SPANS OF TRANSLATES IN WEIGHTED ℓ^{p} SPACES

Karim Kellay, Florian Le Manach, Mohamed Zarrabi

To cite this version:

Karim Kellay, Florian Le Manach, Mohamed Zarrabi. SPANS OF TRANSLATES IN WEIGHTED
ℓ^{p} SPACES. Revista Matemática Iberoamericana, inPress, 10.4171/RMI/1414 . hal-03790054

HAL Id: hal-03790054

https://hal.science/hal-03790054

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SPANS OF TRANSLATES IN WEIGHTED ℓ^{p} SPACES

K. KELLAY*, F. LE MANACH, AND M. ZARRABI

Abstract

We study the cyclic vectors and the spanning set of the circle for the $\ell_{\beta}^{p}(\mathbb{Z})$ spaces of all sequences $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ such that $\left(u_{n}(1+|n|)^{\beta}\right)_{n \in \mathbb{Z}} \in \ell^{p}(\mathbb{Z})$ with $p>1$ and $\beta>0$. By duality the spanning set is the uniqueness set of the distribution on the circle whose Fourier coefficients are in $\ell_{-\beta}^{q}(\mathbb{Z})$ where q is the conjugate of p. Our characterizations are given in terms of the Hausdorff dimension and capacity.

1. Introduction and Main Results

The cyclic vectors are, amongst others, an important tool in the study of invariant subspaces and their characterization [1, 21, 26]. For the shift operator, the problem of cyclic vectors in the space of sequences $\ell^{p}(\mathbb{Z})$ goes back to the works of Wiener [27] for $p=1$ and $p=2$, Beurling [3], Salem [25] for $1<p<2$, and Newman [18] for $p>1$. This problem is still far from being resolved.

A vector $u \in \ell^{p}(\mathbb{Z})$ is called cyclic in $\ell^{p}(\mathbb{Z})$ if the linear span of its translates,

$$
\left\{\left(u_{n+k}\right)_{n \in \mathbb{Z}}, k \in \mathbb{Z}\right\}
$$

is dense in $\ell^{p}(\mathbb{Z})$. The Fourier transform of $u \in \ell^{p}(\mathbb{Z})$ is given by $\widehat{u}(t)=\sum_{n \in \mathbb{Z}} u_{n} e^{i n t}$ where the trigonometric series is to be interpreted as a distribution on the circle group $\mathbb{T}=\mathbb{R} \backslash 2 \pi \mathbb{Z}$. For $u \in \ell^{p}(\mathbb{Z})$ with $1 \leq p \leq 2, \widehat{u}$ becomes a function. We denote by $\mathcal{Z}(\widehat{u})$ the zero set of \widehat{u} in \mathbb{T}. Notice that for $u \in \ell^{1}(\mathbb{Z})$, the set $\mathcal{Z}(\widehat{u})$ is well-defined, since \widehat{u} is continuous. The cyclicity can be viewed as an approximation problem or a uniqueness/removable singularities problem. Following Newman [18], a closed subset $E \subset$ \mathbb{T} is called p-spanning if every $u \in \ell^{1}(\mathbb{Z})$ with $\mathcal{Z}(\widehat{u}) \subset E$, is cyclic in $\ell^{p}(\mathbb{Z})$. On the other hand, E is called a q-uniqueness set if E does not support any non-vanishing distribution $\sum_{n \in \mathbb{Z}} c_{n} e^{\text {int }}$ with $\left(c_{n}\right)_{n \in \mathbb{Z}}$ in $\ell^{q}(\mathbb{Z})$. It is well known that E is p-spanning if and only if E is q-uniqueness where q is the conjugate of p.

Wiener characterized the cyclic vectors in $\ell^{1}(\mathbb{Z})$ and in $\ell^{2}(\mathbb{Z})$ [27]. Further, Beurling, Salem, and Newman [3, 25, 18] provided either necessary or sufficient conditions for u to be cyclic in $\ell^{p}(\mathbb{Z})$ for $p>1$. Their characterization of the cyclic vectors was given in terms of the size (capacity and Hausdorff dimension) of the zero set of the Fourier transform

[^0]\widehat{u}. However, Lev and Olevskii [14, [15, 16] showed that for $1<p<2$, the problem of cyclicity in $\ell^{p}(\mathbb{Z})$ is more complicated even for sequences in $\ell^{1}(\mathbb{Z})$: we cannot characterize the cyclicity of u in $\ell^{p}(\mathbb{Z})$ in terms of $\mathcal{Z}(\widehat{u})$ alone, which contradicts Wiener's conjecture.

We summarize the results of the previous works cited above. We denote by q the Hölder conjugate of $p \geq 1$ with $1 / p+1 / q=1$, and $\operatorname{dim}(E)$ the Hausdorff dimension of a subset $E \subset \mathbb{T}$.
(1) Wiener: u is cyclic in $\ell^{1}(\mathbb{Z})$ if and only if \widehat{u} has no zeros on \mathbb{T}.
(2) Wiener: u is cyclic in $\ell^{2}(\mathbb{Z})$ if and only if \widehat{u} is non-zero almost everywhere.
(3) Beurling: Let $1 \leq p \leq 2$. If $\operatorname{dim}(E)<2 / q$ then E is a p-spanning.
(4) Salem: Let $1 \leq p \leq 2$. For $2 / q<\alpha \leq 1$, there exists $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=\alpha$ and E is not p-spanning
(5) Newman: There exists a p-spanning set E for all $1<p<2$ such that $\operatorname{dim}(E)=1$.
(6) Lev \& OlevskiI: If $1<p<2$, there exist u and v in $\ell^{1}(\mathbb{Z})$ such that $\mathcal{Z}(\widehat{u})=\mathcal{Z}(\widehat{v})$, u is not cyclic in $\ell^{p}(\mathbb{Z})$, and v is cyclic in $\ell^{p}(\mathbb{Z})$.

In this paper, we shall focus on the cyclic vectors on weighted $\ell^{p}(\mathbb{Z})$ spaces, namely $\ell_{\beta}^{p}(\mathbb{Z})$, the space of sequences $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ for which $\left(u_{n}(1+|n|)^{\beta}\right) \in \ell^{p}(\mathbb{Z})$ for $p \geq 1$ and $\beta>0$. A vector $u \in \ell_{\beta}^{p}(\mathbb{Z})$ is called cyclic in $\ell_{\beta}^{p}(\mathbb{Z})$ if the linear span of $\left\{\left(u_{n+k}\right)_{n \in \mathbb{Z}}, k \in \mathbb{Z}\right\}$ is dense in $\ell_{\beta}^{p}(\mathbb{Z})$. For every closed subset E of \mathbb{T}, E is called (p, β)-spanning if every $u \in \ell^{1}(\mathbb{Z})$ such that $\mathcal{Z}(\widehat{u}) \subset E$ is cyclic in $\ell_{\beta}^{p}(\mathbb{Z})$, and E is called (q, β)-uniqueness if E does not support any non-zero distribution $\sum_{n \in \mathbb{Z}} c_{n} e^{i n t}$ with $\left(c_{n}\right)_{n \in \mathbb{Z}}$ in $\ell_{-\beta}^{q}(\mathbb{Z})$. As before, E is (p, β)-spanning if and only if E is (q, β)-uniqueness where $1 / p+1 / q=1$.

Observe that the shift operator does not act as an isometry on $\ell_{\beta}^{p}(\mathbb{Z})$ unlike on $\ell^{p}(\mathbb{Z})$ spaces which presents a difficulty for the study of cyclic vectors in $\ell_{\beta}^{p}(\mathbb{Z})$.

Notice that $\ell_{\beta}^{p}(\mathbb{Z})$ is a Banach algebra if and only if $\beta q>1$ (see [6]). Hence, in this case we have an analogue of (1) in Wiener's theorem : a vector $u \in \ell_{\beta}^{p}(\mathbb{Z})$ is cyclic if and only if \widehat{u} has no zeros on \mathbb{T}. Thus in the sequel of the paper we will only be interested in pairs (p, β) such that $\beta q<1$.

Richter, Ross and Sundberg [23] gave a complete characterization of hyperinvariant subspaces of the weighted harmonic Dirichlet spaces $\ell_{\beta}^{2}(\mathbb{Z}), 0<\beta \leq \frac{1}{2}$. Their characterization and a relation between capacity and Hausdorff dimension led to the result that $u \in \ell_{\beta}^{1}(\mathbb{Z})$ is cyclic in $\ell_{\beta}^{2}(\mathbb{Z})$ if and only if $\operatorname{dim}(\mathcal{Z}(\widehat{u})) \leq 1-2 \beta$. Their result may be considered as an analog of Wiener's theorem about the cyclic vector of ℓ^{2}. Hence, we study the case of $p \neq 1$ and $p \neq 2$. Our main result for $1<p<2$ is the following (see Theorem 3.3).

Theorem A. Let $1<p<2, \beta>0$ such that $\beta q \leq 1$ and let E be a closed subset of \mathbb{T}.
(1) If $\operatorname{dim}(E)<\frac{2}{q}(1-\beta q)$, then E is (p, β)-spanning.
(2) If $\operatorname{dim}(E)>1-\beta q$, then E is not (p, β)-spanning.
(3) For $\frac{2}{q}(1-\beta q) \leq \alpha \leq 1$, there exists a closed subset $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=\alpha$ and E is not (p, β)-spanning.
(4) If $p=2 k /(2 k-1)$ for some $k \in \mathbb{N} \backslash\{0\}$ there exists a (p, β)-spanning $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=1-\beta q$.

The property (4) shows that the constant $1-\beta q$ obtained in (2) is sharp. Indeed, on one hand, there is no cyclic vector u such that $\operatorname{dim}(\mathcal{Z}(\widehat{u}))>1-q \beta$, and on the other hand, we can find some cyclic vector u with $\operatorname{dim}(\mathcal{Z}(\widehat{u}))=1-\beta q$. However, this is only proved when $p=2 k / 2 k-1$ for some positive integer k. The proof is based on the construction of a closed subset E of \mathbb{T} whose k-sums $E+\ldots+E$ are of zero capacity and of given Hausdorff dimension (see Lemma 3.2). The arithmetic structure of E allows us to reach the best constant $1-\beta q$ only for $p=2 k /(2 k-1)$.

Next we will deal with the case $p>2$. Newman in [18] showed that for all $\varepsilon>0$, there exists a p-spanning set $E \subset \mathbb{T}$ which has a Lebesgue measure $|E|>2 \pi-\varepsilon$. The existence of q-uniqueness sets of arbitrary large measure for the spaces $\ell^{q}(\mathbb{Z}), 1<q<2$, was established also independently, by Katznelson [10] (see also [11, IV. 2.5 Theorem]). Extensions of their result to a more general setting were given in [12] where they studied the uniqueness set of $\ell_{-\beta}^{q}(\mathbb{Z})$. We have the following result.

Theorem B. Let $p>2, \beta>0$ such that $\beta q \leq 1$.
(1) If $\beta>\frac{1}{2}-\frac{1}{p}$, then every a closed subset E of \mathbb{T} of positive Lebesgue measure, is not (p, β)-spanning.
(2) If $\beta<\frac{1}{2}-\frac{1}{p}$ then for every $\varepsilon>0$, there exists a (p, β)-spanning set $E \subset \mathbb{T}$ such that $|E|>2 \pi-\epsilon$.

