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Abstract

Recently introduced, linked-read technologies, such as the 10X chromium system, use microfluidics to tag multiple short
reads from the same long fragment (50-200 kbp) with a small sequence, called a barcode. They are inexpensive and easy to
prepare, combining the accuracy of short-read sequencing with the long-range information of barcodes. The same barcode
can be used for several different fragments, which complicates the analyses. We present QuickDeconvolution (QD), a new
software for deconvolving a set of reads sharing a barcode, i.e. separating the reads from the different fragments. QD only
takes sequencing data as input, without the need for a reference genome. We show that QuickDeconvolution outperforms
existing software in terms of accuracy, speed, and scalability, making it capable of deconvolving previously inaccessible
data sets. In particular, we demonstrate here the first example in the literature of a successfully deconvoluted animal
sequencing dataset, a 33 Gbp Drosophila melanogaster dataset. We show that taxonomic assignment of linked reads can
be improved by deconvoluting reads with QD before taxonomic classification.
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Introduction

Linked-read sequencing
Since the discovery of the role of DNA in the transmission of

genetic information [1], it has been understood that obtaining

the genomes of organisms is essential for understanding their

biology. Thus, great efforts have been made to extract genomic

information from a variety of organisms, including humans [2].

The first modern sequencers, with which scientists were able

to recover the precise sequence of (small) strands of DNA called

reads, appeared around 1970 and were named after Sanger,

the scientist who created the technique [3]. Since then, a

wide variety of techniques have been proposed. Those still in

use can be classified into two broad categories: (1) short-read

sequencers, which are capable of producing a large quantity of

short reads (less than 300 bp) with a very low error rate (usually

less than 1%) and low cost; (2) long-read sequencers, which are

capable of producing much longer reads (more than 10 kbp and

up to two million bp in extreme cases [4]) but with a generally

much higher error rate; the samples are also considerably more

difficult to prepare.

Linked read technologies were developed as a compromise

between short, accurate reads and long, inaccurate reads. 10X

sequencing is its oldest and most common form, but today

a variety of new techniques are emerging, such as LoopSeq,

TELL-Seq and BGI long fragment reads. To produce linked

reads, long DNA fragments are separated and sequenced with

short reads. Short reads typically cover 10-20% of the fragment

length. A ’barcode’ is attached to the end of each read in

the form of a small DNA sequence. All reads from the same

fragment share the same barcode.

The barcode deconvolution problem
Using the terminology defined in previous papers [5, 6], the

set of reads sharing the same barcode will be referred to as

a read cloud. The barcodes provide an implicit long-range

information: two reads sharing the same barcode originate with

high probability from the same fragment, and are thus ‘not far

away’ on the DNA strand. This long-range information can be

exploited by appropriate software, while being much cheaper

and easier to prepare than long-read sequencing [7]. Typically,

linked-reads can be used to phase haplotypes [8] or to propose

better de novo genome assemblies [9]. For instance, a reference

for the pepper genome was provided in 2018 using linked reads

[10].

A new computing challenge arising from these technologies

is that the total number of barcodes is limited. 10X sequencing

technology, for example, provides only a few million barcodes.

Because the total number of fragments routinely exceeds this

number, barcodes must be used multiple times for many

different fragments. This complicates the exploitation of the

data. The barcode deconvolution problem can be defined as the

separation of the reads of the different fragments present in each

barcode. The ultimate goal is to obtain “enhanced barcodes”,

where each barcode identifies only the reads of a single DNA
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fragment. Downstream methods are then much more efficient

than with raw barcodes, as shown by [11].

State of the art
Two main approaches can be used to deconvolve a set of

barcoded reads: reference-based or reference-free approaches.

When the content of the sequencing experiment is roughly

known in advance, and reference genomes are available, for

example when sequencing a model organism such as Human

or Drosophila, a reference-based approach can be used with the

EMA software [11]. EMA maps all reads from each read cloud

to a reference genome (or several in the case of metagenomic

data). Since reads from the same fragment are close to each

other on the sequenced genome(s), there is a good probability

that they will also map close to each other on the reference

genome(s). Although they often provide good results, reference-

based approaches are not always possible or desirable. Good

quality references are not always available and sometimes the

species in the sample are not known in advance. Moreover, the

result will be biased by the reference genome(s): using two

different references may give two different solutions. In this

article, we present an approach without reference, free of these

biases.

