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Abstract. We propose FluoGAN, an unsupervised hybrid approach combining the

physical modelling of fluorescence microscopy timelapse acquisitions with a Generative

Adversarial Network (GAN) for the problem of image deconvolution. Differently from

standard approaches combining a least-square data fitting term based on one (long-

time exposure) image with sparsity-promoting regularisation terms, FluoGAN relies

on a data fitting term defined as a distribution distance between the fluctuating

observed timelapse (short-time exposure images) and the generative model. The

distance between these two distributions is computed using adversarial training of

two competing architectures: a physics-inspired generator simulating the fluctuation

behaviour as a Poisson process of the observed images combined with blur and

undersampling, and a standard convolutional discriminator. FluoGAN is a fully

unsupervised approach requiring only a fluctuating sequence of blurred, undersampled

and noisy images of the sample of interest as input and it can be complemented

with prior knowledge on the desired solution such as sparsity, non-negativity etc.

After having described in depth the main ideas behind FluoGAN, we formulate the

corresponding optimisation problem and report several results on a simulated and real

phantoms used by microscopy engineers to quantitatively assess spatial resolution.

The comparison of FluoGAN with state-of-the-art methodologies shows unprecedented

resolution and allows for high-precision reconstruction of very fine structures in

challenging real Ostreopsis cf Ovata data.

1. Introduction

The physical limit imposed by light diffraction in the context of light microscopy still

poses a major challenge for the accurate reconstruction and analysis of small samples.

Structures closer to such barrier (around 250 nm in the lateral x-y plane) cannot be

distinguished. Since several biological quantities of interests (such as viruses, proteins

and molecules) have size significantly smaller than this limit, it is thus crucial to

overcome this limit by means of advanced image reconstruction approaches.



Fluorescence image deconvolution microscopy via GANs (FluoGAN) 2

The reconstruction of a sample of interest from its blurred, noisy and under-sampled

data is an ill-posed inverse problem for which numerous approaches lying at the interface

between applied mathematics and microscopy imaging have been proposed. In this

paper, we are interested in fluorescence microscopy, which in a nutshell, uses special

proteins, called fluorescent dyes or fluorophores. They bind to the molecule of interest

in the sample and, when exposed to light excitation at specific wavelengths, emit photons

which are then captured by CCD or sCMOS camera or photo-multiplicator sensor after

passing through special lenses and optical devices. The resolution of the captured image

is then limited due to diffraction of the light. The diffraction (Airy) pattern acts

as a convolution operator (the Point Spread Function PSF) on the emitters giving a

blurred observed image. The standard deconvolution/super-resolution inverse problem

thus consists in retrieving the spatial structure of the sample under observation by

knowing the Point Spread Function (PSF) of the system and, possibly, some statistical

prior information on the noise in the system. More sophisticated approaches aim at

estimating partially or entirely the PSF and the noise moments, together with the

desired solution and thus formulate the task as a blind inverse problem. In this work,

we assume to know (up to a sufficient accuracy) the PSF of the microscope which is

typically modelled as a Gaussian function or as an Airy pattern and the statistic of the

noise. When formulated in a discrete setting, the deconvolution/super-resolution inverse

problem further introduces a mismatch between the 2D spatial grid where measured data

lie (often called the coarse grid) and the one where we look for solutions (the fine grid),

where the difference in size is quantified by a super-resolution factor L ∈ N, L > 1

for both the horizontal and vertical direction. In mathematical terms, for a given

blurred, noisy and undersampled vectorised image y ∈ Rm and given H ∈ Rm×n to

be the circulant-block-circulant matrix corresponding to the 2D PSF of the system

and assuming that the noise is additive and white with Gaussian distribution, i.e.

e ∼ N (0, σ2I) with I ∈ Rm×m being the identity matrix, the inverse problem reads:

find (x, b) s.t. y = UHx+ e+ b, (1)

where the operator U ∈ Rm×n with n = L2m is an under-sampling operator mapping

images from the fine to the coarse grid and b ∈ Rm
≥0 is an unknown and possibly space-

variant background term. Model-based regularisation approaches for (1) formulate the

task as a minimisation problem where a sparsity-promoting term (in the image space

or w.r.t. some redundant basis) is combined with a least-square data fidelity. Standard

compressed-sensing techniques rely on the use of the ℓ1 norm as regulariser possibly

combined with redundant representation techniques [34]. In later years, however, non-

convex regularisation approaches relying on the minimisation of continuous relaxations

of the ℓ0 pseudo-norm have also been considered [27, 28]. In the case of dense samples

with high concentration of fluorophores, however, the use of sparsity appear however

not suited.

In order to have super-resolution and not only extrapolation due to a regularising

additional term, additive information from the sample must be provided. The interplay
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between the applied mathematical approach and the microscopy imaging community

for solving (1) in such challenging scenarios thus favoured the design of sophisticated

acquisition and sample-preparation techniques simplifying the problem in some way. A

popular class of such techniques achieving a resolution of about 20 nm is the family

of Single Molecule Localisation Microscopy (SMLM) [25], for which the idea is to

sequentially activate only a small number of fluorophores at a time so that their

detection can be made with high precision. A super-resolved image of the sample

of interest can thus be found by simply combining together the reconstructed sparse

images. Mathematically, such problem can be cast in the form (1) (see [18] for

more complicated forward models) and its regularised version can be solved at each

acquisition time point. Popular SMLM approaches are, for instance PALM (Photo-

Activated Localisation Microscopy) [4] and STORM (STochastic Optical Reconstruction

Microscopy) [24]. From a practical viewpoint, the main disadvantage in using SMLM

techniques is the fact that they require fluorophores with specific chemical and physical

characteristics [17] as well as a significant number (typically of the order of thousands) of

sequential activations and sparse acquisitions which may significantly harm the sample

under observation. Furthermore, for a computational viewpoint, a (typically non-

smooth and non-convex) regularised problem has to be solved for each measured frame,

which is of course very time consuming in large-scale scenarios. A rather recent approach

proposed in the field to mitigate such demanding requirements consists in exploiting,

rather than that sparse sequential activation of specific fluorophores over time, the

independent stochastic intensity fluctuations of common fluorescence molecules. By

acquiring a video of stochastichlly fluctuating images with an acquisition rate in the

range 20-100 images/s with conventional microscopes and exploiting in different ways the

independence of fluctuations between emitters, significant improvements in resolution

have been obtained. It is the case, for instance, of SOFI (Super-resolution Optical