Nikolski in [20, Corollary 6] considered the weighted space

$$
\ell_{\omega}^{p}(\mathbb{Z})=\left\{\left(u_{n}\right)_{n \in \mathbb{Z}}:\left(u_{n} \omega_{n}\right)_{n \in \mathbb{Z}} \in \ell^{p}(\mathbb{Z})\right\}
$$

where $\omega_{n}=\log (e+|n|)^{\gamma}, \gamma>0$. He showed that if $p>2 /(1-\gamma), 0<\gamma<1$, then there exists $E \subset \mathbb{T}$ with large Lebesgue measure which is a uniqueness set for the dual of $\ell_{\omega}^{p}(\mathbb{Z})$, which is equivalent to the cyclicity in $\ell_{\omega}^{p}(\mathbb{Z})$ of every $u \in \ell_{\omega}^{1}(\mathbb{Z})$ satisfying $\mathcal{Z}(\widehat{u}) \subset E$. As a by-product of Theorem B, we show in Corollary 5.1 that the result of Nikolski remains valid for all $p>2$ and $\gamma>0$.

This paper is organized as follows. In the next section, we present the background and recall some properties of distribution spaces. Section 3 is devoted to the proof of Theorem A. We construct in Lemma 3.2 a Cantor type set of zero capacity whose $k^{\text {th }}$ sum remains of zero capacity. Section 4 provides the proof of Theorem B based on the estimation of power sums of unimodular complex numbers (see Lemma 4.1). Finally, Section 5 is dedicated to some results on the ℓ^{p} spaces with logarithmic weights.

2. Notations and Preliminaries

2.1. Background on ℓ^{p} weighted spaces. Let $1 \leq p<\infty$ and $\beta \in \mathbb{R}$. We denote by $\mathcal{D}^{\prime}(\mathbb{T})$ the set of distributions on \mathbb{T} and $\mathcal{M}(\mathbb{T})$ the set of measures on \mathbb{T}. For $S \in \mathcal{D}^{\prime}(\mathbb{T})$, we denote by $\widehat{S}=(\widehat{S}(n))_{n \in \mathbb{Z}}$ the sequence of Fourier coefficients of S and, we write $S=$ $\sum_{n} \widehat{S}(n) e_{n}$, where $e_{n}(t)=e^{i n t}$. Notice that we use the same notation \widehat{u} and \widehat{S} to denote respectively the Fourier transform of $u \in \ell^{p}$ and of $S \in \mathcal{D}^{\prime}(\mathbb{T})$. The space $A_{\beta}^{p}(\mathbb{T})$ will be the set of all distributions $S \in \mathcal{D}^{\prime}(\mathbb{T})$ such that \widehat{S} belongs to $\ell_{\beta}^{p}(\mathbb{Z})$. We endow $A_{\beta}^{p}(\mathbb{T})$ with the norm

$$
\|S\|_{A_{\beta}^{p}(\mathbb{T})}=\|\widehat{S}\|_{\ell_{\beta}^{p}}=\left(\sum_{n \in \mathbb{Z}}|\widehat{S}(n)|^{p}(1+|n|)^{\beta p}\right)^{1 / p}
$$

We will write $A^{p}(\mathbb{T})$ for the space $A_{0}^{p}(\mathbb{T})$. By construction the Fourier transform $u \rightarrow \widehat{u}$ is an isometric isomorphism between $\ell_{\beta}^{p}(\mathbb{Z})$ and $A_{\beta}^{p}(\mathbb{T})$. We prefer to work with $A_{\beta}^{p}(\mathbb{T})$ rather than $\ell_{\beta}^{p}(\mathbb{Z})$. In this section, we establish some properties of $A_{\beta}^{p}(\mathbb{T})$ which will be needed to prove Theorem A and Theorem B. For $1 \leq p<\infty$ and $\beta \geq 0$ we define the product of $f \in A_{\beta}^{1}(\mathbb{T})$ and $S \in A_{\beta}^{p}(\mathbb{T})$ by

$$
f S=\sum_{n \in \mathbb{Z}}(\widehat{f} * \widehat{S})(n) e_{n}=\sum_{n \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} \widehat{f}(k) \widehat{S}(n-k)\right) e_{n},
$$

and we see that $\|f S\|_{A_{\beta}^{p}(\mathbb{T})} \leq\|f\|_{A_{\beta}^{1}(\mathbb{T})}\|S\|_{A_{\beta}^{p}(\mathbb{T})}$. Note that if $S \in A_{-\beta}^{p}(\mathbb{T})$, we can also define the product $f S \in A_{-\beta}^{p}(\mathbb{T})$ by the same formula and obtain a similar inequality: $\|f S\|_{A_{-\beta}^{p}(\mathbb{T})} \leq\|f\|_{A_{\beta}^{1}(\mathbb{T})}\|S\|_{A_{-\beta}^{p}(\mathbb{T})}$.

For $p \neq 1$, the dual space of $A_{\beta}^{p}(\mathbb{T})$ can be identified with $A_{-\beta}^{q}(\mathbb{T}), 1 / p+1 / q=1$, by the formula

$$
\langle S, T\rangle=\sum_{n \in \mathbb{Z}} \widehat{S}(n) \widehat{T}(-n), \quad S \in A_{\beta}^{p}(\mathbb{T}), T \in A_{-\beta}^{q}(\mathbb{T})
$$

We need the following lemmas which gives us different inclusions between the $A_{\beta}^{p}(\mathbb{T})$ spaces.
Lemma 2.1. Let $1 \leq r, s<\infty$ and $\beta, \gamma \in \mathbb{R}$.
(1) If $r \leq s$ then $A_{\beta}^{r}(\mathbb{T}) \subset A_{\gamma}^{s}(\mathbb{T})$ if and only if $\gamma \leq \beta$.
(2) If $r>s$ then $A_{\beta}^{r}(\mathbb{T}) \subset A_{\gamma}^{s}(\mathbb{T})$ if and only if $\beta-\gamma>\frac{1}{s}-\frac{1}{r}$.

Proof. (1) : Suppose that $r \leq s$. If $\gamma \leq \beta$, then $A_{\beta}^{s}(\mathbb{T}) \subset A_{\gamma}^{s}(\mathbb{T})$. Since $\|\cdot\|_{\ell^{s}} \leq\|\cdot\|_{\ell^{r}}$, we get $A_{\beta}^{r}(\mathbb{T}) \subset A_{\gamma}^{s}(\mathbb{T})$. Now suppose $\gamma>\beta$. Let $S \in \mathcal{D}^{\prime}(\mathbb{T})$ such that $\widehat{S}(n)(1+|n|)^{\beta}=(1+m)^{-2 / r}$ if $|n|=2^{m}$ and $\widehat{S}(n)=0$ otherwise. Then we have $S \in A_{\beta}^{r}(\mathbb{T}) \backslash A_{\gamma}^{s}(\mathbb{T})$.
(2) : Suppose that $r>s$. If $\beta-\gamma>\frac{1}{s}-\frac{1}{r}$, then by Hölder's inequality, we obtain $A_{\beta}^{r}(\mathbb{T}) \subset A_{\gamma}^{s}(\mathbb{T})$. Now suppose that $\beta-\gamma<\frac{1}{s}-\frac{1}{r}$. Let $\varepsilon>0$ such that $\beta-\gamma+\varepsilon<\frac{1}{s}-\frac{1}{r}$, $\alpha=-\frac{1}{s}-\gamma+\varepsilon$ and let $S \in \mathcal{D}^{\prime}(\mathbb{T})$ be such that $\widehat{S}(n)=n^{\alpha}$. We have $S \in A_{\beta}^{r}(\mathbb{T}) \backslash A_{\gamma}^{s}(\mathbb{T})$.

If $\beta-\gamma=\frac{1}{s}-\frac{1}{r}$, then let $S \in \mathcal{D}^{\prime}(\mathbb{T})$ such that $\widehat{S}(n)^{r}(1+|n|)^{\beta r}=1 /(1+|n|) \ln (1+|n|)^{1+\varepsilon}$ with $\varepsilon=\frac{r}{s}-1>0$. We have $S \in A_{\beta}^{r}(\mathbb{T}) \backslash A_{\gamma}^{s}(\mathbb{T})$ which proves that $A_{\beta}^{r}(\mathbb{T}) \not \subset A_{\gamma}^{s}(\mathbb{T})$.
2.2. Cyclicity in $A_{\beta}^{p}(\mathbb{T})$. We denote by $\mathcal{P}(\mathbb{T})$ the set of trigonometric polynomials on \mathbb{T}. We say that $S \in A_{\beta}^{p}(\mathbb{T})$ is a cyclic vector in $A_{\beta}^{p}(\mathbb{T})$ if the set $\{P S, P \in \mathcal{P}(\mathbb{T})\}$ is dense in $A_{\beta}^{p}(\mathbb{T})$. It is clear that the cyclicity of S in $A_{\beta}^{p}(\mathbb{T})$ is equivalent to the cyclicity of the sequence \widehat{S} in $\ell_{\beta}^{p}(\mathbb{Z})$. Moreover for $1 \leq p<\infty$ and $\beta \geq 0, S$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$ if and only if there exists a sequence $\left(P_{n}\right)$ of trigonometric polynomials such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|1-P_{n} S\right\|_{A_{\beta}^{p}(\mathbb{T})}=0 \tag{2.1}
\end{equation*}
$$

We obtain the first cyclicity results for the spaces $A_{\beta}^{p}(\mathbb{T})$ when $A_{\beta}^{p}(\mathbb{T})$ is a Banach algebra. More precisely, we have (see [6]):
Lemma 2.2. Let $1 \leq p<\infty$ and $\beta>0$. Then $A_{\beta}^{p}(\mathbb{T})$ is a Banach algebra if and only if $\beta q>1$. Moreover, when $\beta q>1$, a vector $f \in A_{\beta}^{p}(\mathbb{T})$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$ if and only if f has no zeros on \mathbb{T}.

Let $f \in A_{\beta}^{1}(\mathbb{T})$ and $S \in \mathcal{D}^{\prime}(\mathbb{T})$. We denote by $\mathcal{Z}(f)$ the zero set of the function f

$$
\mathcal{Z}(f)=\{\zeta \in \mathbb{T}: f(\zeta)=0\}
$$

Lemma 2.3. Let $1 \leq p<\infty$ and $0 \leq \beta<1 / 2$. Let $f \in A_{\beta}^{1}(\mathbb{T})$ and $S \in A_{-\beta}^{p}(\mathbb{T})$. If for all $n \in \mathbb{Z},\left\langle S, e_{n} f\right\rangle=0$ then $\operatorname{supp}(S) \subset \mathcal{Z}(f)$.
Proof. Recall that $e_{n}(t)=e^{i n t}$. We have

$$
\left\langle S, e_{n} f\right\rangle=\left\langle f S, e_{n}\right\rangle=0
$$

Hence $f S=0$. Let $\varphi \in C^{\infty}(\mathbb{T})$ such that $\operatorname{supp}(\varphi) \subset \mathbb{T} \backslash \mathcal{Z}(f)$. We claim that $\frac{\varphi}{f} \in$ $A_{\beta}^{1}(\mathbb{T}) \subset A_{\beta}^{q}(\mathbb{T})$ where $1 / p+1 / q=1$. So we obtain

$$
\langle S, \varphi\rangle=\left\langle f S, \frac{\varphi}{f}\right\rangle=0
$$

which proves that $\operatorname{supp}(S) \subset \mathcal{Z}(f)$.
Now we prove the claim. Let $\varepsilon=\min \{|f(t)|, t \in \operatorname{supp}(\varphi)\}>0$ and $P \in \mathcal{P}(\mathbb{T})$ such that $\|f-P\|_{A_{\beta}^{1}(\mathbb{T})} \leq \varepsilon / 3$.

