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SPANS OF TRANSLATES IN WEIGHTED `p SPACES

K. KELLAY∗, F. LE MANACH, AND M. ZARRABI

Abstract. We study the cyclic vectors and the spanning set of the circle for the `pβ(Z)

spaces of all sequences u =
(
un
)
n∈Z such that

(
un(1 + |n|)β

)
n∈Z ∈ `p(Z) with p > 1

and β > 0. By duality the spanning set is the uniqueness set of the distribution on
the circle whose Fourier coefficients are in `q−β(Z) where q is the conjugate of p. Our
characterizations are given in terms of the Hausdorff dimension and capacity.

1. Introduction and Main Results

The cyclic vectors are, amongst others, an important tool in the study of invariant
subspaces and their characterization [1, 21, 26]. For the shift operator, the problem of
cyclic vectors in the space of sequences `p(Z) goes back to the works of Wiener [27] for
p = 1 and p = 2, Beurling [3], Salem [25] for 1 < p < 2, and Newman [18] for p > 1. This
problem is still far from being resolved.

A vector u ∈ `p(Z) is called cyclic in `p(Z) if the linear span of its translates,{
(un+k)n∈Z, k ∈ Z

}
is dense in `p(Z). The Fourier transform of u ∈ `p(Z) is given by û(t) =

∑
n∈Z une

int

where the trigonometric series is to be interpreted as a distribution on the circle group
T = R \ 2πZ. For u ∈ `p(Z) with 1 ≤ p ≤ 2, û becomes a function. We denote by
Z(û) the zero set of û in T. Notice that for u ∈ `1(Z), the set Z(û) is well-defined,
since û is continuous. The cyclicity can be viewed as an approximation problem or a
uniqueness/removable singularities problem. Following Newman [18], a closed subset E ⊂
T is called p-spanning if every u ∈ `1(Z) with Z(û) ⊂ E, is cyclic in `p(Z). On the other
hand, E is called a q-uniqueness set if E does not support any non-vanishing distribution∑

n∈Z cne
int with (cn)n∈Z in `q(Z). It is well known that E is p-spanning if and only if E is

q-uniqueness where q is the conjugate of p.

Wiener characterized the cyclic vectors in `1(Z) and in `2(Z) [27]. Further, Beurling,
Salem, and Newman [3, 25, 18] provided either necessary or sufficient conditions for u to
be cyclic in `p(Z) for p > 1. Their characterization of the cyclic vectors was given in terms
of the size (capacity and Hausdorff dimension) of the zero set of the Fourier transform
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2 K. KELLAY, F. LE MANACH, AND M. ZARRABI

û. However, Lev and Olevskii [14, 15, 16] showed that for 1 < p < 2, the problem of
cyclicity in `p(Z) is more complicated even for sequences in `1(Z) : we cannot character-
ize the cyclicity of u in `p(Z) in terms of Z(û) alone, which contradicts Wiener’s conjecture.

We summarize the results of the previous works cited above. We denote by q the Hölder
conjugate of p ≥ 1 with 1/p + 1/q = 1, and dim(E) the Hausdorff dimension of a subset
E ⊂ T.

(1) Wiener: u is cyclic in `1(Z) if and only if û has no zeros on T.
(2) Wiener: u is cyclic in `2(Z) if and only if û is non-zero almost everywhere.
(3) Beurling: Let 1 ≤ p ≤ 2. If dim(E) < 2/q then E is a p-spanning.
(4) Salem: Let 1 ≤ p ≤ 2. For 2/q < α ≤ 1, there exists E ⊂ T such that dim(E) = α

and E is not p-spanning
(5) Newman: There exists a p-spanning set E for all 1 < p < 2 such that dim(E) = 1.
(6) Lev & Olevskii: If 1 < p < 2, there exist u and v in `1(Z) such that Z(û) = Z(v̂),

u is not cyclic in `p(Z), and v is cyclic in `p(Z).

In this paper, we shall focus on the cyclic vectors on weighted `p(Z) spaces, namely
`pβ(Z), the space of sequences u = (un)n∈Z for which (un(1 + |n|)β) ∈ `p(Z) for p ≥ 1 and

β > 0. A vector u ∈ `pβ(Z) is called cyclic in `pβ(Z) if the linear span of {(un+k)n∈Z, k ∈ Z}
is dense in `pβ(Z). For every closed subset E of T, E is called (p, β)-spanning if every

u ∈ `1(Z) such that Z(û) ⊂ E is cyclic in `pβ(Z), and E is called (q, β)-uniqueness if E

does not support any non-zero distribution
∑

n∈Z cne
int with (cn)n∈Z in `q−β(Z). As before,

E is (p, β)-spanning if and only if E is (q, β)-uniqueness where 1/p+ 1/q = 1.
Observe that the shift operator does not act as an isometry on `pβ(Z) unlike on `p(Z)

spaces which presents a difficulty for the study of cyclic vectors in `pβ(Z).