The first reference-free barcode deconvolution software was

published in [5], under the name Minerva. It uses the fact

that samples are sequenced with some coverage, i.e. that all

portions of the genome are sequenced multiple times, usually

more than 20 times. Many fragments with different barcodes

will therefore come from the same region, which Minerva

can exploit. The principle of Minerva is the same as that of

our software, QuickDeconvolution (QD), and will be deeply

discussed later. The paper established a strong theoretical

foundation for the method and showed its application on two

sets of mock metagenomes. However, the method remained too

slow to be used on large or even medium-sized datasets and is

referred to by its authors as a “proof of concept” algorithm.

Very recently, another reference-free software from the

authors of Minerva has been proposed under the name Ariadne

[6]. Based on a totally different concept, Ariadne starts by doing

a complete assembly of the De-Bruijn graph of reads using the

SPAdes assembler [12], ignoring the barcodes. It then proceeds

barcode by barcode. The key idea is that two reads coming

from the same fragment must not be far from each other on

the assembly graph. Ariadne therefore considers that if two

reads sharing the same barcode are close on the assembly graph,

then they come from the same fragment. Minerva and Ariadne

were only proven to be capable of deconvolving metagenomic

datasets.

Contribution
We present QuickDeconvolution (QD), a reference-free

software to solve the problem of barcode deconvolution.

QuickDeconvolution takes barcodes in fastq format as input

and produces an enhanced fastq file, where the barcodes are

marked with an additional number indicating the subgroups in

the read cloud.

Based on the same principle as Minerva, QuickDeconvolution

brings two crucial improvements: (1) an optimized algorithm

with parallel implementation; (2) an additional clustering step,

offering better accuracy.

We show that QD outperforms other reference-free barcode

deconvolution software in both speed and accuracy. By lifting

some resource limitations, QD can deconvolve previously

intractable datasets. The higher accuracy of the algorithm

allows the program to deconvolve single-species, repeat-rich

datasets. Here we provide the first example in the literature

of a deconvoluted animal dataset, from the species Drosophila

melanogaster. The availability of reference genomes allowed us

to confirm the quality of the deconvolutions proposed by QD.

Algorithm

Principle
The basic principle of the QuickDeconvolution algorithm is

the same as that of Minerva [5]. It is based on the fact

that all regions of the genome are cloned during sequencing

and will be sequenced multiple times: many fragments will

therefore come from the same region and share part of their

sequence. If two fragments share the same sequence over

part of their length, they are called overlapping. Minerva

and QuickDeconvolution make use of the fact that several

overlapping fragment reads will probably overlap. In other

words, multiple reads of a fragment will likely overlap with

multiple reads of an overlapping fragment with a different

barcode. The fragments of a barcode can then be distinguished

by the set of barcodes they overlap.

More precisely, each barcode is processed separately. For

each barcode, let’s call it anchor, a bipartite graph is

constructed, with all the anchor reads on one side, and all

the barcodes of the experiment on the other side. For each

read from the anchor, the set of all overlapping reads (with

an overlap of ≥ k bp) in the sequencing data is found. Links

are added in the graph between each read and the individual

barcodes of its overlapping reads. Once all the anchor reads are

processed, the graph is complete. The bipartite graph is then

converted into a graph containing only the reads of the anchor:

two reads are linked by a link of strength n if they overlap with

n shared barcodes. Since reads from the same fragment tend to

overlap with the same barcodes, it is expected that this graph

can then be clustered, with each cluster containing reads from

a single fragment. This algorithm is illustrated in Figure 1.

Mathematical justification

The mathematical justification of the model has been very

well described in [5] for metagenomic samples. We will

propose thereafter a natural extension in the case of a multi-

chromosomic genome. Let us justify the key assumption that,

within a barcode, two reads from the same fragment likely

overlap more shared barcodes than two reads from two different

fragments.

Let us consider that fragments of length L are drawn with a

uniform probability across the genome. Let p be the proportion

of each fragment covered by reads, typically 10-20% in the

case of 10X data. Enough fragments are drawn to cover the

genome with read coverage c (thus fragment coverage = c/p).

In total, Ntot different barcodes are attached, with on average

n molecules per barcode.