Fluctuation Imaging) [8] where temporal information are integrated by computing a

sample covariance image where, by independence, the PSF appears to be squared so

that a reduction of a factor
√
2 is obtained on the width of the PSF. Higher-order

statistics can also be computed [10]. A similar approach reducing the computational

costs of such covariance calculation is SCORE (Spatial COvariance REconstructive)

[7] where only pixels with relevant contributions to such calculation are computed. A

different class of methods, still taking sequences of fluctuating images as an input but

based on a different type of analysis is SRRF (Super-Resolution Radial Fluctuations)

[15] where degrees of symmetry are calculated at each frame. The mathematical

modelling of these problems relies on model-based sparse regularisation approaches.

In particular, in [26] the authors propose to formulate the problem (1) in the covariance

domain using an ℓ1 regularisation and call it sparsity-based super-resolution correlation

microscopy (SPARCOM). In recent works [32, 30] the authors improve upon the artefacts

created by SPARCOM on noisy simulated and real data, by considering a non-convex

continuous exact approximation of the ℓ0 pseudo-norm previously proposed in [27, 9]

and incorporating a further background and noise optimisation step within a two-step
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procedure allowing also for intensity estimation. Such approach, called COL0RME

(COvariance-based ℓ0 super-Resolution Microscopy with intensity Estimation), has been

also applied to 3D image data in [31] showing high-quality reconstructions and high

applicability in common scenarios. A major limitation of SPARCOM and COL0RME

when applied to challenging contexts is that, due to their mathematical structure, they

tend to promote point-like structures also in the case of continuous samples. Moreover,

they appear quite sensitive to the choice of model hyperparameters, which limits their

actual applicability to some extent.

We propose in this work an hybrid strategy where we keep the protocol of acquiring

a video of short-time exposure images, and we use this fluctuating fluorescence image

video in an optimisation procedure where the data term is given by a distance between

distributions, one given by the observed video considered as samples of the observed

(real) distribution and one is given by the physical model of stochastic fluctuations. This

distance and optimisation procedure is realised by a Generative Adversarial Network

(GAN) architecture where the generator network is replaced by the generative physical

model. GANs [12] are nowadays very powerful tools in the field of imaging. They aim at

estimating the unknown distribution of a class of images given as input by the adversarial

training of two different networks: the former (the generator) aiming at creating images

with similar properties to the given ones and the latter (the discriminator) which,

during training, distinguishes whether a generated image is a fake one or not, so that

convergence is achieved when such distinction is not possible anymore. There is a

vast literature on the use of GANs in imaging: we recall here some nowadays pretty

established strategies for improving training stability [2, 13] and some others more

focused on applications to learning the distribution of human faces [16] or medical

data [20]. In their vanilla formulation, GANs do not incorporate in their structure

any physical modelling, their performance being characterised only by the (often not

interpretable) parameters of the generator and the discriminator. Recently, a hybrid

approach allowing for the use of a physically-inspired simulator in place of the generator

has been proposed for the problem of volume reconstruction from noisy projections

in Cryo Electron Microscopy (Cryo-EM) and called CryoGAN [14]. In CryoGAN the

volume of interest becomes the learnable parameter to estimate itself upon an adversarial

training where, given noisy projections {yi}i, the current estimate of the desired volume

is passed through the simulator to obtain simulated noisy projections
{
ysimk

}
k
being

‘close enough’ to the given data in a distributional sense. The approach is proved to

be very effective, allowing for a very efficient volume estimation using a simple linear

physical model which allows to derive reconstruction guarantees. A similar approach

is used in [35] for multi-segment reconstruction. Note that in the context of super-

resolution microscopy, data-driven methods relying on algorithmic unrolling [5] and

convolutional neural networks [22, 29] have been proposed. Up to our knowledge, no

generative approaches have been considered in this field.
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Figure 1: Schema of FluoGAN: Given a temporal sequence of blurred, undersampled and

noisy images (left) and a simulator of the fluorescence fluctuation behaviour and optical

system (right), represented here by G, FluoGAN compare the empirical distribution of

the real images with the output distribution of the samples generated by G. Then, it

computes gradients of a suitable loss functional minimising such distance and updates

accordingly the simulator inputs. At convergence, the approach outputs the super-

resolved image x and the background image b.

Contribution and structure of the paper. We propose an hybrid approach combining

physical modelling with data-driven learning and propose FluoGAN (Fluorescent image

deconvolution/super-resolution microscopy via GAN learning), a novel approach where

in the usual structure of a GAN, the generator network is replaced by a non-linear

model of intensity fluctuation and light diffraction. From a given set of blurred, under-

sampled and noisy images where the noise models stochastic fluctuations of intensities,

the method estimates one single high-resolution image of the sample of interest by the

adversarial update of the simulator and the discriminator network parameters, see Figure

1. The paper is structured as followed: in Section 2 we detail the physical model of video

image acquisition used as simulator, then, in Section 3 we revise the GAN formulation

from an optimisation perspective while in Section 4 we describe in detail the modelling

and optimisation aspects of the proposed FluoGAN approach. Numerical results are

reported in Section 5: the proposed method is validated first on realistic simulated

spatial patterns for assessing the resolution achieved, also in comparison to state-of-

the art approaches. Next, reconstructions computed from real data of a commercial

phantom acquired on standard microscopes and of the Ostreopsis cf Ovata alga are

reported. The proposed approach achieves notable improvement in resolution and

appears much more robust to noise perturbations and modelling errors, being effective
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also on challenging scenarios.

