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A probabilistic approach of the Poincaré-Bendixon’s problem in ℝ𝒅 
guy Cirier1 

LSTA, University Pierre et Marie Curie Sorbonne, France 
 
 
Abstract: We present how a probabilistic model can describe the asymptotic behaviour of the 
iterations, especially for ODE with an approach of the Poincaré-Bendixon’s problem in ℝ#. 
 
Résumé: On présente  un modèle probabiliste pour décrire le comportement asymptotique 
d’une itération, en particulier pour les EDO et pour aborder  le problème de Poincaré-
Bendixon’s dans ℝ#. 
 
Introduction 
Let 𝑓 a function which applies a set 𝐶 ⊂ ℝ#. We iterate f indefinitely. Sometimes, the process 
converges to some fixed point or to some cycle. But, in many cases, it is quite impossible to 
know, after a long time, the position of the iteration 𝑓((). 
One of the best deterministic method to study the asymptotic behavior of the iteration is to 
linearize f. It consists to find an invertible function 𝜑 such as:	𝜑 ∘ 𝑓 = 𝜆𝜑 where 𝜆	is linear. 
When this linearization is possible, 𝜑 ∘ 𝑓(() = 𝜆(𝜑 and we obtain asymptotic cases, which are 
the generalization of the unidimensional cases |𝜆| >, =, < 1. But, we meet some well-known 
difficulties: we have basin of attraction of each fixed point of 𝑓 with fuzzy frontier. If we have 
many fixed points, what is the good choice among them? If 𝜆4 = 1, we have other difficulties 
called resonance in ℝ#. It is often a good approach near each fixed point.  
 
However, it is very important to know what happens when we iterate f, especially if the set 
𝐶 ⊂ ℝ#  is bounded and when the set 𝐶 ⊂ ℝ#  is applied in itself. In this case, a probabilistic 
approach with invariant measures gives other information. This is the object of this paper. 
 
1 - The Perron-Frobenius’s measure 
Let 𝑃 a measure on a bounded set 𝐶 ⊂ ℝ6 and 𝑃7 = 𝑃°𝑓

9: the transform of 𝑃 by the function  
𝑓. We define the measure 𝑃 of Perron-Frobenius as: 
 
𝑃 is invariant under 𝑓 if, for all borelian set 𝐵, 𝑃 verifies the Perron-Frobenius’s equation (PF): 
     𝑃7(𝐵) = 𝑃°𝑓

9:(𝐵) = 𝑃(𝐵)  
This measure 𝑃 is invariant when we iterate the measurable function f in ℝ#. Under very 
general conditions, the solution of this equation is unique.  
This measure presents the same difficulties as we have seen with linearization methods for 𝑓: 
we will see that it depends of the fixed points and meets the resonance’s problems, but it 
gives us many information about the areas where the iteration belongs more frequently. This 
information is asymptotic when n→ ∞ but doesn’t give us any result about the transient steps 
of null measure. 
This invariant measure is generally difficult to study. For instance, in the very simple case 
where f is invertible, its density 𝑝  verifies the functional equation:   

 𝑝 = 𝑝7 = |𝑓9:|𝑝°𝑓
9: 



This is very complicated to solve. if f is not invertible, it is more difficult. 
 
The Fourier-Laplace’s transform approach  
Here, we seek an analytic approach of the invariant measure with the Fourier-Laplace’s 
transform. We use the known property of invariant measure under	𝑓	. For all positive 𝑃 - 
measurable function 𝑔, we have the well-known formula:     	
     ∫𝑔°𝑓(𝑥) 𝑑𝑃(𝑥) = ∫𝑔(𝑥) 𝑑𝑃(𝑥) 
With 𝑔(𝑥) = 𝑒D(E), we write the Fourier-Laplace’s transform ∅(𝑦) = ℒ(𝑒DI) = 𝐸(𝑒DI) with 
the series ∅(𝑦) = Σ(𝑏(𝑦(  and ∅7(𝑦) = ℒM𝑒D7(I)N.  If the measure is invariant: 

 ∅(𝑦) = ∅7(𝑦) 
 
Hypothesis 
All along the paper, we suppose that the set 𝐶 ⊂ ℝ# is bounded and 𝑓 applies 𝐶 in 𝐶 and is at 
least indefinitely derivable. 
 
The series ∅(𝑦) = Σ(𝑏(𝑦( is convergent because it is bounded by an exponential series with 
the diameter of 𝐶. We translate the distribution with a small fixed vector	𝑎𝜖ℝ#, 𝑋 → 𝑋 + 𝑎. 
So:    ∅(𝑦, 𝑎) = 𝐸M𝑒D(IST)N  
And    ∅(𝑦, 𝑎) → ∅7(𝑦, 𝑎) = 𝐸M𝑒D7(IST)N 
 If the measure is invariant: ∅(𝑦, 𝑎) = ∅7(𝑦, 𝑎)  
We study the problem near a fixed point 0 of 𝑓:  𝑓(0) = 0. 
 
Proposition: 
The resolving equation Ra of PF is:	𝜃7(𝑦, 𝑎) = ∅(𝑦, 𝑎) − ∅7(𝑦, 𝑎) = 0 . 
 If 𝑓  is an indefinitely derivable function, then, for ∀𝑎 ∈ 𝐶 and ∀𝑦:   
    	𝜃7(𝑦, 𝑎) = 𝛴(𝑏(𝜕((𝑒DT − 𝑒D7(T)	)/𝜕𝑎( = 0  
Let 𝑒((𝑦,	𝑎)=	𝜕((𝑒DT − 𝑒D7(T)	)/𝜕𝑎( be the resolving gap 
    𝜃7(𝑦, 𝑎) = 𝛴(𝑏(𝑒((𝑦, 𝑎) = 0 
At  𝑎 = 0:   𝜃7(𝑦) = 𝛴(𝑏(𝑒((𝑦, 0) ≡ 0 
And, as 𝜃7(𝑦, 𝑎) ≡ 0 is an identity, 𝜕4𝜕_𝜃7(𝑦, 𝑎)/𝜕𝑦4𝜕𝑎_ ≡ 0 for 𝑝 all and 𝑞. 
■ If the random variable 𝑋𝜖𝐶 ⊂ ℝ#  has a measure 𝑃 with density	𝑝(𝑥), the translated random 
variable 𝑋 + 𝑎 has the same density. Using the convergent series: ∅(𝑦) = Σ(𝑏(𝑦(, we have 
for all small translation 𝑎 ∈ 𝐶 ⊂ ℝ#   of the random vector 𝑋, the translated density: 
     𝑝(𝑥 − 𝑎) = ℒ9:M𝑒aT	∅(𝑡)N = ℒ9:(	𝛴(𝑏(𝑡(𝑒aT) 
We have the distribution 	𝑝(𝑥 − 𝑎) = 𝛴(𝑏(𝜕(𝛿(𝑥 − 𝑎)/𝜕𝑎( 
As     𝐸M𝑒D(IST)N = 𝛴(𝑏(𝑦(𝑒DT = 𝛴(𝑏(𝜕(𝑒DT/𝜕𝑎( 
And    𝐸M𝑒D7(IST)N=∫ 𝑒D7(EST) 𝑑𝑃(𝑥) = ∫𝑒D7(E)	𝑝(𝑥 − 𝑎) 𝑑𝑥 
    𝐸M𝑒D7(IST)N = 𝛴(𝑏(𝜕((∫ 𝑒D7(E) 𝛿(𝑥 − 𝑎)𝑑𝑥)/𝜕𝑎( 
    𝐸M𝑒D7(IST)N = 𝛴(𝑏(𝜕(𝑒D7(T)/𝜕𝑎( 
By difference, we get:  𝜃7(𝑦, 𝑎) = 𝐸M𝑒D(IST)N − 𝐸M𝑒D7(IST)N ■ 
 
Remarks 
- We observe that  𝜕((𝑒D7(T)	)/𝜕𝑎(=	𝐻((𝑦, 𝑎)	𝑒D7(T) where 𝐻((𝑦, 𝑎)	 is a Bell-polynomial in 
𝑦	 with degree 𝑛. 𝑒((𝑦, 0) = 𝑦( −𝐻((𝑦) is a polynomial with degree 𝑛. We can  note 
𝑒((𝑦,	𝑎)=	𝜕((𝑒DT − 𝑒D7(T)	)/𝜕𝑎(= 𝑦( 𝑒DT- 𝐻((𝑦, 𝑎)	𝑒D7(T)	. 