Notice that `pβ(Z) is a Banach algebra if and only if βq > 1 (see [6]). Hence, in this case

we have an analogue of (1) in Wiener’s theorem : a vector u ∈ `pβ(Z) is cyclic if and only
if û has no zeros on T. Thus in the sequel of the paper we will only be interested in pairs
(p, β) such that βq < 1.

Richter, Ross and Sundberg [23] gave a complete characterization of hyperinvariant sub-
spaces of the weighted harmonic Dirichlet spaces `2β(Z), 0 < β ≤ 1

2
. Their characterization

and a relation between capacity and Hausdorff dimension led to the result that u ∈ `1β(Z)

is cyclic in `2β(Z) if and only if dim(Z(û)) ≤ 1 − 2β. Their result may be considered as

an analog of Wiener’s theorem about the cyclic vector of `2. Hence, we study the case of
p 6= 1 and p 6= 2. Our main result for 1 < p < 2 is the following (see Theorem 3.3).

Theorem A. Let 1 < p < 2, β > 0 such that βq ≤ 1 and let E be a closed subset of T.

(1) If dim(E) <
2

q
(1− βq), then E is (p, β)-spanning.

(2) If dim(E) > 1− βq, then E is not (p, β)-spanning.
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 3

(3) For
2

q
(1 − βq) ≤ α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α

and E is not (p, β)-spanning.
(4) If p = 2k/(2k − 1) for some k ∈ N \ {0} there exists a (p, β)-spanning E ⊂ T such

that dim(E) = 1− βq.

The property (4) shows that the constant 1 − βq obtained in (2) is sharp. Indeed, on
one hand, there is no cyclic vector u such that dim(Z(û)) > 1−qβ, and on the other hand,
we can find some cyclic vector u with dim(Z(û)) = 1 − βq. However, this is only proved
when p = 2k/2k − 1 for some positive integer k. The proof is based on the construction
of a closed subset E of T whose k-sums E + . . . + E are of zero capacity and of given
Hausdorff dimension (see Lemma 3.2). The arithmetic structure of E allows us to reach
the best constant 1− βq only for p = 2k/(2k − 1).

Next we will deal with the case p > 2. Newman in [18] showed that for all ε > 0,
there exists a p-spanning set E ⊂ T which has a Lebesgue measure |E| > 2π − ε. The
existence of q-uniqueness sets of arbitrary large measure for the spaces `q(Z), 1 < q < 2,
was established also independently, by Katznelson [10] (see also [11, IV. 2.5 Theorem]).
Extensions of their result to a more general setting were given in [12] where they studied
the uniqueness set of `q−β(Z). We have the following result.

Theorem B. Let p > 2, β > 0 such that βq ≤ 1.

(1) If β >
1

2
− 1

p
, then every a closed subset E of T of positive Lebesgue measure, is

not (p, β)-spanning.

(2) If β <
1

2
− 1

p
then for every ε > 0, there exists a (p, β)-spanning set E ⊂ T such

that |E| > 2π − ε.

Nikolski in [20, Corollary 6] considered the weighted space

`pω(Z) =
{

(un)n∈Z : (unωn)n∈Z ∈ `p(Z)
}

where ωn = log(e + |n|)γ , γ > 0. He showed that if p > 2/(1− γ), 0 < γ < 1, then there
exists E ⊂ T with large Lebesgue measure which is a uniqueness set for the dual of `pω(Z),
which is equivalent to the cyclicity in `pω(Z) of every u ∈ `1ω(Z) satisfying Z(û) ⊂ E. As
a by-product of Theorem B, we show in Corollary 5.1 that the result of Nikolski remains
valid for all p > 2 and γ > 0.

