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Introduction and Main Results

The cyclic vectors are, amongst others, an important tool in the study of invariant subspaces and their characterization [START_REF] Abakumov | Cyclicity of bicyclic operators and completeness of translates[END_REF][START_REF] Nikolskii | Selected problems of weighted approximation and analysis[END_REF][START_REF] Shields | Weighted shift operators and analytic function theory[END_REF]. For the shift operator, the problem of cyclic vectors in the space of sequences p (Z) goes back to the works of Wiener [START_REF] Wiener | Tauberian theorems[END_REF] for p = 1 and p = 2, Beurling [START_REF] Beurling | On a closure problem[END_REF], Salem [START_REF] Salem | On singular monotonic functions whose spectrum has a given Hausdorff dimension[END_REF] for 1 < p < 2, and Newman [START_REF] Newman | The closure of translates in p[END_REF] for p > 1. This problem is still far from being resolved.

A vector u ∈ p (Z) is called cyclic in p (Z) if the linear span of its translates, (u n+k ) n∈Z , k ∈ Z is dense in p (Z). The Fourier transform of u ∈ p (Z) is given by u(t) = n∈Z u n e int where the trigonometric series is to be interpreted as a distribution on the circle group T = R \ 2πZ. For u ∈ p (Z) with 1 ≤ p ≤ 2, u becomes a function. We denote by Z( u) the zero set of u in T. Notice that for u ∈ 1 (Z), the set Z( u) is well-defined, since u is continuous. The cyclicity can be viewed as an approximation problem or a uniqueness/removable singularities problem. Following Newman [START_REF] Newman | The closure of translates in p[END_REF], a closed subset E ⊂ T is called p-spanning if every u ∈ 1 (Z) with Z( u) ⊂ E, is cyclic in p (Z). On the other hand, E is called a q-uniqueness set if E does not support any non-vanishing distribution n∈Z c n e int with (c n ) n∈Z in q (Z). It is well known that E is p-spanning if and only if E is q-uniqueness where q is the conjugate of p.

Wiener characterized the cyclic vectors in 1 (Z) and in 2 (Z) [START_REF] Wiener | Tauberian theorems[END_REF]. Further, Beurling, Salem, and Newman [START_REF] Beurling | On a closure problem[END_REF][START_REF] Salem | On singular monotonic functions whose spectrum has a given Hausdorff dimension[END_REF][START_REF] Newman | The closure of translates in p[END_REF] provided either necessary or sufficient conditions for u to be cyclic in p (Z) for p > 1. Their characterization of the cyclic vectors was given in terms of the size (capacity and Hausdorff dimension) of the zero set of the Fourier transform u. However, Lev and Olevskii [START_REF] Lev | Wiener's 'closure of translates' problem and Piatetski-Shapiro's uniqueness phenomenon[END_REF][START_REF] Lev | No characterization of generators in p (1 < p < 2) by zero set of Fourier transform[END_REF][START_REF] Lev | Piatetski-Shapiro phenomenon in the uniqueness problem[END_REF] showed that for 1 < p < 2, the problem of cyclicity in p (Z) is more complicated even for sequences in 1 (Z) : we cannot characterize the cyclicity of u in p (Z) in terms of Z( u) alone, which contradicts Wiener's conjecture.

We summarize the results of the previous works cited above. We denote by q the Hölder conjugate of p ≥ 1 with 1/p + 1/q = 1, and dim(E) the Hausdorff dimension of a subset E ⊂ T.

(1) Wiener: u is cyclic in 1 (Z) if and only if u has no zeros on T.

(2) Wiener: u is cyclic in 2 (Z) if and only if u is non-zero almost everywhere.

(3) Beurling: Let 1 ≤ p ≤ 2. If dim(E) < 2/q then E is a p-spanning.

(4) Salem: Let 1 ≤ p ≤ 2. For 2/q < α ≤ 1, there exists E ⊂ T such that dim(E) = α and E is not p-spanning (5) Newman: There exists a p-spanning set E for all 1 < p < 2 such that dim(E) = 1. (6) Lev & Olevskii: If 1 < p < 2, there exist u and v in 1 (Z) such that Z( u) = Z( v), u is not cyclic in p (Z), and v is cyclic in p (Z).

In this paper, we shall focus on the cyclic vectors on weighted p (Z) spaces, namely p β (Z), the space of sequences u = (u n ) n∈Z for which (u n (1 + |n|) β ) ∈ p (Z) for p ≥ 1 and β > 0. A vector u ∈ p β (Z) is called cyclic in p β (Z) if the linear span of {(u n+k ) n∈Z , k ∈ Z} is dense in p β (Z). For every closed subset E of T, E is called (p, β)-spanning if every u ∈ 1 (Z) such that Z( u) ⊂ E is cyclic in p β (Z), and E is called (q, β)-uniqueness if E does not support any non-zero distribution n∈Z c n e int with (c n ) n∈Z in q -β (Z). As before, E is (p, β)-spanning if and only if E is (q, β)-uniqueness where 1/p + 1/q = 1.

Observe that the shift operator does not act as an isometry on p β (Z) unlike on p (Z) spaces which presents a difficulty for the study of cyclic vectors in p β (Z).

Notice that p β (Z) is a Banach algebra if and only if βq > 1 (see [START_REF] El-Fallah | Estimates for resolvents in Beurling-Sobolev algebras[END_REF]). Hence, in this case we have an analogue of (1) in Wiener's theorem : a vector u ∈ p β (Z) is cyclic if and only if u has no zeros on T. Thus in the sequel of the paper we will only be interested in pairs (p, β) such that βq < 1.

Richter, Ross and Sundberg [START_REF] Ross | Hyperinvariant subspaces of the harmonic Dirichlet space[END_REF] gave a complete characterization of hyperinvariant subspaces of the weighted harmonic Dirichlet spaces 2

β (Z), 0 < β ≤ 1 2 .

Their characterization and a relation between capacity and Hausdorff dimension led to the result that

u ∈ 1 β (Z) is cyclic in 2 β (Z) if and only if dim(Z( u)) ≤ 1 -2β.
Their result may be considered as an analog of Wiener's theorem about the cyclic vector of 2 . Hence, we study the case of p = 1 and p = 2. Our main result for 1 < p < 2 is the following (see Theorem 3.3).

Theorem A. Let 1 < p < 2, β > 0 such that βq ≤ 1 and let E be a closed subset of T.