Two reads from the same fragment distant by l < L on the

strand overlap on average with

p1 =
L − l

L
∗ (

c

p
− 1)

common fragments. Let P be the probability that a read from

a common overlapping fragment overlaps one of the two reads.

P 2 is approximately the probability that two reads from the

common fragment overlap the two reads. Consequently, two
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Fig. 1. Illustration of the principle behind QuickDeconvolution and

Minerva. Top: from the genome, reads are sequenced and barcoded.

Barcodes are represented as colors. The 10 reads of the grey cloud, that

actually come from two different fragments (1234 and 5678910), will be

deconvolved. Each grey read is compared to all the other reads of the

dataset. A bipartite graph is built, linking each read to all the barcodes

it overlaps. It is then converted to a graph between all the reads from

the barcode. The strength of a link is the number of shared barcodes

the two reads overlap. Minerva then outputs as result all the connected

components of the graph, while QD clusters the graph.

reads from the same fragment overlap on average p1∗P 2 shared

barcodes.

Two reads with the same barcode but from two far away

fragments overlap on average

p2 =
c

p
∗ [

c

p
∗

n − 1

n ∗ Ntot − c
p

]

common fragments. Indeed, the first read overlaps on average

with c
p fragments, thus with roughly c

p different barcodes (let

these barcodes be the read1-barcodes). All other fragments

are now called the far-away fragments. The total number of

far-away fragments with a given read1-barcode attached is on

average n − 1. The total number of far-away fragments is

n ∗ Ntot − c
p . The second read overlaps with c

p fragments,

to which roughly c
p different read2-barcodes are attached. The

probability of a given read1-barcode being also a read2-barcode

is c
p ∗ n−1

n∗Ntot− c

p

. Consequently, the two reads overlap on average

with p2 ∗ P 2 shared barcodes.

In linked read experiments, the order of magnitude of Ntot is

at least 106, while the order of magnitude of c/p is at most 103.

Consequently, p1 >> p2: two reads close on the same fragment

will overlap on average many more shared barcodes than two

reads from two different fragments.

While the estimated link strengths in this model tend to

ensure very reliable linkages, it is important to keep in mind

that in our model, an overlap between two reads means that

both reads come from the same region. This is usually a false

assumption, as repeated regions are common in genomic data

and will cause many artifactual links between reads. The graph

should therefore be handled with care.

Read similarity
For each barcode, all reads are processed iteratively. For

each read, the set of all overlapping reads in the dataset

must be found. Since there are millions of fragments in the

dataset, finding this set is one of the key difficulties of the

program. The problem is well known in the genome assembly

community, where many overlapping reads must be assembled

into longer DNA sequences [13]. The strategy implemented by

QuickDeconvolution is a well-known strategy based on k-mers.

k-mers are subsequences of length k present in the reads.

In a preliminary indexing phase, a dictionary is constructed,

reporting for the k-mers in the dataset the list of all their

occurrences in the reads. In our experiments, the value of k

has been set to 20.

To speed up the indexing process, QuickDeconvolution

indexes at first sight only a user-defined fraction of k-mers d.

A k-mer is indexed if it is found among the smallest d fraction

of all possible k-mers by lexicographical order. For example, if

d = 0.25, all the k-mers starting with ‘A’ will be indexed. If no

k-mers are indexed in a window of size w (user-specified), k-

mers among the smallest 2 ∗ d fraction of k-mers are indexed in

this window. If still no k-mers are found in the window, k-mers

among the smallest 3 ∗ d fraction of k-mers are indexed there,

etc. This ensures the fundamental property that all stretches

of length w on any read contain at least one indexed k-mer,

and thus that two reads overlapping by w bases will share at

least one indexed k-mer, even in highly GC-biased regions. On

our tests, the precision of the deconvolution started decreasing

when d went below 1/8.

To each read is attached the set of its indexed k-mers. To

maximize the speed of execution and avoid the costly process

of alignment, QuickDeconvolution never checks if two reads

overlap. It goes through the set of indexed k-mers of a read

and finds in the index all other reads containing these k-mers.

Two reads sharing at least three indexed k-mers are flagged as

“similar”.

Graph building
For each barcode, a graph linking all the reads in the cloud is

constructed, as described above: first a bipartite graph between

the reads in the cloud and the barcodes is built, and then it is

converted into a graph containing only the reads in the cloud.

