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Linear Model Predictive Control in SE(3) for online trajectory planning
in dynamic workspaces

Nicolas Torres Alberto1,2, Antun Skuric2, Lucas Joseph2, Vincent Padois2 and David Daney2

Abstract— Efficient workspace sharing of collaborative robots
and human operators remains an unsolved problem in the
industry. This problem goes beyond the use of a priori or a
posteriori safety measures and has to be tackled at the control
level.

To address the need of adaptation to human presence as well
as to endow the robot with the ability to adapt interactively to
new Cartesian targets, a linear Model Predictive Controller is
proposed in this paper. This controller computes acceleration-
bounded optimal Cartesian trajectories in SE(3) over a receding
horizon.

The pertinence of the proposed control architecture is
demonstrated using experiments with the Franka Emika robots
in different scenarios implying both adaptation of the maximum
allowed velocity to comply with human presence and on-the-fly
update of a Cartesian goal pose.

I. Introduction
Safety in robotics has always been a concern, but modern

industrial trends have specially exacerbated this in search
for better integration of robots and humans in working
environments. Robots are now required to optimally use
their capacities while safely sharing their workspace with
the operators around them.

Safety for collaborative robots is addressed through norms
or technical specifications. In this domain, one of the most
recent standards is the ISO 15066 Technical Specification [1].
Although innovative, considering safety from an energetic
level [2] remains a rather coarse approach that often leads
to unpractical settings and/or hard to certify installations.
Overall, collaborative robots in the industry are mostly used
as standard robots, behind cages or costly and inefficient
immaterial safety zones.

Addressing safety in an efficient way when considering
shared workspaces is a complex problem that requires an
online evaluation of multiple moving bodies. Fig. 1 aims to
depict this situation: a dynamically safe area for the robot
to evolve can be computed based on the state of both the
operator and the robot as well as on their near future motions.
Nevertheless, computing this potential area and taking online
control decisions based on this computation in an accurate
enough fashion to allow for close encounters such as the ones
in Fig. 1 remains an opened research problem [3], [4], [5].
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Fig. 1. A safe workspaces in a collaborative environment cannot be defined
with static zones as it depends on the robot-operator states and tasks.

In its most general form, it boils down to solving a global
optimal control problem online that determines at each time
a control trajectory that satisfactorily combines safety and
efficiency. Despite some research effort in this direction [6],
this very general problem is far from being solved in a
generic way and goes far beyond the scope of this paper.
Yet, a clear required feature emerges from the search for
optimality: the need for prediction of the effect of control
actions over a time horizon.

Fig. 2. Classical vs proposed control architecture.

Beyond safety, a close dynamic interaction between a
human operator and a robot may also imply on-the-fly re-
definitions of the task to be achieved by the robot. This
cannot be solved by ”classical control architectures” (such
as the one depicted in the top of Fig. 2) which generally
consider offline planning solutions, incapable of reacting
to dynamic events implied in the considered collaborative
scenarios. Instead one needs to consider online re-planning
at the task level.



Model Predictive Control is the ideal control approach
to combine both online re-planning and prediction of the
control action over a horizon. It offers an ideal framework
to optimally and interactively exploit robot capacities while
respecting safety limits.

As a consequence, this article proposes a hierarchical cas-
cade of closed-loop controllers as suggested in [7] combining
both online trajectory re-planning over a receding horizon
and task space control in two stages: a high-level safety-
aware operational space model predictive controller and a
high-frequency lower-level task-to-joint-space controller.

More specifically, the focus of this paper lies in continu-
ously finding the optimal pose and twist trajectory that will
drive a system from an initial pose to some target pose,
subject to velocity and acceleration constraints that account
for safety and the real robot capacities. While this is not a
fully novel problem, predictive algorithms in the literature:

• often use non-linear solvers [6] [8] which may not be
appropriate for frequent re-planning;

• are formulated at the joint-space level [9] [10] which is
not ideal when considering task-space specification as a
central feature;

• mostly disregard orientation.
By leveraging the relation between the pose space (the

Lie Group SE(3)) and its tangents space (the Lie alge-
bras 𝔰𝔢(3)) [11] [12] [13], this work proposes a Linear Model
Predictive Control (MPC) capable of estimating the evolution
position and orientation with faster linear MPC solvers.