(1) If dim(E) < 2 q (1 -βq), then E is (p, β)-spanning.
(

) If dim(E) > 1 -βq, then E is not (p, β)-spanning. 2 
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(3) For 2 q (1 -βq) ≤ α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α and E is not (p, β)-spanning. (4) If p = 2k/(2k -1) for some k ∈ N \ {0} there exists a (p, β)-spanning E ⊂ T such that dim(E) = 1 -βq.

The property [START_REF] Decreux | Idéaux fermés d'une algèbre de Beurling régulière[END_REF] shows that the constant 1 -βq obtained in (2) is sharp. Indeed, on one hand, there is no cyclic vector u such that dim(Z( u)) > 1 -qβ, and on the other hand, we can find some cyclic vector u with dim(Z( u)) = 1 -βq. However, this is only proved when p = 2k/2k -1 for some positive integer k. The proof is based on the construction of a closed subset E of T whose k-sums E + . . . + E are of zero capacity and of given Hausdorff dimension (see Lemma 3.2). The arithmetic structure of E allows us to reach the best constant 1 -βq only for p = 2k/(2k -1).

Next we will deal with the case p > 2. Newman in [START_REF] Newman | The closure of translates in p[END_REF] showed that for all ε > 0, there exists a p-spanning set E ⊂ T which has a Lebesgue measure |E| > 2π -ε. The existence of q-uniqueness sets of arbitrary large measure for the spaces q (Z), 1 < q < 2, was established also independently, by Katznelson [START_REF] Katznelson | An Introduction to Harmonic Analysis[END_REF] (see also [START_REF] Katznelson | Sets of uniqueness for some classes of trigonometrical series[END_REF]IV. 2.5 Theorem]). Extensions of their result to a more general setting were given in [START_REF] Hirschman | Sets of uniqueness and multiplicity for p,α[END_REF] where they studied the uniqueness set of q -β (Z). We have the following result.

Theorem B. Let p > 2, β > 0 such that βq ≤ 1. (1) If β > 1 2 - 1 p
, then every a closed subset E of T of positive Lebesgue measure, is not (p, β)-spanning.

(

) If β < 1 2 - 1 p then for every ε > 0, there exists a (p, β)-spanning set E ⊂ T such that |E| > 2π -. 2 
Nikolski in [START_REF] Nikolskii | Lectures on the shift operator IV[END_REF]Corollary 6] considered the weighted space

p ω (Z) = (u n ) n∈Z : (u n ω n ) n∈Z ∈ p (Z)
where ω n = log(e + |n|) γ , γ > 0. He showed that if p > 2/(1 -γ), 0 < γ < 1, then there exists E ⊂ T with large Lebesgue measure which is a uniqueness set for the dual of p ω (Z), which is equivalent to the cyclicity in p ω (Z) of every u ∈ 1 ω (Z) satisfying Z( u) ⊂ E. As a by-product of Theorem B, we show in Corollary 5.1 that the result of Nikolski remains valid for all p > 2 and γ > 0. This paper is organized as follows. In the next section, we present the background and recall some properties of distribution spaces. Section 3 is devoted to the proof of Theorem A. We construct in Lemma 3.2 a Cantor type set of zero capacity whose k th sum remains of zero capacity. Section 4 provides the proof of Theorem B based on the estimation of power sums of unimodular complex numbers (see Lemma 4.1). Finally, Section 5 is dedicated to some results on the p spaces with logarithmic weights. 17 Jan 2022 02:34:57 PST 220117-Kellay Version 1 -Submitted to Rev. Mat. Iberoam.

Notations and Preliminaries

2.1. Background on p weighted spaces. Let 1 ≤ p < ∞ and β ∈ R. We denote by D (T) the set of distributions on T and M(T) the set of measures on T. For S ∈ D (T), we denote by S = ( S(n)) n∈Z the sequence of Fourier coefficients of S and, we write S = n S(n)e n , where e n (t) = e int . Notice that we use the same notation u and S to denote respectively the Fourier transform of u ∈ p and of S ∈ D (T). The space A p β (T) will be the set of all distributions S ∈ D (T) such that S belongs to p β (Z). We endow A p β (T) with the norm

S A p β (T) = S p β = n∈Z | S(n)| p (1 + |n|) βp 1/p .
We will write A p (T) for the space A p 0 (T). By construction the Fourier transform u → u is an isometric isomorphism between p β (Z) and A p β (T). We prefer to work with A p β (T) rather than p β (Z). In this section, we establish some properties of A p β (T) which will be needed to prove Theorem A and Theorem B. For 1 ≤ p < ∞ and β ≥ 0 we define the product of f ∈ A 1 β (T) and S ∈ A p β (T) by

f S = n∈Z ( f * S)(n) e n = n∈Z k∈Z f (k) S(n -k) e n ,
and we see that

f S A p β (T) ≤ f A 1 β (T) S A p β (T) . Note that if S ∈ A p -β (T)
, we can also define the product f S ∈ A p -β (T) by the same formula and obtain a similar inequality:

f S A p -β (T) ≤ f A 1 β (T) S A p -β ( 
T) . For p = 1, the dual space of A p β (T) can be identified with A q -β (T), 1/p + 1/q = 1, by the formula

S, T = n∈Z S(n) T (-n), S ∈ A p β (T), T ∈ A q -β (T).
We need the following lemmas which gives us different inclusions between the A p β (T) spaces.

Lemma 2.1. Let 1 ≤ r, s < ∞ and β, γ ∈ R.

(

) If r ≤ s then A r β (T) ⊂ A s γ (T) if and only if γ ≤ β. (2) If r > s then A r β (T) ⊂ A s γ (T) if and only if β -γ > 1 s -1 r . Proof. (1) : Suppose that r ≤ s. If γ ≤ β, then A s β (T) ⊂ A s γ (T). Since • s ≤ • r , we get A r β (T) ⊂ A s γ (T). Now suppose γ > β. Let S ∈ D (T) such that S(n)(1+|n|) β = (1 + m) -2/r if |n| = 2 m and S(n) = 0 otherwise. Then we have S ∈ A r β (T) \ A s γ (T). (2) : Suppose that r > s. If β -γ > 1 1 
s -1 r , then by Hölder's inequality, we obtain

A r β (T) ⊂ A s γ (T). Now suppose that β -γ < 1 s -1 r . Let ε > 0 such that β -γ + ε < 1 s -1 r , α = -1 s -γ + ε and let S ∈ D (T) be such that S(n) = n α . We have S ∈ A r β (T) \ A s γ (T). If β -γ = 1 s -1 r , then let S ∈ D (T) such that S(n) r (1+|n|) βr = 1/(1 + |n|) ln(1 + |n|) 1+ε with ε = r s -1 > 0. We have S ∈ A r β (T) \ A s γ (T) which proves that A r β (T) ⊂ A s γ (T).
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2.2.