Two reads are linked if they respectively overlap with two reads

in the dataset that have identical barcodes. As demonstrated

above with a simple mathematical model, two reads from the

same fragment will be linked with a much higher probability

than two reads from two different fragments.

Tests on single-species datasets show that repeated regions

can create false positive links in the graph. This is because

a read containing a repeated region will share k-mers with

all reads containing that repeated region, including all those

that are actually far away on the genome. Repeated k-mers

are present in many more reads than average k-mers, creating

hubs of connections and many false positive links in the graph.

We observed that de-indexing k-mers present many more times
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than the average number of times in the dataset greatly

improves the quality of deconvolution on repeat-rich datasets,

while not affecting deconvolution on repeat-poor datasets. The

best results were obtained by de-indexing k-mers present twice

the average number of times or more. The disadvantage is that

some reads are not indexed at all, especially in repeated regions,

although this is mitigated by the fact that only one of the

two reads in the pair needs to be indexed to be deconvoluted.

The worst-case scenario for assembly would be that multiple

fragments with the same barcode lie within large segmental

duplications, and thus could not be distinguished. The effect of

de-indexing reads is evaluated Figure S1 of the supplementary

material, showing that this procedure is necessary on the

repeat-rich dataset we tested.

Graph clustering
The read graph must then be clustered into an unknown

number of enhanced read clouds. QuickDeconvolution uses the

Chinese whispers algorithm, a clustering method introduced

in NLP search [14]. It works as follows: at the beginning

of the algorithm, each read is contained in its own cluster

of size 1. The reads are then processed in a random order

until convergence. Each read inherits the cluster that is seen

most often among all neighbors, weighted by the strengths of

the links (in case of several equal possibilities, one is chosen

randomly). This algorithm is known to converge quickly to a

few stable clusters, especially if the diameter of the graph is

small (i.e. any two vertices are separated by few edges), which

is usually the case in our read graphs. In the worst case, the

clustering can oscillate, but this is marginal in practice for

QuickDeconvolution.

This clustering method has the great advantage of being

parameter-free and agnostic regarding the final number of

clusters.

This graph clustering method is a novelty compared to

what was done in Minerva. Minerva removes links weaker

than a certain threshold on the read graph and then considers

the different connected components of the graph as separate

clouds. David Danko et al. showed that the method could work

to separate fragments from different species in metagenomic

samples. However, when trying to separate fragments from a

single genome, we found that it was difficult to fully separate

clusters due to redundancies and small repeated elements

present across the genome. It became increasingly difficult

as sequencing depth or read quality decreased. Therefore, we

opted for a slightly more expensive but more flexible approach

that allows for residual false positives. Knowing that the

clustering step will compensate for some errors, we could

implement shortcuts to make the graph construction step faster.

Finally, all reads in a cloud that are not related to the

graph are not grouped separately but are marked with a special

tag ‘0’, to indicate to that clustering was ineffective at that

location. This can happen when a read is too noisy to be

overlapped with anything else, or if the read is in a highly

repeated region and all of its k-mers are not indexed.

Parallelization
An imperative for accelerating QD is to parallelize the program.

The goal of parallelization is to distribute the work among

the different threads present in a compute node. A perfectly

parallelized program is able to run t times faster when t threads

are available.

The algorithm runs in four distinct phases: loading the data

from the input file, creating the dictionary, deconvolving the

read clouds, and writing the data to an output file. The first

and last phases being negligible in time compared to the other

two, they are not parallelized at all and processed by a single

thread.

The third phase, where each graph is built and clustered,

is trivially parallelizable. Threads can manage separate clouds:

build their graphs, cluster them and store the result. Threads

compete only for access to the dictionary, which is not copied

t times to keep RAM usage reasonable.

The construction of the dictionary is the most difficult phase

to parallelize. Indeed, the threads cannot simply distribute the

reads between them: if the same k-mer is found on two threads

at the same time, the threads cannot update the dictionary

simultaneously (if two threads write the same entry at the same

time, an entry will probably be overwritten). If the k-mer has

not been seen before, this can even crash the program. The trick

is to divide the k-mers between the threads: for example, thread

1 takes care of k-mers ending in A or C while thread 2 takes

care of k-mers ending in G and T. Each thread must examine

all reads, but does not index all k-mers. To avoid recalculating

in each thread the set of sparse k-mers, this calculation is done

beforehand for all reads, in parallel. We end up with two sub-

phases: first the threads distribute the reads among themselves

and compute all the sparse k-mers; once this is done, the

threads distribute the k-mers among themselves and go through

all the reads to index them.