First, Section II presents some groundwork concepts and
notation conventions employed in this work. Section III follows
with the relation between the Lie Group and its Lie algebras
and how it can be exploited for optimization problems,
then describes the proposed control architecture. Afterwards,
Section IV goes into details on the experimental setup and the
results of implementing it on a real robot. Finally, a discussion
and conclusions are presented in Section V.

II. Pose prediction in SE(3) vs linear MPC
A. Pose trajectory prediction

Formulating the control problem over a receding horizon at
the Cartesian level requires the prediction of the end-effector
pose given a horizon of control input, here considered at the
velocity level.

Given some system with initial pose 𝝌
𝑖 ∈ SE(3) subject

to a body twist 𝝂(𝑡) ∈ 𝔰𝔢(3), its discretized pose trajec-
tory 𝝌

𝑘 = 𝝌(𝑡)
��
𝑡=𝑘Δ𝑡

∈ SE(3) can be described as:

𝝌
𝑘 = 𝝌

𝑖𝑒
𝝂0Δ𝑡𝑒𝝂1Δ𝑡 . . . 𝑒𝝂𝑘−1Δ𝑡 (1)

= 𝝌
𝑖

𝑘−1∏
𝑖=0

𝑒𝝂𝑖Δ𝑡

Given initial and target poses 𝝌𝑖 , 𝝌𝑑 ∈ SE(3), this relation
can be used incrementally to compute desired twists at each
time instant given some tracking error [14]. Nevertheless, the
pose horizon is a non-linear function of the twist trajectory. Yet,
to be solved at a decent control rate for reactivity, the model

predictive controller should be expressed in a linear form. The
next subsection recalls the basics of such a formulation.

B. Linear systems in a receding horizon & MPC
A given dynamic system can be described at a time instant 𝑡𝑛

with a state vector 𝒙𝑛, representing its current position and
orientation; it is actuated with an input vector 𝒖 ∈ 𝔰𝔢(3)
representing its body twist.

The resulting relation between the input and state of a
discretized linear system is formulated as:

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 (2)

where 𝑨 and 𝑩 represent its state and input matrices.
Discretizing a receding time window in ℎ time steps of dura-

tionΔ𝑡ℎ (total duration𝑇 = ℎΔ𝑡ℎ), one obtains 𝑡𝑘 = (𝑛 + 𝑘)Δ𝑡ℎ
where 𝑘 = 0, 1, . . . , ℎ, which yields state and input vectors:

𝑿0...ℎ =


𝒙𝑘 |𝑛
𝒙𝑘+1 |𝑛

...

𝒙𝑘+ℎ |𝑛


𝑼0...ℎ−1 =


𝒖𝑘 |𝑛
𝒖𝑘+1 |𝑛

...

𝒖𝑘+ℎ−1 |𝑛


(3)

𝑿 = 𝑿0...ℎ 𝑿 = 𝑿1...ℎ 𝑿 = 𝑿0...ℎ−1 𝑼 = 𝑼0...ℎ−1

that allows extending (2) for a horizon:

𝑿 = 𝑨′𝑿 + 𝑩′𝑼 (4)

where 𝑨′, 𝑩′ are appropriately size diagonal matrices based
on 𝑨, 𝑩 from (2) while 𝑿 and 𝑼 respectively correspond to
the future states and control inputs of the system.