Cyclicity in A p β (T). We denote by P(T) the set of trigonometric polynomials on T. We say that S ∈ A p β (T) is a cyclic vector in A p β (T) if the set {P S, P ∈ P(T)} is dense in A p β (T). It is clear that the cyclicity of S in A p β (T) is equivalent to the cyclicity of the sequence S in p β (Z). Moreover for 1 ≤ p < ∞ and β ≥ 0, S is cyclic in A p β (T) if and only if there exists a sequence (P n ) of trigonometric polynomials such that

lim n→∞ 1 -P n S A p β (T) = 0. (2.1)
We obtain the first cyclicity results for the spaces A p β (T) when A p β (T) is a Banach algebra. More precisely, we have (see [START_REF] El-Fallah | Estimates for resolvents in Beurling-Sobolev algebras[END_REF]):

Lemma 2.2. Let 1 ≤ p < ∞ and β > 0. Then A p β (T) is a Banach algebra if and only if βq > 1. Moreover, when βq > 1, a vector f ∈ A p β (T) is cyclic in A p β (T) if and only if f has no zeros on T. Let f ∈ A 1 β (T) and S ∈ D (T). We denote by Z(f ) the zero set of the function f Z(f ) = {ζ ∈ T : f (ζ) = 0}. Lemma 2.3. Let 1 ≤ p < ∞ and 0 ≤ β < 1/2. Let f ∈ A 1 β (T) and S ∈ A p -β (T). If for all n ∈ Z, S, e n f = 0 then supp(S) ⊂ Z(f ).
Proof. Recall that e n (t) = e int . We have

S, e n f = f S, e n = 0. Hence f S = 0. Let ϕ ∈ C ∞ (T) such that supp(ϕ) ⊂ T \ Z(f ). We claim that ϕ f ∈ A 1 β (T) ⊂ A q β ( 
T) where 1/p + 1/q = 1. So we obtain

S, ϕ = f S, ϕ f = 0
which proves that supp(S) ⊂ Z(f ). Now we prove the claim. Let ε = min{|f (t)|, t ∈ supp(ϕ)} > 0 and P ∈ P(T) such that f -P A 1 β (T) ≤ ε/3. By the Cauchy-Schwarz and Parseval inequalities, for every g ∈ C 1 (T), we get

g A 1 β (T) ≤ g ∞ + 2 1+β 1 -β 1 -2β g ∞ . (2.2)
As in [START_REF] Newman | A simple proof of Wiener's 1/f theorem[END_REF], by applying (2.2) to ϕ P n we see that

ϕ f = n≥1 ϕ (P -f ) n-1 P n ∈ A 1 β (T),
which finishes the proof. (

) If f is not cyclic in A p β (T), then there exists S ∈ A q -β (T) \ {0} such that supp(S) ⊂ Z(f ). (2) If there exists a nonzero measure µ ∈ A q -β (T) such that supp(µ) ⊂ Z(f ), then f is not cyclic in A p β (T). Proof. (1) If f is not cyclic in A p β (T), by duality there exists S ∈ A q -β (T) \ {0} such that S, e n f = 0, ∀n ∈ Z. 1 
Thus, by Lemma 2.3, we have supp(S) ⊂ Z(f ).

(

) Let µ ∈ A q -β (T) ∩ M(T) \ {0} such that supp(µ) ⊂ Z(f ). Since µ is a measure on T we have µ, e n f = 0, for all n ∈ Z. So f is not cyclic in A p β (T). 2 
Recall that A 1 β (T) is a Banach algebra. Let I be a closed ideal in A 1 β (T). We denote by Z I the set of common zeros of the functions of I given by

Z I = f ∈I Z(f ).
We have the following result about spectral synthesis in A 1 β (T), for the case β = 0, also called Beurling-Pollard Technique, see [8, pp. 121-123].

Lemma 2.5. Let 0 ≤ β < 1/2. Let I be a closed ideal in A 1 β (T). If g is a Lipschitz function which vanishes on Z I , then g ∈ I.

Proof. Notice first that since g is Lipschitz function, Bernstein's Theorem [7, p.13] gives that g ∈ A 1 β (T). Let I ⊥ be the set of all S in the dual space of A 1 β (T) satisfying S, f = 0 for all f ∈ I. Hence, S ∈ I ⊥ and supp(S) ⊂ Z I see [START_REF] Decreux | Idéaux fermés d'une algèbre de Beurling régulière[END_REF]Remarque 1.3] . For h > 0, we set

S h = S * ∆ h where ∆ h : t → -|t| h 2 + 1 h if t ∈ [-h
, h] and 0 otherwise. We have

∆ h (0) = 1/2π, ∆ h (n) = 1 2π 4 sin(nh/2) 2 (nh) 2 , n = 0. Since S is in the dual of A 1 β (T), S h ∈ A 1 (T). Moreover, we have supp(S h ) ⊂ supp(S) + supp(∆ h ) ⊂ Z h I := Z I + [-h, h].
. Let g be a Lipschitz function which vanishes on Z I , We have

| S h , g | 2 = Z h I \Z(g) S h (x)g(x)dx 2 ≤ n∈Z | S(n) ∆ h (n)| 2 Z h I \Z(g) |g(x)| 2 dx
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Since Z I ⊂ Z g , for every x ∈ Z h I , |g(x)| ≤ ch for some positive constant c. Thus | S h , g | 2 ≤ c 2 n∈Z S(n) 2 1 + n 2 |Z h I \ Z(g)|
Hence lim h→0 S h , g = 0. By the dominated convergence theorem, we obtain that

lim h→0 S h , g = lim h→0 n∈Z S h (n) g(-n) = 1 2π n∈Z S(n) g(-n) = 1 2π S, g .
So S, g = 0. Therefore, g ∈ I.

We also need the following lemma which is a consequence of Lemma 2.5. Newman gave a proof of this when β = 0 (see [START_REF] Newman | The closure of translates in p[END_REF]Lemma 2]).

Lemma 2.6. Let 0 ≤ β < 1/2 and a closed set E ⊂ T. There exists a sequence of Lipschitz functions (f n ) which vanish on E such that

lim n→∞ f n -1 A p β (T) = 0 if and only if every f ∈ A 1 β (T) satisfying Z(f ) = E is cyclic in A p β (T)
. We finish this subsection by the following result of Newman (see the proof of Theorem 5 in [START_REF] Newman | The closure of translates in p[END_REF]): Lemma 2.7. Let p > 2. Assume that for every ε > 0, there exists a Lipschitz function f such that |Z(f )| > 2π -ε and f -1 A p β (T) ≤ ε. Then for every ε there exists a (p, β)-spanning closed set E ⊂ T with Lebesgue measure |E| > 2π -ε.

