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1CNRS, INRIA, I3S, Universit Cte dAzur, Sophia Antipolis, France
2Sorbonne Universit, CNRS, LBDV, Villefranche-sur-Mer, France

E-mail: mayeulcachia@gmail.com, vasiliki.stergiopoulou@i3s.unice.fr,

calatroni@i3s.unice.fr, sebastien.schaub@imev-mer.fr,

blancf@i3s.unice.fr

Abstract. We propose FluoGAN, an unsupervised hybrid approach combining the

physical modelling of fluorescence microscopy timelapse acquisitions with a generative

adversarial learning procedure for the problem of image deconvolution. Differently

from standard approaches combining a least-square data term based on one (long-time

exposure) image with sparsity-promoting regularisation terms, FluoGAN relies on a

data term being the distributional distance between the fluctuating observed timelapse

(short-time exposure images) and the generative model. Such distance is computed

by adversarial training of two competing architectures: a physics-inspired generator

simulating the fluctuating behaviour as a Poisson process of the observed images

combined with blur and undersampling, and a standard convolutional discriminator

network. FluoGAN is a fully unsupervised approach requiring only a fluctuating

sequence of blurred, undersampled and noisy images of the sample of interest as

input. It can be complemented with prior knowledge on the desired solution such as

sparsity, non-negativity etc. After having described the main ideas behind FluoGAN,

we formulate the corresponding optimisation problem and report several results on

simulated and real phantoms used by microscopy engineers to quantitatively assess

spatial resolution. The comparison of FluoGAN with state-of-the-art methodologies

shows improved resolution, allowing for high-precision reconstructions of fine structures

in challenging real Ostreopsis cf Ovata data. The FluoGAN code is available at:

https://github.com/cmayeul/FluoGAN.

1. Introduction

The physical limit imposed by light diffraction in the context of light microscopy still

poses a major challenge for the accurate reconstruction and analysis of small samples:

structures closer to such barrier (around 250 nm in the lateral x-y plane) cannot be

distinguished. Since several biological quantities of interests (such as viruses, proteins

and molecules) have size significantly smaller than this limit, it is thus crucial to

overcome it by means of advanced image reconstruction approaches.

https://github.com/cmayeul/FluoGAN


Fluorescence image deconvolution microscopy via GANs (FluoGAN) 2

The reconstruction of a sample of interest from its blurred, noisy and under-

sampled data is an ill-posed inverse problem for which numerous approaches lying at the

interface between applied mathematics and microscopy imaging have been proposed. In

this paper, we are interested in image reconstruction problems arising in fluorescence

microscopy. In a nutshell, in this field special chemical compounds, called fluorescent

dyes or fluorophores are used to bind to the molecules in the sample of interest.

When exposed to light excitation at specific wavelengths, these molecules emit photons

which are captured by CCD or sCMOS camera or photo-multiplicator sensors after

passing through special lenses and optical devices. As a consequence, the resolution

of the captured image is thus limited due to diffraction of the emitted light. The

diffraction (Airy) pattern acts as a convolution operator (the Point Spread Function,

PSF) on the emitters, resulting in a blurred and noisy observed image. The standard

deconvolution/super-resolution inverse problem thus consists in retrieving the spatial

structure of the sample under observation by knowing the Point Spread Function (PSF)

of the optical system and, possibly, some statistical prior information on the noise. In

this work, we assume to know (up to a sufficient accuracy) the PSF of the microscope

under consideration. Typically, such function is modelled as a Gaussian function or as an

Airy pattern. As far as the noise is concerned, we consider a mixed scenario where both

a signal-dependent Poisson component and an additive white Gaussian perturbation is

add to model photon counting and electronic noise processes, respectively.

In a discrete setting, the mismatch between the 2D spatial grid where measured

data lie (often called the coarse grid) and the one where we look for solutions (the fine

grid) may be explicitly quantified by a super-resolution factor L ∈ N, L > 1 for both the

horizontal and vertical direction. In mathematical terms, for a given blurred, noisy and

under-sampled vectorised image y ∈ Rm, a convolution matrix H ∈ Rn×n corresponding

to the 2D PSF of the system and an additive Gaussian noise component e ∼ N (0, σ2I)

with I ∈ Rm×m being the identity matrix, the task is to retrieve a super-resolved image

x ∈ Rn and a background image b ∈ Rm
≥0 such that:

y = Poisson(UHx+ b) + e, (1)

where the operator U ∈ Rm×n with n = L2m denotes an under-sampling operator

mapping images from a fine to the L-coarser grid and where, for z ∈ Rm
≥0,Poisson(z)

denotes a Poisson random vector of parameter z. The space-variant background

term b ∈ Rm
≥0 models here out-of-focus and/or ambient molecules. Model-based

regularisation approaches for solving (1) formulate the task as a minimisation problem

where a sparsity-promoting term is combined with a least-square data fidelity. Standard

compressed-sensing techniques, for instance, rely on the use of the `1 norm as

regulariser possibly combined with redundant representation techniques [34]. In later

years, however, non-convex regularisation approaches relying on the minimisation of

continuous relaxations of the `0 pseudo-norm have also been considered [27, 28]. In the

case of samples with wide support (not points nor curves), the sparsity assumption on

the signal is, however, not suited. In these cases, a tailored choice is indeed far from
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being trivial.

In order to have super-resolution and not only extrapolation enforced by an

additional regularisation term, additional information on the sample preparation and

on its physical properties must be provided. A popular class of super-resolution

techniques achieving a resolution of about 20 nm is the family of Single Molecule

Localisation Microscopy (SMLM) [25], for which the idea is to sequentially activate

only a small number of fluorophores at a time so that their detection can be made with

high precision. A super-resolved image of the sample of interest can thus be found

by simply combining together all the reconstructed sparse images. Mathematically,

such problem can be cast in the form (1) (see [17] for more complicated forward

models) and its regularised solution can be computed at each time stamp. Popular

SMLM approaches are, for instance PALM (Photo-Activated Localisation Microscopy)

[4] and STORM (STochastic Optical Reconstruction Microscopy) [24]. From a practical

viewpoint, the main disadvantage in using SMLM techniques is the fact that they

require fluorophores with specific chemical and physical characteristics [16] as well

as a significant number (typically of the order of thousands) of sequential activations

and sparse acquisitions which may significantly harm the sample under observation.