Finally, one can formulate the linear optimal control prob-
lem in a receding horizon as a Quadratic Program (QP) with
the following general cost function:

min
𝒖,𝒙

1
2
𝑼𝑇𝑹𝑼 + 1

2
𝑿𝑇𝑷𝑿 + 1

2
𝒙ℎ

𝑇𝑷𝑇𝒙ℎ (5)

subject to the equality (4) and polyhedral constraints:

𝒙𝑚 ≤ 𝑪𝒙𝒙𝑘 ≤ 𝒙𝑀 (6)
𝒖𝑚 ≤ 𝑪𝒖𝒖𝑘 ≤ 𝒖𝑀

where 𝑹, 𝑷, 𝑷𝑇 represent, respectively, weighting matrices
for the input, state and the terminal state. Meanwhile, 𝑪𝒙,𝑪𝒖

allow formulating linear constraints with respect to the state
and input; 𝒙𝑚, 𝒙𝑀 and 𝒖𝑚, 𝒖𝑀 respectively designate the state
and input bounds.

Equation (5) under constraints (4) and (6) constitutes the
general linear MPC formulation as a QP.

III. Linear MPC formulation on manifolds
A. Position and orientation in the tangent space

The linear MPC problem requires a linear system form
like in (2), but the pose trajectory of a system evolves as
the successive Lie group transformations, acting on its state
(pose) to travel through the SE(3) manifold at each timepoint,
as shown in (1). This Section presents how to link both forms
while providing a rough explanation on the conceptual steps
for optimizations on manifolds employed in this work, for more
details, [13] goes deeper.



As explained in [12], the SE(3) manifold is diffeomorphic
to 𝔰𝔢(3), hence there exists a differentiable bijective map such
as:

log :SE(3) → 𝔰𝔢(3) 𝝃 → log(𝝌) (7)
exp :𝔰𝔢(3) → SE(3) 𝝌 → exp(𝝃)

The log function1 relates the Lie group SE(3) to its Lie
algebra 𝔰𝔢(3), its tangent space, at the origin. It behaves
like an euclidean space for optimization purposes. In fact,
this allows representing a pose as a 6-vector instead of an
homogeneous matrix2: given some pose 𝝌, then 𝝃 can be
interpreted as the equivalent twist required to drive a system
from the origin frame (where position is at the origin and
orientation is aligned) to some position and orientation in
space 𝝌 in 1s.

The reparametrization of the original space into an opti-
mization space that offers some desirable properties is often
referred to as lifting or pushing while the inverse operation is
a retract or pull.

Decomposing (1) for a single step, yields the relation
between an infinitesimal increment in pose (body twist) and
the resulting pose:

𝝌
𝑘+1 = 𝝌

𝑘𝑒
𝝂𝑘Δ𝑡 (8)

Equation (8) is a first-order approximation, analogous to the
one presented in [13] for SO(3) and [15] (for more general
manifolds). Reformulating it in the tangent space:

𝝃𝑘+1 = log(𝑒𝝃𝑘 𝑒Δ𝑡𝝂𝑘 ) ≈ 𝝃𝑘 + dlog𝝃𝑘Δ𝑡𝝂𝑘 (9)

where dlog𝝃𝑘 is the log derivative3 at 𝝃𝑘 , that releates
additive increments in the tangent space at the origin to the
right-multiplied increments in the pose space. In Layman’s
terms, this relates the body twist with an increment in the
logarithm of the pose. This constitutes the push-forward
operation that enables optimization in a manifold, extending
the concepts introduced in this Section.

Equation (9) shows the missing link that allows the present
work to formulate a pose propagation in a linear form (as in (2))
for a receding horizon, as required for the linear MPC in (5).
B. Geodesic path and tangent space

As introduced in Section II-A, this work aims at finding
the pose and input trajectory that will drive the system to
some target pose 𝝌

𝑑 . In order to embed this in the QP
cost function, a distance metric formulated in the tangent
space is necessary. In fact, 𝔰𝔢(3) is a Riemannian manifold
equipped with the geodesic distance metric known as Log-
Euclidean ( [16], Table 1):

𝑒𝑘 = | | 𝝃𝑘︸︷︷︸
log

(𝝌
𝑘

) − 𝝃𝑑︸︷︷︸
log

(𝝌
𝑑

)| |
2
2 (10)

1Throughout this article, the log and exp operations will adopt the vectors
forms. This is an abuse of notation but one can go back and forth between the
matrix and vector forms through the vee map and its inverse [15] [12].