2.3.

Generalized Cantor set and capacity. Given E ⊂ T and a non-decreasing continuous function h such that h(0) = 0, we define the h-measure of E by

H h (E) = lim δ→0 inf ∞ i=0 h(|U i |), E ⊂ ∞ i=0 U i , |U i | ≤ δ
where each U i is an open interval inside T and |U i | denotes its length.

We also define the Hausdorff dimension of a subset E ⊂ T, given by

dim(E) = inf{α ∈ (0, 1), H α (E) = 0} = sup{α ∈ (0, 1), H α (E) = ∞},
where H α = H h for h(t) = t α (see [8, pp. 23-30]).

Let µ be a probability measure on T and α ∈ (0, 1). We define its α-energy by 

I α (µ) := dµ(t)dµ(s) |t -s| α .
I α (µ) n≥1 | µ(n)| 2 (1 + |n|) 1-α .
The α-capacity of a Borel set E is given by

C α (E) = 1/ inf{I α (µ), µ ∈ M P (E) ,
where M P (E) is the set of all probability measures on T which are supported on a compact subset of E.

An important property which connects capacity and Hausdorff dimension is that (see [8, p. 34])

dim(E) = inf α ∈ (0, 1), C α (E) = 0 = sup α ∈ (0, 1), C α (E) > 0 .
(2.3)

For E ⊂ T, we denote by A p β (E) the collection of S ∈ A p β (T) such that supp(S) ⊂ E, where supp(S) denotes the support of the distribution S. The following lemma is a direct consequence of the definition of capacity and the inclusion

A q -β (T) ⊂ A 2 α-1 2 (T) when q ≥ 2 and 0 ≤ α < 2 q (1 -βq). Lemma 2.8. Let E be a Borel set, β ≥ 0 and q ≥ 2. If there exists α ∈ R with 0 ≤ α < 2 q (1 -βq) such that C α (E) = 0, then A q -β (E) = {0}.
Let us recall Salem's Theorem (see [START_REF] Salem | On singular monotonic functions whose spectrum has a given Hausdorff dimension[END_REF] and [8, p. 106-110]).

Theorem 2.9. Let 0 < α < 1 and q > 2 α . There exists a compact set E ⊂ T which satisfies dim(E) = α and there exists a positive measure µ ∈ A q (T) \ {0} such that supp(µ) ⊂ E.

The following theorem is due to Körner (see [START_REF] Körner | On the theorem of Ivašev-Musatov III[END_REF]Theorem 1.2]).

Theorem 2.10. Let h : [0, ∞) → [0, ∞) be an increasing continuous function with h(0) = 0 and let φ : [0, ∞) → [0, ∞) be a decreasing function. Suppose that (1)

∞ 1 φ(x) 2 dx = ∞; (2) there exist K 1 , K 2 > 1 such that for all 1 ≤ x ≤ y ≤ 2x, K 1 φ(2x) ≤ φ(x) ≤ K 2 φ(y); (3) there exists γ > 0 such that lim x→∞ x 1-γ φ(x) = ∞; (4) there exist 0 < K 3 < K 4 < 1 such that for all t > 0, K 3 h(2t) ≤ h(t) ≤ K 4 h(2t).
Then there exists a probability measure µ with support of Hausdorff h-measure zero such that

| µ(n)| ≤ φ 1 h(|n| -1 ) ln 1 h(|n| -1 ) 1/2 , ∀n = 0.
We finish this section by describing the construction of the generalized Cantor set. Let (k j ) j≥0 be integers and let (l j ) j≥0 be a a sequence of positive number such that k 0 = 1 and k j ≥ 2, and k j l j < l j-1 , j ≥ 1.
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Let E 0 = [0, l 0 ]. We dissect the interval E 0 = [0, l 0 ] in 2k 1 -1 intervals of lenghts respectively l 1 and d 1 = (l 0 -k 1 l 1 )/(k 1 -1): [0, l 1 ]; ]l 1 , d 1 + l 1 [; . . . [md 1 + ml 1 , md 1 + (m + 1)l 1 ]; ]md 1 + (m + 1)l 1 , (m + 1)d 1 + (m + 1)l 1 [; . . . ]l 0 -l 1 -d 1 , l 0 -l 1 [; [l 0 -l 1 , l 0 ].
We delete the k 1 -1 open interval of lenght d 1 and we keep the k 1 equidistant closed intervals of length l 1 . We set

E 1 = k 1 -1 m=0 [md 1 + ml 1 , md 1 + (m + 1)l 1 ].
Suppose that the set E n-1 , n ≥ 1, has already been constructed and this set consists of p n-1 closed intervals of length l n-1 :

E n-1 = p n-1 j=1 [a j , a j + l n-1 ].
We operate the same dissection on each of the intervals [a j , a j + l n-1 ] with the parameters (l n , k n ) instead of (l 1 , k 1 ), thus we obtain

E n = pn j=1 kn-1 s=0 [a j + s(l n + d n ), a j + s(l n + d n ) + l n ]
where

d n = (l n-1 -k n l n )/(k n -1). The compact set E = n≥0 E n
is called the generalized Cantor set. Ohtsuka [START_REF] Ohtsuka | Capacité d'ensembles de Cantor généralisés[END_REF] obtained a criterion for vanishing C α (E), see also [START_REF] Ya | Capacities of Generalized Cantor Sets[END_REF]: Theorem 2.11. Let E be a generalized Cantor set. Then.

C α (E) = 0 ⇐⇒ n≥0 1 (k 0 k 1 . . . k n )l α n = ∞.

Proof of Theorem A

3.1. Cyclicity and the set all sum of k elements from Z(f ). For k ∈ N and E ⊂ T, let k × E denote the set all sum of k elements from E,

k × E = E + E + ... + E = k n=1 x n , x n ∈ E .
We have the following result, the case β = 0 was considered by Newman in [START_REF] Newman | The closure of translates in p[END_REF]. 17 Jan 2022 02:34:57 PST 220117-Kellay Version 1 -Submitted to Rev. Mat. Iberoam. Lemma 3.1. Let 1 < p < 2 and β > 0 such that βq ≤ 1, and let f ∈ A 1 β (T).