2. A non-linear model for stochastic fluctuations

We present in this section the simplified forward modelling used in the following as a

reference simulator mimicking the physical processes creating blur and noise – including

fluorophore fluctuations – in the observed image data. The fluorescence process is

a stochastic process which we model by means of a Poisson distribution. It can be

interpreted as the intensity (e.g., number of photons, whence the non-negativity) emitted

by a biological structure of interest, sampled on a fine grid of size n ∈ N. In [23, 11] a

different model for stochastic fluctuations was considered. Differently from our model,

the simulator proposed therein allows only for on-off switching of the fluorophores (so-

called blinking) and stochastic intensity fluctuations are included in the model only in

the form of noise. We believe that having a Poisson modelling is indeed more consistent

with the actual physical modelling of fluorescence, since adding this we are able model

the fluctuations of a sum of molecules that all lie in a pixel of the fine grid image x ∈ Rn
≥0

we want to recover. We thus assume that the fluctuations in time of an image x can be

modelled by Poisson(x), the notation Poisson(x) standing for the random vector drawn

from a multidimensional Poisson distribution with vector parameter x ≥ 0. These

Poisson variables are independent of each other (in time and space).

We now introduce the modelling of the optical device (i.e. microscope) considered.

From the sample to the sensor: blur, undersampling and background. Due to light

diffraction, the light emitted from the fluorescent sample is subject to blur. We model

it by means of a convolution with a 2D Gaussian PSF denoted by h ∈ Rk×k where k2

denotes the size of the support of the kernel and we endow it with periodic boundary

conditions. By linearity, we then represent the action of this kernel on the vectorised

image Poisson(x) by means of the block circulant with circulant block matrix H ∈ Rn×n.

The incident flux to the receiving sensor is then under-sampled to fit the size of the

sensor pixels which form a low-resolution (coarse) grid. We denote by m < n the size of

the coarse grid where the measured data lie and denote by L > 1 the super-resolution

factor along both the horizontal and vertical direction so that n = L2m. Mathematically,

as shown in Figure 2 we model such undersampling by means of a rectangular matrix

U ∈ Rm×n whose entries are simply 1’s and 0’s and acts by summing the intensity

values defined on L× L patches (blue grid) of the image x so as to produce one single

coarse pixel (red grid) in the measurement space. This process has the physical meaning

of summing up the number of photons emitted by the unknown sample x within the

measurement space, thus, however, preserving the total amount.

The photons captured by the sensor do not come all from the fluorescent molecules

we want to observe. Some of them are produced by out-of-focus emitters or even from

outside the sample. Depending on the acquisition conditions, their proportion can be in
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Figure 2: An example of the fine grid (blue) and the course grid (red) with L = 4.

fact relatively high. We include them in the model using a non-constant non-negative

vector of low-resolution entries denoted by b ∈ Rm
≥0.

Overall, we thus have that the blurred, undersampled and subject to background

flux arriving at the receiving sensor is (proportional to) :

ϕ(Poisson(x), b) := UHPoisson(x) + b ∈ Rm. (2)

Recording noise. We have now to simulate the stochastic behaviour of the recording

process. Typically, each pixel records only a few dozens of photons per image.

The photon absorption can be described as a counting process with the following

characteristics :

(i) It is possible to find an interval short enough so that the probability to absorb more

than one photon is negligible

(ii) The number of photons absorbed during disjoint time intervals are independent;

(iii) During a short time interval the probability to absorb a photon is proportional both

to the interval duration and to the incident flux.

Because of these properties, this counting process can be mathematically modelled as

a Poisson counting process. In particular, for a given image, the number of photons

captured by one pixel during the acquisition time can be simulated by random sampling

a Poisson variable whose expected value is proportional to the flux at the sensor, i.e. at

(2). The variance of this variable depends nevertheless on the gain α > 0 of the sensor,

i.e. the amplification factor applied to the image by the image sensor, which is a useful

parameter depending on the specific setup considered which can be easily incorporated

in the model. Last but not least, a further term describing electronic noise should be

added as in (1). To do so, we thus consider a realisation a multidimensional random

vector with Gaussian distribution of zero mean and covariance matrix σ2I, e ∼ N (0, σ2I).

Collecting altogether, we can then define the following forward observation model

y = α Poisson (ϕ(Poisson(x), b)) + e. (3)

This model has been used in fact to generate simulated data in the experimental section

5.1. However, due to the presence of the double Poisson distributions, it is difficult to

handle in computations. To alleviate such limitation, we will make use of the following

approximation model:

y = α Poisson (ϕ(x, b)) + e, (4)
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which we claim to provide an acceptable approximation in the estimation process.

Fluctuations of fluorophores are in fact passed through the PSF and undersampling

operations, which both are processes smoothing out the fluctuations themselves. The

Poisson noise model then adds further Poisson fluctuations. We thus use (4) in the

estimation process.

Summarising, the setup is composed of generated images which are the realisations

ytsim, t = 1, . . . , T of the multi-variate random variable Ysim following a distribution

Dsim(x, b) given by (4) with quantities x and b that will play the role of learnable

parameters to be improved within the simulator so as to generate samples closer and

closer to the measured data. More precisely, we have:

Ysim(x, b) ∼ Dsim(x, b) := α Poisson (ϕ(x, b)) + e. (5)

From an experimental viewpoint, we remark that to avoid sample deterioration, the

laser power is usually kept as low as possible. Furthermore, since the sample may move

and fluorescent molecules progressively lose they capability to fluoresce when exposed to

light stimulation for long time (photobleaching), the acquisition duration for each image

is typically limited (20-100 images/s).

3. The inverse problem formulation

Interpreting the given temporal sequence of T > 1 noisy, blurred and undersampled

images {ytreal}
T
t=1 as the acquired T realisations of an unknown distribution Dreal, the

data-driven inverse problem formulation of the problem thus reads:

given
{
ytreal

}T
t=1

find (x, b) ∈ Rn × Rm s.t. Dreal ∼ Dsim(x, b) (6)

where Dsim(x, b) is defined in (5). In other words, given the measurements {ytreal}
T
t=1,

we aim for estimating learnable parameters (x, b) such that the distribution Dsim(x, b)

is as close as possible (in a sense which has to be specified) to the unknown

underlying distribution Dreal so that samples drawn by both distributions are ‘close’ in

a distributional sense. Note that since the problem is formulated in a discrete setting,

the choice of n (or, similarly, of the super-resolution factor L) is crucial as it determines

the maximum resolution level we want to reach.