Furthermore, for a computational viewpoint, a typically non-smooth and non-convex

regularised problem has to be solved for each acquired frame, which is of course very time

consuming in large-scale scenarios. A rather recent approach mitigating such demanding

requirements consists in exploiting, rather than that sparse sequential activation of

specific fluorophores over time, the independent stochastic intensity fluctuations of

common fluorescencent molecules. By acquiring a video of stochastichally fluctuating

images with an acquisition rate in the range 20-100 images/s with conventional

microscopes and exploiting in different ways the independence of fluctuations between

emitters, significant improvements in resolution can indeed be obtained without specific

fluorophores. It is the case, for instance, of SOFI (Super-resolution Optical Fluctuation

Imaging) [8] where temporal information is integrated by computing a sample covariance

image in which, by independence, the PSF appears squared so that a reduction of a factor√
2 on the width of the PSF is obtained. A similar approach reducing the computational

costs of covariance calculation is SCORE (Spatial COvariance REconstructive) [7] where

only pixels with relevant contributions to such computation are used. A different

method taking sequences of fluctuating images as an input, but based on a different

type of analysis is SRRF (Super-Resolution Radial Fluctuations) [14] where degrees of

symmetry are calculated at each frame. A mathematical modelling of these problems

based on sparse regularisation approaches is proposed in [26], where the authors propose

to formulate the problem (1) in the covariance domain using an `1 regularisation

for sparsity-based super-resolution correlation microscopy (SPARCOM) problems. In

recent works [32, 30], the authors improved upon the artefacts created by SPARCOM

on simulated and real noisy data by considering a non-convex continuous exact

approximation of the `0 pseudo-norm previously employed in [27, 9] and incorporating

a further background and noise optimisation step within a two-step procedure allowing



Fluorescence image deconvolution microscopy via GANs (FluoGAN) 4

also for intensity estimation. Such approach, called COL0RME (COvariance-based

`0 super-Resolution Microscopy with intensity Estimation), has been also applied to

3D image data in [31] showing high-quality reconstructions and high applicability in

common scenarios. A major limitation of SPARCOM and COL0RME when applied to

challenging real-word contexts is that, due to their mathematical structure, they tend to

promote point-like structures also in the case of samples characterised by the presence

of different structures (e.g., thin filaments).

Motivated by the recent advances in the field of deep learning models for imaging,

we review in the following some particular reconstruction models based on the use of

generative approaches. Generative Adversarial Networks (GANs) [11] are nowadays very

powerful tools in the field of imaging. They aim at estimating the unknown distribution

of a class of images given as input by the adversarial training of two different networks:

the former (the generator) aiming at creating images with similar properties to the given

ones and the latter (the discriminator) which, during training, distinguishes whether

a generated image is a fake one or not, so that convergence is achieved when such

distinction is not possible anymore. There is a vast literature on the use of GANs

in imaging: we recall here some nowadays pretty established strategies for improving

training stability [2, 12] and some others more focused on applications to learning the

distribution of human faces [15] or medical data [19]. In their vanilla formulation,

GANs do not incorporate in their structure any physical modelling, their performance

being characterised only by the (often not interpretable) parameters of the generator

and the discriminator. A hybrid approach allowing for the use of a physically-inspired

simulator in place of a GAN generator has recently been proposed for the problem

of volume reconstruction from noisy projections in Cryo Electron Microscopy (Cryo-

EM) under the name CryoGAN [13]. In CryoGAN the volume of interest becomes

the learnable parameter to estimate itself upon an adversarial training where, given

noisy projections {yi}i, the current estimate of the desired volume is passed through

the simulator to obtain simulated noisy projections
{
ysim
k

}
k

being ‘close enough’ to

the given data in a distributional sense. The approach is proved to be very effective,

allowing for a very efficient volume estimation using a simple linear physical model which

allows to derive reconstruction guarantees. A similar approach is used in [35] for multi-

segment reconstruction. Note that in the context of super-resolution microscopy, data-

driven methods relying on algorithmic unrolling [5] and convolutional neural networks

[21, 29] have been proposed. Up to our knowledge, no generative approaches have been

considered in this field.

Contribution. Given a video of blurred, under-sampled and noisy short-time exposure

and stochastically fluctuating images, we consider in this work a reconstruction

procedure based on the minimisation of the distance between two distributions: the

former associated to the observed video, the latter describing image examples simulated

by the known physical model of stochastic fluctuations. The optimisation procedure is

realised by means of a generative adversarial learning strategy, in which the generator
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Figure 1: Schema of FluoGAN: Given a temporal sequence of blurred, under-sampled

and noisy images (left) and a physical-inspired simulator of fluorescence fluctuations and

of the optical system (right), denoted by G, FluoGAN compares the distribution of the

acquired images with the distribution of the samples generated by G. It then computes

gradients of a suitable loss functional minimising such distance and updates accordingly

the simulator inputs. At convergence, the approach outputs the super-resolved image x

and the background image b.

network is replaced by a generative physical model of stochastic fluorecence fluctuations.

The proposed approach is named FluoGAN (Fluorescent image deconvolution/super-

resolution microscopy via GAN learning). It combines physical modelling with data-

driven learning. Differently from the the usual structure of a GAN, the generator

network is here replaced by a non-linear model of intensity fluctuations and light

diffraction. From the given video, the method estimates one single high-resolution image

of the sample of interest by the adversarial update of the simulator and the discriminator

network parameters, as schematically described in Figure 1.

Structure of the paper. In Section 2 we detail the physical model of video image

acquisition used as simulator, then, in Section 3 we revise the GAN formulation from

an optimisation perspective while in Section 4 we describe in detail the modelling and

optimisation aspects of the proposed FluoGAN approach. Numerical results are reported

in Section 5: the proposed method is validated first on realistic simulated spatial patterns

for assessing the resolution achieved, also in comparison to state-of-the art approaches.