- We obtain ∅7(𝑦) by putting 𝐻((𝑦)  instead of 𝑦( in the series of ∅(𝑦) = Σ(𝑏(𝑦(. 
- As	𝑓(0) = 0:  ∅7(0) = ∅(0) = 1,    𝑏g = 1. But the other 𝑏( are unknown. 
 
Consequence 
The general solution of the linear equation 𝜃7(𝑦) = 0 has the form 𝑏𝜑(𝑦) where 𝑏 is an 
arbitrary constant real. So, we can write ∅(𝑦) = 1 + 𝑏𝜑(𝑦) with an arbitrary constant 𝑏. It 
means that ∅(𝑦) = 1, for all 𝜑(𝑦) = 0 . We have a lattice distribution for 𝜑(𝑦) = 0. 
 
The solution of the Perron-Frobenius’s equation is particular case of the equation 𝜃7(𝑦) = 0. 
First, we study the effect of an iteration on 𝑒((𝑦,	0)= 0  and on  𝜃7(𝑦, 0). 
 
Proposition 
Iteration	𝑎ℓ 	⟼ 𝑓ℓ(𝑎) acts as a derivation on 𝜃7(𝑦, 0)		and on 𝑒((𝑦,0)= 0 in the sense that :  
 𝜃7(𝑦, 0) ⟼ 𝜕𝜃7(𝑦, 0)/𝜕𝑎ℓ|Tjg	  and 𝑒((𝑦,	0)	⟼ 𝑒(S:ℓ(𝑦,	0) 
𝑓(() →	𝑓((S:)induces          	𝑒((𝑦, 0) → 𝑒(S:(𝑦, 0)  or 𝐻((𝑦, 0) → 𝐻(S:(𝑦, 0) 
■The demonstration is easily based on the mean‘s formula for each coordinate for 𝑎 → 0. 
So, all the coordinates of n are equal.  
 For example, we study the impact of  𝑎ℓ 	⟼ 𝑓ℓ(𝑎) on  𝐷 = 𝜃7M𝑦, 𝑎ℓ,llll 𝑓ℓ(𝑎)N.	  
As     𝜃7(𝑦, 𝑎ℓ,llll 𝑎ℓ) = 0 :  
      𝐷 = 𝜃7M𝑦, 𝑎ℓ,llll 𝑓ℓ(𝑎)N-𝜃7(𝑦, 𝑎ℓ,llll 𝑎ℓ) 
So:    𝐷 = (𝑓ℓ(𝑎) − 𝑎ℓ)M𝜕𝜃7M𝑦, 𝑎ℓlll, 𝑎ℓ + 𝑟((𝑓ℓ(𝑎) − 𝑎ℓ)N)/𝜕𝑎ℓN 
When	𝑎 → 0   𝑓ℓ(𝑎) − 𝑎ℓ~𝑎ℓ(𝜆ℓ − 1). 
     𝐷~	𝑎ℓ(𝜆ℓ − 1)M𝜕𝜃7(𝑦, 0)/𝜕𝑎ℓN 
For similar raisons, if 𝑒((𝑦, 𝑎) = 0, then: 𝑒((𝑦,	𝑓ℓ(𝑎))~	𝑎ℓ(𝜆ℓ − 1)𝜕𝑒((𝑦, 0))/𝜕𝑎ℓ. 
More, if we iterate	𝑓	 , that means 𝑎 ⟼ 𝑓(𝑎) in 𝑒((𝑦, 𝑎), we obtain: 
     𝐷~	Σℓj:

ℓj#𝑎ℓ(𝜆ℓ − 1)M𝜕𝜃7(𝑦, 0)/𝜕𝑎ℓN 
If this quantity is null for all 𝑎, we must have d equations independent null. 
We have the same result for 𝑒((𝑦,	0). ■ 
 
2 - Solution de R0  
We choose a sufficiently large index 𝑛 ∈ 𝑁#  , with 𝑛 = 𝑛:=...=𝑛ℓ…=	𝑛#  
 
Lemma 
For a fixed 𝑏( ≠ 0, under non-resonance conditions, if a solution of 𝜃 ∗( (𝑦) =
𝛴rs(𝑏 ∗r 𝑒r(𝑦) = 0  exists, then zeros of  	𝑒((𝑦)	are zeros of 𝜃 ∗( (𝑦) . 
■ The solution of this equation is obtained as the following: 
We choose a sufficiently large index 𝑛 ∈ 𝑁#  such as: 𝜃(7(𝑦) = Σrs(𝑏r𝑒r(𝑦) verifies 
uniformly    t𝜃(7(𝑦) − 𝜃7(𝑦)t < 𝜖. 
As	𝜃7(𝑦) = 0, we search an approximation 𝜃 ∗( (𝑦) = 0,	 and estimators 𝑏 ∗r	such as we 
have: 

 𝜃 ∗( (𝑦) = Σrs(𝑏 ∗r 𝑒r(𝑦) = 0 
- For 𝑦 = 0: 𝑏g = 1. As 𝜃 ∗( (𝑦) is a polynomial and, if we search a solution 𝜃 ∗( (𝑦) = 0, 
ether all the coefficients of 𝜃 ∗( (𝑦) are null or the solution is valid only for the 𝑦 verifying 
𝜃 ∗( (𝑦) = 0. But,  



as the term of highest degree of 𝜃 ∗( (𝑦) is: (1 − 𝜆()	𝑏(𝑦( , we must have, under non-
resonance conditions and for all small 𝑏( ≠ 0, 𝑒((𝑦) = 0. (Because all the other gaps 
𝑒r(𝑦)	have a lower degree for all 𝑚 < 𝑛). 
Then, zeros of	𝑒((𝑦)	 are zeros of θ ∗w (y) . ■ 
 
Theorem 
Under the non-resonance condition, we can find a unique convergent solution of 𝜃 ∗( (𝑦) =
Σrs(𝑏 ∗r 𝑒r(𝑦) = 0 , up to an arbitrary constant 𝑏: 
    ∅((𝑦) = 1 − 𝑏𝑒((𝑦) 
We obtain a lattice distribution defined by the zeros of 𝑒r(𝑦) 
If		𝑦(𝜆( ≫ 𝑦(	 : 
   
    ∅((𝑦) = 1 − 𝑏𝐻((𝑦).  
Then, the distribution of the real zeros of the polynomials	𝐻((𝑦) gets the distribution of the 
Perron-Frobenius’s measure when n→ ∞. 
We obtain a lattice distribution defined by the zeros of 𝐻((𝑦). 
 
If 𝜆( ≫ 1, real zeros of the polynomials 𝐻𝑛(𝑦) gets the distribution of the Perron-Frobenius’s 
measure. 
■ We note the polynomials  ∅ ∗( (𝑦) = 1 + Σgzrs(𝑏 ∗r 𝑦r   
and     ∅7 ∗( (𝑦) = 1 + Σgzrs(	𝑏 ∗r 𝐻r(𝑦)		 
So:    𝜃 ∗( (𝑦) = ∅ ∗( (𝑦) − ∅7 ∗( (𝑦) 
- We search a solution under the condition 𝑒((𝑦) = 0 
1- Now, for all 𝑦 verifying 𝑒((𝑦) = 0 ,can we find a solution of		𝜃 ∗( (𝑦) = 0 ? 
And for all 𝑚 < 𝑛, we note 
    	𝐴 ∗(9: (𝑦) = Σrz(𝑏 ∗r 𝑒r(𝑦) = 𝜃 ∗( (𝑦) − 𝑏(𝑒((𝑦). 
If 		𝜃 ∗( (𝑦) = 0 : 