(a) Let k ∈ N \ {0} be such that k ≤ q/2. If C α (k × Z(f )) = 0 for some α < 2 q (1 -βq)k, then f is cyclic in A p β (T). (b) Let k ∈ N\{0} be such that q/2 ≤ k ≤ 1/(2β). If C α (k ×Z(f )) = 0 where α = 1-2kβ, then f is cyclic in A p β (T). Proof. Let k ∈ N \ {0}. Suppose that f is not cyclic in A p β (T).
Then there exists L ∈ A q -β (T), the dual of A p β (T), such that L(1) = 1 and L(P f ) = 0, for all P ∈ P(T). Since β < 1 2 , by (2.2), we get C 1 (T) ⊂ A 1 β (T) ⊂ A p β (T). Moreover, by [START_REF] Newman | Some results in spectral synthesis[END_REF] (see also [START_REF] Newman | The closure of translates in p[END_REF]Lemma 5]), there exists φ ∈ L 2 (T) such that

L(g) = T g (x)φ(x) + g(x) dx, g ∈ C 1 (T). Since L ∈ A q -β (T) which implies (L(e n )) n∈Z ∈ q -β (Z), we obtain n∈Z |n φ(n)| q (1 + |n|) -βq < ∞. (3.1)
Moreover we have,

T (e n f ) (x)φ(x) + (e n f )(x) dx = 0, n ∈ Z,
hence, φ -1, e n f = 0 where φ is defined in terms of distribution. By (3.1), φ -1 ∈ A q -β (T), by Lemma 2.3, we get supp(φ -1) ⊂ Z(f ). For m ∈ N, we denote by φ * m the result obtained from convolving φ with itself m times. Using the fact that S * T = S * T and 1 * S = 0 for any distributions S and T , we have (φ -1) * φ * (m-1) (m-1) + (-1) m-1 = (φ * m ) (m) + (-1) m .

By induction and by the formula supp(T

* S) ⊂ supp(T ) + supp(S) that supp (φ * m ) (m) + (-1) m ⊂ m × Z(f ), m ≥ 1. (3.2) Note that (φ * k ) (k) (n) = i k n k φ(n) k for k ≥ 1 and n ∈ Z. (a) Suppose that 0 < k ≤ q/2 and C α (k × Z(f )) = 0 for some α < 2 q (1 -βq)k. We rewrite (3.1) as n∈Z |n φ(n)| k q k (1 + |n|) -q k βk < ∞.
If we set q = q k ≥ 2 and β = βk, we have φ * k (k) ∈ A q -β (T). By (3.2) and by Lemma 2.8 we obtain that φ * k (k) = (-1) k-1 . This contradicts the fact that (φ * k ) (k) (0) = 0. 17 Jan 2022 02:34:57 PST 220117-Kellay Version 1 -Submitted to Rev. Mat. Iberoam.

(b) Now suppose that k ≥ q/2 and C α (k × Z(f )) = 0 where α = 1 -2kβ. Since q ≤ 2k, we have by (3.1),

n∈Z |n φ(n)| 2k (1 + |n|) -2kβ < ∞. Then φ * k (k) ∈ A 2 -kβ (T) and φ * k (k) = (-1) k-1 , which contradicts (φ * k ) (k) (0) = 0.
3.2. Construction of generalized Cantor set. We need to compute the capacity of the Minkowski sum of some Cantor type subset of T. We denote by [x] the integer part of x ∈ R. For λ ∈ [0, 1] and k ∈ N \ {0}, we define

K k λ = {m ∈ N, ∃j ∈ N, m ∈ [2 j , 2 j (1 + λ + 1/j) -k + 1]} and we set in R/Z [0, 1[, S k λ = x = ∞ i=0 x i 2 i+1 , (x i ) ∈ {0, 1} N such that i ∈ K k λ ⇒ x i = 0 .
We denote K λ = K 1 λ and S λ = S 1 λ . We the following lemma. Lemma 3.2. For all k ≥ 1, we have

(1) k × S λ ⊂ S k λ ; (2) C α (S k λ ) = 0 if and only if α ≥ 1 -λ 1 + λ ; (3) dim(k × S λ ) = 1 -λ 1 + λ and C 1-λ 1+λ (k × S λ ) = 0.
Proof. [START_REF] Abakumov | Cyclicity of bicyclic operators and completeness of translates[END_REF] We prove this by induction. If k = 1 we have S λ = S 1 λ . We suppose the result true for k -1 for some k ≥ 2, and we will show that k × S λ ⊂ S k λ . Observe that we have

k × S λ ⊂ (k -1) × S λ + S λ ⊂ S k-1 λ + S λ . Let x ∈ S k-1
λ , y ∈ S λ and z = x + y. Denote by (x i ), (y i ) and (z i ) their binary decomposition. Let m ∈ K k λ , then there exists

j ∈ N such that m ∈ [2 j , 2 j (1 + λ + 1/j) -k + 1]. Since m ∈ K k λ and m, m + 1 ∈ K k-1 λ ⊂ K λ , we get x m = y m = x m+1 = y m+1 = 0. Therefore, we write z = x + y = m-1 i=0 x i + y i 2 i+1 + ∞ i=m+2 x i + y i 2 i+1 .
Note that for infinitely many i ≥ m + 2, we have x i + y i < 2, we see that

∞ i=m+2 x i + y i 2 i+1 < 1 2 m+1 .
We denote by [s] the integer part of s, we have

2 m+1 z = 2[2 m z] = 2 m+1 m-1 i=0 x i + y i 2 i+1 .
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Therefore, we obtain by uniqueness of the decomposition that

z m = 2 m+1 z -2[2 m z] = 0.
This proves that z = x + y ∈ S k λ and k × S λ ⊂ S k λ .