Next, reconstructions computed from real data of a commercial phantom acquired on

standard microscopes and of the Ostreopsis cf Ovata alga are reported. The proposed

approach achieves notable improvement in resolution and appears much more robust to
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noise perturbations and modelling errors, being effective also on challenging scenarios.

2. A non-linear model for stochastic fluctuations

We present in this section the model used in the following for simulating the physical

processes creating blur and noise – including fluorophore fluctuations – in the observed

image data. Fluorescence fluctuations are modelled here as a stochastic process which,

for simplicity, we consider here as a Poisson model. It can be interpreted as the number of

photons emitted by a biological structure of interest sampled on a fine grid of size n ∈ N.

In [22, 10] a different model for stochastic fluctuations was considered. Differently from

our model, in those works the proposed simulator models the on-off switching (a.k.a.

blinking) of individual fluorophores and stochastic intensity fluctuations are included in

the model in the form of noise. In our modelling, we describe the fluctuations of a sum of

molecules lying in a pixel of the fine grid image x ∈ Rn
≥0 as a stochastic Poisson process,

denoted by Poisson(x). These Poisson variables are independent of each other (in time

and space). We remark that we will work with short acquisition times, which allows us

to neglect the modelling of photobleaching, i.e. the loss of fluorescence capability.

We now introduce the modelling of the optical device (i.e. microscope) considered.

From the sample to the sensor: blur, under-sampling and background. We model blur

due to light diffraction as a convolution with a 2D Gaussian PSF denoted by h ∈ Rk×k

where k2 denotes the size of the support of the kernel, and we endow it with periodic

boundary conditions. By linearity, we then represent the action of h on the vectorised

image Poisson(x) by means of a block circulant with circulant block matrix H ∈ Rn×n.

The incident flux to the receiving sensor is then under-sampled to fit the size of the

sensor pixels which form a low-resolution (coarse) grid. We denote by m < n the

size of the coarse grid where the measured data are acquired and denote by L > 1 the

super-resolution factor along both the horizontal and vertical direction so that n = L2m.

L = 4

We model such undersampling by means of a rectangular matrix

U ∈ Rm×n whose entries are simply 1’s and 0’s and acts by summing

the intensity values defined on L×L patches (blue grid) of x so as to

produce one single coarse pixel (red grid) in the measurement space.

This process has the physical meaning of summing up the number of

photons emitted by the unknown sample x within the measurement

space, while preserving their total amount. The photons captured

by the sensor do not all come from the fluorescent molecules we want

to observe. Some of them are produced by out-of-focus emitters or even from outside

the sample. Depending on the acquisition conditions, their proportion can be in fact

relatively high. We include these molecules introducing in the model a non-constant

and non-negative background term denoted by b ∈ Rm
≥0.

The blurred and under-sampled flux arriving at the receiving sensor is (proportional
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to) therefore:

φ(Poisson(x), b) := UHPoisson(x) + b ∈ Rm. (2)

Recording noise. We now want to simulate the stochastic behaviour of the recording

process. Typically, each pixel records only a few dozens of photons per image. The

photon absorption can thus be described as a counting process with the following

characteristics:

(i) There is a time interval short enough so that the probability to absorb more than

one photon is negligible;

(ii) The number of photons absorbed during one time interval is independent to another;

(iii) During a short time interval the probability to absorb a photon is proportional both

to the interval duration and to the incident flux.

This counting process can thus be mathematically modelled as a further Poisson

counting process. For a given image, the number of photons captured by one pixel

during the acquisition time can be simulated by random sampling a Poisson variable

whose expected value is proportional to the flux at the sensor, i.e. at (2). The variance of

this variable depends nevertheless on the gain α > 0 of the sensor, i.e. the amplification

factor applied to the image by the image sensor, which depends on the specific setup

considered and which can be easily incorporated in the model. Last but not least, a

further term describing electronic noise should be added as in (1). To do so, we thus

consider a realisation a multidimensional random vector with Gaussian distribution of

zero mean and covariance matrix σ2I, e ∼ N (0, σ2I).

Collecting altogether, we can finally define the complete forward observation model

y = α Poisson (φ(Poisson(x), b)) + e, (3)

which is used in the following to generate simulated data in the experimental section 5.1.

However, due to the presence of the double Poisson distributions, model (3) is difficult

to handle in computations during the reconstruction process. This model will be used

to generate simulated data but a simpler one will be used for the reconstruction process.

In the following, we will thus make use of the following image formation model:

y = α Poisson (φ(x, b)) + e, (4)

which we claim to provide an acceptable approximation of (3) in the estimation process.

Fluctuations of fluorophores are in fact passed through the PSF and undersampling

operations, which both are processes smoothing out the fluctuations themselves. The

Poisson noise modelling then adds further Poisson fluctuations.

Summarising, the setup is composed of generated images which are the realisations

ytsim, t = 1, . . . , T of the multi-variate random variable Ysim following a distribution

Dsim(x, b) so that:

Ysim(x, b) ∼ Dsim(x, b) := α Poisson (φ(x, b)) + e. (5)
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Note that the quantities x and b play here the role of the unknown learnable parameters

to be optimised, while we assume that α > 0, the physical process φ(·, ·) and the variance

σ2 characterising the additive noise component e are known.

3. The inverse problem formulation

Interpreting the given temporal sequence of T > 1 noisy, blurred and under-sampled

images {ytreal}
T
t=1 as the acquired T realisations of a random variable Yreal with an

unknown distribution Dreal, the distributional inverse problem formulation of the

problem reconstruction procedure thus reads:

given
{
ytreal

}T
t=1

find (x, b) ∈ Rn × Rm s.t. Dsim(x, b) ∼ Dreal (6)

where Dsim(x, b) is as in (5). From an optimisation perspective, we thus formulate

problem (6) as the minimisation of a suitable distance between Dsim(x, b) and Dreal

over x and b. Further additional and physically-consistent regularisation terms on

both x and b can be can be incorporated to stabilise the optimisation procedure and

eliminate potential solutions without any physical meaning. We thus consider the

general optimisation problem:

min
x∈Rn

≥0, b∈R
m
≥0

d(Dsim(x, b),Dreal) +R1(x) +R2(b), (7)

where the relevant distance d comparing Dsim(x, b) and Dreal and the assumptions on

x and b with the corresponding choice of R1 and R2 have to be specified, along with a

tailored optimisation algorithm for their computation.