	𝐴 ∗(9: (𝑦) = Σrz(𝑏 ∗r 𝑒r(𝑦) = −𝑏(𝑒((𝑦) = −(1 − 𝜆()	𝑏(𝑦( − 𝑏(Σgz|z(ℎ𝑛𝑘	𝑦| 
Where all the coefficients of 𝑒r(𝑦) = 𝑦r − 𝐻r(𝑦)  are known 
because	𝐻r(𝑦)=Σgz|srℎ𝑚𝑘	𝑦|.  
So, we study in	𝐴 ∗(9: (𝑦) all the terms of 𝑦rwith degree m< 𝑛: 
   	𝐴 ∗(9: (𝑦) = Σrz(𝑏 ∗r (𝑦r − Σgz|srℎ𝑚𝑘	𝑦|) = −𝑏(Σgz|z(ℎ𝑛𝑘	𝑦| 
For fixed arbitrarily 𝑏 ∗(= 𝑏( ≠ 0, 
2- We obtain a finite triangular system of linear equations which can be solved step by step, 
and we can identify in a unique way all the unknown coefficients 𝑏 ∗r in function of   𝑏( and 
the coefficients ℎ𝑚𝑘 of 	𝐻r(𝑦)=Σgz|srℎ𝑚𝑘	𝑦| with m≤ 𝑛 ∈ 𝑁# . 
3 - This solution is unique for all 𝑏 ∗(= 𝑏( ≠ 0 arbitrarily fixed, near to the solution of 	𝜃7(𝑦) =
0, as the  𝑏 ∗r converge to the 𝑏r. So, we can construct the polynomials ∅ ∗( (𝑦) − 1  and  
∅7 ∗( (𝑦) − 1 and we can write ∅ ∗( (𝑦) = 1 + 𝑏(𝜑((𝑦) where 𝑏( is arbitrary. That means 
∅ ∗( (𝑦) = 1 when 𝜑((𝑦) = 0; then, we can choose now 𝜑((𝑦) = 𝑒((𝑦).■ 
Different cases can happen according to 𝜆( ≫ 1  or 𝜆( ≪ 1  .  
If all the coordinates of |𝜆	|are less than 1, the process converges to the fixed point.  
If some of them are less than 1, but others are greater than 1, we have an hyperbolic situation 
under no resonance conditions. 
When  𝑦(𝜆( ≫ 𝑦(	, we can write for large 𝑛 :  
     ∅((𝑦)~1 − 𝑏𝐻((𝑦). ■ 
And now we have to study the zeros of 𝐻((𝑦). 



 
Remark (see general reference) 
We deduce, under general conditions, that, if 𝑞(𝑦)  is the density of real zeros of 𝐻𝑛(𝑦) when 
n→ ∞, then the invariant density 𝑝(𝑥) of the Perron-Frobenius’s measure is: 
    𝑝(𝑥) = (- 𝑥)𝜕q(𝑥)/𝜕𝑥 
-For convenience of calculations, we suppose 𝑓 polynomial and 𝐶 ⊂ ℝ#  bounded. 
The problem is reduced to find the asymptotic distribution of the zeros of 𝐻𝑛(𝑦). 
 
3 - Study of the zeros of 𝐻((𝑦) 
We will see in the next paragraph, that all the zeros of  𝐻𝑛(𝑦) are distinct with the steepest 
descent’s method applied to 𝐻((𝑦)  and we get an estimation of the asymptotic distribution 
of the real zeros of 𝐻((𝑦).  
- First, we use the steepest descent’s method as Plancherel and Rotach use. We recall that the 
polynomial: 
     𝐻((𝑦) =𝑒9D7(T)𝜕(𝑒D7(T)/𝜕𝑎(|Tjg = 𝜕(𝑒D7(T)/𝜕𝑎(|Tjg  
can be represented by the Cauchy’s integral: 

     𝐻(9: (𝑦)=K∮Γ	
���(�)

T�
da=K∮Γ	𝑒D7(T)9(�wTda 

where Γ is a closed polydisk around the fixed point 0 of f, 𝑎 ∈ ℂ#, K can be taken as some 
finite non-null function, for all n = (𝑛:,...,	𝑛ℓ,…,	𝑛#  ). If the 𝑛ℓ are not equal, we take μ=  
𝑛:+...+	𝑛ℓ,…+	𝑛#  ,  and we fix: 𝑧ℓ = 𝑛ℓ/µ. So, the integral can be written: ∮ Γ	 𝑒��(T)	𝑑𝑎 with 
the integrand called the Plancherel-Rotach’s function, as: 
    µ𝛾(𝑎) = 𝑦𝑓(𝑎) − 𝑛 ln 𝑎 = Σℓ	(𝑦ℓ𝑎𝑓ℓ(𝑎) − 𝑛ℓ ln 𝑎ℓ ),  
If 𝑦ℓ = 𝑛ℓ𝑠ℓ = µ𝑧ℓ𝑠ℓ and 𝑛ℓ ln 𝑎ℓ = µ𝑧ℓ ln 𝑎ℓ , the Plancherel-Rotach’s function is: 
     µ𝛾(𝑎) = µΣℓ	(𝑧ℓ𝑠ℓ𝑓ℓ(𝑎) − 𝑧ℓ ln 𝑎ℓ) 
	with:    𝛾(𝑎) = Σℓ	(𝑧ℓ𝑠ℓ𝑓ℓ(𝑎) − 𝑧ℓ ln 𝑎ℓ) = Σℓ	𝑧ℓ𝛾ℓ(𝑎) 
which doesn’t depend on µ because the 𝑦ℓ, thus 𝑠ℓ, can be taken arbitrarily. Here, if we choose 
a sufficiently large index 𝑛 ∈ 𝑁# , with 𝑛 = 𝑛:=...=𝑛ℓ…=	𝑛#  , we have: 𝑧ℓ = 1 
Then, the distribution of the 𝑓-invariant measure 𝑃 is given in general by the distribution of 
the zeros of 𝐻(9: (𝑦) when n→ ∞. 
 
-  Second, we use the Plancherel-Rotach’s method, which is the steepest descent’s method. 
We search the critical point of 𝛾(𝑎). Under the conditions of the general position, the critical 
point 𝑎� maximizing e	w	�(T)  gives the solution. The critical point 𝑎� is defined by the equation:  
     �(�(T)

�T
 =D�7(T)

�T
− (

T
= 0 

(A sufficient condition to get this maximum is that the hessian matrix which is Hermitian of 
γ(𝑎) is definite negative at 𝑎� ). Let 𝑠 = 𝑦/𝑛 with   𝑠ℓ = 𝑦ℓ /𝑛 
The critical point must be isolated from the other critical points and at a finite distance.  
We notice that the real part ℜ(𝛾) of 𝛾(𝑎)  cannot annul 𝐻(9:(𝑦) and we have to conserve 
only the  ℜ(𝛾)  which make maximum the integrand. Only the imaginary part ℑ(𝛾) of 𝛾(𝑎)  
can nullify 𝐻(9:(𝑦): 
    µℑ(𝛾) = ℑ(𝑦𝑓(𝑎) − 𝑛 ln 𝑎) = 𝑘𝜋 
As each iteration 𝑓ℓ acts as a derivation on 𝐻(9:(𝑦), we see: 
    ℑ(𝑠ℓ𝑎𝑓ℓ(𝑎) − ln 𝑎ℓ) = 𝜋𝑘ℓ /𝑛 
We obtain asymptotically  ℑ(𝛾ℓ(𝑎)) → 𝜅ℓ𝜋 when n→ ∞. 
At the critical point 𝑎 where the 𝜅ℓ are identically independent uniform distribution on (0,1).  



We can bond these distributions of the PF-equation to each fixed point 𝑓(0) = 0, then, we 
have local solutions. All these distributions can be masked by various situations. The principle 
of the maximum of the real part ℜ(𝛾) of 𝛾(𝑎)	provides a method to define the fuzzy frontiers 
of the different domains of attraction. 
As everybody knows, the steepest descent’s method is difficult to use, but it indicates all the 
varieties of behavior.  
In the case of unidimensional function, the repartition of the zeros verifies: 
 ℑM𝛾(𝑎)N = 𝜅𝜋 with    𝜕𝛾/𝜕𝑎 = 0 
So:    q(𝑠)	𝑑𝑠	=𝑃𝑟𝑜𝑏	{1	𝑧𝑒𝑟𝑜 ∈ (𝑠, 𝑠 + 𝑑𝑠} =d𝜅 = ℑ(𝑑𝛾/𝑑𝑠)	𝑑𝑠/𝜋 = 	ℑM𝑓(𝑎)N	𝑑𝑠/𝜋 
Because:   𝑑𝛾/𝑑𝑠 = 𝜕𝛾/𝜕𝑠 + 𝜕𝛾/𝜕𝑎. 𝜕𝑎/𝜕𝑠 = 	𝑓(𝑎) 
 