2The one to one correspondence is maintained under the conditions detailed
in [13] and [12] (Section 2.1). Otherwise, the map is surjective.

3Given the adopted vector form of the tangent space in this article,
the dlog𝝃𝑘 takes the form of a 6 × 6 matrix.

The last challenge to overcome is that there exist multiple
paths that connect two extreme poses 𝝌𝑖 , 𝝌𝑑 ∈ SE(3). Given
some 𝛼(𝑡) ∈ [0, 1] the shortest geodesic can be interpolated
by using the path that passes through the origin and computing
its “distance” in tangent space 𝜹:

𝝌
𝑘 = 𝝌

𝑖𝑒
𝛼𝑘𝜹 𝜹 = log(𝝌−1

𝑖
𝝌

𝑑) (11)

which is depicted in Fig. 3. One way to ensure that the
trajectory optimization in the lifted space corresponds to (11)
is through the choice of the lift function:

𝝍(𝒙) = log(𝝌−1
𝑙 𝒙) 𝝌

𝑙 = 𝝌
𝑑 (12)

where 𝝌
𝑙 constitutes the lift pose. This way, the optimiza-

tion can be “directed” from 𝝍(𝝌𝑖) → 𝝍(𝝌𝑑), which yields
the shortest geodesic. The choice of 𝝌𝑙 = 𝝌

𝑑 stems from the
application: it allows the optimization to always converge to
the origin in the tangent space 𝝃𝐼 because: 𝝍(𝝌𝑑) = 𝝃𝐼 . In
fact, the lift function in (12) implies that 𝝍 is in the tangent
space at 𝝌−1

𝑙 .

Fig. 3. There exist multiple paths that connect some initial and target
poses 𝝌

𝑖 , 𝝌𝑑 ∈ SE(3) . The image shows the successive directions of the
red axis of a frame (3-axis) moving through the path. It illustrates the
shortest geodesic (in red) and an alternative path (in yellow). The yellow
path can be interpolated in the tangent space and then transformed to poses
as 𝝌𝑘 = 𝑒 (1−𝛼𝑘 )𝝃0+𝛼𝑘𝝃𝑑 for some 𝛼(𝑡 ) ∈ [0, 1].

C. Operational Space MPC
Using the same notation as in (3), it is possible to extend (10)

for a horizon:

𝑿
∗
,𝑼∗ = arg min

𝒙,𝒖
| |𝑿 − 𝝃′𝑑 | |

2
2 + 𝜸 | |𝑼 | |22 (13)

𝝃′𝑇𝑑 = [𝝍(𝝌𝑑)𝑇 . . .𝝍(𝝌𝑑)𝑇︸                     ︷︷                     ︸
ℎ−1 times

]𝑇 (14)

s.t: 𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 for 𝑘 = 0, . . . , ℎ − 1
𝒖𝑚 (𝑑ℎ) ≤ 𝒖𝑘 ≤ 𝒖𝑀 (𝑑ℎ) for 𝑘 = 0, . . . , ℎ − 1

¤𝒖𝑚 ≤ 𝒖𝑘+1−𝒖𝑘

Δ𝑡
≤ ¤𝒖𝑀 for 𝑘 = 0, . . . , ℎ − 2

(15)

where 𝜸 designates a weighting term for the input throughout
the horizon and 𝝃′

𝑑
corresponds to the target pose after applying

the lift function vectorized throughout the horizon.
Equation (15) finally links (9) with the linear MPC formu-

lation in (5) as:

𝑨 = 𝑰6 𝑩 = dlog𝝃𝑖Δℎ𝑡 (16)

where 𝑨 is an identity matrix and 𝑩 reflects the tangent space
linearization at the initial robot pose, as 𝝃𝑖 = 𝝍(𝝌𝑖), closing



Fig. 4. The online MPC progressively “discovers” the path towards the target
pose.

the feedback loop of the MPC. This constitutes the central
relation that enables tangent space linear MPC.