By the Cauchy-Schwarz and Parseval inequalities, for every $g \in C^{1}(\mathbb{T})$, we get

$$
\begin{equation*}
\|g\|_{A_{\beta}^{1}(\mathbb{T})} \leq\|g\|_{\infty}+2^{1+\beta} \sqrt{\frac{1-\beta}{1-2 \beta}}\left\|g^{\prime}\right\|_{\infty} \tag{2.2}
\end{equation*}
$$

As in [19], by applying (2.2) to $\frac{\varphi}{P^{n}}$ we see that

$$
\frac{\varphi}{f}=\sum_{n \geq 1} \varphi \frac{(P-f)^{n-1}}{P^{n}} \in A_{\beta}^{1}(\mathbb{T})
$$

which finishes the proof.

Lemma 2.4. Let $1<p<\infty$ and $f \in A_{\beta}^{1}(\mathbb{T})$ with $\beta \geq 0$. We have
(1) If f is not cyclic in $A_{\beta}^{p}(\mathbb{T})$, then there exists $S \in A_{-\beta}^{q}(\mathbb{T}) \backslash\{0\}$ such that $\operatorname{supp}(S) \subset$ $\mathcal{Z}(f)$.
(2) If there exists a nonzero measure $\mu \in A_{-\beta}^{q}(\mathbb{T})$ such that $\operatorname{supp}(\mu) \subset \mathcal{Z}(f)$, then f is not cyclic in $A_{\beta}^{p}(\mathbb{T})$.

Proof. (1) If f is not cyclic in $A_{\beta}^{p}(\mathbb{T})$, by duality there exists $S \in A_{-\beta}^{q}(\mathbb{T}) \backslash\{0\}$ such that

$$
\left\langle S, e_{n} f\right\rangle=0, \quad \forall n \in \mathbb{Z}
$$

Thus, by Lemma 2.3, we have $\operatorname{supp}(S) \subset \mathcal{Z}(f)$.
(2) Let $\mu \in A_{-\beta}^{q}(\mathbb{T}) \cap \mathcal{M}(\mathbb{T}) \backslash\{0\}$ such that $\operatorname{supp}(\mu) \subset \mathcal{Z}(f)$. Since μ is a measure on \mathbb{T} we have $\left\langle\mu, e_{n} f\right\rangle=0$, for all $n \in \mathbb{Z}$. So f is not cyclic in $A_{\beta}^{p}(\mathbb{T})$.

Recall that $A_{\beta}^{1}(\mathbb{T})$ is a Banach algebra. Let I be a closed ideal in $A_{\beta}^{1}(\mathbb{T})$. We denote by \mathcal{Z}_{I} the set of common zeros of the functions of I given by

$$
\mathcal{Z}_{I}=\bigcap_{f \in I} \mathcal{Z}(f)
$$

We have the following result about spectral synthesis in $A_{\beta}^{1}(\mathbb{T})$, for the case $\beta=0$, also called Beurling-Pollard Technique, see [8, pp. 121-123].
Lemma 2.5. Let $0 \leq \beta<1 / 2$. Let I be a closed ideal in $A_{\beta}^{1}(\mathbb{T})$. If g is a Lipschitz function which vanishes on \mathcal{Z}_{I}, then $g \in I$.

Proof. Notice first that since g is Lipschitz function, Bernstein's Theorem [7, p.13] gives that $g \in A_{\beta}^{1}(\mathbb{T})$. Let I^{\perp} be the set of all S in the dual space of $A_{\beta}^{1}(\mathbb{T})$ satisfying $\langle S, f\rangle=0$ for all $f \in I$. Hence, $S \in I^{\perp}$ and $\operatorname{supp}(S) \subset \mathcal{Z}_{I}$ see [4, Remarque 1.3]. For $h>0$, we set $S_{h}=S * \Delta_{h}$ where $\Delta_{h}: t \mapsto \frac{-|t|}{h^{2}}+\frac{1}{h}$ if $t \in[-h, h]$ and 0 otherwise. We have

$$
\widehat{\Delta_{h}}(0)=1 / 2 \pi, \quad \widehat{\Delta_{h}}(n)=\frac{1}{2 \pi} \frac{4 \sin (n h / 2)^{2}}{(n h)^{2}}, \quad n \neq 0
$$

Since S is in the dual of $A_{\beta}^{1}(\mathbb{T}), S_{h} \in A^{1}(\mathbb{T})$. Moreover, we have $\operatorname{supp}\left(S_{h}\right) \subset \operatorname{supp}(S)+$ $\operatorname{supp}\left(\Delta_{h}\right) \subset \mathcal{Z}_{I}^{h}:=\mathcal{Z}_{I}+[-h, h]$. . Let g be a Lipschitz function which vanishes on \mathcal{Z}_{I}, We have

$$
\begin{aligned}
\left|\left\langle S_{h}, g\right\rangle\right|^{2} & =\left|\int_{\mathcal{Z}_{I}^{h} \backslash \mathcal{Z}(g)} S_{h}(x) g(x) d x\right|^{2} \\
& \leq\left(\sum_{n \in \mathbb{Z}}\left|\widehat{S}(n) \widehat{\Delta_{h}}(n)\right|^{2}\right)\left(\int_{\mathcal{Z}_{I}^{h} \backslash \mathcal{Z}(g)}|g(x)|^{2} d x\right)
\end{aligned}
$$

Since $\mathcal{Z}_{I} \subset \mathcal{Z}_{g}$, for every $x \in \mathcal{Z}_{I}^{h},|g(x)| \leq c h$ for some positive constant c. Thus

$$
\left|\left\langle S_{h}, g\right\rangle\right|^{2} \leq c^{2}\left(\sum_{n \in \mathbb{Z}} \frac{\widehat{S}(n)^{2}}{1+n^{2}}\right)\left(\left|\mathcal{Z}_{I}^{h} \backslash \mathcal{Z}(g)\right|\right)
$$

Hence $\lim _{h \rightarrow 0}\left\langle S_{h}, g\right\rangle=0$. By the dominated convergence theorem, we obtain that

$$
\lim _{h \rightarrow 0}\left\langle S_{h}, g\right\rangle=\lim _{h \rightarrow 0} \sum_{n \in \mathbb{Z}} \widehat{S_{h}}(n) \widehat{g}(-n)=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} \widehat{S}(n) \widehat{g}(-n)=\frac{1}{2 \pi}\langle S, g\rangle .
$$

So $\langle S, g\rangle=0$. Therefore, $g \in I$.

We also need the following lemma which is a consequence of Lemma 2.5. Newman gave a proof of this when $\beta=0$ (see [18, Lemma 2]).

Lemma 2.6. Let $0 \leq \beta<1 / 2$ and a closed set $E \subset \mathbb{T}$. There exists a sequence of Lipschitz functions $\left(f_{n}\right)$ which vanish on E such that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-1\right\|_{A_{\beta}^{p}(\mathbb{T})}=0
$$

if and only if every $f \in A_{\beta}^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(f)=E$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$.
We finish this subsection by the following result of Newman (see the proof of Theorem 5 in [18]):

Lemma 2.7. Let $p>2$. Assume that for every $\varepsilon>0$, there exists a Lipschitz function f such that $|\mathcal{Z}(f)|>2 \pi-\varepsilon$ and

$$
\|f-1\|_{A_{\beta}^{p}(\mathbb{T})} \leq \varepsilon
$$

Then for every ε there exists a (p, β)-spanning closed set $E \subset \mathbb{T}$ with Lebesgue measure $|E|>2 \pi-\varepsilon$.
2.3. Generalized Cantor set and capacity. Given $E \subset \mathbb{T}$ and a non-decreasing continuous function h such that $h(0)=0$, we define the h-measure of E by

$$
H_{h}(E)=\lim _{\delta \rightarrow 0} \inf \left\{\sum_{i=0}^{\infty} h\left(\left|U_{i}\right|\right), E \subset \bigcup_{i=0}^{\infty} U_{i},\left|U_{i}\right| \leq \delta\right\}
$$

where each U_{i} is an open interval inside \mathbb{T} and $\left|U_{i}\right|$ denotes its length.
We also define the Hausdorff dimension of a subset $E \subset \mathbb{T}$, given by

$$
\operatorname{dim}(E)=\inf \left\{\alpha \in(0,1), H_{\alpha}(E)=0\right\}=\sup \left\{\alpha \in(0,1), H_{\alpha}(E)=\infty\right\}
$$

where $H_{\alpha}=H_{h}$ for $h(t)=t^{\alpha}$ (see [8, pp. 23-30]).
Let μ be a probability measure on \mathbb{T} and $\alpha \in(0,1)$. We define its α-energy by

$$
I_{\alpha}(\mu):=\iint \frac{d \mu(t) d \mu(s)}{|t-s|^{\alpha}}
$$

Note that $I_{\alpha}(\mu) \in[0,+\infty]$. Simple calculations shows that

$$
I_{\alpha}(\mu) \asymp \sum_{n \geq 1} \frac{|\widehat{\mu}(n)|^{2}}{(1+|n|)^{1-\alpha}} .
$$

The α-capacity of a Borel set E is given by

$$
C_{\alpha}(E)=1 /\left\{\inf \left\{I_{\alpha}(\mu), \mu \in \mathcal{M}_{\mathcal{P}}(E)\right\}\right.
$$

where $\mathcal{M}_{\mathcal{P}}(E)$ is the set of all probability measures on \mathbb{T} which are supported on a compact subset of E.

An important property which connects capacity and Hausdorff dimension is that (see 8, p. 34])

$$
\begin{equation*}
\operatorname{dim}(E)=\inf \left\{\alpha \in(0,1), C_{\alpha}(E)=0\right\}=\sup \left\{\alpha \in(0,1), C_{\alpha}(E)>0\right\} \tag{2.3}
\end{equation*}
$$

For $E \subset \mathbb{T}$, we denote by $A_{\beta}^{p}(E)$ the collection of $S \in A_{\beta}^{p}(\mathbb{T})$ such that $\operatorname{supp}(S) \subset E$, where $\operatorname{supp}(S)$ denotes the support of the distribution S. The following lemma is a direct consequence of the definition of capacity and the inclusion $A_{-\beta}^{q}(\mathbb{T}) \subset A_{\frac{\alpha-1}{2}}^{2}(\mathbb{T})$ when $q \geq 2$ and $0 \leq \alpha<\frac{2}{q}(1-\beta q)$.