3.1. Comparing distributions

3.1.1. `2 distance. The easiest way to compare Dsim(x, b) to Dreal is to compute

the difference between their empirical mean. In our modelling, we suppose that

both distributions are, up to some zero-mean Gaussian noise modelling, Poisson-

like distributions and, as such, characterised by their multidimensional parameter

corresponding both to their expected value and variance. For the simulated image

samples such parameter depends on the desired parameters x and b, but for the real

ones this is of course unknown. Given a batch of images, an unbiased estimate of

such value is given by the sample average ȳreal := 1
T

∑T
t=1 y

t
real. Denoting similarly

ȳsim(x, b) = 1
T

∑T
t=1 y

t
sim(x, b), we can thus choose:

d(Dsim(x, b),Dreal) = ‖E[Ysim(x, b)]− E[Yreal]‖2
2 ' ‖ȳsim(x, b)− ȳreal‖2

2. (8)

The advantage of this loss is that it can be computed explicitly. However, comparing

only two mean images is not very representative of the diversity in the data. A better

choice improving the amount of information carried out by (8) consists in comparing
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distributions using the mean `2 distance between individual samples drawn uniformly

from a batch B ⊂ {1, . . . , T} and the mean of the observed data, i.e.:

d(Dsim(x, b),Dreal) = E
[
‖Ysim(x, b)− E[Yreal]‖2

]
' 1

|B|
∑
t∈B

‖ytsim(x, b)− ȳreal‖2
2 (9)

where {ytsim(x, b)}t∈B being a set of realisations of the random variable Ysim(x, b).

3.1.2. From KL divergence to Wasserstein distance. Another way to compare two

probability distributions P1 and P2 absolutely continuous with respect to a measure

on Ω consists in computing their Kullback-Leibler (KL) divergence. In their vanilla

form, Generative Adversarial Networks (GANs) [11] rely in fact on the asymptotic

minimisation of a symmetrised version of such distance between Dsim and Dreal (the

Jensen-Shannon divergence). The direct minimisation of KL divergence is not possible

when the underlying densities are unknown (as it happens for Dreal). Moreover, even

in the case of known density functions, such minimisation is generally challenging due,

for instance, to the fact that the KL divergence is equal to infinity when one of the two

densities vanishes and/or when they have disjoint supports [2]. A more effective choice

motivated by the field of optimal transport relies on the minimisation of a different loss,

the 1-Wasserstein distance also called as earth-mover distance, see, e.g., [1] for a survey.

Its functional form reads:

W1(P1,P2) = inf
γ∈Π(P1,P2)

E(u,v)∼γ [‖u− v‖] , (10)

where Π(P1,P2) stands for the set of all joint distributions γ(x, y) with marginals equal to

P1 and P2, respectively. Such distance is well defined also for distributions with disjoint

support as it depends on the Euclidean distance between supports. The W1 distance

is therefore better suited for comparing general distributions. In [2], it was to improve

their performance of GANs and celebrated under the name Wasserstein-GANs. Note,

that while it may not be possible to compute W1 explicitly, efficient strategies based

on suitable gradient penalties enforcing its minimisation can be defined [12]. In Section

4 we will consider such relaxations and incorporate them in the general optimisation

problem considered.

3.2. Choosing the regularisation terms

Recalling (7), we now provide some details on how to choose physically-consistent

regularisation terms R1 and R2 favouring a-priori regularity on the desired super-

resolved image x and on the background image b, respectively.

In fluorescence microscopy applications, the task often consists in seeking a super-

resolved image made of fine structures (typically, thin filaments of proteins, point-

like sources. . . ). Hence, we can safely assume that x ∈ Rn
≥0 has only a few non-

zero pixels corresponding to these structures. Enforcing sparsity corresponds, in a

rather natural way, to minimise the non-continuous, non-convex `0 pseudo-norm defined
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by ‖x‖0 := | {i ∈ {1, . . . , n} : xi 6= 0} |. The minimisation of the `0 pseudo-norm

is a NP-hard problem [20] for which several relaxations have been proposed in the

literature relying either on convex `1 minimisation [6] or on several non-convex but

continuous penalties, see [28] for a unified approach. For what follows, we will set

R1(x) = λ1‖x‖1, λ1 > 0 and deal with the non-smoothness associated to such choice by

means of an accelerated proximal-gradient algorithm [3]. The background term b ∈ Rm
≥0

is supposed to provide information on the photons emitted by out-of-focus sources as

well as other sources of noise including ambient light. It is therefore not likely to contain

high-frequency details, hence a smooth regularisation term, i.e. R2(b) = λ2
2
‖∇b‖2

2, λ2 > 0

can be considered, see [30] for analogous choices.

4. FluoGAN: formulation and optimisation details

We now describe how to combine generative adversarial learning approaches for

evaluating the distributional fit between Dsim(x, b) and Dreal. Generative Adversarial

Networks (GANs) were introduced firstly in [11] by Goodfellow et al. and have been

successfully applied to several inverse problems in imaging (see for example [13] for

Cryo-EM). Given a training set of images interpreted as the many realisations of a

multidimensional random variable with unknown probability density, GANs aim at

train two competing networks so that, at convergence, new samples from the unknown

distribution can be drawn. The idea generalises the standard approach for sampling from

a random variable of a given law by applying the inverse of its cumulative distribution

function to a random variable uniformly distributed in [0, 1]. In the case of GANs, the

inverse distribution function is modelled by a generator network G and it is trained until

the distribution of its outputs matches the one of the real data. To define such training

procedure, a loss function measuring how far data generated by the network are from

real ones is needed. Ideally, one would also like such loss to be nicely differentiable, in

order to allow network parameters update by means of gradient-based algorithms. Since

it may be hardly possible to find such a convenient loss function, the particularity of

GANs is to model it by means of a discriminator network D which has to decide whether

an input data is real (i.e. belongs to the training set) or simulated (it is an output of

the generator). Generator and discriminator are thus trained together but with opposed

goals. Since D acts essentially as classifier, it is standard to assume that its range is

within the interval [0, 1] with D(y) ≈ 1 denoting that y is drawn from Dreal with high

probability while D(y) ≈ 0 meaning that y is likely to be a sample from Dsim. The

training of the two networks is thus adversarial and can be modelled mathematically

as a min-max optimisation problem. The standard formulation of GANs in [11] is

done by enforcing a comparison between distributions in terms of the Jensen-Shannon

divergence, although, as seen in Section 3.1.2 other choices are possible.