(2) We will first show that the set S k λ is a generalized Cantor set. Let

ν j = [2 j (1 + λ + 1/j) -k + 1] + 1
and N 0 , depending only on k and λ, such that for all j ≥ N 0 , 2 j < ν j < 2 j+1 . We set for

N ≥ N 0 , l N = ∞ j=N 1 2 ν j - 1 2 2 j+1 . Since 2 j (1 + λ + 1/j) -k + 1 < ν j ≤ 2 j (1 + λ + 1/j) -k + 2,
we have

∞ j=N 1 2 2 j (1+λ+ 1 j ) 1 2 2-k - 1 2 2 j (1-λ-1 j ) ≤ l N ≤ ∞ j=N 1 2 2 j (1+λ+ 1 j ) 1 2 1-k - 1 2 2 j (1-λ-1 j ) .
There exists C ≥ 1 such that for all j ≥ N ,

1 C ≤ 1 2 2-k - 1 2 2 j (1-λ-1 j ) ≤ 1 2 1-k - 1 2 2 j (1-λ-1 j ) ≤ C. And for N ≥ N 0 , 1 2 2 N (1+λ+ 1 N ) ≤ ∞ j=N 1 2 2 j (1+λ+ 1 j ) ≤ 1 2 2 N (1+λ+ 1 N ) + ∞ j=0 1 2 2 N +1 (1+λ) 2 j ≤ 1 2 2 N (1+λ+ 1 N ) + ∞ j=0 1 2 2 N +1 (1+λ) j+1 ≤ 1 2 2 N (1+λ+ 1 N ) + 2 2 2 N +1 (1+λ) ≤ 3 2 2 N (1+λ+ 1 N ) . Hence we obtain that l N is comparable to 2 -2 N (1+λ+1/N ) , that is, 1 C2 2 N (1+λ+ 1 N ) ≤ l N ≤ 3C 2 2 N (1+λ+ 1 N ) . (3.3)
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Moreover, we have

l N = 1 2 ν N - ∞ j=N +1 1 2 2 j - 1 2 ν j < 1 2 ν N ≤ 1 2 2 N . (3.4)
For N ≥ N 0 , we set

E N =    2 N -1 i=0 x i 2 i+1 + l N z, z ∈ [0, 1], x i ∈ {0, 1}, i ∈ K k λ ⇒ x i = 0    .
Observe that we can write E N as a union of disjoint intervals given by

E N = (x i )∈{0,1} 2 N i∈K k λ ⇒x i =0 E (x i ) N
where

E (x i ) N = 2 N -1 i=0 x i 2 i+1 + l N [0, 1[.
Since by (3.4), l N < 1/2 2 N , the intervals E

(x i ) N are disjoint E (x i ) N ∩ E (x i ) N = ∅, (x i ) = (x i ).
For fixed N ≥ N 0 , let (x i ) 0≤i≤2 N -1 ∈ {0, 1} 2 N and (y i ) 0≤i≤2 N +1 -1 ∈ {0, 1} 2 N +1 . We claim that:

E (y i ) N +1 ⊂ E (x i ) N
if and only if x i = y i for all 0 ≤ i < 2 N and y i = 0 for all 2 N ≤ i < ν N .

Indeed, suppose that E

(y i ) N +1 ⊂ E (x i ) N and let u ∈ E (y i ) N +1 . We have u = 2 N +1 -1 i=0 y i 2 i+1 + l N +1 z 2 = 2 N -1 i=0 x i 2 i+1 + l N z 1 ,
where z 1 , z 2 ∈ [0, 1[. By (3.4), l N < 1/2 ν N , and using the uniqueness of the binary representation, we obtain x i = y i for all 0 ≤ i < 2 N and y i = 0 for all 2 N ≤ i < ν N . Now suppose x i = y i for all 0 ≤ i < 2 N and y i = 0 for all 2 Since

N ≤ i < ν N . Let u ∈ E (y i ) N +1 . We write u = 2 N -1 i=0 x i 2 i+1 + 2 N +1 -1 i=ν N y i 2 i+1 + l N +1 z, z ∈ [0, 1[.
2 N +1 -1 i=ν N 1 2 i+1 + l N +1 = 1 2 ν N - 1 2 2 N +1 + l N +1 = l N , we get 2 N -1 i=0 x i 2 i+1 ≤ 2 N -1 i=0 x i 2 i+1 + 2 N +1 -1 i=Z N y i 2 i+1 + l N +1 z ≤ 2 N -1 i=0 x i 2 i+1 + l N , and u ∈ E (x i )
N . This concludes the proof of the claim. By the claim, for fixed (x i ) and for N ≥ N 0 , we have the following properties:

(i) the interval E (x i ) N contains precisely k N +1 = #{(y i ) ν N ≤i≤2 N +1 -1 : y i ∈ {0, 1}} = 2 2 N +1 -ν N intervals of the form E (y i ) N +1 , (ii) the intervals of the form E (y i ) N +1 contained in E (x ) N
are equidistant intervals of length l N +1 ; the distance of two consecutive intervals of the form E

(y i ) N +1 is equal to 1 2 2 N +1 -l N +1 , (iii) writing E (x i ) N = [a, b], there exist (y i ) and (z i ) such that E (y i ) N +1 = [a, a + l N +1 ] and E (z i ) N +1 = [b -l N +1 , b]. Finally we can write S k λ as S k λ = N ≥N 0 E N .
This shows that S k λ is a generalized Cantor set. By Theorem 2.11, we have for 0

< α < 1 that C α (S k λ ) = 0 if and only if ∞ N =N 0 1 (k N 0 • • • k N -1 )l α N = ∞.
where

k N 0 = 1. Since 2 (k-2)(N -N 0 )+(2 N -2 N 0 )(1-λ)-σ N ≤ k N 0 • • • k N -1 ≤ 2 (k-1)(N -N 0 )+(2 N -2 N 0 )(1-λ)-σ N where σ N = N -1 j=N 0 2 j j we have, by (3.3), C α (S k λ ) = 0 if and only if ∞ N =N 0 2 2 N (α(1+λ)-(1-λ))+α2 N /N +σ N -(k-1)(N -N 0 )+2 N 0 (1-λ) = ∞.
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Therefore, C α (S k λ ) = 0 if and only if α ≥ 1 -λ 1 + λ .
Finally, (3) follows from ( 1) and ( 2) by the capacity property.

3.3. Proof of Theorem A. We are now ready to prove Theorem A. It follows immediately from the following theorem stated in A p β (T) spaces.

Theorem 3.3. Let 1 < p < 2, β > 0 be such that βq ≤ 1.

(

) If f ∈ A 1 β (T) and dim(Z(f )) < 2 q (1 -βq) then f is cyclic in A p β (T). (2) If f ∈ A 1 β (T) and C 1-βq (Z(f )) > 0 then f is not cyclic in A p β (T). (3) For 2 q (1 -βq) ≤ α ≤ 1, there exists a closed set E ⊂ T such that dim(E) = α and every f ∈ A 1 β (T) satisfying Z(f ) = E is not cyclic in A p β (T). (4) Let k = [q/2]. For all ε > 0, there exists a closed set E ⊂ T such that dim(E) ≥ max 2 q (1 -βq)k -ε, 1 -2(k + 1)β (3.5) and every f ∈ A 1 β (T) satisfying Z(f ) = E is cyclic in A p β (T). Furthermore, if p = 2k/(2k -1) for some k ∈ N \ {0}, E can be chosen such that dim(E) = 1 -βq. Proof. (1) Note that, by (2.3), dim(Z(f )) < 2 q (1 -βq) if and only if there exists α < 2 q (1 -βq) such that C α (Z(f )) = 0. If C α (Z(f )) = 0 1 
, by Lemma 2.8, there is no S ∈ A q -β (T) \ {0} such that supp(S) ⊂ Z(f ). So, by Lemma 2.4 (1), f is cyclic in A p β (T).