Since the sensor has limited resolution, information loss on the precise location

of the sources is observed: problem (6) is thus under-determined. Similarly as in

[8, 26, 32, 30] the analysis of stochastic fluctuations will be used to estimate a super-

resolved image x where fluorescent molecules too close to each other are better resolved.

Regarding the estimation of the background term b ∈ Rm
≥0, we recall that this includes

out-of-focus fluorescent molecules but also different unmodelled errors , and interferences

which may make the reconstruction process even more unstable. As previously shown

[32, 30], the estimation of this further ingredient significantly improves the quality of the

reconstruction in comparison to competing approaches [26] providing only an estimate

of the super-resolved image.
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We can thus aim at solving (6) by formulating the problem from an optimisation

perspective as the minimisation of a suitable distance between Dsim(x, b) and Dreal over

x and b. Due to ill-posedness, we may further incorporate additional and physically-

consistent assumptions on the desired signal x and the background b, which stabilise

the optimisation and eliminate potential solutions without physical meaning. We thus

consider the following optimisation problem:

min
x∈Rn

≥0, b∈R
m
≥0

d(Dsim(x, b),Dreal) +R1(x) +R2(b), (7)

where the relevant distance d comparing Dsim(x, b) and Dreal and the assumptions on

x and b with the corresponding choice of R1 and R2 have to be specified, along with a

tailored optimisation algorithm.

3.1. Comparing distributions

3.1.1. ℓ2 distance. The easiest way to compare Dsim(x, b) to Dreal is to compute the

difference between their mean. In our modelling, we suppose that both distributions

are, up to some zero-mean Gaussian noise modelling, Poisson-like distributions and, as

such, characterised by their multidimensional parameter being both the expected value

and the variance. For the simulated image samples such parameter is thus given by

ϕ(x, b) and thus depend on the desired parameters x and b, but for the real ones this

is of course unknown. Given a batch of images, an unbiased estimate of such value is

given nonetheless by the sample average ȳreal :=
1
T

∑T
t=1 y

t
real. Denoting similarly by

ȳsim(x, b) =
1
T

∑T
t=1 y

t
sim(x, b), we can choose

d(Dsim(x, b),Dreal) = ∥E[Ysim]− E[Yreal]∥22 ≃ ∥ȳsim(x, b)− ȳreal∥22, (8)

where Yreal is the multidimensional random variable associated to the observed samples.

Among the many other distances that could be here considered (see the following

sections) the advantage of this choice is that it can be computed explicitly, so its

minimisation is straightforward. Of course it has the major limitation of comparing only

two mean images instead of the full datasets. So it does not exploit all the information

contained in the data. As we will see in the following, this method is in nonetheless

able to recover a good deconvolved version of the image but seems to lack precision to

achieve super-resolution.

It is possible to slightly improve the amount of information carried out by (8)

and compare distributions by computing the mean ℓ2 distance between images, i.e. by

choosing:

d(Dsim(x, b),Dreal) =
1

T

T∑
t=1

∥ytsim − ytreal∥22. (9)

3.1.2. From KL divergence to Wasserstein distance. The use of the Kullback-Leibler

divergence to compare two probability distributions is rather classical. For two
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absolutely continuous probability distributions P1 and P2 with respect to a measure

on Ω and with densities p1 and p2, such quantity is defined by:

KL(P1,P2) =

∫
Ω

log

(
p1(w)

p2(w)

)
p2(w)dµ(w).

where µ is a measure defined on Ω. In their vanilla form, Generative Adversarial

Networks (GANs) [12] rely also on the asymptotic minimisation of such quantity to

minimise the distance between Dsim and Dreal. However, it is often not possible to

compute this divergence explicitly in cases when the two distributions have disjoint

support and/or when either of the two densities is unknwon, as it happens in our case

for Dreal. When it is possible, moreover, such quantity turns out to be often infinity [2].

Another candidate which allows to overcome such limitations takes its functional

form from the field of optimal transport with the so-called 1-Wasserstein functional also

called as earth-mover distance, see, e.g., [1] a survey. Its functional form reads:

W1(P1,P2) = inf
γ∈Π(P1,P2)

E(u,v)∼γ [∥u− v∥] , (10)

where Π(P1,P2) stands for the set of all joint distributions γ(x, y) with marginals equal

to P1 and P2, respectively. Intuitively, the W1 distance can be understood as the cost

corresponding to an optimal transport plan a worker should do to transform one earth

heap into another with different position or shape. Contrarily to the KL divergence,

such distance is well defined also for distributions with disjoint support as it depends

on the Euclidean distance between supports. The W1 distance is therefore particularly

suited for comparing distributions, as it was showed in [2]. Note, however, that is in

general not possible to compute this distance explicitly although it is sometimes possible

to define relaxed optimisation problems corresponding to the minimisation of W1 [13].

This point is discussed in section 4 below.

3.2. Choosing physically-consistent regularisation terms

Recalling (7), it is now beneficial to provide some rationale on how to choose the

regularisation terms R1 and R2 favouring a-priori regulartity on the desired super-

resolved image x and on the background image b, respectively.

Since in our applications we typically seek a super-resolved image made of fine

structures (typically, filaments of proteins, point-like sources), we can saftely assume

that x has only a few non-zero pixels corresponding to these structures. Enforcing

sparsity corresponds, in a rather natural way, to minimise the non-continuous, non-

convex ℓ0 pseudo-norm defined by ∥x∥0 := | {i ∈ {1, . . . , n} : xi ̸= 0} |. Such approach is

known to be NP-hard [21], hence several relaxations have been proposed in the literature

relying either on convex ℓ1 minimisation [6] or on several non-convex but continuous

penalties, see [28] for a unified approach, among which the inferior limit is the so-

called CEL0 (continuous-exact relaxation penalty) [27]. For what follows, we will set
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R1(x) = λ1∥x∥1 and deal with the non-smoothness associated to such choice by means

of proximal-gradient algorithms, see, e.g. [3].

As far as the background b is concerned, such quantity is supposed to provide

information on the photons emitted by out-of-focus sources as well as other sources of

noise including ambient light. It is therefore not likely to contain high-frequency details.