Problem (7) is closely related to a GAN-type problem since it involves the

minimisation of a distance between distributions. However, two significant differences

can be highlighted:
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(i) given the physical model of fluorescence fluctuations (5), our knowledge of the

unknown random variable Ysim(x, b) depending on the two quantities of interest

x and b does not start from scratch. Inspired by previous works [13, 35], it thus

appears natural to consider (5) as a physically-inspired generator, i.e. a simulator of

the direct problem. The learnable parameters (x, b) ∈ Rn
≥0×Rm

≥0 of this “network”

are therefore not any longer parameters of a neural network, but the quantities of

interest we want to retrieve.

(ii) a GAN is usually trained to get, at convergence, a satisfying generator which is

used to create data distributed like the training ones. In our approach the goal is

different since we look into a way of producing fake blurred, noisy and undersampled

data by means of the given simulator, so that, when the Dsim(x, b) matches Dreal,

the corresponding x and b are the desired solutions of the inverse problem (6).

We call FluoGAN (Fluorescence image deconvolution microscopy via generative

adversarial learning) the proposed method, given the particular applicative context

considered here. It is therefore inspired by GANs but it has the goal of solving an

ill-posed inverse problems given a training set of measured images and by exploiting

the underlying physical knowledge. In Figure 2 we draw a comparison between how a

standard GAN works in comparison to FluoGAN. For what follows, we will denote

by Gx,b and Dϕ the physically-inspired generator and the discriminator network of

parameters (x, b) and ϕ, respectively.

4.1. Formulation as an optimisation problem

Inspired by GANs, we formulate an adversarial training process defined in terms of

two functions to be optimised alternatively and corresponding to the generator and the

discriminator, respectively. We thus consider the problem:

min
x,b

E
[
LGx,b

(x, b, ϕ)
]
, (11)

min
ϕ

E
[
LDϕ(x, b, ϕ)

]
. (12)

In such formulation:

• LGx,b
is a loss term enforcing equality in distribution between Dreal and Dsim(x, b)

in some sense. Recalling (9), we can choose for instance:

LGx,b
(x, b, ϕ) := ‖Ysim(x, b)− E[Yreal]‖2 −Dϕ(Ysim(x, b)). (13)

• LDϕ is a loss term enforcing the discriminator to be maximised (i.e. Dϕ ≈ 1) on real

images, while it should be minimised (Dϕ ≈ 0), in an adversarial manner w.r.t. to

what mentioned above for the generator loss, on simulated images. A natural choice

would thus be:

LDϕ(x, b, ϕ) := Dϕ(Ysim(x, b))−Dϕ(Yreal).
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Figure 2: Comparison between a standard GAN architecture (left) and FluoGAN

(right). In both cases the generator Gψ (or physically-inspired generator) is trained

in an adversarial manner against the discriminator Dϕ. FluoGAN can be considered as

a specialised GAN architecture where the additional knowledge available on the direct

problem enables to replace Gψ by a more interpretable physics-based function.

To avoid the well-known convergence instabilities of such adversarial training, it is

rather classical to further introduce a regularisation term called gradient penalty, to

promote gradient updates with norm close to 1, see [12]. This is in fact a penalised

formulation of the constraint on the discriminator to be 1-Lipschitz which was

observed to correspond to the minimisation of the 1-Wasserstein distance (10) by

duality arguments [2]. Note, that the gradient penalty term should be applied on

the domain where the discriminator is applied. To enforce that, it is therefore

applied on images Ymix uniformly chosen at random between simulated images and

real images as: Ymix(x, b) := ηYreal + (1 − η)Ysim(x, b) with η ∼ U([0, 1]), where

U([0, 1]) stands for the uniform distribution on [0, 1].
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Introducing now parameters (γ, λ, λ1, λ2) ∈ R4
≥0 and δ ∈ {0, 1} (we make this

choice to assess the effect of the presence of the discriminator term in the loss) and

incorporating in (11) the physical-inspired regularisation terms discussed in (3.2) we

thus consider regularised version of (11)-(12) which reads:

min
x∈Rn

≥0, b∈R
m
≥0

E
[γ

2
‖Ysim(x, b)− E[Yreal]‖2 − δDϕ(Ysim(x, b))

]
+ λ1||x||1 +

λ2

2
||∇b||2

(14)

min
ϕ∈Φ

E
[
Dϕ(Ysim(x, b))−Dϕ(Yreal) + λ (‖∇yDϕ(Ymix(x, b))‖ − 1)2] , (15)

where during optimisation an empirical estimation on batches B ⊂ {1, . . . , T} drawn

uniformly at random can be performed for approximating the expected values for both

Ysim and Yreal. Recalling (13), we observe that in (14) we are enforcing distributional

equality using (9) and a GAN discriminator with parameters to be trained via (15),

but, furthermore, we are enforcing physically-motivated regularisation. Practically,

and similarly as for GANs, problem (14) is minimised at each epoch for few (say, kG)

iterations, then, similarly, (15) is minimised for kD iterations by freezing the quantities

xkG , bkG previously computed. This alternate procedure continues till convergence. In

order to resort to gradient-based solvers for the problem (14), some details should be

given concerning the computation of gradients w.r.t. the variables x and b due to the

non-linear dependence between (x, b) and Ysim(x, b) through the Poisson model (6).