4 - Examples:  
- Let the logistic map:  	𝑓(𝑎) = 𝜆𝑎 − 𝑎¡/2; and  𝛾(𝑎)=𝑠 (𝜆𝑎 − 𝑎¡/2) − ln 𝑎; 
 𝜕𝛾/𝜕𝑎 = 𝑠 (𝜆𝑎 − 𝑎¡) − 1 = 0	 
we put 𝜆√𝑠 = 2𝑐𝑜𝑠𝜗 , we have: 2cos𝜗 𝑎√𝑠 − 𝑠𝑎¡ − 1 = 0 with roots: 𝑎√𝑠 = 𝑒±ª« 
and:     ℑ(𝑓(𝑎)) = ℑ(𝜆𝑎 − 𝑎¡/2) = sin2𝜗/𝑠 
	q(𝑠)	𝑑𝑠	=(1-	𝑐𝑜𝑠2𝜗)𝑑𝜗/𝜋	
So:     q(𝑠)=(	(𝜆/2𝜋)®1/𝑠 − 𝜆¡/4		 
If we put		𝑡 = 𝑐𝑜𝑠𝜗 = °√±

¡
				 then   W(t)=(2/	π)	√1 − 𝑡¡d𝑡 

We recover directly a well-known result: Let 𝐻( (𝑦, 𝑎)=	𝜕((𝑒DM°T9Tµ/¡N	)/𝜕𝑎(  
where 𝑒DM°T9Tµ/¡N	 is (with easy transformations) like the generatrix function 𝑒M¡aT9TµN of the 
Hermite polynomials 𝐻( (𝑡). The law of the zeros of 𝐻( (𝑥) is known as the semi-circular 
Wigner’s law: 

 𝑊(𝑡)𝑑𝑡 = (2/𝜋)√1 − 𝑡¡𝑑𝑡 
- Then, the density of the logistic corresponding to q(𝑠) is:		

	𝑝(𝑠) = −𝑠𝑑𝑞/𝑑𝑠	=-s(2/𝜋)𝑑( °
·√±

¸1 − ±°µ

·
	)/𝑑𝑠	

      p(s)= −𝑠𝜆(−1/4𝑠¡𝜋)/2®1/𝑠 − 𝜆¡/4 
    𝑝(𝑠) = 𝜆/(2𝜋√4𝑠 − 𝑠¡𝜆¡) 
We deduce that the density of the logistic map follows a Beta (1/2,1/2) low in a more general 
situation than in the Ulam-Von Neumann’s case. 
- If we have a map 𝑎: = 𝜆𝑎 + 𝑎¡/2, the corresponding Hermite polynomials 𝐻( (𝑥) are always 
positive except if  𝑥 = 0. 
- 𝑚 - Hermitian case:   𝑓(𝑎) = 𝜆𝑎 − 𝑎r/𝑚 
The Plancherel-Rotach’s function is: 𝛾(𝑎)=𝑠 (𝜆𝑎 − 𝑎r/𝑚) − ln 𝑎 
With the critical point  𝑎 defined by the trinomial equation	𝑑𝛾(𝑎)/𝑑𝑎=𝑠(𝜆𝑎 − 𝑎r) − 1 = 0	
studied by H. Fell. 
 
Consequence  
We take now a function 𝑓 quadratic in ℝ#   with 𝑓(0) = 0. We write the PR function 𝛾(𝑎)for 
every fixed point 0 of 𝑓(𝑎):  
    𝑓(𝑎) = 	𝜆𝑎 + 𝑄𝑎¡ 
the hessian of 𝑠𝑄 is symmetric. For all 𝑠 such as 𝑠𝑄 is non -degenerate, it exists an orthogonal 
transformation 𝑇:   𝑎 = 𝑇𝑢, with: 𝑇′𝑠𝑄𝑇 = 𝐷 , the diagonal matrix of eigenvalues of 𝑠𝑄 and 
ln𝑎 = Σℓj:ℓj#ln𝑎ℓ = lnΠℓj:ℓj#𝑎ℓ = lnVol(𝑎) = lnVol(u) = lnΠℓj:ℓj#𝑢ℓ = ln𝑢 
Because the volume Vol(𝑎) = Vol(u) is invariant under an orthogonal transformation.  



We note 𝐷ℓ = 𝐾ℓ
¡ if ℓ = 1, . . , 𝑝 and 𝐷ℓ = −𝐾ℓ

¡ if ℓ = 𝑝 + 1, . . , 𝑑. 
Then, the P.R. function 𝛾(𝑎) becomes:     
    𝛾(𝑢) = 𝑠𝑓(𝑇𝑢) − ln𝑇𝑢 = 	𝑠𝜆𝑇𝑢 + 𝐷𝑢¡ − ln𝑢 
    =	Σℓj:ℓj#Λℓ𝑢ℓ+Σℓj:

ℓj4𝐾ℓ
¡𝑢ℓ¡ − Σℓj4S:ℓj# 𝐾ℓ

¡𝑢ℓ¡ − Σℓj:ℓj#ln𝑢ℓ  
    =Σℓj:

ℓj4(Λℓ𝑢ℓ + 𝐾ℓ
¡𝑢ℓ¡-ln𝑢ℓ) +	Σℓj4S:ℓj# (Λℓ𝑢ℓ − 𝐾ℓ

¡𝑢ℓ¡-ln𝑢ℓ) 
Where    Λ𝑢 = 	𝑠𝜆𝑇𝑢. 
If we note:   𝛾S(𝑢ℓ) = Λℓ𝑢ℓ + 𝐾ℓ

¡𝑢ℓ¡-ln𝑢ℓ  
and     𝛾9(𝑢ℓ) = Λℓ𝑢ℓ − 𝐾ℓ

¡𝑢ℓ¡-ln𝑢ℓ 
So:     𝛾(𝑢) = Σℓj:

ℓj4𝛾S(𝑢ℓ) + Σℓj4S:ℓj# 𝛾9(𝑢ℓ) 
And, applying the logistic calculus to each 𝛾S(𝑢ℓ) and 𝛾9(𝑢ℓ), we obtain p conditions Λℓ𝑢ℓ =
0 and d-p random independent variables following a Beta (1/2,1/2) low. But, we may have 
other fixed points: 𝑎(1 − 	𝜆) = 𝑄𝑎¡. 
	
5	-	A	differential	equation	as	an	iteration		
We	consider	ordinary	differential	equation:	
		 	 	 	 𝑑𝑎/𝑑𝑡 = 𝐹(𝑎)		
where	 𝑎 ∈ 𝐶 ⊂ ℝ#𝑜𝑟		ℂ#,	 𝑡 ∈ ℝS,	 F(𝑎)	 is	 a	 polynomial	 application	 of	 𝑎 ∈C	 in	 C.	 The	
domain	 𝐶	 is	 supposed	 bounded.	 The	 problem	 is	 to	 find	 a	 function	 𝑎(𝑡)	verifying	 this	
equation	with	an	initial	condition	 	𝑎(𝑡0)=	𝑎0.	
The	solution	is	theoretically	𝑎(𝑡)	for	𝑡 > 𝑡0	:	
	 	 	 	 𝑎(𝑡)=	𝑎0+∫ 𝐹M𝑎(𝑢)N𝑑𝑢a

ag
	

The	differential	iteration	
We	associate	the	differential	iteration	𝑓(𝑎)supposed	belonging	in	the	bounded	domain	𝐶:	

	𝑓(𝑎) = 𝑎 + 𝛿𝐹(𝑎)	 	
where	𝛿 = 𝑡/𝑛	is	the	path.	When	we	iterate	n	times,	we	have	

	𝑎𝑛 = 		 𝑓(()(𝑎(𝑡0))	and		𝑎𝑝 = 		 𝑓(4)(𝑎(𝑡0))	
The	method	gives	the	solution	𝑎𝑛	by	 iterating	n	times	𝑓(𝑎)	from	a	starting	point	𝑎(𝑡0)	
with	the	path	𝛿 = 𝑡/𝑛	and	this	solution	𝑎𝑛 → 𝑎(𝑡)		when	𝑛 → ∞:	
For		𝑛 > 𝑝	 	 	 𝑎𝑛 = 	𝑓(()(𝑎0) = 𝑎(𝑡0) + 𝛿 ÒΣ4jg

4j(9:𝐹(𝑎𝑝)Ó	 	
	 	 	 	 𝑎𝑛 = 𝑎(𝑡0) + 𝛿𝑆𝑛(𝑎0)	
Then,	when	𝑛 → ∞	 :	 𝑎(𝑡)=	 𝑓(→Õ

Öªr (n)	(𝑎0)=	𝑎0+∫ 𝐹M𝑎(𝑢)N𝑑𝑢a
ag

	
with		 	 	 	 𝛿𝑆𝑛(𝑎0) → 𝑆(𝑎(𝑡), 𝑎0) = ∫ 𝐹M𝑎(𝑢)N𝑑𝑢𝑡

𝑡0
	

The	fixed	points	of	a	differential	iteration	are	the	zeros	𝛼	of	𝐹:	𝐹(𝛼) = 0	
	
The	invariant	measure	of	the	differential	iteration		
Now,	we	submit	a	probabilistic	version	of	the	Poincaré-Bendixon’s problem in ℝ#. 	
	