A standard approach favouring its smoothness and its consistency with the surrounding

sample structures consists in choosing a gradient-smoothing term, i.e. R2(b) =
λ2
2
∥∇b∥22.

This is not atypical in applications. In previous work (e.g., [30]) it has been shown that

assuming a smooth background is indeed a reasonable assumption.

4. FluoGAN: a GAN-inspired approach for super-resolution fluorescence

microscopy

We choose a generative adversarial learning approach to combine distribution fit between

Dsim(x, b) and Dreal, with regularisation. Generative Adversarial Networks (GANs) were

introduced in firstly in [12] by Goodfellow et al. and have been successfully applied to

many different problems in imaging (see for example [14]). Given a training set of

images interpreted as the many realisations of a multidimensional random variable with

unknown probability density, GANs aim at train two competing networks so that, at

convergence, new samples from the unknown distribution can be drawn. The idea

generalises the standard approach for simulating sampling from a random variable of

a given law by which the inverse of its cumulative distribution function is applied to

a random variable uniformly distributed in [0, 1]. In the case of GANs, the inverse

distribution function is modelled by the generator network G and it is trained until the

distribution of its outputs cannot be distinguished by the one of the real data.

To complete such training a loss function is needed for measuring how far from

real data the ones generated by the network are. Ideally, one would also like such loss

to be nicely differentiable, in order to allow network parameters update by means of

gradient-based algorithms. Since it may be hardly possible to find such a convenient loss

function, the particularity of GANs is to model it by the discriminator network D which

has to decide whether an input data is real (i.e. belongs to the training set) or simulated

(it is an output of the generator). Generator and discriminator are thus trained together

but with opposed goals. Since D acts essentially as classifier, it is standard to assume

that its range is within the interval [0, 1] with D(y) ≈ 1 denoting that y is drawn from

the distribution of the training data with high probability while D(y) ≈ 0 meaning that

y is likely to be a sample created by the generator. The training of the two networks

is thus adversarial and can be modelled mathematically as a min-max optimisation

problem. The standard formulation of GANs in [12] is done by enforcing a comparison

between distributions in terms of the Jensen-Shannon divergence, although, as recalled

in Section 3.1.2 other choices are possible such as the Kullback-Leibler divergence and

the Wasserstein distance [2].

Recalling (7), we observe that this problem is closely related to a GAN-type problem
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since it involves the minimisation of a distance between distributions. However, two

significant differences have to be highlighted

(i) since we have formulated in (5) the physical model of fluorescence fluctuations, our

knowledge of the unknown random variable Y (x, b) depending on the two quantities

of interest x and b does not start from scratch. Instead of generator network and

inspired by previous works [14, 35], it thus appears natural to consider (5) as a

simulator of the direct problem. The input learnable parameters (x, b) ∈ Rn
≥0×Rm

≥0

of this “network” are not any longer parameters of a neural network, but the

quantities of interest we want to retrieve.

(ii) a GAN is usually trained to get, at convergence, a satisfying generator which is used

to create data distributed like the training ones. In our approach the goal is different

since we look into a way of producing fake blurred, noisy and undersampled data

by means of the given simulator, so that, when the empirical distribution of the

generated data matches the empirical one of given data, the corresponding input

parameters of the process are the super-resolved image x and the background image

b which are improved during the training process.

The proposed method, which we call FluoGAN given the particular context

considered here, is thus inspired by GANs but, similarly as for the case of CryoGAN

[14] has the goal of solving an ill-posed inverse problems given a large training set

of measured images and by exploiting the physical knowledge of the inverse problem

considered. In Figure 3 we draw a comparison between how a standard GAN works in

comparison to FluoGAN. For what follows, we will denote by Gx,b and Dφ the generator

and the discriminator networks of parameters (x, b) and φ respectively.

4.1. Formulation as an optimisation problem

Inspired by the GAN modelling, we formulate the adversarial training process as a

competing procedure defined in terms of two functions to be optimised alternatively

and corresponding to the generator and the discriminator, respectively. To maintain

the same notation as for GANs, we will denote in the following by Gx,b the physically-

inspired generator (i.e. the simulator) providing for a given input (x, b) an output

ysim being the realisation of the random variable Y (x, b) in (5). We thus consider the

problem:

min
x,b

E
[
LGx,b

(x, b, φ)
]
, (11)

min
φ

E
[
LDφ(x, b, φ)

]
. (12)

In such formulation:

• LGx,b
is a loss term enforcing equality in distribution between Dreal and Dsim(x, b)

in some sense. Recalling (9) we can choose for instance:

LGx,b
(x, b, φ) := ∥Ysim(x, b)− Yreal∥2 −Dφ(Ysim(x, b)) (13)
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Figure 3: Comparison between a regular GAN architecture (left) and FluoGAN (right).

In both cases the generator Gψ (or the simulator) is trained in an adversarial manner

with the discriminator Dφ. The proposed method can be considered as a specialised

GAN architecture where the additional knowledge available on the direct problem

enables us to replace Gψ by a more interpretable physics-based function.
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where the term depending on the classifier Dφ should enforce here Dφ(y
t
sim) ≈ 1 for

samples t = 1, . . . , T generated by Gx,b.

• LDφ is a loss term which should enforce the discriminator to be maximised (i.e.

Dφ ≈ 1) on real images, while it should be minimised (Dφ ≈ 0), in an adversarial

manner w.r.t. to what mentioned above for the generator loss, on simulated images.

A natural choice would thus be:

LDφ(x, b, φ) := Dφ(Ysim(x, b))−Dφ(Yreal).

To avoid the well-known convergence instabilities of such adversarial training, it

is rather classical to further introduce in such loss another term, called gradient

penalty, to promote gradient updates with norm close to 1, see [13]. This is in

fact a penalised formulation of the constraint of the discriminator to be 1-Lipschitz

which was observed to correspond to the minimisation of the Wasserstein distance

(10) by duality arguments [2]. Note, that the gradient penalty term should be

applied on the domain where the discriminator is applied. To enforce that, it is

computed on images ymix uniformly chosen at random between simulated images

and real images as: ymix = ηyreal + (1 − η)ysim with η ∼ U([0, 1]), where U([0, 1])
stands for the uniform distribution on [0, 1].