Lemma 2.8. Let E be a Borel set, $\beta \geq 0$ and $q \geq 2$. If there exists $\alpha \in \mathbb{R}$ with $0 \leq \alpha<$ $\frac{2}{q}(1-\beta q)$ such that $C_{\alpha}(E)=0$, then $A_{-\beta}^{q}(E)=\{0\}$.

Let us recall Salem's Theorem (see [25] and [8, p. 106-110]).
Theorem 2.9. Let $0<\alpha<1$ and $q>\frac{2}{\alpha}$. There exists a compact set $E \subset \mathbb{T}$ which satisfies $\operatorname{dim}(E)=\alpha$ and there exists a positive measure $\mu \in A^{q}(\mathbb{T}) \backslash\{0\}$ such that $\operatorname{supp}(\mu) \subset E$.

The following theorem is due to Körner (see [13, Theorem 1.2]).
Theorem 2.10. Let $h:[0, \infty) \rightarrow[0, \infty)$ be an increasing continuous function with $h(0)=0$ and let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a decreasing function. Suppose that
(1) $\int_{1}^{\infty} \phi(x)^{2} d x=\infty$;
(2) there exist $K_{1}, K_{2}>1$ such that for all $1 \leq x \leq y \leq 2 x, K_{1} \phi(2 x) \leq \phi(x) \leq K_{2} \phi(y)$;
(3) there exists $\gamma>0$ such that $\lim _{x \rightarrow \infty} x^{1-\gamma} \phi(x)=\infty$;
(4) there exist $0<K_{3}<K_{4}<1$ such that for all $t>0, K_{3} h(2 t) \leq h(t) \leq K_{4} h(2 t)$.

Then there exists a probability measure μ with support of Hausdorff h-measure zero such that

$$
|\widehat{\mu}(n)| \leq \phi\left(\frac{1}{h\left(|n|^{-1}\right)}\right)\left(\ln \left(\frac{1}{h\left(|n|^{-1}\right)}\right)\right)^{1 / 2}, \quad \forall n \neq 0
$$

We finish this section by describing the construction of the generalized Cantor set. Let $\left(k_{j}\right)_{j \geq 0}$ be integers and let $\left(l_{j}\right)_{j \geq 0}$ be a a sequence of positive number such that $k_{0}=1$ and

$$
k_{j} \geq 2, \quad \text { and } \quad k_{j} l_{j}<l_{j-1}, \quad j \geq 1
$$

Let $E_{0}=\left[0, l_{0}\right]$. We dissect the interval $E_{0}=\left[0, l_{0}\right]$ in $2 k_{1}-1$ intervals of lenghts respectively l_{1} and $d_{1}=\left(l_{0}-k_{1} l_{1}\right) /\left(k_{1}-1\right)$:

$$
\begin{aligned}
& \left.\left[0, l_{1}\right] ;\right] l_{1}, d_{1}+l_{1}[; \\
& \quad \vdots \\
& \left.\left[m d_{1}+m l_{1}, m d_{1}+(m+1) l_{1}\right] ;\right] m d_{1}+(m+1) l_{1},(m+1) d_{1}+(m+1) l_{1}[\\
& \quad \vdots \\
&] l_{0}-l_{1}-d_{1}, l_{0}-l_{1}\left[;\left[l_{0}-l_{1}, l_{0}\right] .\right.
\end{aligned}
$$

We delete the $k_{1}-1$ open interval of lenght d_{1} and we keep the k_{1} equidistant closed intervals of length l_{1}. We set

$$
E_{1}=\bigcup_{m=0}^{k_{1}-1}\left[m d_{1}+m l_{1}, m d_{1}+(m+1) l_{1}\right] .
$$

Suppose that the set $E_{n-1}, n \geq 1$, has already been constructed and this set consists of p_{n-1} closed intervals of length l_{n-1} :

$$
E_{n-1}=\bigcup_{j=1}^{p_{n-1}}\left[a_{j}, a_{j}+l_{n-1}\right] .
$$

We operate the same dissection on each of the intervals $\left[a_{j}, a_{j}+l_{n-1}\right]$ with the parameters $\left(l_{n}, k_{n}\right)$ instead of $\left(l_{1}, k_{1}\right)$, thus we obtain

$$
E_{n}=\bigcup_{j=1}^{p_{n}} \bigcup_{s=0}^{k_{n}-1}\left[a_{j}+s\left(l_{n}+d_{n}\right), a_{j}+s\left(l_{n}+d_{n}\right)+l_{n}\right]
$$

where $d_{n}=\left(l_{n-1}-k_{n} l_{n}\right) /\left(k_{n}-1\right)$. The compact set

$$
E=\bigcap_{n \geq 0} E_{n}
$$

is called the generalized Cantor set. Ohtsuka [22] obtained a criterion for vanishing $C_{\alpha}(E)$, see also [5]:

Theorem 2.11. Let E be a generalized Cantor set. Then.

$$
C_{\alpha}(E)=0 \Longleftrightarrow \sum_{n \geq 0} \frac{1}{\left(k_{0} k_{1} \ldots k_{n}\right) l_{n}^{\alpha}}=\infty .
$$

3. Proof of Theorem A

3.1. Cyclicity and the set all sum of k elements from $\mathcal{Z}(f)$. For $k \in \mathbb{N}$ and $E \subset \mathbb{T}$, let $k \times E$ denote the set all sum of k elements from E,

$$
k \times E=E+E+\ldots+E=\left\{\sum_{n=1}^{k} x_{n}, x_{n} \in E\right\} .
$$

We have the following result, the case $\beta=0$ was considered by Newman in [18.

Lemma 3.1. Let $1<p<2$ and $\beta>0$ such that $\beta q \leq 1$, and let $f \in A_{\beta}^{1}(\mathbb{T})$.
(a) Let $k \in \mathbb{N} \backslash\{0\}$ be such that $k \leq q / 2$. If $C_{\alpha}(k \times \mathcal{Z}(f))=0$ for some $\alpha<\frac{2}{q}(1-\beta q) k$, then f is cyclic in $A_{\beta}^{p}(\mathbb{T})$.
(b) Let $k \in \mathbb{N} \backslash\{0\}$ be such that $q / 2 \leq k \leq 1 /(2 \beta)$. If $C_{\alpha}(k \times \mathcal{Z}(f))=0$ where $\alpha=1-2 k \beta$, then f is cyclic in $A_{\beta}^{p}(\mathbb{T})$.

Proof. Let $k \in \mathbb{N} \backslash\{0\}$. Suppose that f is not cyclic in $A_{\beta}^{p}(\mathbb{T})$. Then there exists $L \in$ $A_{-\beta}^{q}(\mathbb{T})$, the dual of $A_{\beta}^{p}(\mathbb{T})$, such that $L(1)=1$ and $L(P f)=0$, for all $P \in \mathcal{P}(\mathbb{T})$.

Since $\beta<\frac{1}{2}$, by (2.2), we get $C^{1}(\mathbb{T}) \subset A_{\beta}^{1}(\mathbb{T}) \subset A_{\beta}^{p}(\mathbb{T})$. Moreover, by [17] (see also [18, Lemma 5]), there exists $\phi \in L^{2}(\mathbb{T})$ such that

$$
L(g)=\int_{\mathbb{T}}\left(g^{\prime}(x) \phi(x)+g(x)\right) \mathrm{d} x, \quad g \in C^{1}(\mathbb{T})
$$

Since $L \in A_{-\beta}^{q}(\mathbb{T})$ which implies $\left(L\left(e_{n}\right)\right)_{n \in \mathbb{Z}} \in \ell_{-\beta}^{q}(\mathbb{Z})$, we obtain

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}|n \widehat{\phi}(n)|^{q}(1+|n|)^{-\beta q}<\infty . \tag{3.1}
\end{equation*}
$$

Moreover we have,

$$
\int_{\mathbb{T}}\left(\left(e_{n} f\right)^{\prime}(x) \phi(x)+\left(e_{n} f\right)(x)\right) \mathrm{d} x=0, \quad n \in \mathbb{Z}
$$

hence, $\left\langle\phi^{\prime}-1, e_{n} f\right\rangle=0$ where ϕ^{\prime} is defined in terms of distribution. By (3.1), $\phi^{\prime}-1 \in$ $A_{-\beta}^{q}(\mathbb{T})$, by Lemma $\sqrt{2.3}$, we get $\operatorname{supp}\left(\phi^{\prime}-1\right) \subset \mathcal{Z}(f)$.

For $m \in \mathbb{N}$, we denote by $\phi^{* m}$ the result obtained from convolving ϕ with itself m times. Using the fact that $S^{\prime} * T=S * T^{\prime}$ and $1 * S^{\prime}=0$ for any distributions S and T, we have

$$
\left(\phi^{\prime}-1\right) *\left(\left(\phi^{*(m-1)}\right)^{(m-1)}+(-1)^{m-1}\right)=\left(\phi^{* m}\right)^{(m)}+(-1)^{m} .
$$

By induction and by the formula $\operatorname{supp}(T * S) \subset \operatorname{supp}(T)+\operatorname{supp}(S)$ that

$$
\begin{equation*}
\operatorname{supp}\left(\left(\phi^{* m}\right)^{(m)}+(-1)^{m}\right) \subset m \times \mathcal{Z}(f), \quad m \geq 1 \tag{3.2}
\end{equation*}
$$

Note that $\widehat{\left(\phi^{* k}\right)^{(k)}}(n)=i^{k} n^{k} \widehat{\phi}(n)^{k}$ for $k \geq 1$ and $n \in \mathbb{Z}$.
(a) Suppose that $0<k \leq q / 2$ and $C_{\alpha}(k \times \mathcal{Z}(f))=0$ for some $\alpha<\frac{2}{q}(1-\beta q) k$. We rewrite (3.1) as

$$
\sum_{n \in \mathbb{Z}}\left(|n \widehat{\phi}(n)|^{k}\right)^{\frac{q}{k}}(1+|n|)^{-\frac{q}{k} \beta k}<\infty
$$

If we set $q^{\prime}=\frac{q}{k} \geq 2$ and $\beta^{\prime}=\beta k$, we have $\left(\phi^{* k}\right)^{(k)} \in A_{-\beta^{\prime}}^{q^{\prime}}(\mathbb{T})$. By (3.2) and by Lemma 2.8 we obtain that $\left(\phi^{* k}\right)^{(k)}=(-1)^{k-1}$. This contradicts the fact that $\overline{\left(\phi^{* k}\right)^{(k)}}(0)=0$.
(b) Now suppose that $k \geq q / 2$ and $C_{\alpha}(k \times \mathcal{Z}(f))=0$ where $\alpha=1-2 k \beta$. Since $q \leq 2 k$, we have by (3.1),

$$
\sum_{n \in \mathbb{Z}}|n \widehat{\phi}(n)|^{2 k}(1+|n|)^{-2 k \beta}<\infty
$$