This paper is organized as follows. In the next section, we present the background and
recall some properties of distribution spaces. Section 3 is devoted to the proof of Theorem
A. We construct in Lemma 3.2 a Cantor type set of zero capacity whose kth sum remains of
zero capacity. Section 4 provides the proof of Theorem B based on the estimation of power
sums of unimodular complex numbers (see Lemma 4.1). Finally, Section 5 is dedicated to
some results on the `p spaces with logarithmic weights.
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4 K. KELLAY, F. LE MANACH, AND M. ZARRABI

2. Notations and Preliminaries

2.1. Background on `p weighted spaces. Let 1 ≤ p < ∞ and β ∈ R. We denote by
D′(T) the set of distributions on T and M(T) the set of measures on T. For S ∈ D′(T),

we denote by Ŝ = (Ŝ(n))n∈Z the sequence of Fourier coefficients of S and, we write S =∑
n Ŝ(n)en, where en(t) = eint. Notice that we use the same notation û and Ŝ to denote

respectively the Fourier transform of u ∈ `p and of S ∈ D′(T). The space Apβ(T) will be

the set of all distributions S ∈ D′(T) such that Ŝ belongs to `pβ(Z). We endow Apβ(T) with
the norm

‖S‖Apβ(T) = ‖Ŝ‖`pβ =
(∑
n∈Z

|Ŝ(n)|p(1 + |n|)βp
)1/p

.

We will write Ap(T) for the space Ap0(T). By construction the Fourier transform u→ û is
an isometric isomorphism between `pβ(Z) and Apβ(T). We prefer to work with Apβ(T) rather

than `pβ(Z). In this section, we establish some properties of Apβ(T) which will be needed to
prove Theorem A and Theorem B. For 1 ≤ p < ∞ and β ≥ 0 we define the product of
f ∈ A1

β(T) and S ∈ Apβ(T) by

fS =
∑
n∈Z

(f̂ ∗ Ŝ)(n) en =
∑
n∈Z

(∑
k∈Z

f̂(k)Ŝ(n− k)
)
en,

and we see that ‖fS‖Apβ(T) ≤ ‖f‖A1
β(T)‖S‖Apβ(T). Note that if S ∈ Ap−β(T), we can also

define the product fS ∈ Ap−β(T) by the same formula and obtain a similar inequality:
‖fS‖Ap−β(T) ≤ ‖f‖A1

β(T)‖S‖Ap−β(T).
For p 6= 1, the dual space of Apβ(T) can be identified with Aq−β(T), 1/p+ 1/q = 1, by the

formula

〈S, T 〉 =
∑
n∈Z

Ŝ(n)T̂ (−n), S ∈ Apβ(T), T ∈ Aq−β(T).

We need the following lemmas which gives us different inclusions between the Apβ(T)
spaces.

Lemma 2.1. Let 1 ≤ r, s <∞ and β, γ ∈ R.

(1) If r ≤ s then Arβ(T) ⊂ Asγ(T) if and only if γ ≤ β.

(2) If r > s then Arβ(T) ⊂ Asγ(T) if and only if β − γ > 1
s
− 1

r
.

Proof. (1) : Suppose that r ≤ s. If γ ≤ β, then Asβ(T) ⊂ Asγ(T). Since ‖·‖`s ≤ ‖·‖`r , we get

Arβ(T) ⊂ Asγ(T). Now suppose γ > β. Let S ∈ D′(T) such that Ŝ(n)(1+|n|)β = (1 +m)−2/r

if |n| = 2m and Ŝ(n) = 0 otherwise. Then we have S ∈ Arβ(T) \ Asγ(T).

(2) : Suppose that r > s. If β − γ > 1
s
− 1

r
, then by Hölder’s inequality, we obtain

Arβ(T) ⊂ Asγ(T). Now suppose that β − γ < 1
s
− 1

r
. Let ε > 0 such that β − γ + ε < 1

s
− 1

r
,

α = −1
s
− γ + ε and let S ∈ D′(T) be such that Ŝ(n) = nα. We have S ∈ Arβ(T) \ Asγ(T).

If β−γ = 1
s
− 1

r
, then let S ∈ D′(T) such that Ŝ(n)r(1+|n|)βr = 1/(1 + |n|) ln(1 + |n|)1+ε

with ε = r
s
− 1 > 0. We have S ∈ Arβ(T) \ Asγ(T) which proves that Arβ(T) 6⊂ Asγ(T). �
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 5

2.2. Cyclicity in Apβ(T). We denote by P(T) the set of trigonometric polynomials on T.

We say that S ∈ Apβ(T) is a cyclic vector in Apβ(T) if the set {PS, P ∈ P(T)} is dense

in Apβ(T). It is clear that the cyclicity of S in Apβ(T) is equivalent to the cyclicity of the

sequence Ŝ in `pβ(Z). Moreover for 1 ≤ p <∞ and β ≥ 0, S is cyclic in Apβ(T) if and only
if there exists a sequence (Pn) of trigonometric polynomials such that

lim
n→∞

‖1− PnS‖Apβ(T) = 0. (2.1)

We obtain the first cyclicity results for the spaces Apβ(T) when Apβ(T) is a Banach algebra.
More precisely, we have (see [6]):

Lemma 2.2. Let 1 ≤ p < ∞ and β > 0. Then Apβ(T) is a Banach algebra if and only if

βq > 1. Moreover, when βq > 1, a vector f ∈ Apβ(T) is cyclic in Apβ(T) if and only if f
has no zeros on T.