Introducing now parameters (γ, λ, λ1, λ2) ∈ R4
≥0 and δ ∈ {0, 1} (we make this choice to

assess the effect of the presence of the discriminator term in the loss) and incorporating

in (11) the physical-inspired regularisation terms discussed in (3.2) we thus consider the

empirical risk formulation of (11)-(12) which reads:

min
x∈Rn

≥0, b∈R
m
≥0

γ

2

T∑
t=1

∥ytsim(x, b)− ytreal∥22 − δ
T∑
t=1

Dφ(y
t
sim(x, b)) + λ1||x||1 +

λ2

2
||∇b||2

(14)

min
φ∈Φ

T∑
t=1

Dφ(y
t
sim(x, b))−

T∑
t=1

Dφ(y
t
real) + λ

(
∥∇yDφ(y

t
mix(x, b))∥ − 1

)2
, (15)

which, recalling (7), corresponds to choose as fitting term between distributions:

d(Dsim(x, b),Dreal) =
γ

2

T∑
t=1

∥ytsim(x, b)− ytreal∥22 − δ
T∑
t=1

Dφ(y
t
sim(x, b)),

where the former term runs average comparisons between Dsim(x, b) and Dreal, while the

latter is linked to the particular use of a GAN discriminator whose parameters have to be

learned by solving (15) which includes also a Wasserstein-type stabilisation. Practically,

and similarly as for GANs, problem (11) is minimised for few (say, k̄) epochs, then,

similarly, (12) is minimised for k̄ epochs using the values xk̄, bk̄ previously computed.

This alternate procedure continues till convergence. In order to resort to gradient-based

solvers for the problem (14), some details should be given concerning the computation of

gradients w.r.t. the variables x and b due to the non-linear dependence of the quantities

ytsim(x, b) through the Poisson model (6).
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4.2. Computing gradients for a Poisson random variable

Recalling (13), we notice that the computation of gradients w.r.t. x and b in (11) requires

the quantities∇x y
t
sim(x, b) and, similarly, ∇b y

t
sim(x, b) which both rely on the non-linear

Poisson model given by (5).

The gradient of the expected value of a Poisson random variable with respect to

its parameter(s) can be computed directly. Let z ∈ Rm
>0 and Q ∼ Poisson(z). For

every component i = 1, . . . ,m qi is then a discrete random variable with univariate

Poisson density given by p(qi = k|zi) : k 7→ 1
k!
e−zizki , for k ∈ N. Let now

f : Rm
>0 → R be a continuous and bounded function and vk be the function defined

by vk : t 7→ p(qi = k|t) = 1
k!
e−t tk. Clearly, vk is differentiable on R>0 for all k ∈ N. We

distinguish two cases:

• For k ≥ 1 there holds:

v′k(t) =
−e−ttk

k!
+

e−tktk−1

k!
= vk−1(t)− vk(t) (16)

• For k = 0 we have:

v′0(t) = −e−t = −v0(t). (17)

We would like to apply the dominated convergence theorem to the sequence (vk)k. For

that, for every i = 1, . . . ,m, let now be Ai ∈ R such that Ai > max(zi, 1). For x ∈ [0, Ai]

we notice that the following properties hold:

• Since the sequence (vk(x))k comes from a Poisson density, it has finite sum and for

all k ∈ N, vk is differentiable on [0, Ai].

• For k ≥ 1 there holds v′k(x) =
1
k!
e−xxk−1(k − x) <

Ak−1
i

(k−1)!
. The sequence (v′k(x))k is

thus dominated by a summable sequence.

As a consequence of the dominated convergence theorem it is possible to switch the

derivation and integral to obtain:

∂

∂zi
E[f(q)] =

∂

∂zi

∞∑
k=0

E[f(q)|qi = k]p(qi = k|zi) =
∞∑
k=0

E[f(q)|qi = k]
∂

∂zi
p(qi = k|zi)

We can now use the recursion formulas (16)-(17) for v′k as follows:

∂

∂zi
E[f(q)] =

∞∑
k=0

E[f(q)|qi = k]v′k(zi)

= E[f(q)|qi = 0]v′0(zi) +
∞∑
k=1

E[f(q)|qi = k](vk−1(zi)− vk(zi))

= −E[f(q)|qi = 0]v0(zi)−
∞∑
k=1

E[f(q)|qi = k]vk(zi)

+
∞∑
k=0

E[f(q)|qi = k + 1]vk(zi)
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Then a variable change is applied.

Denoting by 1i = {δi,j}nj=1 ∈ Rn with δi,j being the Dirac delta function the vector

of only zeros except a one in the i-th position, we can now write:

∂

∂zi
E[f(q)] = −

∞∑
k=0

E[f(q)|qi = k]p(k|zi) +
∞∑
k=0

E[f(q + 1i)|qi = k]p(qi = k|zi)

Finally, the i-th component of the gradient of expected value of f(q) can be simply

written as a finite difference :

∂

∂zi
E[f(q)] = E[f(q + 1i)− f(q)] (18)

This expression is easily interpreted: incremental increments of zi correspond to

increments of 1 of the component qi in expectation. This is in fact a consequence

of the definition of Poisson law, whose parameter equals its expected value.

Unlike other methods such as the one of score functions in [19], formula (18) can

deal with the case zi = 0. However, its application is computationally demanding:

computing the expectancy in (18) by empirical means of B realisations, requires in

fact B(m + 1) evaluations of f . To reduce computations, and by assuming that f is

differentiable, we can make however the following approximation:

f(q + 1i)− f(q) ≃ ∂f

∂qi
(q) (19)

which can be plugged in (18) and estimated empirically by means of B samples, thus

finally getting:

∇zE[f(q)] ≃ E[∇qf(q)] ≃
B∑
t=1

∇qf(q
t),

which provides a handy way of approximating the desired quantity.

Remark : The approximation (19) is valid only when ∂f
∂qi

does not change too much

between f(q) and f(q + 1i). If all the second derivatives of f are bounded, then it is a

sufficient condition to bound the second-order error of this approximation. However, in

general we do not know whether f is twice differentiable. In our context, this condition

can thus be relaxed by assuming that we have a sufficiently fine quantisation compared

to the variations of ∂f/∂qi.