Proposition	
Under	the	previous	hypothesis,	all	the	non-null	measures	verify:	

	𝐸 Ò∫ 𝑦𝑆(𝑋(𝑡))1
0 𝑒DISÝD𝑆(𝑋(𝑡))𝑑𝑣Ó = 0		

Then,	we	have	asymptotic	random	cycles	around	each	fixed	points.	For	all	these	cycles,	
the	times	of	return	in	each	very	small	borelian	set	around	a	point	of	a	cycle	are	constant	
in	probability.	Along	each	cycle,	the	conditional	probability	has	a	constant	density.	



■ With	 𝑓(𝑎)=	 𝑎	+𝛿F(𝑎)		 for	 every	measurable	 function	 F.	 Then,	 for	 	 𝑎𝑛 = 	𝑓(()(𝑎) =
𝑎(𝑡0) + 𝛿(Σ4jg

4j(9:𝐹(𝑎𝑝))	 with	 𝛿 = 𝑡/𝑛,	 we	 must	 have	 the	 resolving	 equation	 in	 the	
neighborhood	each	fixed	point	for	one	or	n	iterations:	
	 	 	 	 ∅(𝑦) = 𝐸(𝑒DI) = 𝐸M𝑒D7(I)N = 𝐸 Ò𝑒D	7(�)(I)Ó	
That	means,	especially	for		𝑓(():	
	 	 	 	 𝜃7(𝑦) = 𝐸 Ò𝑒DI − 𝑒D	7(�)(I)Ó = 𝐸M𝑒DI(1 − 𝑒Dßà𝑛(I)N = 0		

As:	 	 	 	 𝛿𝑆𝑛(𝑎0) → 𝑆(𝑎(𝑡), 𝑎0) = ∫ 𝐹M𝑎(𝑢)N𝑑𝑢𝑡
𝑡0

= 𝑆(𝑋(𝑡))	
	 	 	 𝜃7(𝑦) → 𝐸M𝑒DI(1 − 𝑒D𝑆(𝑋(𝑡))N = 𝐸 Ò∫ 𝑑(

1
0 𝑒DISÝD𝑆(𝑋(𝑡)))/𝑑𝑣𝑑𝑣Ó = 0	

But	 	 	 	 𝜃7(𝑦) = 𝐸 Ò𝑒DI − 𝑒D	7(�)(I)Ó → 𝐸M𝑒DI − 𝑒D(𝑋(𝑡))N = 0	

In	consequence,	if	𝐸 Ò∫ 𝑑(
1
0 𝑒DISÝD𝑆(𝑋(𝑡)))/𝑑𝑣𝑑𝑣Ó = 0,	we	have	non-null	measures	verifying	

𝜃7(𝑦) = 0.	 In	other	words,	𝑎(𝑡) = 𝑎(𝑡0)	 for	 the	 invariant	measure	and	some	𝑡0	and	we	
have	asymptotic	random	periodic	cycles	under	this	condition.		
But,	when	we	have	many	fixed	points,	the	complete	solution	is	more	difficult	because	we	
meet	some	problems	with	domains	of	domination	(See	§3). ■ 
Remark	
Theoretically,	if	we	know	the	probability’s	measure,	we	can	define	the	statistics	(mean,	
standard	deviation…).	
	
6	-Examples		
1-	Suppose	that	F	has	a	hessian	definite negative, then, when 𝛿 → 0,	it	is	easy	to	verify	that	
the	 critical	 point	 verifies	 ,	 𝑎𝑦 = 1,	 with	 an	 approximation	 of	 𝐻𝑛(𝑦) =
𝜕(𝑦𝐹(𝑎)𝑒DTSDÝß7(T)/𝜕𝑎(|Tjg		for	𝛿𝑣 → 0	.	
If	𝛿 =0,	the	critical	point	𝑎�		is	real		and	we	don’t	have	probabilistic	solution.		
	
2-	Suppose	we	have	a	linearity	in	b	:	𝒂	=	(𝑎,	b).	We	write	𝑑	𝒂/𝑑𝑡	=	F(𝒂)	with	𝒂	=	(𝑎,	b)	
with	𝒂	=	(𝑎,	b)	𝑎 ∈ ℝ#	and	 𝑏 ∈ ℝ:	

𝑑a/𝑑𝑡	=𝑓(𝑎)𝑏 + 𝑔((𝑎)	
𝑑b/𝑑𝑡	=	ℎ(𝑎)𝑏 + 𝑘(𝑎)	

We	write	the	Plancherel-Rotach’s	function	with	then	𝒚 = (𝑦, 𝑧), 𝑦 ∈ ℝ#	and	 𝑧 ∈ ℝ	
	 	 	 	 𝑛𝛾(𝒂) = 𝑦(𝑎 + 𝛿(𝑓(𝑎)𝑏 + 𝑔M(𝑎)N + 𝑧(𝑏 + 𝛿(ℎ(𝑎)𝑏 + 𝑘(𝑎))	
Putting		𝑧 = 𝛿𝑧′	and	𝑏î = 𝛿𝑏	for	𝛿 > 0,	we	obtain	when	𝛿 → 0:		
	 	 	 	 𝑛𝛾(𝒂′) → 𝑦(𝑎 + 𝑓(𝑎)𝑏î) + 𝑧′𝑏′-n	ln	b’-n	ln	𝑎	
(The	change	𝑏î = 𝛿𝑏		doesn’t	modify	the	equation	𝜃7(𝒚) = 0	).	And	the	critical	point	is:	
	 	 	 	 𝑦𝑓(𝑎)𝑏î + 𝑧′𝑏′-n	=0	
	 	 	 	 𝑦𝑎+𝑦𝑏î𝜕𝑓(𝑎)/𝜕𝑎-n	=0	
So:	 	 	 	 𝑦𝑎(𝑦𝑓(𝑎) + 𝑧î)+𝑛𝑦𝜕𝑓(𝑎)/𝜕𝑎-n	(𝑦𝑓(𝑎) + 𝑧î)=0	
The	imaginary	critical	points	give	the	distribution	of	the	cycles.	Under	general	conditions,	
this	distribution	doesn’t	depend	on	the	functions	𝑔((𝑎),	ℎ(𝑎), 𝑘(𝑎)	but	only	on	𝑓(𝑎).	
	
7-	Critical	frequencies	
Asymptotically,	we	have	random	cycles.	Let	𝑎(𝑡)	be	a	point	on	a	such	asymptotic	cycle	and	
a	very	small	invariant	borelian	around	this	point.	So,	we	have	many	large	times	to	return	
in	 this	 borelian.	 In	 the	 differential	 iteration,	 we	 have	 many	 and	 large	 𝜏 = (𝑡 + 𝑘𝑇)/𝑛	
which	give	the	same	𝑎(𝑡)		where	is	a	random	quasi-period.	
	