4.2. Computing gradients for a Poisson random variable

For optimising the loss function in (14) we need to compute quantities in the form

∇xE [f(Ysim(x, b))] and ∇b E [f(Ysim(x, b))] where f(Ysim(x, b)) = γ
2
‖Ysim(x, b)− ȳreal‖2−

δDϕ(Ysim(x, b)) and the dependence of Ysim(x, b) on both x and b is non-linear due to the

Poisson model (5). The gradient of the expected value of a Poisson random variable with

respect to its parameter(s) can be computed directly. Let z ∈ Rm
>0 and Q ∼ Poisson(z).

For every component i = 1, . . . ,m, qi is then a discrete random variable with univariate

Poisson density given by p(qi = k|zi) : k 7→ 1
k!
e−zizki , for k ∈ N. Let now vk be the

function defined by vk : t 7→ p(qi = k|t) = 1
k!
e−t tk. Clearly, vk is differentiable on R>0

for all k ∈ N. We distinguish two cases:

• For k ≥ 1 there holds:

v′k(t) =
−e−ttk

k!
+
e−tktk−1

k!
= vk−1(t)− vk(t) (16)

• For k = 0 we have:

v′0(t) = −e−t = −v0(t). (17)

For every i = 1, . . . ,m, let now be Ai ∈ R such that Ai > max(zi, 1). For x ∈ [0, Ai] we

notice that the following properties hold:

• Since the sequence (vk(x))k comes from a Poisson density, it has finite sum and for

all k ∈ N, vk is differentiable on [0, Ai].
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• For k ≥ 1 there holds v′k(x) = 1
k!
e−xxk−1(k − x) <

Ak−1
i

(k−1)!
. The sequence (v′k(x))k is

thus dominated by a summable sequence.

Let now f : Rm
>0 → R be a continuous and bounded function. By above, the

dominated convergence theorem applies hence it is possible to switch the derivation

with the integral (sum) signs to obtain:

∂

∂zi
E[f(q)] =

∂

∂zi

∞∑
k=0

E[f(q)|qi = k]p(qi = k|zi) =
∞∑
k=0

E[f(q)|qi = k]
∂

∂zi
p(qi = k|zi)

We can now use the recursion formulas (16)-(17) for v′k as follows:

∂

∂zi
E[f(q)] =

∞∑
k=0

E[f(q)|qi = k]v′k(zi)

= E[f(q)|qi = 0]v′0(zi) +
∞∑
k=1

E[f(q)|qi = k](vk−1(zi)− vk(zi))

= −E[f(q)|qi = 0]v0(zi)−
∞∑
k=1

E[f(q)|qi = k]vk(zi)

+
∞∑
k=0

E[f(q)|qi = k + 1]vk(zi)

A variable change is then applied. Denoting by 1i = {δi,j}nj=1 ∈ Rn (with δi,j being the

Dirac delta function) the vector of only zeros except a one in the i-th position, we have:

∂

∂zi
E[f(q)] = −

∞∑
k=0

E[f(q)|qi = k]p(k|zi) +
∞∑
k=0

E[f(q + 1i)|qi = k]p(qi = k|zi)

Finally, the i-th component of the gradient of expected value of f(q) can be simply

written as a finite difference :

∂

∂zi
E[f(q)] = E[f(q + 1i)− f(q)] (18)

This expression is easily interpreted: increments of zi correspond to increments of 1

of the component qi in expectation. This is in fact a consequence of the definition of

Poisson law, whose parameter equals its expected value.

Unlike other methods such as the one of score functions in [18], formula (18) can

deal with the case zi = 0. However, its application is computationally demanding:

computing the expectancy in (18) by empirical means of B realisations, requires in

fact B(m + 1) evaluations of f . To reduce computations, and by assuming that f is

differentiable, we can make however the following approximation:

f(q + 1i)− f(q) ' ∂f

∂qi
(q) (19)
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which can be plugged in (18) and estimated empirically by means of B samples:

∇zE[f(q)] ' E[∇qf(q)] '
B∑
t=1

∇qf(qt),

which provides a handy way of approximating the desired quantity.

Remark. The approximation (19) is valid only when ∂f
∂qi

does not change too much

between f(q) and f(q + 1i). If all the second derivatives of f are bounded, then the

second-order error of this approximation can be indeed bounded. However, in general

f may not be twice differentiable. In our context, this condition can thus be relaxed by

assuming a sufficiently fine quantisation compared to the variations of ∂f/∂qi.

4.3. Discriminator architecture

Inspired by [35], we use as a discriminator a standard convolutional neural network

Dϕ : Rn → [0, 1] with 3 main layers and 2 fully connected layers, as shown in Figure

3. Each convolutional layer is followed by a max pooling layer and a non-linear ReLU

(rectified linear unit) activation function. The number of channels increases and is

doubled after each convolutional layer. The last layer is a sigmoid function that returns

an output value in the range [0, 1]. This setup is a common choice for this type of

networks since it gives more capacity to the network while reducing the resolution of

the intermediate layers. However the number of convolutional layers is limited by the

input size and the size of the kernel. Indeed it is not possible to apply a convolutional

kernel on an image smaller than the kernel. For this reason there are only 3 convolutional

layers here. In practice and for the size of images considered, we have seen that the

chosen architecture gives enough capacity to the network. The discriminator is trained

to yield 0 given a simulated image as input and 1 in case the input is a real image.

However, exactly like the original GAN discriminator, it is used passively to improve

the quality of simulated images.

4.4. Optimisation algorithms

The concurrent minimisation problems (14) and (15) have different regularisation terms.

To train the generator, a FISTA type proximal gradient algorithm [3] with a stochastic

computation of the gradient (in the spirit of [23]) is considered to deal effectively

with the non-smoothness of the `1 norm and the non-negativity constraints. The

choice of the learning rates has critical importance to achieve convergence. If such

parameter is too large than the algorithm may completely diverge, while if it is too

small the convergence is too slow. Such parameter depends also on the proportion

of noise and signal in the data. More precisely there is a trade-off between the

sparsity constraint parameter and the learning rates. For our experiments, we choose

the learning rates manually, making sure to obtain a converging algorithm. We

tested also backtracking strategies to automatise this choice. In practice, however,
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Figure 3: Discriminator architecture

the constant values chosen here after empirical tuning seem to be general enough

to process all the different kinds of data we present in our results without any

change. For the discriminator loss in (12), we do not have the same differentiability

problem and the choice of the corresponding learning rate is not data-constrained.