4.3. Discriminator architecture

Inspired by [35] the discriminator is a regular convolutional neural network Rn → [0, 1]

with 3 main layers and 2 fully connected layers, as shown in Figure 4. Each convolutional

layer is followed by a max pooling layer and a non linear ReLU (rectified linear unit)

activation function. The number of channels increases and is doubled after each

convolutional layer. The last layer is a sigmoid function that returns an output value in
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Figure 4: Discriminator architecture

the range 0 to 1. This setup is a common choice for this kind of network since it gives

more capacity to the network while reducing the resolution of the intermediate layers.

However the number of convolutional layers is limited by the input size and the size of

the kernel. Indeed it is not possible to apply a convolutional kernel on an image smaller

than the kernel. For this reason there are only 3 convolutional layers here. In practice

and for the size of images considered, we have seen that the chosen architecture gives

enough capacity to the network.

The discriminator is trained to yield 0 given a simulated image as input and 1 in

case the input is a real image. However, exactly like the original GAN discriminator, it

is used passively to improve the quality of simulated images.

4.4. Optimisation algorithms

The concurrent minimisation problems (14) and (15) have different regularisation terms.

To train the generator, we use the FISTA accelerated proximal algorithm studied in [3]

which can deal with the non-smoothness of the ℓ1 norm. The choice of the learning

rates has critical importance to achieve convergence. If such parameter is too large than

the algorithm may completely diverge, while if it is too small the convergence is too

slow. Such parameter depends also on the proportion of noise and signal in the data.

More precisely there is a trade-off between the sparsity constraint parameter and the

learning rates. For our experiments, we choose the learning rates manually, making sure

to obtain a converging algorithm. We tested also backtracking strategies to automatise

this choice. In practice, however, the constant values chosen here after empirical tuning

seem to be general enough to process all the different kinds of data we present in our

results without any change.

For the discriminator loss in (12), we do not have the same differentiability problem

and the choice of the corresponding learning rate is not data-constrained. To perform
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Figure 5: Spatial structure of simulated/real calibrated sample (ARGO-CR slide,

Argolight)

such optimisation, we thus used stochastic ADAM algorithm, which is a common choice

to train a neural network of the form described in Section 4.3.

5. Numerical results

The proposed method is applied to three different types of data in order to evaluate the

performance of FluoGAN and to compare it with state-of-the-art approaches, namely

COL0RME [32, 30] and SRRF [15]. We first use synthetic data (see section 5.1) by

simulating standard microscopic data acquired using conventional fluctuating/blinking

fluorophores. This type of data is useful because it allows us to access the true signal

and evaluate the reconstruction quantitatively. Next, we apply FluoGAN on images

of a phantom sample with known structure acquired by a real fluorescence microscope.

The results are presented in section 5.2. Finally, for a more difficult reconstruction,

we applied FluoGAN on images of a real biological sample and more specifically of the

unicellular algae Ostreopsis cf. Ovata, acquired by an epifluorescent microscope (see

Section 5.3).

5.1. A simulated ARGO-CR-type validation dataset

We started by applying FluoGAN to synthetic images for simple reconstruction quality

evaluation. The synthetic images have been generated by us after considering parameters
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of the microscope configuration as well as properties of the sample (e.g. fluctuation

behaviour, out-of-focus fluorescence, etc.). The spatial pattern used is shown in Figure

5 and is similar to the pattern of a calibrated sample ARGO-CR (Argolight, Pessac,

France). To be more precise, the pattern used consists of 14 sets of parallel lines of

100nm width. The separation distance d (center-to-center distance) between the two

middle lines of each set is gradually increasing with a rate of 30nm. The big advantage

we have with this kind of sample is that we can easily see the resolution level reached

by each approach.

For this first experiment, we simulate the temporal fluctuations using the Poisson

model in (3) and make a video of 500 frames at frame rate of 100 frames per second

(fps). The pixel size is equal to 100nm while the full width at half maximum (FWHM)

of the PSF is 324nm. A spatially varying background is added to simulate the presence

of the out-of-focus fluorescent molecules and an average bleaching time (i.e. time which

the fluorophore stays emissive) of 20s has been used. Reconstructions of the simulated

diffraction-limited data are available for the FluoGAN, COL0RME ([32, 30]) and SRRF

[15] methods in Figure 6, using a super-resolution factor of 6 (L = 6) for all three

approaches. The method COL0RME allows us to select between different regularisation

penalties in the support estimation step of the method (see [32, 30] for more details)

and for the purpose of this experiment the ℓ1-norm penalty was chosen due to the better

and most time-efficient reconstruction. Regarding the method SRRF, we make use the

freely available Fiji plugin ([15]). Especially, for the temporal analysis of the radiality

image sequence we are using the auto-correlation analysis similar to that used in the

SOFI [8] and many other methods that according to the authors works successfully for

dense data as the ones we are using.

From the reconstruction shown in Figure 6, it is clear that the proposed method

achieves better results than both COL0RME and SRRF. FluoGAN is able to reconstruct

two parallel lines with separation distance of 120nm between their centers or only 20nm

between their closest edges (given that the with of the lines is 100nm). COL0RME is

more resolutive than SRRF, achieving a resolution of 80−110nm computed as the ability

to reconstruct two lines with closest edge-to-edge distance of such value (80− 110nm),

while SRRF reaches a resolution of around 200nm measured in the same way. Finally,

FluoGAN and COL0RME more than SRRF estimate real intensity values, while SRRF

preserves better the ”continuous” structure of the sample.