The input constraints, where 𝒖𝑀 = −𝒖𝑚, establish the
limits related to the distance between the end-effector and
the human 𝑑ℎ = | | 𝒑𝑒𝑒 − 𝒑ℎ | |2. A simple piecewise function
is employed for each component of 𝒖𝑀 designated 𝑢𝑀,𝑖

for 𝑖 = 1, . . . , 6:

𝑢𝑀,𝑖 (𝑑ℎ) =


𝑉𝑚 𝑑ℎ ≤ 𝑑𝑚
𝑑ℎ−𝑑𝑚
𝑑𝑀−𝑑𝑚𝑉𝑀 𝑑𝑚 < 𝑑ℎ < 𝑑𝑀

𝑉𝑀 𝑑ℎ ≥ 𝑑𝑀

(17)

that has user defined extreme values for the minimal and
maximal distances 𝑑𝑚, 𝑑𝑀 and velocities 𝑉𝑚, 𝑉𝑀 ; all greater
than zero. This function ensures a linear relation between max-
imum velocity and the distance inside the distance interval;
outside of this range 𝒖𝑀 is assigned either the minimal or the
maximum velocity.The minimum velocity 𝑽𝑚 is chosen to be
close to zero to completely stop the robot motion when the
distance is below the threshold 𝑑𝑚. This function is chosen
for its simplicity but it showcases how to potentially integrate
complex safety behaviours as velocity modulation functions,
such as the robot stopping distance [17] and damage-based
maximum velocities [18].

Finally, in order to recover the desired poses 𝝌des
𝑘 from 𝑿

∗:

𝝌des
𝑘 = 𝝍−1 (𝒙∗

𝑘
) 𝝍−1 (𝑥) = 𝝌

𝑙 exp(𝑥) (18)

This constitutes the linear MPC formulation that allows
trajectory planning in tangent space. Fig. 4 shows an example
horizon computed by the MPC towards one of the target poses.
It exemplifies that the MPC only plans over a limited time
horizon (robot on the left). As the robot moves towards the
target pose, the MPC computes the new trajectory according
to the new robot state (middle robot), until it reaches the target
pose (robot on the right).

An example output of the MPC control loop is shown
in Fig. 5 for a simple Cartesian motion along one of the
axis of the reference frame attached to the robot base (𝑥
here). The prediction horizon is 75ms composed of 15 time
steps of 5ms each. The update rate of the MPC is 50Hz
thus implying an interpolation of the first computed time-
step as the Cartesian space state is updated at 1kHz. The
resulting trajectory is compared to a time optimal trapezoidal
acceleration profile computed once using Ruckig [19]. Unlike

the globally planned trajectory which includes jerk bounds,
the current formulation of this MPC does not embed jerk
limitations, yielding some large acceleration variations. Yet,
the resulting profile is very similar and this demonstrates
the ability of MPC to obtain quasi-time-optimal trajectories
while conferring online adaptation capabilities to the overall
architecture. Moreover, while Ruckig is in practice a decoupled
multi-dofs planner, the proposed approach truly accounts for
3D motions in both position and orientation.

Fig. 5. This example show the result of employing the MPC to replanify
at 50Hz and apply the resulting twists for a simple Cartesian motion along
one of the axis of the reference frame attached to the robot base (𝑥 here). To
compare optimality, the output of the jerk-bound algorithm in [19].