B 32

τϕ 10−6

τx 1

τb 1

Table 1: Optimisation pa-

rameters.

To perform such optimisation, we thus used stochastic

ADAM algorithm, which is a common choice to train a

neural network of the form described in Section 4.3. In

Table 1 we report the algorithmic parameters (batch size

B for ADAM, learning rate τϕ for the optimisation of (15)

and initial learning rates τx and τb for the optimisation in

(14)) used in the experiments below. Note that due to the

use of backtracking, a possible overestimation of both τx
and τb can be corrected along the iterations.

5. Numerical results

The proposed method is applied to three different types of data in order to evaluate the

performance of FluoGAN and to compare it with state-of-the-art approaches, namely

COL0RME [32, 30] and SRRF [14]. We first use synthetic data (see section 5.1) by

simulating standard microscopic data acquired using conventional fluctuating/blinking

fluorophores. This type of data is useful because it allows us to access the true signal

and evaluate the reconstruction quantitatively. Next, we apply FluoGAN on images

of a phantom sample with known structure acquired by a real fluorescence microscope.

The results are presented in section 5.2. Finally, for a more difficult reconstruction,

we applied FluoGAN on images of a real biological sample and more specifically of the

unicellular algae Ostreopsis cf. Ovata, acquired by an epifluorescent microscope (see

Section 5.3).
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schema.png

Figure 4: Spatial structure of simulated/real calibrated sample (ARGO-CR slide,

Argolight)

5.1. A simulated ARGO-CR-type validation dataset

We started by applying FluoGAN to synthetic images for simple reconstruction quality

evaluation. The synthetic images have been manually generated after considering

parameters of the microscope configuration as well as properties of the sample (e.g.

fluctuation behaviour, out-of-focus fluorescence, etc.). The spatial pattern used is shown

in Figure 4 and is similar to the pattern of a calibrated sample ARGO-CR (Argolight,

Pessac, France). To be more precise, the pattern used consists of 14 sets of parallel lines

of 100nm width. The separation distance d (center-to-center distance) between the two

middle lines of each set is gradually increasing with a rate of 30nm. The knowledge of

these details allows us to exactly quantity the resolution level reached by each approach.

For this first experiment, we simulate the temporal fluctuations using the Poisson

model in (3) and make a video of 500 frames, assuming a frame rate of 100 frames per

second (fps) to avoid photobleaching. The pixel size is equal to 100nm while the full

width at half maximum (FWHM) of the PSF is 324nm. A spatially varying background

is added to simulate the presence of the out-of-focus fluorescent molecules and an average

bleaching time (i.e. time which the fluorophore stays emissive) of 20s has been used.

Reconstructions of the simulated diffraction-limited data are available for the FluoGAN,

COL0RME ([32, 30]) and SRRF [14] methods in Figure 5, using a super-resolution

factor L = 6 for all three approaches. In the method COLORME [32, 30] we use for this
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Figure 5: Numerical results on simulated dataset with zooms, with enhanced contrast

for better visualization. The separation distance d, used to measure the resolution, is

given for each set of lines. The FWHM of the PSF in this experiment is equal to 324nm.

experiment the `1-norm penalty. Regarding the method SRRF, we make use the freely

available Fiji plugin ([14]). Especially, for the temporal analysis of the radiality image

sequence we are using the auto-correlation analysis similar to the one used in [8]. From

the reconstruction shown in Figure 5, it is clear that the proposed method achieves

better results than both COL0RME and SRRF. FluoGAN is able to reconstruct two

parallel lines with separation distance of 120nm between their centers or only 20nm

between their closest edges (given that the with of the lines is 100nm). COL0RME is

more resolutive than SRRF, achieving a resolution of 80−110nm computed as the ability

to reconstruct two lines with closest edge-to-edge distance of such value, while SRRF

reaches a resolution of around 200nm measured in the same way. Finally, FluoGAN
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and COL0RME more than SRRF estimate real intensity values, while SRRF preserves

better the ”continuous” structure of the sample.

5.2. Real ARGO-CR dataset

In the second experiment, we consider images of a ARGO-CR calibrated sample acquired

by an epifluorescence microscope. Images were acquired on an AxioObserver Z1 (Zeiss,

Germany) with 63x/1.15W Korr LD CApochromat objective, ORCA Flash 4.0 camera

(Hamamatsu, Japan), 540570nm LED excitation and 581619nm emission filter. The

spatial pattern is similar to the one used in our simulated data, with the distance between

the two middle filaments of each set increasing by 30nm and varying from 0 to 390nm (see

Figure 4 for a graphical representation). In this second example the resolution reached

by the methods can be estimated under real conditions. Only FluoGAN and SRRF are

applied to these data, as due to a slight sample shift during acquisition, these data are

not adaptable for COL0RME, which is based on the estimation of temporal covariance

matrices. The pixel size of the sCMOS camera used is equal to 103nm, while the FWHM

of the PSF is estimated to be 318nm. Only 500 images were acquired with a frame rate

of 10fps, i.e. an acquisition time of less than 1 minute. For the reconstruction, a super-

resolution factor L = 6 was used for both methods. For FluoGAN, the 500 acquired

images constituted the training set while 5000 iterations were performed in order to

obtain the reconstruction presented in Figure 6. Compared to SRRF, FluoGAN achieves

significantly better resolution levels. Structures reconstructed by FluoGAN are a bit

thinner than real ones; this is the reason why it is able to separate filaments that are

slightly overlapping, i.e. when the centre-to-centre distance is equal to 60nm.

We then tested the performance of FluoGAN with (δ = 1) and without (δ = 0)

the presence of the discriminator in problem (14) to assess how important is role is

in the overall estimation process. The two results are available in Figure 7. We

observed that even if the `2 distance (9) allows to recover the main pattern, the explicit

presence of the discriminator significantly improves the reconstruction. The result with

no discriminator can nonetheless be used as an educated guess for the initialisation of

FluoGAN. In Figure 8 we provide a schema assessing the reconstrution precision and

the resolution achieved in both cases. We note that without discriminator the distance

between filaments reconstructed by FluoGAN is systematically under-estimated. The

discriminator plays here the double role of both allowing the separation of filaments with

120 nm resolution and of improving the reconstruction precision for all filaments. In

Table 2 the computational costs required to run FluoGAN on image stacks of different

sizes with/without the discriminator are reported.