Proposition	
When	the	number	of	iterations	n→ ∞	and	if	the	la	hessian	of	y𝐹	is	definite	negative,	the	
approximation	with	defines	𝑠 = 𝑦/𝑛	in	function	of	the	critical	point	a:	

	𝑠 + 𝜏𝑠𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0		 	
where			 	 	 1/𝑎 = (1/𝑎ℓ	,	ℓ = 1, 2,…,	d).	
If	𝑠T	is	a	particular	solution	and	if		𝑠	is	an	eigenvector	of	−𝜕𝐹(𝑎)/𝜕𝑎	for	the	eigenvalue	
1/𝑡,	the	general	solution	is:	
	 	 	 	 	𝑠	=𝑠T+𝑠	
The	eigenvalue	1/𝑡	can	be	interpreted	as	a	critical	asymptotic	frequency.	
█	Contrary	to	the	previous	§5,	we	don’t	write	the	critical	point	𝑎	as	a	function	of	𝑠,	but	𝑠	
as	a	function	of	𝑎.	For	fixed	𝑎	on	an	asymptotic	cycle,	we	recognize	a	linear	affine	equation	
of	𝑠	depending	on	the	parameter	t.	We	have	to	find	a	particular	solution	𝑠T	:	
	 	 	 	 𝑠T + 𝜏𝑠T𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0	
Formally:	 	 	 𝑠T = (𝐼𝑑 + 𝜏𝜕𝐹(𝑎)/𝜕𝑎)9:1/𝑎	
The	equation	of	𝑠T	is	now	an	elementary	equation	and	has	a	unique	solution	for	all	t≠-
1/𝜆T	where	𝜆T		is	eigenvalue	of	𝜕𝐹(𝑎)/𝜕𝑎	at	the	fixed	critical	point	𝑎,	
Let	 the	general	 solution	be	 	𝑠	=𝑠T	+𝑠	,	where	𝑠T	is	 a	particular	solution	of	 the	general	
equation:	
As:		 	 	 	 	𝑠T	+𝑠 + 𝜏(𝑠T	+𝑠)𝜕𝐹(𝑎)/𝜕𝑎 − 1/𝑎 = 0	
then	:	 	 	 	 	𝑠 = −𝜏𝑠𝜕𝐹(𝑎)/𝜕𝑎	
𝑠	is	eigenvector	of		𝜕𝐹(𝑎)/𝜕𝑎	for	the	eigenvalue	𝜆T	and	giving	𝜏	=-1/𝜆T	maximal	positive;	
𝑠	 	is	defined	with	a	multiplicative	constant	arbitrary.	The	general	solution	is:	𝑠	=𝑠T	+𝑠		
and	shows	a	discontinuity	at	the	eigenvalues	𝜆T.█	
	
Remark:	calculation	of	sö	
𝑠T	 is	 obtained	 with	 (𝐼𝑑 + 𝜏𝜕𝐹(𝑎)/𝜕𝑎)9:		for	 all	 𝜏 ≠-1/𝜆Twhich	 doesn’t	 belong	 to	 the	
spectrum	of	-𝜕𝐹(𝑎)/𝜕𝑎	with	the	series	development	of	𝜏.	
	
8-	Case	where	the	hessian	is	degenerate:	the	equation	of	Lorenz	
Generally,	 the	 hessian	 is	 not	 definite	 negative.	 The	 Lorenz’s	 equation	 is	 an	 example	
particularly	important	because	the	differential	iteration	can	be	broken	down	into	three	
independent	iterations	which	have	a	remarkable	feature:	a	partial	linearity;	an	iteration	
with	a	negative	hessian	which	induces	a	probabilistic	solution	and	another	with	a	positive	
hessian.	It	is	an	ideal	example	to	clarify	the	previous	results.		
However,	as	there	is	an	interpenetration	of	the	distributions	related	to	each	fixed	point,	
the	 connection	 between	 the	 various	 results	 remains	 delicate.	 The	 probabilistic	
presentation	seems	to	be	the	least	bad:	it	gives	the	probability	of	presence	except	at	the	
places	where	the	domination	changes;	in	this	case,	we	go	from	a	basin	of	iteration	to	an	
another.		
	
-	Presentation	of	the	differential	iteration	at	its	fixed	points.	These	equations	are	written	
in	bold	notations:	

𝑑	𝒂/𝑑𝑡	=	F(𝒂)	where	𝒂	=	(𝑎,	b,	c):		
𝑑a/𝑑𝑡	=𝜎(b-𝑎)	
𝑑b/𝑑𝑡	=	𝜌𝑎–	b-𝑎c	
𝑑c/𝑑𝑡	=	-𝛽c	+	𝑎b		

the	differential	iteration	 	𝒂: =	𝑓(𝒂)	associated	with	a	given	path	𝛿=	t	/	n	is:	
		 	 	 	 	𝑎:=𝑎+	𝛿𝜎(b-𝑎)	
																																																							𝑏:=b+	𝛿(𝜌𝑎–	b-𝑎c)		



																																																							𝑐:=c+	𝛿(-𝛽c	+	𝑎b)		
We	recall	the	known	results	concerning	the	fixed	points:		
The	fixed	points	are	zeros	of	F(𝒂)=0.	If	𝜌	>1	and	𝛼 = ®𝛽(𝜌 − 1)		 ,	 it	exists	three	fixed	
points:	
The	point	0=	(0,0,0),	and	two	others	symmetric	to	the	axis	of	c:	
	𝛼S	=	(𝛼,	𝛼,	𝛼¡/𝛽)	et	𝛼9	=	(-𝛼,	-𝛼,	𝛼¡/𝛽).		
At	0,	the	eigenvalue’s	equation	𝜆	of	the	linear	part	is:	
(𝛽+	𝜆)	[(𝜎	+	𝜆)	(1+	𝜆)-	𝜎𝜌]	=0,		
But,	at	𝛼S	or	at	𝛼9:		
																																																									𝜆(𝛽+	𝜆)(1+𝜎	+	𝜆)-	𝛼¡(2𝜎	 + 	𝜆)	=0,	
Coefficients	𝛽, 𝜎, 𝜌	are	such	as	these	three	repellent	fixed	points;	that	means	we	have	to	
study	 the	 distributions	 around	 each	 fixed	 point.	We	don’t	 speak	 here	 about	 attractive	
cycles,	resonances,	and	some	particular	values	of	 the	parameters,	etc.	 It	remains	many	
things	to	clarify.		
The	iteration	applies	a	compact	set	C	in	itself	for	𝛿	>	t	>	0	(the	phenomenon	occurring	
between	 a	 cold	 sphere	 at	 -50°	 and	 hot	 sphere,	 the	 earth,	 at	 +15°	 as	 the	 terrestrial	
atmosphere	is	modelled).		
This	iteration	is	quadratic,	but	has	a	linearity	in	𝒂.		
	
Analysis	of	the	hessian	
Projecting	𝑓(𝒂)	onto	an	axis	y	=	(𝑥,	y,	z),	we	write:		
y	𝑓(𝒂)=	L(𝒂)	+	𝛿Q(𝒂)	
where	L(𝒂)	is	linear	for	𝒂:	 L(𝒂)=	𝑥(𝑎+	𝛿𝜎(b-𝑎))+	𝑦(b+	𝛿(𝜌𝑎–	b))+	𝑧c(1-	𝛿𝛽)	
		 	 	 	 L(𝒂)=𝑎𝐿: + 𝑏𝐿¡+c𝐿$		
with	:	 	 	 	 	𝐿:=	𝑥(1-	𝛿𝜎) + 𝛿𝜌𝑦		
		 	 	 	 	𝐿¡=	𝛿𝜎𝑥+	y(1-	𝛿)	

	𝐿$	=	z	(1-𝛿𝛽)	
and	Q(𝒂)	is	quadratic:		 	𝛿Q(𝒂)	=𝛿(𝑧b-yc)	𝑎	
The	 hessian	 is	 degenerated	 and	 not	 definite	 negative.	 We	 cannot	 apply	 the	 previous	
results.	On	the	other	hand,	we	can	always	use	the	lemma	which	requires:	𝜕(𝜕((𝑒D7(T))/
𝜕𝑎()𝜕𝛿|Tjg = 0.	
A-	 Before	 to	 study	 this	 equation,	we	 examine	 the	 quadratic	 application	 and	 its	matrix	
Q(𝒂)	:	

	 	 	 	 Q=&
0 𝑧 −𝑦
𝑧 0 0

_− 𝑦 0 0
(	

If	𝜇	=®𝑦¡ + 𝑧¡	is	the	positive	eigenvalue	of	the	characteristic	equation	of	Q	:	𝜇	(𝜇¡ − 𝑦¡ −
𝑧¡)=0	
The	matrix	of	the	eigenvectors	T	is	orthogonal	and	constant	for	all	𝒂.	

	 	 	 	 T= :
*√¡

+
0 𝜇 𝜇
𝑦√2 −𝑧 𝑧
_𝑧√2 𝑦 −𝑦

,	

Corresponding	to	the	diagonal	matrix	of	the	eigenvectors.	

			 	 	 	 Λ=&
0 0 0
0 −𝜇 0
_0 0 𝜇

(	

-	Changing	of	basis	
We	calculate	directly	with	the	Hermite’s	polynomials.	