Then $\left(\phi^{* k}\right)^{(k)} \in A_{-k \beta}^{2}(\mathbb{T})$ and $\left(\phi^{* k}\right)^{(k)}=(-1)^{k-1}$, which contradicts $\widehat{\left(\phi^{* k}\right)^{(k)}}(0)=0$.
3.2. Construction of generalized Cantor set. We need to compute the capacity of the Minkowski sum of some Cantor type subset of \mathbb{T}. We denote by $[x]$ the integer part of $x \in \mathbb{R}$. For $\lambda \in[0,1]$ and $k \in \mathbb{N} \backslash\{0\}$, we define

$$
K_{\lambda}^{k}=\left\{m \in \mathbb{N}, \exists j \in \mathbb{N}, m \in\left[2^{j}, 2^{j}(1+\lambda+1 / j)-k+1\right]\right\}
$$

and we set in $\mathbb{R} / \mathbb{Z} \simeq[0,1[$,

$$
S_{\lambda}^{k}=\left\{x=\sum_{i=0}^{\infty} \frac{x_{i}}{2^{i+1}},\left(x_{i}\right) \in\{0,1\}^{\mathbb{N}} \text { such that } i \in K_{\lambda}^{k} \Rightarrow x_{i}=0\right\}
$$

We denote $K_{\lambda}=K_{\lambda}^{1}$ and $S_{\lambda}=S_{\lambda}^{1}$. We the following lemma.
Lemma 3.2. For all $k \geq 1$, we have
(1) $k \times S_{\lambda} \subset S_{\lambda}^{k}$;
(2) $C_{\alpha}\left(S_{\lambda}^{k}\right)=0$ if and only if $\alpha \geq \frac{1-\lambda}{1+\lambda}$;
(3) $\operatorname{dim}\left(k \times S_{\lambda}\right)=\frac{1-\lambda}{1+\lambda}$ and $C_{\frac{1-\lambda}{1+\lambda}}\left(k \times S_{\lambda}\right)=0$.

Proof. (1) We prove this by induction. If $k=1$ we have $S_{\lambda}=S_{\lambda}^{1}$. We suppose the result true for $k-1$ for some $k \geq 2$, and we will show that $k \times S_{\lambda} \subset S_{\lambda}^{k}$. Observe that we have

$$
k \times S_{\lambda} \subset(k-1) \times S_{\lambda}+S_{\lambda} \subset S_{\lambda}^{k-1}+S_{\lambda} .
$$

Let $x \in S_{\lambda}^{k-1}, y \in S_{\lambda}$ and $z=x+y$. Denote by $\left(x_{i}\right),\left(y_{i}\right)$ and $\left(z_{i}\right)$ their binary decomposition. Let $m \in K_{\lambda}^{k}$, then there exists $j \in \mathbb{N}$ such that $m \in\left[2^{j}, 2^{j}(1+\lambda+1 / j)-k+1\right]$. Since $m \in K_{\lambda}^{k}$ and $m, m+1 \in K_{\lambda}^{k-1} \subset K_{\lambda}$, we get $x_{m}=y_{m}=x_{m+1}=y_{m+1}=0$. Therefore, we write

$$
z=x+y=\sum_{i=0}^{m-1} \frac{x_{i}+y_{i}}{2^{i+1}}+\sum_{i=m+2}^{\infty} \frac{x_{i}+y_{i}}{2^{i+1}} .
$$

Note that for infinitely many $i \geq m+2$, we have $x_{i}+y_{i}<2$, we see that

$$
\sum_{i=m+2}^{\infty} \frac{x_{i}+y_{i}}{2^{i+1}}<\frac{1}{2^{m+1}}
$$

We denote by $[s]$ the integer part of s, we have

$$
\left[2^{m+1} z\right]=2\left[2^{m} z\right]=2^{m+1} \sum_{i=0}^{m-1} \frac{x_{i}+y_{i}}{2^{i+1}}
$$

Therefore, we obtain by uniqueness of the decomposition that

$$
z_{m}=\left[2^{m+1} z\right]-2\left[2^{m} z\right]=0
$$

This proves that $z=x+y \in S_{\lambda}^{k}$ and $k \times S_{\lambda} \subset S_{\lambda}^{k}$.
(2) We will first show that the set S_{λ}^{k} is a generalized Cantor set. Let

$$
\nu_{j}=\left[2^{j}(1+\lambda+1 / j)-k+1\right]+1
$$

and N_{0}, depending only on k and λ, such that for all $j \geq N_{0}, 2^{j}<\nu_{j}<2^{j+1}$. We set for $N \geq N_{0}$,

$$
l_{N}=\sum_{j=N}^{\infty}\left(\frac{1}{2^{\nu_{j}}}-\frac{1}{2^{2^{j+1}}}\right)
$$

Since

$$
2^{j}(1+\lambda+1 / j)-k+1<\nu_{j} \leq 2^{j}(1+\lambda+1 / j)-k+2,
$$

we have

$$
\sum_{j=N}^{\infty} \frac{1}{2^{2^{j}\left(1+\lambda+\frac{1}{j}\right)}}\left(\frac{1}{2^{2-k}}-\frac{1}{2^{2^{j}\left(1-\lambda-\frac{1}{j}\right)}}\right) \leq l_{N} \leq \sum_{j=N}^{\infty} \frac{1}{2^{2^{j}\left(1+\lambda+\frac{1}{j}\right)}}\left(\frac{1}{2^{1-k}}-\frac{1}{2^{2^{j}\left(1-\lambda-\frac{1}{j}\right)}}\right)
$$

There exists $C \geq 1$ such that for all $j \geq N$,

$$
\frac{1}{C} \leq \frac{1}{2^{2-k}}-\frac{1}{2^{2^{j}\left(1-\lambda-\frac{1}{j}\right)}} \leq \frac{1}{2^{1-k}}-\frac{1}{2^{2^{j}\left(1-\lambda-\frac{1}{j}\right)}} \leq C
$$

And for $N \geq N_{0}$,

$$
\begin{aligned}
\frac{1}{2^{2^{N}\left(1+\lambda+\frac{1}{N}\right)}} & \leq \sum_{j=N}^{\infty} \frac{1}{2^{2^{j}\left(1+\lambda+\frac{1}{j}\right)}} \\
& \leq \frac{1}{2^{2^{N}\left(1+\lambda+\frac{1}{N}\right)}}+\sum_{j=0}^{\infty}\left(\frac{1}{2^{2^{N+1}(1+\lambda)}}\right)^{2^{j}} \\
& \leq \frac{1}{2^{2^{N}\left(1+\lambda+\frac{1}{N}\right)}}+\sum_{j=0}^{\infty}\left(\frac{1}{2^{2^{N+1}(1+\lambda)}}\right)^{j+1} \\
& \leq \frac{1}{2^{2^{N}\left(1+\lambda+\frac{1}{N}\right)}}+\frac{2}{2^{2^{N+1}(1+\lambda)}} \\
& \leq \frac{3}{2^{2^{N}\left(1+\lambda+\frac{1}{N}\right)}}
\end{aligned}
$$

Hence we obtain that l_{N} is comparable to $2^{-2^{N}(1+\lambda+1 / N)}$, that is,

$$
\begin{equation*}
\frac{1}{C 2^{2^{N}\left(1+\lambda+\frac{1}{N}\right)}} \leq l_{N} \leq \frac{3 C}{2^{2^{N}\left(1+\lambda+\frac{1}{N}\right)}} \tag{3.3}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
l_{N} & =\frac{1}{2^{\nu_{N}}}-\sum_{j=N+1}^{\infty}\left(\frac{1}{2^{2^{j}}}-\frac{1}{2^{\nu_{j}}}\right) \\
& <\frac{1}{2^{\nu_{N}}} \\
& \leq \frac{1}{2^{2^{N}}} . \tag{3.4}
\end{align*}
$$

For $N \geq N_{0}$, we set

$$
E_{N}=\left\{\sum_{i=0}^{2^{N}-1} \frac{x_{i}}{2^{i+1}}+l_{N} z, z \in[0,1], x_{i} \in\{0,1\}, i \in K_{\lambda}^{k} \Rightarrow x_{i}=0\right\}
$$

Observe that we can write E_{N} as a union of disjoint intervals given by

$$
E_{N}=\bigcup_{\substack{\left(x_{i}\right) \in\{0,1\}^{2^{N}} \\ i \in K_{\lambda}^{k} \Rightarrow x_{i}=0}} E_{N}^{\left(x_{i}\right)}
$$

where

$$
E_{N}^{\left(x_{i}\right)}=\sum_{i=0}^{2^{N}-1} \frac{x_{i}}{2^{i+1}}+l_{N}[0,1[.
$$

Since by (3.4), $l_{N}<1 / 2^{2^{N}}$, the intervals $E_{N}^{\left(x_{i}\right)}$ are disjoint

$$
E_{N}^{\left(x_{i}\right)} \cap E_{N}^{\left(x_{i}^{\prime}\right)}=\emptyset, \quad\left(x_{i}\right) \neq\left(x_{i}^{\prime}\right) .
$$

For fixed $N \geq N_{0}$, let $\left(x_{i}\right)_{0 \leq i \leq 2^{N}-1} \in\{0,1\}^{2^{N}}$ and $\left(y_{i}\right)_{0 \leq i \leq 2^{N+1}-1} \in\{0,1\}^{2^{N+1}}$. We claim that:
$E_{N+1}^{\left(y_{i}\right)} \subset E_{N}^{\left(x_{i}\right)}$ if and only if $x_{i}=y_{i}$ for all $0 \leq i<2^{N}$ and $y_{i}=0$ for all $2^{N} \leq i<\nu_{N}$.
Indeed, suppose that $E_{N+1}^{\left(y_{i}\right)} \subset E_{N}^{\left(x_{i}\right)}$ and let $u \in E_{N+1}^{\left(y_{i}\right)}$. We have

$$
\begin{aligned}
u & =\sum_{i=0}^{2^{N+1}-1} \frac{y_{i}}{2^{i+1}}+l_{N+1} z_{2} \\
& =\sum_{i=0}^{2^{N}-1} \frac{x_{i}}{2^{i+1}}+l_{N} z_{1}
\end{aligned}
$$

where $z_{1}, z_{2} \in\left[0,1\left[\right.\right.$. By (3.4), $l_{N}<1 / 2^{\nu_{N}}$, and using the uniqueness of the binary representation, we obtain $x_{i}=y_{i}$ for all $0 \leq i<2^{N}$ and $y_{i}=0$ for all $2^{N} \leq i<\nu_{N}$. Now suppose $x_{i}=y_{i}$ for all $0 \leq i<2^{N}$ and $y_{i}=0$ for all $2^{N} \leq i<\nu_{N}$. Let $u \in E_{N+1}^{\left(y_{i}\right)}$. We write

$$
u=\sum_{i=0}^{2^{N}-1} \frac{x_{i}}{2^{i+1}}+\sum_{i=\nu_{N}}^{2^{N+1}-1} \frac{y_{i}}{2^{i+1}}+l_{N+1} z, \quad z \in[0,1[.
$$