In Figure 9 we report the convergence graphs along the iterations. Unlike other

optimisation problems, it is difficult to visualise convergence since simulator and

discriminator have adverse goals and the difficulty is to maintain both in competition

preventing one from overtaking the other.
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Figure 6: Numerical results for ARGO-CR data with zooms. The distance d is given

for each set of lines. The FWHM of the PSF is estimated to be equal to 270nm.
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(a) FluoGAN δ = 1 (b) FluoGAN δ = 0

Figure 7: Comparison of FluoGAN results with (left, δ = 1) and without (right δ = 0)

discriminator. Since the discriminator relies on covolutionnal layers, it improves first

the centre of the image. Due to the boundary effects related to the width of convolution

kernels, boundary regions are not compared.
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input images size FluoGAN (δ = 1) FluoGAN (δ = 0)

50× 50 10 min 3 min

50× 266 60 min 20 min

Table 2: Computation time for 5000 iterations of FluoGAN on a small GPU Nvidia

GeForce GTX 950M from 2015 with 2GB of dedicated memory.

(a) FluoGAN, δ = 1 (b) FluoGAN, δ = 0

Figure 8: Distances between filaments in Figure 6 reconstructed by FluoGAN, with

(left) and without (right) discriminator. Each coloured 1D profile corresponds to the

y-averaged intensity of the reconstructed image plotted along the x-axis (excluding

boundaries). Taking the left-most peak as a reference, the red dotted lines denote the

theoretical location of the filament to reconstruct, while the blue dotted lines is placed

in correspondence of the maximum value of the filament reconstructed by FluoGAN.

5.3. Ostreopsis images

To test FluoGAN on challenging real biological samples, we considered a dataset of the

unicellular alga Ostreopsis cf. Ovata (see Figure 10a). Such dataset combines several

difficulties. First, it shows a 20m thick sample which can exhibit a strong out-of-focus

signal which is clearly the case here for the microtubules staining as they form a cortical

structure all around the alga. Another difficulty is the reduced transparency and none-

negligible turbidity, which induces PSF distortion. Due to those complications, confocal

microscopes cannot acquire through the whole thickness of the alga. To avoid this,

we considered epifluorescence acquisitions. The flexibility and the data-adaptivity of

FluoGAN allows to deal with such data, whereby other approaches fail.

For the experimental design, microtubules were stained with TRITC dye, but

also with Hoechst for DNA (for details see [33]). We focused on the tip of a

microtubule bundle at the ventral pole (see Figure 10b). Epifluorescence images have

been acquired with the same protocol as for ARGO-SR sample (see details in section 5.2).
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Figure 9: Top left : sum of pixel values (i.e., total photon count) VS. iteration number.

After about 1000 iterations the sum of pixels for simulated images (ysim) equals the

sum of pixels for real input images (yreal). Top right and bottom left : balance

between simulator and discriminator training. Top right : contributions to generator

loss function : discriminator distance, `2 distance, regularizations on b and x. Bottom

left : discriminator loss function (orange) including the gradient penalty regularization

(blue). Bottom right : super resolution image x and reconstructed background b.

Sensor’s pixel size 103nm

FWHM of the PSF (estimated) 325nm

Undersampling rate 6

Iteration number 1000

Number of images in training set 500

Table 3: Parameters used for Ostreopsis Fig. 10.

The reconstruction performed by

FluoGAN is shown in Figure 10c,

while the parameters used are

reported in Table 3. We compare

the results obtained by FluoGAN

with the ones obtained by SRRF.

Regarding SRRF and differently

from the two previous experiments, gradient weighting is performed, as suggested by

the authors, to deal with the low signal-to-noise ratio (SNR) regime. The reconstruction

obtained by SRRF is reported in 10d. Compared to the solution obtained by SRRF,

the FluoGAN result shows less background artefacts and promotes better continuity
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of filaments and intensity reconstruction. Furthermore, the reconstruction obtained by

FluoGAN reduces the appearance of ghost filaments.

(a) 3D image of Ostreopsis with micro-

tubules (white) and DNA (magenta).

(b) Low-resolution epifluorescent image

(sample average) of the microtubules tip.

(c) FluoGAN reconstruction of Fig. 10b. (d) SRRF reconstruction of Fig. 10b.

Figure 10: Real Ostreopsis cf Ovata data.

6. Conclusions

We presented FluoGAN, a novel framework for fluctuation-based super-resolution

fluorescence microscopy combining the physical modelling of optical system with

data-driven adversarial learning. Hand-crafted (often sparsity-based) regularisation

approaches formulate the super-resolution inverse problems by means of tailored

regularisation terms, thus requiring time-consuming model and parameter tuning.

On the other hand, FluoGAN computes the desired super-resolved image with high

precision along with a background image containing out-of-focus molecule and ambient

fluorophores by comparing, in a suitable sense, the empirical distribution of observed

data with the one of samples generated by a physically-grounded simulator. Due to its

alternate minimisation formulation, the proposed approach is flexible as it allows to the
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possible introduction of further regularisation terms such as sparsity, smoothness and

non-negativity constraints. In comparison to standard GANs and inspired by recent

work on Cryo-EM [13], FluoGAN replaces the model-blind generator network with a

simulator model encoding biophysical expertise in its structure and having as learnable

parameters the desired quantities of interest. On simulated data, the proposed approach

allows to achieve better resolutions than standard model-based and state-of-the-art

approaches. On real data, we first proved the efficiency of our algorithm on a 2D

phantom, then we validated FluoGAN on real challenging Ostreopsis data. Future work

should be addressed towards the proof of rigorous reconstruction guarantees certifying

the quality of the solution at convergence, which, at the moment, remains empirical.

Another prospective part is to implement FluoGAN to improve resolution for full 3D

super-resolution problems.The FluoGAN code is available on GitHub at the address

https://github.com/cmayeul/FluoGAN.
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