property from [27] then states that:

proxϕ+α‖·‖2+〈q, ·〉(y) = proxϕ/(2α+1)

(
y − q

2α+ 1

)
. (30)

Let ϕ = (2α+ 1)σ. Combining (29) and (30) yields:

F(y, r) = prox(2α+1)σ+α‖·‖2+〈q, ·〉(y). (31)

As a result, from (31) we can identify fr such that its proximity operator is F. If we further exploit the definition
of σ from (26), we finally have:

fr(y) =
1

γ(1)

〈
APL−1(y)− γ(2) r

β−1

β − 1
, y

〉
− 1

2
‖y‖2 − 1

γ(1)
ÃPL(APL−1(y)). (32)

Therefore, using (32) one can recover the function associated with the learned proximity operator, and conse-
quently identify the metric involved in the formulation of the PR problem.

10