Let f ∈ A1
β(T) and S ∈ D′(T). We denote by Z(f) the zero set of the function f

Z(f) = {ζ ∈ T : f(ζ) = 0}.

Lemma 2.3. Let 1 ≤ p <∞ and 0 ≤ β < 1/2. Let f ∈ A1
β(T) and S ∈ Ap−β(T). If for all

n ∈ Z, 〈S, enf〉 = 0 then supp(S) ⊂ Z(f).

Proof. Recall that en(t) = eint. We have

〈S, enf〉 = 〈fS, en〉 = 0.

Hence fS = 0. Let ϕ ∈ C∞(T) such that supp(ϕ) ⊂ T \ Z(f). We claim that
ϕ

f
∈

A1
β(T) ⊂ Aqβ(T) where 1/p+ 1/q = 1. So we obtain

〈S, ϕ〉 = 〈fS, ϕ
f
〉 = 0

which proves that supp(S) ⊂ Z(f).
Now we prove the claim. Let ε = min{|f(t)|, t ∈ supp(ϕ)} > 0 and P ∈ P(T) such that
‖f − P‖A1

β(T) ≤ ε/3.

By the Cauchy-Schwarz and Parseval inequalities, for every g ∈ C1(T), we get

‖g‖A1
β(T) ≤ ‖g‖∞ + 21+β

√
1− β
1− 2β

‖g′‖∞. (2.2)

As in [19], by applying (2.2) to
ϕ

P n
we see that

ϕ

f
=
∑
n≥1

ϕ
(P − f)n−1

P n
∈ A1

β(T),

which finishes the proof. �

Lemma 2.4. Let 1 < p <∞ and f ∈ A1
β(T) with β ≥ 0. We have
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6 K. KELLAY, F. LE MANACH, AND M. ZARRABI

(1) If f is not cyclic in Apβ(T), then there exists S ∈ Aq−β(T)\{0} such that supp(S) ⊂
Z(f).

(2) If there exists a nonzero measure µ ∈ Aq−β(T) such that supp(µ) ⊂ Z(f), then f is

not cyclic in Apβ(T).

Proof. (1) If f is not cyclic in Apβ(T), by duality there exists S ∈ Aq−β(T) \ {0} such that

〈S, enf〉 = 0, ∀n ∈ Z.

Thus, by Lemma 2.3, we have supp(S) ⊂ Z(f).

(2) Let µ ∈ Aq−β(T) ∩M(T) \ {0} such that supp(µ) ⊂ Z(f). Since µ is a measure on

T we have 〈µ, enf〉 = 0, for all n ∈ Z. So f is not cyclic in Apβ(T). �

Recall that A1
β(T) is a Banach algebra. Let I be a closed ideal in A1

β(T). We denote by
ZI the set of common zeros of the functions of I given by

ZI =
⋂
f∈I

Z(f).

We have the following result about spectral synthesis in A1
β(T), for the case β = 0, also

called Beurling-Pollard Technique, see [8, pp. 121-123].

Lemma 2.5. Let 0 ≤ β < 1/2. Let I be a closed ideal in A1
β(T). If g is a Lipschitz

function which vanishes on ZI , then g ∈ I.

Proof. Notice first that since g is Lipschitz function, Bernstein’s Theorem [7, p.13] gives
that g ∈ A1

β(T). Let I⊥ be the set of all S in the dual space of A1
β(T) satisfying 〈S, f〉 = 0

for all f ∈ I. Hence, S ∈ I⊥ and supp(S) ⊂ ZI see [4, Remarque 1.3] . For h > 0, we set

Sh = S ∗∆h where ∆h : t 7→ −|t|
h2

+
1

h
if t ∈ [−h, h] and 0 otherwise. We have

∆̂h(0) = 1/2π, ∆̂h(n) =
1

2π

4 sin(nh/2)2

(nh)2
, n 6= 0.