D. Inverse velocity kinematic solver
As depicted in Fig. 2, this work uses a fast rate control loop

solving for inverse velocity kinematics. The inverse kinematics
solver is similar to the one in [17]. It is formulated as a linearly
constrained QP that finds the optimal joint velocity; the main
difference being that a safety-aware constraint is added to limit
the twist space. The resulting QP formulation is :

¤𝒒∗ = arg min
¤𝒒

| |𝝂∗ − 𝑱(𝒒) ¤𝒒 | |22 + 𝑤reg | | ¤𝒒reg − ¤𝒒 | |22 (19)

s.t. ¤𝒒𝑚 ≤ ¤𝒒 ≤ ¤𝒒𝑀 (20)
𝒒𝑚 ≤ 𝒒( ¤𝒒) ≤ 𝒒𝑀 (21)
𝒖𝑚 ≤ 𝑱(𝒒) ¤𝒒 ≤ 𝒖𝑀 (22)

where (22) is the so called safety-aware constraint, 𝑱(𝒒)
represents the robot’s joint Jacobian; 𝒖𝑀 is defined in (17)
and 𝒖𝑚 = −𝒖𝑀 ; 𝝂∗ is the output body twist from the MPC.
The joint bound limit in (21) is expressed using a first
order Taylor expansion on the robot joint configuration.
Furthermore, 𝑤reg | | ¤𝒒reg − ¤𝒒 | |22 corresponds to a regularisation
task that uses the redundant degrees of freedom of the robot to
keep a desired configuration. The regularization weight, 𝑤reg
is chosen small enough to minimally affect the main trajectory
tracking task. Such regularization implementation is detailed
in [17]. In this paper the desired configuration corresponds to
the robot mean joint position relative to its bounds.



IV. Results
A. Experimental setup

The objective of the following experiment is to show the
controller ability to

1) find a trajectory towards arbitrary target poses while
respecting the constraints previously described;

2) adapt to changing constraints online.
To do so, a 7 dof Panda robot from Franka Emika is

requested to move to four different targets. These targets are
not known in advance by the MPC but given on the fly.
The robot Cartesian velocity is constrained using (17). The
distance between the operator and the robot is determined
by a Hokuyo Laser range finder placed at the robot base, as
shown in Figures 1 (in the real setup) and 4 (in the simulation).
The following values are used to modulate the robot velocity
according to (17):

𝑉𝑚,lin = 0.01𝑚.𝑠−1 𝑉𝑚,ang = 0.01𝑠−1 𝑑𝑚 = 0.2𝑚
𝑉𝑀,lin = 1𝑚.𝑠−1 𝑉𝑀,ang = 1.5𝑠−1 𝑑𝑀 = 1𝑚 (23)

In an industrial scenario, these values would be determined
by the type of human-robot collaboration and technical
specification used, such as the ISO TS 15066.

For this experiment, a cascade controller as shown in
Fig. 2 is implemented. This schema also shows the working
frequency of each controller and the feedback flow. The MPC
implemented in this paper uses OSQP [20] as a QP solver
while the joint velocity controller4 used for this experiments is
available online and uses qpOASES [21]. The robot model is
computed using the Pinocchio library [22]. The robot control
architecture is implemented using the Robot Operating System
(ROS) framework and run in real-time at a frequency of 1kHz
using the franka ros library.

When solving the MPC problem for a new target pose,
computation times vary a lot depending on the amount of
steps and constraints in the horizon. Moreover, the first solving
step (cold start) always takes more time. For a typical horizon
of ℎ = 10,Δ𝑡ℎ = 50𝑚𝑠 OSQP solves the problem in under
10ms. The solution of the previous QP is used as a first guess for
the next one (hot start). Assuming that between two resolutions
the optimal solution is close to the previous one, this helps
speeding up the resolution. This leads to computation times
under 1ms with a warm start.