Datasets and evaluation metrics

Datasets
QuickDeconvolution was benchmarked on five datasets.

The first one is a simulated dataset based on the genome of

Escherichia coli. To introduce a little complexity and because

linked reads have often been used to phase haplotypes, we

created a “fake diploid” E. coli by duplicating the genome and

introducing a 1% difference between the two chromosomes. To

simulate 10X sequencing, fragments of 70-130kbp were drawn

uniformly along the genome. 15% of the length of each fragment

was covered by paired-end 150bp reads with 1% error. Barcodes

were then randomly assigned to all these fragments. Enough

fragments were drawn to obtain a final read coverage of 50.

The total number of barcodes available was computed to be four

times less than the total number of fragments. That resulted in

a 0.6 Gbp dataset.

We also created a simulated Homo sapiens dataset. 10X

sequencing was simulated using LRSim [15], a linked-read

simulator built to reproduce biases and errors of linked read

sequencing. We chose to run the simulator over chromosome 1

of genome of Homo sapiens. The sequenced dataset is 7 Gbp.

The deconvolution software were also tested on the

sequencing of two metagenomic mock communities (i.e.

communities where the mix of species is precisely known).

The first one was a 10X sequencing run on the metagenomic

sample MSA1003, a mix of 10 species sold by the ATCC

company. It resulted in 108 Gbp of data, published in the

paper [16]. The second one was a LoopSeq sequencing run on a

discontinued ATCC mix of five species. The size of the dataset

is 9 Gbp. To measure how well the software deconvolved the

reads, the solution of the deconvolution was approximated with

an approach similar to EMA: all the reads were mapped to the

set of reference genomes using Bowtie2. Reads that had the
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Fig. 2. Illustration of over-deconvolution and under-deconvolution

entropies on three mock deconvolutions. The ‘good’ deconvolution

corresponds to a slightly noisy perfect deconvolution. In the ‘under-

deconvoluted’ solution, two reference clouds were assigned to each

improved barcode (instead of one). In the ‘over-deconvoluted’ solution

each reference cloud was split between two improved barcodes.

same barcode and mapped less than 100Kbp away on the same

genome were considered as coming from the same fragment.

The last dataset comes from the 10X sequencing of a single

animal species, Drosophila melanogaster. It totalled 33Gbp of

sequencing data. The quality of deconvolution was assessed by

the same method as with the metagenomic ATCC datasets.

74% of the reads mapped uniquely on the reference genome

and overall 60% of the reads were identified to their fragment

of origin with good confidence. Only the deconvolution of those

reads was evaluated.

Evaluation metrics
In this section, a ‘reference cloud’ will refer to a set of reads

coming from a single fragment according to the reference

solution and ‘deconvolved cloud’ will refer to a set of reads

proposed by a software as coming from one fragment.

To evaluate the deconvolution, two metrics are proposed,

a classical approach for clustering evaluation. Indeed, good

deconvolution is a compromise between two extremes. On

one hand, all reads from a reference cloud must be kept

together in the same deconvolved cloud (otherwise the reads

are over-deconvoluted). On the other hand, all reads from a

deconvoluted cloud must come from a single reference cloud

(otherwise there are still several fragments per cloud, the reads

are under-deconvoluted). We thus propose:

• The over-deconvolution entropy. It evaluates the disorder

within each reference cloud by using the classical entropy

formula −
∑

i pi∗log(pi), where pi is the proportion of reads

of the reference cloud contained in deconvolved cloud i. If all

reads of the reference cloud have been kept together in one

deconvolved cloud, the over-deconvolution entropy is zero.

• The under-deconvolution entropy. It evaluates the disorder

within each deconvolved cloud by using the classical entropy

formula −
∑

j pj ∗ log(pj), where pj is the proportion of

reads of the deconvolved cloud contained in reference cloud

j. If the deconvolution is complete, and the deconvolved

clouds contain only reads coming from one reference cloud,

the under-deconvolution entropy is zero.