5.2. Real ARGO-CR dataset

In the second experiment, we are acquiring images of a ARGO-CR calibrated sample

using an epifluorescence microscope. Images were acquired on an AxioObserver Z1

(Zeiss, Germany) with 63x/1.15W Korr LD C-Apochromat objective, ORCA Flash

4.0 camera (Hamamatsu, Japan), 540-570nm LED excitation and 581-619nm emission

filter. The spatial pattern is similar to the one used in our simulated data, with the

distance between the two middle filaments of each set increasing by 30nm and varying
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Figure 6: Numerical results on simulated dataset with zooms, with enhanced contrast

for better visualization. The separation distance d, used to measure the resolution, is

given for each set of lines. The FWHM of the PSF in this experiment is equal to 324nm.
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from 0 to 390nm (see Figure 5 for a graphical representation). Here we can estimate the

resolution reached by the methods under real conditions. Only FluoGAN and SRRF are

applied to these data, as due to a slight sample shift during acquisition, these data are

not adaptable for COL0RME, which is based on the estimation of temporal covariance

matrices.

The pixel size of the sCMOS camera used is equal to 103nm, while the FWHM

of the PSF is estimated to be 270nm. Only 500 images were acquired with a frame

rate of 10fps, i.e. an acquisition time of less than 1 minute. For the reconstruction, a

super-resolution factor of 6 was used for both methods. For our approach, FluoGAN, the

500 acquired images constituted the training set while 5000 iterations were performed in

order to obtain the reconstruction presented in Figure 7. Compared to SRRF, FluoGAN

achieves significantly better resolution levels. However the structures reconstructed by

FluoGAN are a bit thinner than the real ones and this is the reason that it is able to

separate filaments that are slightly overlapping, i.e. when the centre-to-centre distance

is equal to 60nm.

A nice observation in this experiment, is the different result we obtain with (δ ̸= 0)

and without (δ = 0) the presence of the discriminator in (14). The two results are

available in Figure 8. Even if the ℓ2 distance is enough to recover the main pattern, the

explicit presence of the discriminator allows to achieve a greater precision. The result

with no discriminator can nonetheless be used as an educated guess for the initialisation

of FluoGAN.

Finally, unlike other optimisation problems, it is difficult to visualise convergence

from the loss functions graphs (see Figure 9). Since simulator and discriminator have

adverse goals the difficulty is to maintain both in competition preventing one from

overtaking the other.

5.3. Ostreopsis images

To test FluoGAN on challenging real biological samples, we considered a dataset of the

unicellular alga Ostreopsis cf. Ovata (see Figure 10a). Such dataset combines several

difficulties. First, it shows a 20µm thick sample which can exhibit a strong out-of-focus

signal which is clearly the case here for the microtubules staining as they form a cortical

structure all around the alga. Another difficulty is the reduced transparency and none-

negligible turbidity, which induces PSF distortion. Due to those complications, confocal

microscopes cannot acquire through the whole thickness of the alga. Nonetheless, the

flexibility and the data-adaptivity of FluoGAN allows to obtain accurate results on such

data, whereas standard approaches fail.

For the experimental design, microtubules were stained with TRITC dye, but also

with Hoechst for DNA (for details see [33]). We focused on the tip of a microtubule

bundle at the ventral pole (see Figure 10b). Epifluorescence images have been acquired

with the same protocol as for ARGO-SR sample (see details in section 5.2). The

reconstruction performed by FluoGAN is shown in Figure 10c, while the parameters
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Figure 7: Numerical results for ARGO-CR data with zooms. The distance d is given

for each set of lines. The FWHM of the PSF is estimated to be equal to 270nm.
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(a) FluoGAN δ ̸= 0 (b) FluoGAN δ = 0

Figure 8: Comparison of the results with (left) and without (right) discriminator.
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Figure 9: Top left : sum of pixel values (i.e., total photon count) VS. iteration number.

After about 1000 iterations the sum of pixels for simulated images (ysim) equals the

sum of pixels for real input images (yreal). Top right and bottom left : balance between

between simulator and discriminator training. Bottom right : super resolution image x

and reconstructed background b.

used are reported in Table 1. We compare the results obtained by FluoGAN with the

ones obtained by SRRF which is the only one capable of dealing with confocal data.

Regarding SRRF and differently from the two previous experiments, gradient weighting

is performed, as suggested by the authors, to deal with the low signal-to-noise ratio

(SNR) regime. The reconstruction obtained by SRRF is reported in 10d. Overall, the

reconstruction obtained by FluoGAN compared to the one obtained by SRRF is more

accurate, as it preserves true signal intensity and it does not suffer from any background

artefacts.

6. Conclusions

We presented FluoGAN, a novel framework for fluctuation-based super-resolution

fluorescence microscopy combining the physical modelling of optical system with
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Sensor’s pixel size 103nm

FWHM of the PSF (estimated) 325nm

Undersampling rate 6

Iteration number 1000

Number of images in training set 500

Table 1: Parameters used for ostreopsis image reconstruction

(a) Confocal 3D image of Ostreopsis with

microtubules (white) and DNA (magenta).

(b) Low-resolution epifluorescent image

(sample average) of the microtubules tip.

(c) FluoGAN reconstruction of Fig. 10b. (d) SRRF reconstruction of Fig. 10b.

Figure 10: Real Ostreopsis cf Ovata data.

data-driven adversarial learning. Hand-crafted (often sparsity-based) regularisation

approaches formulate the super-resolution inverse problems by means of tailored

regularisation terms, thus requiring time-consuming model and parameter tuning. On

the other hand, FluoGAN computes the desired super-resolved image along with a

background image containing out-of-focus molecules, ambient fluorophores and other

errors. by comparing, in a suitable sense, the empirical distribution of observed data

with the one of samples generated by a physically-grounded simulator. Due to its

alternate minimisation formulation, the proposed approach is flexible as it allows to the
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possible introduction of further regularisation terms such as sparsity, smoothness and

non-negativity constraints. In comparison to standard GANs and inspired by recent

work on Cryo-EM [14], FluoGAN replaces the model-blind generator network with a

simulator model encoding biophysical expertise in its structure and having as learnable

parameters the desired quantities of interest. On simulated data, the proposed approach

allows to achieve better resolutions than standard model-based and state-of-the-art

approaches. On real data, we first proved the efficiency of our algorithm on a 2D

phantom, then we validated FluoGAN on real challenging Ostreopsis data. Future work

should be addressed towards the proof of rigorous convergence guarantees certifying

the quality of the solution at convergence, which, at the moment, remains empirical.

Another prospective part is to implement FluoGAN to improve resolution for full 3D

super-resolution problems.
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