(2) Suppose that C 1-βq (Z(f )) > 0. There exists a probability measure µ of energy I 1-βq (µ) < ∞, such that supp(µ) ⊂ Z(f ) . So µ ∈ A 2 -βq/2 (T) \ {0}. Since | µ(n)| ≤ 1 for all n ∈ Z and q ≥ 2, we have µ ∈ A q -β (T). By Lemma 2.4 (2), f is not cyclic in A p β (T).

(3) Suppose that 2 q (1 -βq) < α ≤ 1. There exists ε > 0 such that 2 q (1 -βq) + ε < α. Let q such that 2 q -2β + ε = 2 q . Since β > 1 q -1 q , by Lemma 2.1, A q (T) ⊂ A q -β (T). By Theorem 2.9, as q satisfies q > 2 α , there exists a closed subset E ⊂ T such that dim(E) = α and a non-zero positive measure µ ∈ A q (T) ⊂ A q -β (T) such that supp(µ) ⊂ E. Now (3) follows from Lemma 2.4 [START_REF] Andersson | On some power sum problems of Montgomery and Turán[END_REF]. Now if α = 2 q (1 -βq) and γ > 2 q . Then by Theorem 2.10 with φ(t) = (t ln(et)) -1/2 for t ≥ 1 and h(t) = t α ln(e/t) γ for t ∈ [0, ∞), there exists a probability measure µ with support of Hausdorff h-measure zero such that

| µ(n)| ≤ φ 1 h(|n| -1 ) ln 1 h(|n| -1 ) 1/2 ≤ (|n| α ln(e|n|) γ ) -1/2 ,
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for n = 0. So

n =0 | µ(n)| q (1 + |n|) -βq ≤ C n =0 |n| -αq/2-βq ln(e|n|) -γq/2 ≤ C n =0 1 |n| ln(e|n|) γq/2 < ∞
with C a positive constant. Hence, µ ∈ A q -β (T). We set E = supp(µ). By Lemma 2.4 the result is proved. Thus, by Lemma 3.1 (b), every f ∈ A 1 β (T) such that Z(f ) = S λ is cyclic in A p β (T). Suppose now that p = 2k 2k -1 for some k ∈ N \ {0}. As before, we consider S λ where

(4) Let k = [q/2]. Suppose first 2 q (1 -βq)k > 1 -2(k + 1)β and let 0 < ε < ε satisfy 1 -2(k + 1)β ≤ 2 q (1 -βq)k -ε . Consider the set S λ where λ satisfies 2 q (1 -βq)k -ε < 1 -λ 1 + λ < 2 q (1 -βq)k. By Lemma 3.2 (3) we have dim(S λ ) = 1-λ 1+λ and C 1-λ 1+λ (k × S λ ) = 0. Therefore, by Lemma 3.1 (a), every f ∈ A 1 β (T) such that Z(f ) = S λ is cyclic in A p β (T). Now, suppose 2 q (1 -βq)k ≤ 1 -2(k + 1)β. We consider S λ where 1 -λ 1 + λ = 1 -2(k + 1)β.
1 -λ 1 + λ = 1 -2kβ = 1 -βq.
Again by Lemma 3.1 (b), every f ∈ A 1 β (T) such that Z(f ) = S λ is cyclic in A p β (T). Note that the set E which was considered in Theorem 3.3 (4) satisfies C α (E) = 0 where Proof. The proof is inspired from a result by Andersson [2, Lemma 1]. Let F = {x j , 1 ≤ j ≤ k} be a finite field of order k and let E be an extension field of F of order k 2 . Let ω be an element that generates the multiplicative group E * and let χ be a multiplicative character on E of order k 2 -1. We set Proof. We have 

α ≥ max 2 q (1 -βq)k -ε, 1 -2(k + 1)β .
z j = χ d (ω + x j ), 1 ≤ j ≤ k, where d = m j=0 R j . Since N d = k 2 -
c r+N = k j=1 z r j k sin(πr/N ) πr N + π 2 n∈Z\{0} |c n | p (1 + |n|) βp = N -1 r=1 ∈Z |c r+N | p (1 + |N + r|) βp = N -1 r=1 k j=1 z r j p k p ∈Z | sin(πr/N )| 2p π 2p | r N + | 2p (1 + |N + r|) βp . To estimate | sin(πr/N )| 2p π 2p | r N + | 2p (1 + |N + r|
1: N ≥ 2r. sin 2 (r/N )π) π 2 (r/N + ) 2 (1 + |r + N |) β ≤ (r/N ) 2-β (| | -1/2) 2 (r/N + r 2 /N + | |r) β ≤ 1 2 2-β 1 (| | -1/2) 2 (1/2 + r/2 + | |r) β ≤ 1 2 2-β (| | + 1/2) β (| | -1/2) 2 (1 + r) β . (4.1) Therefore ∈Z | sin(πr/N )| 2p π 2p | r N + | 2p (1 + |N + r|) βp ≤ 1 2 (2-β)p ∈Z (| | + 1/2) βp (| | -1/2) 2p (1 + r) βp . (4.2) Case 2: N ≤ 2r. For |r + N | < N , sin 2 (r/N )π) π 2 (r/N + ) 2 (1 + |r + N |) β ≤ (1 + N ) β ≤ 2 β (1 + r) β .
We remark that there are at most two integers of the form r + N with |r + N | < N . Thus

: |r+ N |<N | sin(πr/N )| 2p π 2p | r N + | 2p (1 + |N + r|) βp ≤ 2 1+βp (1 + r) βp . (4.3) 
Assume now that |r + N | ≥ N and ∈ Z. We note that in this case r 

N + = |r + N | N ≥ 1. We have sin 2 (rπ/N ) π 2 (r/N + ) 2 (1 + |r + N |) β ≤ 1 (r/N + ) 2 π 2 N β (1/N + |r/N + |) β ≤ 2 2β π 2 |r/N + | 2-β r β .