B. Analysis
This section shows the results from periodically requesting

the robot to move to a different pose. Fig. 6 presents the
experiments performed on the Panda robot, including

1) the error between the current robot pose and the target
pose;

2) the body twist used during the trajectory, as well as the
maximum available velocities.

Result 1) shows the error between the current posi-
tion 𝒑𝑘 ∈ R3 and orientation of the robot 𝑹𝑘 ∈ SO(3) and

4https://gitlab.inria.fr/auctus-team/components/robots/
panda/panda_qp_control

the target ones. There is a spike every time a new pose is
requested. It is important to highlight that this is not the
resulting tracking error of following the trajectory planned
with the MPC but rather the “distance” between the current
pose and the objective.

To compute this error:

𝒆 = 𝒑𝑘 − 𝒑𝑑 𝝓 = log(𝑹−1
𝑘
𝑹𝑑) (24)

is used, where 𝒆 ∈ R3 reflects the position distance
and 𝝓 ∈ 𝔰𝔬(3) is the orientation error.
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Fig. 6. Shows the result of requesting the robot to move between 4 preset
poses. While the robot moves, a laser sensor is used to capture the minimal
distance to a human and modulate the maximum velocity (shown in red
shade). The error curves show the distance between the current position and
orientation (𝒑𝑘 , 𝑹𝑘 ) and the preset target poses (𝒑𝑑 , 𝑹𝑑 ) . The linear error
is 𝒆 = 𝒑𝑑 − 𝒑𝑘 , while the angular error is computed as𝝓 = log(𝑹−1

𝑘
𝑹𝑑 ) . The

MPC (T=300ms, ℎ = 10, Δℎ = 30𝑚𝑠, 𝑓MPC = 50𝐻𝑧) modulates the body
twist 𝝂 = [𝒗𝑇 ,𝝎𝑇 ]𝑇 respecting the safe limits imposed even when they
become so low that the robot stops moving.

For result 2), the velocity curves show the body
twist 𝝂 = [𝒗𝑇 ,𝝎𝑇 ]𝑇 as well as the available velocity (in a red

https://gitlab.inria.fr/auctus-team/components/robots/panda/panda_qp_control
https://gitlab.inria.fr/auctus-team/components/robots/panda/panda_qp_control


shade) that is being scaled by the distance between the robot’s
end-effector and the human.

The main highlight of these results is that the MPC is able
to modulate velocities according to constraints changing in
real-time achieving the two main objectives of this work:

1) when the human is far, the algorithm is able to saturate
the velocity, maximizing the robot movement;

2) while the human approaches, the robot’s movement is
handicapped until it is no longer moving.

A subsidiary result of this MPC formulation is that it allows
changing the robot target position on the fly, overriding the
current target. The resulting robot motion keeps being smooth
since it respects a continuous velocity profile as shown in
Fig. 5. These results are not shown in the following paper but
can be observed in the attached video.

V. Conclusion
This paper proposes an efficient linear model predictive

control approach that can deal with the online planning
of SE(3) motion in task space. The main features of the
proposed control approach lie in its ability to generate optimal
Cartesian motion which dynamically accounts both for targets
updated on-the-fly and evolving motion constraints. This
receding horizon approach endows the robot with the ability
to interactively adapt to its environment. More particularly the
safety of a human operator sharing its workspace with the robot
can be accounted for through the sensor-based adaptation of
maximum velocity constraints.

Future work will focus on extending linear constraints in
the MPC for the Cartesian pose state, to limit the effective
position and orientation space. Furthermore, this articles
shows acceleration-bound trajectory planning. A prospective
result in the future is to extend this technique for the jerk,
allowing for smoother trajectories.

This work also opens doors to potentially exploiting a more
efficient expression of Cartesian constraints such as convex
polytopes [23]. This type of constraints goes beyond classical
box-like bounds and is a step towards more complex adaptation
of the robot behaviour based on its motion capabilities as well
as related to the motion capabilities of the human sharing the
workspace.
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