Since

$$
\sum_{i=\nu_{N}}^{2^{N+1}-1} \frac{1}{2^{i+1}}+l_{N+1}=\frac{1}{2^{\nu_{N}}}-\frac{1}{2^{2^{N+1}}}+l_{N+1}=l_{N}
$$

we get

$$
\begin{aligned}
\sum_{i=0}^{2^{N}-1} \frac{x_{i}}{2^{i+1}} & \leq \sum_{i=0}^{2^{N}-1} \frac{x_{i}}{2^{i+1}}+\sum_{i=Z_{N}}^{2^{N+1}-1} \frac{y_{i}}{2^{i+1}}+l_{N+1} z \\
& \leq \sum_{i=0}^{2^{N}-1} \frac{x_{i}}{2^{i+1}}+l_{N}
\end{aligned}
$$

and $u \in E_{N}^{\left(x_{i}\right)}$. This concludes the proof of the claim.
By the claim, for fixed $\left(x_{i}\right)$ and for $N \geq N_{0}$, we have the following properties:
(i) the interval $E_{N}^{\left(x_{i}\right)}$ contains precisely

$$
k_{N+1}=\#\left\{\left(y_{i}\right)_{\nu_{N} \leq i \leq 2^{N+1}-1}: y_{i} \in\{0,1\}\right\}=2^{2^{N+1}-\nu_{N}}
$$

intervals of the form $E_{N+1}^{\left(y_{i}\right)}$,
(ii) the intervals of the form $E_{N+1}^{\left(y_{i}\right)}$ contained in $E_{N}^{\left(x_{i}\right)}$ are equidistant intervals of length l_{N+1}; the distance of two consecutive intervals of the form $E_{N+1}^{\left(y_{i}\right)}$ is equal to $\frac{1}{2^{2^{N+1}-l_{N+1}}}$,
(iii) writing $E_{N}^{\left(x_{i}\right)}=[a, b]$, there exist $\left(y_{i}\right)$ and $\left(z_{i}\right)$ such that $E_{N+1}^{\left(y_{i}\right)}=\left[a, a+l_{N+1}\right]$ and $E_{N+1}^{\left(z_{i}\right)}=\left[b-l_{N+1}, b\right]$.
Finally we can write S_{λ}^{k} as

$$
S_{\lambda}^{k}=\bigcap_{N \geq N_{0}} E_{N}
$$

This shows that S_{λ}^{k} is a generalized Cantor set. By Theorem 2.11, we have for $0<\alpha<1$ that $C_{\alpha}\left(S_{\lambda}^{k}\right)=0$ if and only if

$$
\sum_{N=N_{0}}^{\infty} \frac{1}{\left(k_{N_{0}} \cdots k_{N-1}\right) l_{N}^{\alpha}}=\infty
$$

where $k_{N_{0}}=1$. Since

$$
2^{(k-2)\left(N-N_{0}\right)+\left(2^{N}-2^{N_{0}}\right)(1-\lambda)-\sigma_{N}} \leq k_{N_{0}} \cdots k_{N-1} \leq 2^{(k-1)\left(N-N_{0}\right)+\left(2^{N}-2^{N_{0}}\right)(1-\lambda)-\sigma_{N}}
$$

where

$$
\sigma_{N}=\sum_{j=N_{0}}^{N-1} \frac{2^{j}}{j}
$$

we have, by (3.3), $C_{\alpha}\left(S_{\lambda}^{k}\right)=0$ if and only if

$$
\sum_{N=N_{0}}^{\infty} 2^{2^{N}(\alpha(1+\lambda)-(1-\lambda))+\alpha 2^{N} / N+\sigma_{N}-(k-1)\left(N-N_{0}\right)+2^{N_{0}(1-\lambda)}}=\infty .
$$

Therefore, $C_{\alpha}\left(S_{\lambda}^{k}\right)=0$ if and only if $\alpha \geq \frac{1-\lambda}{1+\lambda}$.
Finally, (3) follows from (1) and (2) by the capacity property.
3.3. Proof of Theorem A. We are now ready to prove Theorem A. It follows immediately from the following theorem stated in $A_{\beta}^{p}(\mathbb{T})$ spaces.

Theorem 3.3. Let $1<p<2, \beta>0$ be such that $\beta q \leq 1$.
(1) If $f \in A_{\beta}^{1}(\mathbb{T})$ and $\operatorname{dim}(\mathcal{Z}(f))<\frac{2}{q}(1-\beta q)$ then f is cyclic in $A_{\beta}^{p}(\mathbb{T})$.
(2) If $f \in A_{\beta}^{1}(\mathbb{T})$ and $C_{1-\beta q}(\mathcal{Z}(f))>0$ then f is not cyclic in $A_{\beta}^{p}(\mathbb{T})$.
(3) For $\frac{2}{q}(1-\beta q) \leq \alpha \leq 1$, there exists a closed set $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=\alpha$ and every $f \in A_{\beta}^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(f)=E$ is not cyclic in $A_{\beta}^{p}(\mathbb{T})$.
(4) Let $k=[q / 2]$. For all $\varepsilon>0$, there exists a closed set $E \subset \mathbb{T}$ such that

$$
\begin{equation*}
\operatorname{dim}(E) \geq \max \left(\frac{2}{q}(1-\beta q) k-\varepsilon, 1-2(k+1) \beta\right) \tag{3.5}
\end{equation*}
$$

and every $f \in A_{\beta}^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(f)=E$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$. Furthermore, if $p=2 k /(2 k-1)$ for some $k \in \mathbb{N} \backslash\{0\}, E$ can be chosen such that $\operatorname{dim}(E)=1-\beta q$.

Proof. (1) Note that, by (2.3), $\operatorname{dim}(\mathcal{Z}(f))<\frac{2}{q}(1-\beta q)$ if and only if there exists $\alpha<$ $\frac{2}{q}(1-\beta q)$ such that $C_{\alpha}(\mathcal{Z}(f))=0$. If $C_{\alpha}(\mathcal{Z}(f))=0$, by Lemma 2.8, there is no $S \in A_{-\beta}^{q}(\mathbb{T}) \backslash\{0\}$ such that $\operatorname{supp}(S) \subset \mathcal{Z}(f)$. So, by Lemma 2.4 (1), f is cyclic in $A_{\beta}^{p}(\mathbb{T})$.
(2) Suppose that $C_{1-\beta q}(\mathcal{Z}(f))>0$. There exists a probability measure μ of energy $I_{1-\beta q}(\mu)<\infty$, such that $\operatorname{supp}(\mu) \subset \mathcal{Z}(f)$. So $\mu \in A_{-\beta q / 2}^{2}(\mathbb{T}) \backslash\{0\}$. Since $|\widehat{\mu}(n)| \leq 1$ for all $n \in \mathbb{Z}$ and $q \geq 2$, we have $\mu \in A_{-\beta}^{q}(\mathbb{T})$. By Lemma 2.4 (2), f is not cyclic in $A_{\beta}^{p}(\mathbb{T})$.
(3) Suppose that $\frac{2}{q}(1-\beta q)<\alpha \leq 1$. There exists $\varepsilon>0$ such that $\frac{2}{q}(1-\beta q)+\varepsilon<\alpha$. Let q^{\prime} such that $\frac{2}{q}-2 \beta+\varepsilon=\frac{2}{q^{\prime}}$. Since $\beta>\frac{1}{q}-\frac{1}{q^{\prime}}$, by Lemma 2.1, $A^{q^{\prime}}(\mathbb{T}) \subset A_{-\beta}^{q}(\mathbb{T})$. By Theorem 2.9, as q^{\prime} satisfies $q^{\prime}>\frac{2}{\alpha}$, there exists a closed subset $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=\alpha$ and a non-zero positive measure $\mu \in A^{q^{\prime}}(\mathbb{T}) \subset A_{-\beta}^{q}(\mathbb{T})$ such that $\operatorname{supp}(\mu) \subset E$. Now (3) follows from Lemma 2.4 (2).

Now if $\alpha=\frac{2}{q}(1-\beta q)$ and $\gamma>\frac{2}{q}$. Then by Theorem 2.10 with $\phi(t)=(t \ln (e t))^{-1 / 2}$ for $t \geq 1$ and $h(t)=\frac{t^{\alpha}}{\ln (e / t)^{\gamma}}$ for $t \in[0, \infty)$, there exists a probability measure μ with support of Hausdorff h-measure zero such that

$$
|\widehat{\mu}(n)| \leq \phi\left(\frac{1}{h\left(|n|^{-1}\right)}\right)\left(\ln \left(\frac{1}{h\left(|n|^{-1}\right)}\right)\right)^{1 / 2} \leq\left(|n|^{\alpha} \ln (e|n|)^{\gamma}\right)^{-1 / 2}
$$

for $n \neq 0$. So

$$
\begin{aligned}
\sum_{n \neq 0}|\widehat{\mu}(n)|^{q}(1+|n|)^{-\beta q} & \leq C \sum_{n \neq 0}|n|^{-\alpha q / 2-\beta q} \ln (e|n|)^{-\gamma q / 2} \\
& \leq C \sum_{n \neq 0} \frac{1}{|n| \ln (e|n|)^{\gamma q / 2}}<\infty
\end{aligned}
$$

with C a positive constant. Hence, $\mu \in A_{-\beta}^{q}(\mathbb{T})$. We set $E=\operatorname{supp}(\mu)$. By Lemma 2.4 the result is proved.
(4) Let $k=[q / 2]$. Suppose first $\frac{2}{q}(1-\beta q) k>1-2(k+1) \beta$ and let $0<\varepsilon^{\prime}<\varepsilon$ satisfy $1-2(k+1) \beta \leq \frac{2}{q}(1-\beta q) k-\varepsilon^{\prime}$. Consider the set S_{λ} where λ satisfies

$$
\frac{2}{q}(1-\beta q) k-\varepsilon^{\prime}<\frac{1-\lambda}{1+\lambda}<\frac{2}{q}(1-\beta q) k
$$

By Lemma 3.2 (3) we have $\operatorname{dim}\left(S_{\lambda}\right)=\frac{1-\lambda}{1+\lambda}$ and $C_{\frac{1-\lambda}{1+\lambda}}\left(k \times S_{\lambda}\right)=0$. Therefore, by Lemma $3.1(a)$, every $f \in A_{\beta}^{1}(\mathbb{T})$ such that $\mathcal{Z}(f)=S_{\lambda}$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$.