Then we get

∈Z: |r+ N |≥N | sin(πr/N )| 2p π 2p | r N + | 2p (1 + |N + r|) βp ≤ ∈Z: |r/N + |≥1 2 2βp π 2p |r/N + | (2-β)p r βp ≤ 2 2βp+1 π 2p ≥1 1 (2-β)p r βp . ( 4 
π 2p | r N + | 2p (1 + |N + r|) βp ≤ max 2 1+βp , 2 2βp+1 π 2p k≥1 1 k (2-β)p c β,p (1 + r) βp . (4.5) Therefore n∈Z\{0} |c n | p (1 + |n|) βp = N -1 r=1 | k j=1 z r j | p k p ∈Z | sin(πr/N )| 2p π 2p | r N + | 2p (1 + |N + r|) βp ≤ c β,p N -1 r=1 | k j=1 z r j | p k p (1 + r) βp ≤ c β,p N 1+βp k p 2 .

Proof of Theorem B.

To prove (1), we suppose that p ≥ 2 and β > 1 2 -1 p . It suffices to check that the characteristic function of E, χ E is in q -β , the dual space of p β . By Hölder's inequality

n∈Z | χ E (n)| q (1 + |n|) -βq ≤ n∈Z | χ E (n)| 2 q/2 n∈Z (1 + |n|) -2βq 2-q 2-q q . The sums n∈Z | χ E (n)| 2 and n∈Z (1 + |n|) -2βq 2-q converge since χ E is in L 2 (T) and β > 1 q - 1 2 . 
In order to prove (2), using notations from Lemmas 4.1 and 4.2, we first define

f (x) = n∈Z c n e inx .
The function f is the sum of k triangles each with base 4π/N and height N/k, then f is a Lipschitz function and its support has measure 4πk/N .

We recall that k = R m+1 and N .

= (R -1)(R m+1 + 1). Let 0 ≤ β < 1 2 - 1 p and choose m such that β < 1 2 m + 1 m + 2 - 1 p . We have N 1+βp k p 2 ∼ R (m+2)(1+βp)
On the other hand k/N → 0 as R → ∞, hence for every > 0, there exists a Lipschitz function f such that f -1 A p β (T) < and with support of measure less than . Finally, Lemma 2.7 concludes the proof.

Remarks

We say that (ω n ) ∈ R is a weight if there exists C > 0 such that w n ≥ 1 and ω n+k ≤ Cω n ω k for all k, n ∈ Z For a weight ω and 1 ≤ p < ∞, we set

A p ω (T) = f ∈ C(T) : f p A p ω (T) = n∈Z | f (n)| p ω p n < ∞ .
Note that f S A p ω (T) ≤ f A 1 ω (T) S A p ω (T) for f ∈ A 1 ω (T) and S ∈ A p ω (T). Hence we have the same result as (2.1) to characterize cyclicity in A p ω (T) by norm. When ω n = O((1 + |n|) ε ) for all ε > 0, for instance, by letting ω n = ln(e + |n|) γ where γ ≥ 0, we can show the same result as Lemma 2.6. By noting that A p β (T) ⊂ A p ω (T) ⊂ A p (T) for all p ≥ 1 and β > 0, we obtain the following result by Theorem A and Theorem B : (1) Let 1 < p < 2.

(a) If f ∈ A 1 ω (T) and dim(Z(f )) < 2/q then f is cyclic in A p ω (T). (b) For 2 q < α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α and every f ∈ A 1 ω (T) satisfying Z(f ) = E is not cyclic in A p ω (T). (c) For all 0 < ε < 1, there exists a closed subset E ⊂ T such that dim(E) = 1 -ε and every f ∈ A 1 ω (T) satisfying Z(f ) = E is cyclic in A p ω (T). (2) Let p > 2. For every ε > 0, there exists a closed subset E ⊂ T such that |E| > 2πand every u ∈ A 1 β (Z) satisfying Z( u) = E is cyclic in A p β (Z). Proof. (1) Suppose that 1 < p < 2.

(a) Let f ∈ A 1 ω (T) such that dim(Z(f )) < 2/q. Then there exists 0 < β < 1/2 such that dim(Z(f )) < 2 q (1 -βq). By Theorem 3. (b) By Theorem 2.9 there exists a closed set E ⊂ T such that dim(E) = α and every f ∈ A 1 (T) satisfying Z(f ) = E is not cyclic in A p (T). Let f ∈ A 1 ω (T) such that Z(f ) = E. Since f ∈ A 1 (T), f is not cyclic in A p (T). However, • A p (T) ≤ • A p ω (T) , therefore f is not cyclic in A p ω (T).

(c) Let 0 < ε < 1 and β > 0 such that 1 -2([q/2] + 1)β ≥ 1 -ε. By Theorem 3.3 (4), there exists a closed set E ⊂ T such that dim(E) ≥ 1 -2([q/2] + 1)β ≥ 1 -ε and every f ∈ A 1 β (T) satisfying Z(f ) = E is cyclic in A p β (T). Since A p β (T) ⊂ A p ω (T), by Lemma 2.6, by Lemma 2.6, we get our result.

(2) If p > 2, then the result immediately follows from Theorem B.
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 31 2(k + 1)β and C1-λ 1+λ ((k + 1) × S λ ) = 0.
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 4411 Proof of Theorem B Some power sum. To prove Theorem B, we need the following lemmas. Submitted to Rev. Mat. Iberoam.

Lemma 4 . 1 .

 41 Let R be a prime power and m a positive integer. We set k = R m+1 and N = (R -1)(R m+1 + 1). Then there exists N th roots of unity z 1 , . . . , z k such that = 1, . . . , N -1.

χLemma 4 . 2 .|c n | p ( 1 +

 421 1 the z j are N th roots of unity. For 1 ≤ r ≤ N -1, the characters χ rd are non-trivial on E, thus by [11, Theorem 1] we get rd (ω + x j ) ≤ √ k, r = 1, . . . , N -1. With the notation of Lemma 4.1, we set |n|) βp ≤ N 1+βp k p 2
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Case

  

Corollary 5 . 1 .

 51 Let ω = (ω n ) n∈Z be a weight such that lim n→+∞ log ω n log n = 0.
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 311 , every g ∈ A 1 β (T) satisfying Z(g) = Z(f ) is cyclic in A p β (T).Therefore, by Lemma 2.6, there exist a sequence of Lipschitz functions (f n ) which are zero on Z(f ) such that lim n→∞ f n -1 A p β (T) = 0. Submitted to Rev. Mat. Iberoam. Moreover, ω n = O((1 + |n|) β ), therefore, lim n→∞ f n -1 A p ω (T) = 0. Again by Lemma 2.6 in A p ω (T), we obtain that f is cyclic in A p ω (T).
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