The	application	u	=	T	𝒂	with	u	=	(u,	v,	w)	is	orthogonal	and	transforms:	
-	yf(𝒂)	in:	 	 	 	𝐺	(u)	=	𝒚f(T’u)			:		
-	Q(𝒂)	in:	 	 	 Q(u)=𝛿𝜇(𝑤¡ − 𝑣¡)	
-	L(𝒂)	in:		 	 	 LT’u	
Where	T’	means	 the	 transposed	 of	 the	 orthogonal	matrix	 T,	which	 is	 also	 its	 inverse:	
T’=𝑇9:.	
Now,	 in	 the	 new	 basis	 u,	 the	 function	𝒚𝑓(𝒂)	 is	 factorized:	 𝒚𝑓(𝑇′𝒖) = 𝐺(u)	 into	 three	
independent	functions:	

𝐺(u)=	𝑔:(u)+	𝑔¡(v)+	𝑔$(w)	
with:	
		 	 	 	 	𝑔:(u)	=	𝑙:u		
		 	 	 	 	𝑔¡(v)=	𝑙¡v-𝛿𝜇	𝑣¡	

	𝑔$(w)=	𝑙$w	+𝛿	𝜇	𝑤¡		
We	get	3	independent	iterations:		
-	the	first	is	linear;	
-	the	second	is	a	random	iteration;	
-	the	third	remains	positive,	except	if	𝑙$ = 0.	
To	calculate	𝑙:,	𝑙¡	et	𝑙$,	we	form:		L(𝒂)=	𝑎	(𝑥-	𝛿𝜎𝑥 + 𝛿𝜌𝑦) + 𝑏(𝛿𝜎𝑥+	y(1-	𝛿))+zc(1-𝛿𝛽)		
With:		 	 	 	 	𝐿:=	𝑥	(1-	𝛿𝜎) + 𝛿𝜌𝑦	;		𝐿¡=	𝛿𝜎𝑥+	y(1-	𝛿)	;	𝐿$=	z(1-𝛿𝛽)	

Then:	 	 	 	 lu=(𝑙:, 𝑙¡, 𝑙$)𝒖	=LT’u=(𝐿:, 𝐿¡,𝐿$)
:

*√¡
+
0 𝑦√2 𝑧√2
𝜇 −𝑧 𝑦
𝜇 𝑧 −𝑦

,	

	𝑙:=	(𝛿𝜎𝑥+	𝑦	(1-	𝛿)+z(1-𝛿𝛽))/	√2	
	𝑙¡	=	(𝑥-	𝛿𝜎𝑥 + 𝛿𝜌𝑦)𝑦/	𝜇 − (𝛿𝜎𝑥+	y(1-	𝛿))-z(1-𝛿𝛽))z/𝜇	√2	

																																																						𝑙$	=(𝑥-	𝛿𝜎𝑥 + 𝛿𝜌𝑦)𝑧/	𝜇 + (𝛿𝜎𝑥+𝑦(1-	𝛿))-z(1-𝛿𝛽))y/𝜇	√2	
B-	Let	the	resolving	gap	 	𝑒((𝒚) = 𝜕(𝜕((𝑒D7(𝒂))/𝜕𝒂()𝜕𝛿|Tjg = 0		
For	∀	𝑡 ≤ 𝛿.	Putting	𝒂 = 𝑇’𝒖,	we	have:	
	 	 	 	 𝑒((𝒖) = 𝑇(𝜕(𝜕((𝑒D7(1î𝒖))/𝜕𝒖()𝜕𝛿|𝒖jg = 0	
𝜕((𝑒D7(1î𝒖))/𝜕𝒖( = 𝜕((𝑒23(4))/𝜕𝑢(	. 	𝜕((𝑒2µ(Ý))/𝜕𝑣(.		𝜕((𝑒25(6))/𝜕𝑤(			
This	gives:	 	 	 	𝜕((𝑒23(4))/𝜕𝑢(=	𝑙:

(𝑒23(4)	;	
			 	 	 	 	𝜕((𝑒2µ(Ý))/𝜕𝑣( = 𝐻((𝑔¡(𝑣))𝑒2µ(Ý)	;	
		 	 	 	 	𝜕((𝑒25(6))/𝜕𝑤( = 𝐻((𝑔$(𝑤))𝑒25(6)	
And:	 	 	 	 	𝑒((𝒖) = 𝜕	𝑙:

(𝐻((𝑔¡(𝑣))𝐻((𝑔$(𝑤))(𝑒D7(𝑻î𝒖))𝜕𝛿|4jg = 0	
Proposition	
The	solution	around	the	fixed	point	0	consists	of	the	intersection	of		
the	family	of	random	surfaces	defined	by:	𝑙¡/2√𝜇⟼ 𝑙𝑜𝑤	𝛽(1/2,1/2)		with		
The	surfaces	𝜎𝑥 − 𝑦-z𝛽 =0	et	(-	𝜎𝑥 + 𝜌𝑦)𝑧 + (𝜎𝑥-	y+z𝛽)y/√2	=0.	
	
█		With	the	same	calculations	of	encodings	and	interchanging	the	derivations,	we	have:	

	𝜕𝑙:
(/𝜕𝛿=0;	𝜕	𝐻((𝑔¡(𝑣))/𝜕𝛿=0;	𝜕	𝐻((𝑔$(𝑤))/𝜕𝛿=0	

We	study	separately	the	three	expressions:	
	-	First:		 	 	 𝜕	𝑙:

(/𝜕𝛿=n(𝜕𝑙:	/𝜕𝛿)𝑙:
(9: =0	

Either			 	 	 𝜕𝑙:	/𝜕𝛿=	𝜎𝑥 − 𝑦-z𝛽 =0,	or:	𝑙:~(𝑦 + 𝑧)/√2 = 0	
-	Second:	the	polynomial	𝐻((𝑔$(𝑤))	when	𝑤 = 0	is	a	Hermite’s	polynomial	𝐻((𝑥)	where	
𝑥	is	𝑥=𝑖𝑙$/(®2𝛿𝜇	.	this	polynomial	𝑖(𝐻((𝑖𝑙$/(®2𝛿𝜇)	is	always	positive	whatever	n.	In	a	
general	way:		

	𝜕	𝐻((𝑥)/𝜕𝛿=n𝐻(9:(𝑥)	𝜕	𝑥/𝜕𝛿=0.	So:𝑑(𝑙$/®2𝛿𝜇	)/𝑑𝛿 = 0,		



And	 	 	 	 	𝑙$~(𝑥𝑧√2 + (y-z)	𝑦)/𝜇	√2=0	
-	Third:	in	the	case	of	𝐻((𝑔¡(𝑤)),	in	addition	to	the	solution	𝑙¡ = 0,	we	have	to	find	the	
possible	invariant	distribution	of	𝐻((𝑙¡/®2𝛿𝜇) = 0.	
Let	the	integrand	of			 𝑛𝛾(𝑤) = 𝑔¡(𝑤) − 𝑛ln	𝑤	
When	𝛿 → 0,			 	 𝑙¡~	(x	𝑦√2 +(y-z)	z)/	√2𝜇	with	𝜇	=®𝑦¡ + 𝑧¡.	
By	normalization	of	the	coordinates	𝒙	=	(𝑥,	y,	z)= 𝛿ns	=	(𝛿nr,	𝛿ns,	𝛿nt),	we	obtain:	

	𝑙¡~𝑛𝛿(𝑟𝑠√2 + (𝑠 − 𝑡)𝑡	)/	2(𝑠¡ + 𝑡¡)
3
µ = 𝑛𝛿𝑙¡(𝒔)		

	 	 	 	 𝛿𝜇=	𝑛𝛿¡(𝑠¡ + 𝑡¡):/¡ = 𝑛𝛿¡	𝜇(𝒔)		
	𝑛𝛾(𝑣) =	n(𝛿𝑙¡(𝒔)𝑣 − 𝜇(𝒔)(𝛿𝑣)¡ − ln 𝛿𝑣 + ln 𝛿)	
Putting	𝛿𝑣 = v,	we	have:		 𝑛𝛾(v) =	n(𝑙¡(𝒔)v − 𝜇(𝒔)v¡ − ln v)	
We	search	the	critical	point:	 𝑑𝛾(v)/𝑑v = 𝑙¡(𝒔) − 2𝜇(𝒔)v − 1/v = 0	
The	imaginary	roots	are:	 v(𝒔) = 𝑙¡(𝒔)/4𝜇(𝒔) ± 𝑖®1/2𝜇(𝒔) − 𝑙¡(𝒔)¡/16𝜇(𝒔)¡	
Under	the	condition:		 	𝑙¡(𝒔)¡ < 8𝜇(𝒔):	