Now, suppose $\frac{2}{q}(1-\beta q) k \leq 1-2(k+1) \beta$. We consider S_{λ} where

$$
\frac{1-\lambda}{1+\lambda}=1-2(k+1) \beta
$$

By Lemma 3.2 (3) we have

$$
\operatorname{dim}\left(S_{\lambda}\right)=\frac{1-\lambda}{1+\lambda}=1-2(k+1) \beta \quad \text { and } \quad C_{\frac{1-\lambda}{1+\lambda}}\left((k+1) \times S_{\lambda}\right)=0
$$

Thus, by Lemma $3.1(b)$, every $f \in A_{\beta}^{1}(\mathbb{T})$ such that $\mathcal{Z}(f)=S_{\lambda}$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$.
Suppose now that $p=\frac{2 k}{2 k-1}$ for some $k \in \mathbb{N} \backslash\{0\}$. As before, we consider S_{λ} where

$$
\frac{1-\lambda}{1+\lambda}=1-2 k \beta=1-\beta q
$$

Again by Lemma $3.1(b)$, every $f \in A_{\beta}^{1}(\mathbb{T})$ such that $\mathcal{Z}(f)=S_{\lambda}$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$.
Note that the set E which was considered in Theorem 3.3(4) satisfies $C_{\alpha}(E)=0$ where

$$
\alpha \geq \max \left(\frac{2}{q}(1-\beta q) k-\varepsilon, 1-2(k+1) \beta\right)
$$

4. Proof of Theorem B

4.1. Some power sum. To prove Theorem B, we need the following lemmas.

Lemma 4.1. Let R be a prime power and m a positive integer. We set $k=R^{m+1}$ and $N=(R-1)\left(R^{m+1}+1\right)$. Then there exists $N^{\text {th }}$ roots of unity z_{1}, \ldots, z_{k} such that

$$
\left|\sum_{j=1}^{k} z_{j}^{r}\right| \leq \sqrt{k}, \quad r=1, \ldots, N-1
$$

Proof. The proof is inspired from a result by Andersson [2, Lemma 1]. Let $F=\left\{x_{j}, 1 \leq\right.$ $j \leq k\}$ be a finite field of order k and let E be an extension field of F of order k^{2}. Let ω be an element that generates the multiplicative group E^{*} and let χ be a multiplicative character on E of order $k^{2}-1$. We set

$$
z_{j}=\chi^{d}\left(\omega+x_{j}\right), \quad 1 \leq j \leq k
$$

where $d=\sum_{j=0}^{m} R^{j}$. Since $N d=k^{2}-1$ the z_{j} are $N^{\text {th }}$ roots of unity. For $1 \leq r \leq N-1$, the characters $\chi^{r d}$ are non-trivial on E, thus by [11, Theorem 1] we get

$$
\left|\sum_{j=1}^{k} z_{j}^{r}\right|=\left|\sum_{j=1}^{k} \chi^{r d}\left(\omega+x_{j}\right)\right| \leq \sqrt{k}, \quad r=1, \ldots, N-1 .
$$

Lemma 4.2. With the notation of Lemma 4.1, we set

$$
c_{n}=\frac{\left(\sum_{j=1}^{k} z_{j}^{n}\right)}{k}\left(\frac{\sin (\pi n / N)}{\pi n / N}\right)^{2}, \quad n \in \mathbb{Z}
$$

Then

$$
\sum_{n \in \mathbb{Z} \backslash\{0\}}\left|c_{n}\right|^{p}(1+|n|)^{\beta p} \leq \frac{N^{1+\beta p}}{k^{\frac{p}{2}}}
$$

Proof. We have

$$
\begin{aligned}
c_{r+N \ell} & =\frac{\left(\sum_{j=1}^{k} z_{j}^{r}\right)}{k}\left(\frac{\sin (\pi r / N)}{\frac{\pi r}{N}+\pi \ell}\right)^{2} \\
\sum_{n \in \mathbb{Z} \backslash\{0\}}\left|c_{n}\right|^{p}(1+|n|)^{\beta p} & =\sum_{r=1}^{N-1} \sum_{\ell \in \mathbb{Z}}\left|c_{r+N \ell}\right|^{p}(1+|N \ell+r|)^{\beta p} \\
& =\sum_{r=1}^{N-1} \frac{\left|\sum_{j=1}^{k} z_{j}^{r}\right|^{p}}{k^{p}} \sum_{\ell \in \mathbb{Z}} \frac{|\sin (\pi r / N)|^{2 p}}{\pi^{2 p}\left|\frac{r}{N}+\ell\right|^{2 p}}(1+|N \ell+r|)^{\beta p} .
\end{aligned}
$$

To estimate

$$
\frac{|\sin (\pi r / N)|^{2 p}}{\pi^{2 p}\left|\frac{r}{N}+\ell\right|^{2 p}}(1+|N \ell+r|)^{\beta p}
$$

we will consider two cases:

Case 1: $N \geq 2 r$.

$$
\begin{align*}
\frac{\left.\sin ^{2}((r / N) \pi)\right)}{\pi^{2}(r / N+\ell)^{2}}(1+|r+\ell N|)^{\beta} & \leq \frac{(r / N)^{2-\beta}}{(|\ell|-1 / 2)^{2}}\left(r / N+r^{2} / N+|\ell| r\right)^{\beta} \\
& \leq \frac{1}{2^{2-\beta}} \frac{1}{(|\ell|-1 / 2)^{2}}(1 / 2+r / 2+|\ell| r)^{\beta} \\
& \leq \frac{1}{2^{2-\beta}} \frac{(|\ell|+1 / 2)^{\beta}}{(|\ell|-1 / 2)^{2}}(1+r)^{\beta} . \tag{4.1}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\sum_{\ell \in \mathbb{Z}} \frac{|\sin (\pi r / N)|^{2 p}}{\pi^{2 p}\left|\frac{r}{N}+\ell\right|^{2 p}}(1+|N \ell+r|)^{\beta p} \leq \frac{1}{2^{(2-\beta) p}} \sum_{\ell \in \mathbb{Z}} \frac{(|\ell|+1 / 2)^{\beta p}}{(|\ell|-1 / 2)^{2 p}}(1+r)^{\beta p} \tag{4.2}
\end{equation*}
$$

Case 2: $N \leq 2 r$. For $|r+\ell N|<N$,

$$
\frac{\left.\sin ^{2}((r / N) \pi)\right)}{\pi^{2}(r / N+\ell)^{2}}(1+|r+\ell N|)^{\beta} \leq(1+N)^{\beta} \leq 2^{\beta}(1+r)^{\beta}
$$

We remark that there are at most two integers of the form $r+\ell N$ with $|r+\ell N|<N$. Thus

$$
\begin{equation*}
\sum_{\ell:|r+\ell N|<N} \frac{|\sin (\pi r / N)|^{2 p}}{\pi^{2 p}\left|\frac{r}{N}+\ell\right|^{2 p}}(1+|N \ell+r|)^{\beta p} \leq 2^{1+\beta p}(1+r)^{\beta p} \tag{4.3}
\end{equation*}
$$

Assume now that $|r+\ell N| \geq N$ and $\ell \in \mathbb{Z}$. We note that in this case $\left|\frac{r}{N}+\ell\right|=$ $\frac{|r+\ell N|}{N} \geq 1$. We have

$$
\begin{aligned}
\frac{\sin ^{2}(r \pi / N)}{\pi^{2}(r / N+\ell)^{2}}(1+|r+\ell N|)^{\beta} & \leq \frac{1}{(r / N+\ell)^{2} \pi^{2}} N^{\beta}(1 / N+|r / N+\ell|)^{\beta} \\
& \leq \frac{2^{2 \beta}}{\pi^{2}|r / N+\ell|^{2-\beta}} r^{\beta}
\end{aligned}
$$

Then we get

$$
\begin{align*}
\sum_{\ell \in \mathbb{Z}:|r+\ell N| \geq N} \frac{|\sin (\pi r / N)|^{2 p}}{\pi^{2 p}\left|\frac{r}{N}+\ell\right|^{2 p}}(1+|N \ell+r|)^{\beta p} & \leq \sum_{\ell \in \mathbb{Z}:|r / N+\ell| \geq 1} \frac{2^{2 \beta p}}{\pi^{2 p}|r / N+\ell|^{(2-\beta) p}} r^{\beta p} \\
& \leq \frac{2^{2 \beta p+1}}{\pi^{2 p}} \sum_{\ell \geq 1} \frac{1}{\ell^{(2-\beta) p}} r^{\beta p} \tag{4.4}
\end{align*}
$$

Combining (4.3) and (4.4) we obtain

$$
\begin{equation*}
\sum_{\ell \in \mathbb{Z}} \frac{|\sin (\pi r / N)|^{2 p}}{\pi^{2 p}\left|\frac{r}{N}+\ell\right|^{2 p}}(1+|N \ell+r|)^{\beta p} \leq \underbrace{\max \left(2^{1+\beta p}, \frac{2^{2 \beta p+1}}{\pi^{2 p}} \sum_{k \geq 1} \frac{1}{k^{(2-\beta) p}}\right)}_{c_{\beta, p}}(1+r)^{\beta p} . \tag{4.5}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\sum_{n \in \mathbb{Z} \backslash\{0\}}\left|c_{n}\right|^{p}(1+|n|)^{\beta p} & =\sum_{r=1}^{N-1} \frac{\left|\sum_{j=1}^{k} z_{j}^{r}\right|^{p}}{k^{p}} \sum_{\ell \in \mathbb{Z}} \frac{|\sin (\pi r / N)|^{2 p}}{\pi^{2 p}\left|\frac{r}{N}+\ell\right|^{2 p}}(1+|N \ell+r|)^{\beta p} \\
& \leq c_{\beta, p} \sum_{r=1}^{N-1} \frac{\left|\sum_{j=1}^{k} z_{j}^{r}\right|^{p}}{k^{p}}(1+r)^{\beta p} \\
& \leq c_{\beta, p} \frac{N^{1+\beta p}}{k^{\frac{p}{2}}}
\end{aligned}
$$

4.2. Proof of Theorem B. To prove (1), we suppose that $p \geq 2$ and $\beta>\frac{1}{2}-\frac{1}{p}$. It suffices to check that the characteristic function of E, χ_{E} is in $\ell_{-\beta}^{q}$, the dual space of ℓ_{β}^{p}. By Hölder's inequality

$$
\sum_{n \in \mathbb{Z}}\left|\widehat{\chi_{E}}(n)\right|^{q}(1+|n|)^{-\beta q} \leq\left(\sum_{n \in \mathbb{Z}}\left|\widehat{\chi_{E}}(n)\right|^{2}\right)^{q / 2}\left(\sum_{n \in \mathbb{Z}}(1+|n|)^{-\frac{2 \beta q}{2-q}}\right)^{\frac{2-q}{q}}
$$

The sums $\sum_{n \in \mathbb{Z}}|\widehat{\chi E}(n)|^{2}$ and $\sum_{n \in \mathbb{Z}}(1+|n|)^{-\frac{2 \beta q}{2-q}}$ converge since χ_{E} is in $L^{2}(\mathbb{T})$ and $\beta>\frac{1}{q}-\frac{1}{2}$.
In order to prove (2), using notations from Lemmas 4.1 and 4.2, we first define

$$
f(x)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n x}
$$

The function f is the sum of k triangles each with base $4 \pi / N$ and height N / k, then f is a Lipschitz function and its support has measure $4 \pi k / N$.