An histogram of the over-deconvolution entropies of

all reference clouds and of the under-deconvolution of all

deconvolved clouds is drawn, the aim being to concentrate the

distributions around zero. Quite logically, non-deconvoluted

data (where the clouds just correspond to original barcodes)

is under-deconvoluted but not over-deconvoluted. A graphical

example on mock datasets is provided Figure 2.

Results

All results were obtained by running all software on a server

housing 16 Intel Xeon CPUs with 4 cores each, running at 2.7

GHz. 3.1 TB of RAM was available.

QD, Minerva and Ariadne were run on the five datasets.

Minerva and Ariadne were run with parameters proposed on

GitHub. QuickDeconvolution was run using k=20 and indexing

1 over 8 k-mer on average.

The Drosophila, human and ATCC 10X datasets were too

big for Minerva, which was killed after running 15 days. We

were unable to run Ariadne on these three datasets because it

generated huge intermediary files (≥12T), saturating the space

available.

On E. coli dataset, Minerva proposed an enhanced barcode

(sometimes identical to the original barcode) for only 1.4%

of the reads, Ariadne for 69% and QuickDeconvolution more

than 99.9%. The most probable explanation for the low rate of

reads deconvolved by Minerva is that the clusters of reads were

slightly inter-connected, so Minerva could not deconvolve those

without a clustering step.

On the ATCC loopseq dataset, Minerva proposed a

deconvolution for less than 0.05% of the reads, as already

reported in [6], and was thus not evaluated. Ariadne and QD

classified more than 99% of the reads.

QD proposed a deconvolution for 81% of the reads for

Drosophila, 94% of the reads for ATCC 10X and more than

99.9% for H. sapiens.

Only the deconvolved reads have been taken into account to

measure the quality of the clustering for each method.

Accuracy
In term of deconvolution, QD proves superior to the other tools.

Figures 3a and 3e show that deconvolution with QD greatly

improves the under-deconvolution entropies. Minerva shows

comparable performance on E. coli, and Ariadne on ATCC

Loopseq. Ariadne, however, hardly improved the deconvolution

of the raw reads of E. coli. This improvement might be due to

the fact that the assembly graph of a mix of two strains is very

tangled. Thus, many regions far away on the genome are close

on the assembly graph and cannot be separated by Ariadne.

Figures 3b, 3c and 3d show that in all deconvolutions

proposed by Ariadne and QD a non-negligible number of

deconvolved read clouds are slightly over-deconvoluted, i.e.

have a few missing reads. For QD, they represent generally

two or three reads that have been clustered separately from the

rest of the cloud. On the human and loopseq cases (3d, 3c)

there is an over-deconvolution peak around an entropy of 0.7.

It corresponds to reads from the same fragment split in two

clouds of roughly equal size, corresponding to the two ends of

the fragment. The resulting clouds remain nevertheless valid,

in the sense that all reads within each cloud are actually close

to each other on the genome.

Performance
Speed was put forward by the authors of Minerva as the main

limitation of their algorithm. Hence it was one of the main

focus when developing QuickDeconvolution. Run-time of the

different algorithms was measured using the command time of

Linux system. We compared the algorithms mainly on the E.

coli dataset. The results are plotted Figure 4. The program has

been run with one, two, four, eight and sixteen threads.
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(a) Under-deconvolution

entropy of the deconvolved

E. coli dataset using

different software

(b) Over-deconvolution

entropy of the deconvolved

E. coli dataset using

different software

(c) Over- and under-deconvolution

entropies of the ATCC Loopseq dataset

after deconvolution with Ariadne and QD.

(d) Over-deconvolution by QD of three datasets

(e) Under-deconvolution of datasets before and after

being deconvoluted by QD

Fig. 3. Evaluations of the quality of the deconvolution on the different datasets with different software.

Fig. 4. Run-time (in minutes) of the different deconvolution algorithms on

the E. coli dataset. Axes have logarithmic scales. The dashed black line

represent the expected speed of QD if the parallelization was ideal.