	𝑙$~(𝑟𝑡√2 + (s-t)	𝑠)/𝜇(𝒔)	√2=0	
Implies:	 	 	 	𝑙¡(𝒔) = −(𝑠 − 𝑡)¡	/	√2(𝑠¡ + 𝑡¡):/¡	
The	condition	becomes:		 (𝑠 − 𝑡)·	/	(𝑠¡ + 𝑡¡)$/¡ < 16	
𝑙: = 0		implies		 	 𝑠 + 𝑡 = 0,	then:	𝑠 < 8	
In	 any	 case,	 we	 observe	 that	 the	 conditions	 	 𝑙$ = 𝑙: = 0		 allow	 us	 to	 express	 r	 et	 t	
depending	on	s	and	we	can	write	that	the	density	of	zeros	of	s	is	now:		
		 	 	 	 q(s)ds	=Prob	(1	zero	between	s,	s+ds)	=	|𝐼𝑚𝑓(v(𝑠))|ds/	𝜋	
	 	 	 	 q(s)ds	=𝑙¡(𝒔)®8𝜇(𝒔) − 𝑙¡(𝒔)¡/8𝜋𝜇(𝒔) 	= d𝜅	
𝜅	follows	a	uniform	low	on	(0,1)	with:	𝑠 + 𝑡 = 0	(or	𝜎𝑥 − 𝑦-z𝛽 =0)	and:	x	𝑦√2 +(y-z)	z+0	
We	also	remark	that	 the	normalization	doesn’t	affect	 the	coefficients	of	 the	orthogonal	
matrix:	

	T(x,	y,	z)= 𝑇(𝛿𝑛r,	𝑛𝛿s,	𝑛𝛿	t)=	𝑇(r,	s,	t)		
	
We	now	verify	similar	results	the	two	other	fixed	points	𝜶S	et	𝜶9.	█	
C	-	Calculation	for	the	two	other	fixed	points		
We	search	 the	distributions	around	 the	 two	other	 fixed	points.	To	pass	 from	 the	 fixed	
point	0	to	the	fixed	point		𝛼S	or	𝛼9	,	it	is	sufficient	to	put	in	the	differential	iteration	instead	
of	𝒂	=(a,b,c)	
𝒂’+𝜶S	=	(a’+𝛼,	b’+𝛼,	c’+𝛼¡/𝛽)	and	𝒂’+𝜶9	=	(a’-𝛼,	b’-𝛼,	c’+𝛼¡/𝛽)	:	
So,	for	𝒂’+𝜶S	:		 	 𝒂:	=f(a)	where	𝒂:	=	(𝑎:,	𝑏:	𝑐:)	becomes	
	𝒂:	=𝒂′:	+𝛼S=f(a)	=f(a’+𝛼S);		
then	:		 	 	 	 𝒂′:	=	𝑎’+𝛿F(𝒂’+𝛼S)		
And	𝒂:	=	𝑓(𝒂):		 	 𝑎:	=	𝑎	+	𝛿𝜎(b-	𝑎)	

𝑏:=b+	𝛿(𝜌𝑎–	b-ac)		
				 	 	 	 𝑐:=c+	𝛿(-𝛽c	+	𝑎	b)		
Becomes	for	𝒂	+𝛼S	(we	remove	apostrophe	of	a’	to	make	the	notation	less	cluttered):	
	 	 	 	 𝑎′:=	𝑎	+	𝛿𝜎(b-	𝑎)	=	𝑎:	

	𝑏′:=b	+	𝛿(𝜌𝑎–	b	-	𝑎	c)	+𝛿(-	𝛼𝑐-𝑎𝛼¡/𝛽)=	𝑏: + 𝛿(-	𝛼𝑐-𝑎𝛼¡/𝛽)	
																																																							𝑐′:=c	+	𝛿(-𝛽c+ab)	+	𝛿𝛼	(a+𝑏)=	𝑐:+	𝛿𝛼	(a+𝑏)	
The	projection	of	𝑓	(𝒂)	on	an	axis	y	=	(x,	y,	z)	can	be	written:		

y	𝑓(𝒂’)	=	𝑥𝑎:+𝑦𝑏: + 𝛿𝑦(-	𝛼𝑐-𝑎𝛼¡/𝛽)+z𝑐:+	𝑧𝛿𝛼(a+𝑏)	
y	𝑓	(𝒂’)	=	y	𝑓(𝒂)+	𝛿(a	(𝑧𝛼-𝑦𝛼¡/𝛽)	+𝑧𝛼𝑏-	𝑦𝛼𝑐)	

and	Q(𝒂)	is	invariant:	 	y𝑓𝒂’)	=	L’(𝒂)	+	𝛿Q(𝒂)	
L(𝒂)	is	linear	for	𝒂:	 	 L’(𝒂)=	L(𝒂)+	𝛿(𝑎	(𝑧𝛼-𝑦𝛼¡/𝛽)	+𝑧𝛼𝑏-	𝑦𝛼𝑐)	



			 	 	 		 L’(𝒂)=𝑎𝐿′: + 𝑏𝐿′¡+c𝐿′$		
with:	 	 	 	 𝐿′:=	𝐿:+	𝛿(𝑧𝛼-𝑦𝛼¡/𝛽);		𝐿′¡=	𝐿¡ + 𝛿𝑧𝛼;		𝐿′$	=	𝐿$ − 𝛿𝑦𝛼	
then	T	and	Λ	remain	invariant.		
We	calculate	𝑙′:,	𝑙′¡	et	𝑙′$,	with	 L(𝒂)=𝑎(𝑥-	𝛿𝜎𝑥 + 𝛿𝜌𝑦) + 𝑏(𝛿𝜎𝑥+y(1-	𝛿))+zc(1-𝛿𝛽)	:	
Where		 	 	 𝐿:	=	𝑥(1-	𝛿𝜎) + 𝛿𝜌𝑦	;		𝐿¡=	𝛿𝜎𝑥+	y(1-	𝛿)	;	𝐿$=	z(1-𝛿𝛽)	
	And:	 	 	 	 l’u	=	(𝑙′:,	𝑙′¡	et	𝑙′$)𝒖		

=LT’u	

									=	(𝐿: + 𝛿(𝑧𝛼-𝑦𝛼¡/𝛽),𝐿¡ + 𝛿𝑧𝛼, 	𝐿$ − 𝛿𝑦𝛼)
:

*√¡
+
0 𝑦√2 𝑧√2
𝜇 −𝑧 𝑦
𝜇 𝑧 −𝑦

,	

The	results	are	modified:	
	 	 	 	 𝑙î: = 𝑙î: + 	𝛿𝛼(𝑧	−𝑦)/√2	
	 	 	 	 𝑙′¡ = 𝑙′¡ + 	𝛿𝛼((𝑧-𝑦𝛼/𝛽)𝑦√2-z(𝑧 + 𝑦)	)/	𝜇√2	
	 	 	 	 𝑙′$ = 𝑙$ + 	𝛿𝛼((𝑧-𝑦𝛼/𝛽)𝑧√2+y(𝑧 + 𝑦)	)/	𝜇√2	
The	following	calculations	remains	the	same.	
When	𝒂	becomes	𝒂	+𝛼9	 𝑎":=	𝑎	+	𝛿𝜎(b-𝑎)	=	𝑎:	
		 	 	 	 𝑏":=	b	+	𝛿(𝜌𝑎–	b	-𝑎c)	+𝛿(𝛼𝑐-𝑎𝛼¡/𝛽)	=	𝑏: + 𝛿(𝛼𝑐-𝑎𝛼¡/𝛽)	
																																																						𝑐":=	c	+	𝛿(-𝛽c+𝑎b)	-	𝛿𝛼	(𝑎+𝑏)	=	𝑐:-	𝛿𝛼	(𝑎+𝑏)	
It	remains	the	problems	of	domination	and	frontiers	between	the	various	distributions	
attached	at	each	fixed	point.	
Remark		
We	have	to	go	back	to	the	original	coordinates.	And	the	solution	gives	only	probabilities	
of	presence...	
	
9 - Conclusion 
With this probabilistic method, we get many new results, but also many new difficulties such 
as, for instance, when the hessian is degenerated. The results located around each fixed point 
are other difficulties, but the steepest descent gives us the basin of each fixed point. And we 
don’t must forget that the steepest descent’s method is not always easy to use. 
We have applied these results to PDE equations and obtain other new results.  
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