We recall that $k=R^{m+1}$ and $N=(R-1)\left(R^{m+1}+1\right)$. Let $0 \leq \beta<\frac{1}{2}-\frac{1}{p}$ and choose m such that $\beta<\frac{1}{2} \frac{m+1}{m+2}-\frac{1}{p}$. We have

$$
\frac{N^{1+\beta p}}{k^{\frac{p}{2}}} \sim \frac{R^{(m+2)(1+\beta p)}}{R^{\frac{m+1}{2} p}} \sim R^{p(m+2)\left(\beta+\frac{1}{p}-\frac{1}{2} \frac{m+1}{m+2}\right)}
$$

Since

$$
p(m+2)\left(\beta+\frac{1}{p}-\frac{1}{2} \frac{m+1}{m+2}\right)<0
$$

$$
\frac{N^{1+\beta p}}{k^{\frac{p}{2}}} \rightarrow 0, \quad R \rightarrow \infty
$$

By Lemma 4.1 we have

$$
\|f-1\|_{A_{\beta}^{p}(\mathbb{T})}^{p} \leq \frac{N^{1+\beta p}}{k^{\frac{p}{2}}}
$$

On the other hand $k / N \rightarrow 0$ as $R \rightarrow \infty$, hence for every $\epsilon>0$, there exists a Lipschitz function f such that $\|f-1\|_{A_{\beta}^{p}(\mathbb{T})}<\epsilon$ and with support of measure less than ϵ. Finally, Lemma 2.7 concludes the proof.

5. Remarks

We say that $\left(\omega_{n}\right) \in \mathbb{R}$ is a weight if there exists $C>0$ such that $w_{n} \geq 1$ and $\omega_{n+k} \leq$ $C \omega_{n} \omega_{k}$ for all $k, n \in \mathbb{Z}$ For a weight ω and $1 \leq p<\infty$, we set

$$
A_{\omega}^{p}(\mathbb{T})=\left\{f \in \mathcal{C}(\mathbb{T}):\|f\|_{A_{\omega}^{p}(\mathbb{T})}^{p}=\sum_{n \in \mathbb{Z}}|\widehat{f}(n)|^{p} \omega_{n}^{p}<\infty\right\}
$$

Note that $\|f S\|_{A_{\omega}^{p}(\mathbb{T})} \leq\|f\|_{A_{\omega}^{1}(\mathbb{T})}\|S\|_{A_{\omega}^{p}(\mathbb{T})}$ for $f \in A_{\omega}^{1}(\mathbb{T})$ and $S \in A_{\omega}^{p}(\mathbb{T})$. Hence we have the same result as (2.1) to characterize cyclicity in $A_{\omega}^{p}(\mathbb{T})$ by norm.

When $\omega_{n}=O\left((1+|n|)^{\varepsilon}\right)$ for all $\varepsilon>0$, for instance, by letting $\omega_{n}=\ln (e+|n|)^{\gamma}$ where $\gamma \geq 0$, we can show the same result as Lemma 2.6. By noting that

$$
A_{\beta}^{p}(\mathbb{T}) \subset A_{\omega}^{p}(\mathbb{T}) \subset A^{p}(\mathbb{T})
$$

for all $p \geq 1$ and $\beta>0$, we obtain the following result by Theorem A and Theorem B :
Corollary 5.1. Let $\omega=\left(\omega_{n}\right)_{n \in \mathbb{Z}}$ be a weight such that $\lim _{n \rightarrow+\infty} \frac{\log \omega_{n}}{\log n}=0$.
(1) Let $1<p<2$.
(a) If $f \in A_{\omega}^{1}(\mathbb{T})$ and $\operatorname{dim}(\mathcal{Z}(f))<2 / q$ then f is cyclic in $A_{\omega}^{p}(\mathbb{T})$.
(b) For $\frac{2}{q}<\alpha \leq 1$, there exists a closed subset $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=\alpha$ and every $f \in A_{\omega}^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(f)=E$ is not cyclic in $A_{\omega}^{p}(\mathbb{T})$.
(c) For all $0<\varepsilon<1$, there exists a closed subset $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=1-\varepsilon$ and every $f \in A_{\omega}^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(f)=E$ is cyclic in $A_{\omega}^{p}(\mathbb{T})$.
(2) Let $p>2$. For every $\varepsilon>0$, there exists a closed subset $E \subset \mathbb{T}$ such that $|E|>2 \pi-\epsilon$ and every $u \in A_{\beta}^{1}(\mathbb{Z})$ satisfying $\mathcal{Z}(\widehat{u})=E$ is cyclic in $A_{\beta}^{p}(\mathbb{Z})$.
Proof. (1) Suppose that $1<p<2$.
(a) Let $f \in A_{\omega}^{1}(\mathbb{T})$ such that $\operatorname{dim}(\mathcal{Z}(f))<2 / q$. Then there exists $0<\beta<1 / 2$ such that $\operatorname{dim}(\mathcal{Z}(f))<\frac{2}{q}(1-\beta q)$. By Theorem 3.3 (1), every $g \in A_{\beta}^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(g)=\mathcal{Z}(f)$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$. Therefore, by Lemma 2.6 , there exist a sequence of Lipschitz functions $\left(f_{n}\right)$ which are zero on $\mathcal{Z}(f)$ such that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-1\right\|_{A_{\beta}^{p}(\mathbb{T})}=0
$$

Moreover, $\omega_{n}=O\left((1+|n|)^{\beta}\right)$, therefore,

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-1\right\|_{A_{\omega}^{p}(\mathbb{T})}=0
$$

Again by Lemma 2.6 in $A_{\omega}^{p}(\mathbb{T})$, we obtain that f is cyclic in $A_{\omega}^{p}(\mathbb{T})$.
(b) By Theorem 2.9 there exists a closed set $E \subset \mathbb{T}$ such that $\operatorname{dim}(E)=\alpha$ and every $f \in A^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(f)=E$ is not cyclic in $A^{p}(\mathbb{T})$. Let $f \in A_{\omega}^{1}(\mathbb{T})$ such that $\mathcal{Z}(f)=E$. Since $f \in A^{1}(\mathbb{T})$, f is not cyclic in $A^{p}(\mathbb{T})$. However, $\|\cdot\|_{A^{p}(\mathbb{T})} \leq\|\cdot\|_{A_{\omega}^{p}(\mathbb{T})}$, therefore f is not cyclic in $A_{\omega}^{p}(\mathbb{T})$.
(c) Let $0<\varepsilon<1$ and $\beta>0$ such that $1-2([q / 2]+1) \beta \geq 1-\varepsilon$. By Theorem 3.3 (4), there exists a closed set $E \subset \mathbb{T}$ such that

$$
\operatorname{dim}(E) \geq 1-2([q / 2]+1) \beta \geq 1-\varepsilon
$$

and every $f \in A_{\beta}^{1}(\mathbb{T})$ satisfying $\mathcal{Z}(f)=E$ is cyclic in $A_{\beta}^{p}(\mathbb{T})$. Since $A_{\beta}^{p}(\mathbb{T}) \subset A_{\omega}^{p}(\mathbb{T})$, by Lemma 2.6, by Lemma 2.6, we get our result.
(2) If $p>2$, then the result immediately follows from Theorem B.

Acknowledgements. The research of the first author is supported by the project ANR-18-CE40-0035 and by the Joint French-Russian Research Project PRC CNRS/RFBR 20172019.

References

[1] E. Abakumov, A. Atzmon, S. Grivaux, Cyclicity of bicyclic operators and completeness of translates. Math. Ann. 341 (2008), no. 2, 293-322.
[2] J. Andersson. On some power sum problems of Montgomery and Turán. Int. Math. Res. Not. IMRN 2008, no. 8, Art. ID rnn015, 9 pp.
[3] A. Beurling, On a closure problem, Ark. Mat. 1 (1951), 301-303.
[4] E. Decreux, Idéaux fermés d'une algèbre de Beurling régulière. Publ. Mat. 42 (1998), no. 2, 461-497.
[5] V.Ya. Eiderman, Capacities of Generalized Cantor Sets, Operator Theory: Advances and Applications, Vol. 158, (2005) 131-139.
[6] O. El-Fallah, N. K. Nikolski, M. Zarrabi, Estimates for resolvents in Beurling-Sobolev algebras, St. Petersburg Math. J. 10 (1999), no. 6, 901-964.
[7] J-P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag, Berlin-Heidenberg-New York, (1970)
[8] J-P. Kahane, R. Salem, Ensembles parfaits et séries trigonométriques, Hermann (1963)
[9] N. M. Katz, An estimate for character sums. J. Amer. Math. Soc. 2 (1989), no. 2, 197-200.
[10] Y. Katznelson, An Introduction to Harmonic Analysis, 2nd ed., Dover Publications, New York, 1976.
[11] Y. Katznelson, Sets of uniqueness for some classes of trigonometrical series. Bull. Amer. Math. Soc. 70 (1964), 722-723.
[12] I. Hirschman; Y. Katznelson, Sets of uniqueness and multiplicity for $\ell^{p, \alpha}$. Israel J. Math. 3 (1965), 221-231.
[13] T.W. Körner, On the theorem of Ivašev-Musatov III, Proc. Lond. Math. Soc. (1986) 53(3) 143-192.
[14] N. Lev, A. OlevskiI, Wiener's 'closure of translates' problem and Piatetski-Shapiro's uniqueness phenomenon, Ann. Math. (2) 174, No. 1, 519-541 (2011)
[15] N. Lev, A. Olevskir, No characterization of generators in $\ell^{p}(1<p<2)$ by zero set of Fourier transform. C. R. Math. Acad. Sci. Paris 346 (2008), no. 11-12, 645-648.
[16] N. Lev, A. Olevskir, Piatetski-Shapiro phenomenon in the uniqueness problem. C. R. Math. Acad. Sci. Paris 340 (2005), no. 11, 793-798.
[17] D. J. Newman, Some results in spectral synthesis, Duke Mathematical Journal, vol. 27 (1960), pp. 359-362
[18] D. J. Newman, The closure of translates in ℓ^{p}, Amer. J. Math. 86 (1964), pp. 651-667
[19] D.J. Newman, A simple proof of Wiener's $1 / f$ theorem. Proc. Amer. Math. Soc. 48 (1975), 264-265.
[20] N. K. Nikolskir, Lectures on the shift operator IV, Zapiski Nauchnykh Seminarov LOMI Vol 65 (1976) pp. 103-132
[21] N.K. Nikolskir, Selected problems of weighted approximation and analysis, Proc. Steclov. Inst. Math. 120 (1974)
[22] M. Ohtsuka, Capacité d'ensembles de Cantor généralisés, Nagoya Math. J. 11 151-160 (1957)
[23] W. T. Ross, S. Richter, C. Sundberg, Hyperinvariant subspaces of the harmonic Dirichlet space, J. Reine Angew. Math. 448 (1994) 1-26.
[24] W. T. Ross, Invariant subspaces of the harmonic Dirichlet space with large co-dimension. Proc. Amer. Math. Soc. 124 (1996), no. 6, 1841-1846.
[25] R. Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension, Ark. Mat., 1: 353-365, (1950)
[26] A. L. Shields, Weighted shift operators and analytic function theory. Topics in operator theory, 49-128. Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974.
[27] N. Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), 1-100.

Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France. CNRS, IMB, UMR 5251, F-33400 Talence, France.

Email address: kkellay@math.u-bordeaux.fr
Email address: florian.le-manach@math.u-bordeaux.fr
Email address: mzarrabi@math.u-bordeaux.fr

[^0]: 2000 Mathematics Subject Classification. primary 43A15; secondary 28A12, 42A38.
 Key words and phrases. Cyclicity, Weighted ℓ^{p} spaces, Spanning set, Uniqueness set, Hausdorff dimension, Capacity
 *Corresponding author.