Threads 1 2 4 8 16

QD 5,2 5,3 5,4 7,1 10,1
Ariadne 7,7 8,0 8,3 9,8 12,7
Minerva 10,7

Fig. 5. RAM usage (in gigabytes) of the different deconvolution

software while deconvolving the E. coli dataset

For one or two threads QD and Ariadne have nearly identical

run time, and both run roughly twice as fast as Minerva. When

increasing the number of threads the run-time of QD decreases

almost ideally, at least up to 16 threads. Ariadne does not scale

well, since it is only twice as fast with four threads and does

not seem to accelerate at all beyond. We end up with an order

of magnitude of difference in run-time when running Ariadne

and QD with 16 threads.

We conducted further investigation on the effect of

parallelization on the human and Drosophila datasets. Figure

6a is a plot of the speed-up of QD, i.e. the acceleration

compared with the single-thread reference time. For QD the

parallelization becomes less interesting beyond 16 threads. This

is an expected behaviour: as threads begin to compete for

memory access, parallelization becomes less interesting.

RAM usage was significant: for the Drosophila dataset,

the RAM usage ranged from 459 to 1053 GB, while it ranged

from 88 to 158 GB for the Homo sapiens dataset. RAM usage

tends to increase with the number of threads, even though all

threads use a common memory space and that theoretically

no extra information is stored. The scale-up of memory space

used by QuickDeconvolution is plotted in Figure 6b, showing

the increase of RAM used with multiple threads compared to

the reference single-threaded QD algorithm.
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(a) Speed-up of QD on the human and Drosophila datasets.

Speed-up is defined as reference run-time over run-time.

(b) Scale-up of the RAM usage of QD on the human and

Drosophila datasets. Scale-up is defined as reference RAM usage

over RAM usage

Fig. 6. Behaviour of multithreaded QD on the human and Drosophila

datasets

Application

Read clouds can be used to improve the taxonomic assignment

of short reads. When classifying a set of short reads, many of

them cannot be assigned to a low taxonomic rank. However, all

reads in a fragment are from the same organism. This can help

promote reads to lower ranks: a read can be promoted to a lower

taxonomic rank that contains reads with the same barcode,

provided there are no conflicts between multiple lower ranks.

Conflicts occur when multiple fragments of closely related

species have the same barcode. Deconvoluted read clouds

reduce the probability of having conflicts between multiple

ranks, thus improving taxonomic assignment.

We implemented this strategy in a small, freely available

script (github.com/RolandFaure/cloudClassifier), compatible

with any classifier. The reads in the ATCC 10X dataset were

classified by taxonomy using Kraken2 [17], a popular tool. Read

assignment was then enhanced using either non-deconvoluted

read clouds or QD deconvoluted read clouds. The result is

displayed in Figure 7. Mis-attributed reads accounted for less

than 1% of the reads in all cases and are not shown. The use

of deconvolved read clouds provides strain-resolved taxonomic

assignment for significantly more reads than non-deconvolved

read clouds.

Genome assembly and scaffolding are other classic

applications of linked read technologies. We expect both of

these applications to be enhanced by deconvolution. Assemblers

Fig. 7. Proportion of reads assigned to each rank in the ATCC dataset.

The three columns correspond to ignoring barcode information, using raw

barcode information and using deconvolved barcode information.

(e.g., cloudSpades [18], Supernova2.0 [19]) and scaffolders

(e.g., ARCS [20], ARKS [21]) link draft contigs based on the

number of barcodes they share. If unlucky, two contigs may

contain multiple pairs of fragments sharing the same barcode.

This could confuse the assembler/scaffolder. This problem

will be largely mitigated if the reads have been deconvoluted

beforehand.

Discussion

We presented QuickDeconvolution, a new software addressing

the problem of barcode deconvolution. Based on the same

theoretical background as Minerva, it introduces a clustering

step in the algorithm, where Minerva only computed connected

components. In addition, efforts have been made to make QD

fast and scalable. Today, QuickDeconvolution outperforms all

other reference-free deconvolution tools in terms of speed and

accuracy. We show that it is now possible to deconvolve datasets

from single species with complex and repetitive genomes.

The priority to extend this work would be to re-think

the index structure to reduce RAM usage. Indeed, the RAM

usage went over 1000G on the Drosophila and the metagenome

datasets, which contained respectively 33Gbp and 111Gbp.

Bigger datasets could easily be imagined: for example, a 50-

fold coverage of a diploid human would generate approximately

300 Gbp of data.
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