Since S is in the dual of A1
β(T), Sh ∈ A1(T). Moreover, we have supp(Sh) ⊂ supp(S) +

supp(∆h) ⊂ ZhI := ZI + [−h, h]. . Let g be a Lipschitz function which vanishes on ZI , We
have

|〈Sh, g〉|2 =

∣∣∣∣∣
∫
ZhI \Z(g)

Sh(x)g(x)dx

∣∣∣∣∣
2

≤

(∑
n∈Z

|Ŝ(n)∆̂h(n)|2
)(∫

ZhI \Z(g)
|g(x)|2dx

)
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 7

Since ZI ⊂ Zg, for every x ∈ ZhI , |g(x)| ≤ ch for some positive constant c. Thus

|〈Sh, g〉|2 ≤ c2

(∑
n∈Z

Ŝ(n)2

1 + n2

)(
|ZhI \ Z(g)|

)
Hence lim

h→0
〈Sh, g〉 = 0. By the dominated convergence theorem, we obtain that

lim
h→0
〈Sh, g〉 = lim

h→0

∑
n∈Z

Ŝh(n)ĝ(−n) =
1

2π

∑
n∈Z

Ŝ(n)ĝ(−n) =
1

2π
〈S, g〉.

So 〈S, g〉 = 0. Therefore, g ∈ I. �

We also need the following lemma which is a consequence of Lemma 2.5. Newman gave
a proof of this when β = 0 (see [18, Lemma 2]).

Lemma 2.6. Let 0 ≤ β < 1/2 and a closed set E ⊂ T. There exists a sequence of Lipschitz
functions (fn) which vanish on E such that

lim
n→∞

‖fn − 1‖Apβ(T) = 0

if and only if every f ∈ A1
β(T) satisfying Z(f) = E is cyclic in Apβ(T).

We finish this subsection by the following result of Newman (see the proof of Theorem
5 in [18]):

Lemma 2.7. Let p > 2. Assume that for every ε > 0, there exists a Lipschitz function f
such that |Z(f)| > 2π − ε and

‖f − 1‖Apβ(T) ≤ ε.

Then for every ε there exists a (p, β)-spanning closed set E ⊂ T with Lebesgue measure
|E| > 2π − ε.

2.3. Generalized Cantor set and capacity. Given E ⊂ T and a non-decreasing con-
tinuous function h such that h(0) = 0, we define the h-measure of E by

Hh(E) = lim
δ→0

inf

{
∞∑
i=0

h(|Ui|), E ⊂
∞⋃
i=0

Ui, |Ui| ≤ δ

}
where each Ui is an open interval inside T and |Ui| denotes its length.

We also define the Hausdorff dimension of a subset E ⊂ T, given by

dim(E) = inf{α ∈ (0, 1), Hα(E) = 0} = sup{α ∈ (0, 1), Hα(E) =∞},

where Hα = Hh for h(t) = tα (see [8, pp. 23-30]).
Let µ be a probability measure on T and α ∈ (0, 1). We define its α-energy by

Iα(µ) :=

∫∫
dµ(t)dµ(s)

|t− s|α
.
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8 K. KELLAY, F. LE MANACH, AND M. ZARRABI

Note that Iα(µ) ∈ [0,+∞]. Simple calculations shows that

Iα(µ) �
∑
n≥1

|µ̂(n)|2

(1 + |n|)1−α
.

The α-capacity of a Borel set E is given by

Cα(E) = 1/
{

inf{Iα(µ), µ ∈MP(E)
}
,

whereMP(E) is the set of all probability measures on T which are supported on a compact
subset of E.

An important property which connects capacity and Hausdorff dimension is that (see [8,
p. 34])

dim(E) = inf
{
α ∈ (0, 1), Cα(E) = 0

}
= sup

{
α ∈ (0, 1), Cα(E) > 0

}
. (2.3)

For E ⊂ T, we denote by Apβ(E) the collection of S ∈ Apβ(T) such that supp(S) ⊂ E,
where supp(S) denotes the support of the distribution S. The following lemma is a direct
consequence of the definition of capacity and the inclusion Aq−β(T) ⊂ A2

α−1
2

(T) when q ≥ 2

and 0 ≤ α < 2
q
(1− βq).

Lemma 2.8. Let E be a Borel set, β ≥ 0 and q ≥ 2. If there exists α ∈ R with 0 ≤ α <
2

q
(1− βq) such that Cα(E) = 0, then Aq−β(E) = {0}.

Let us recall Salem’s Theorem (see [25] and [8, p. 106-110]).

Theorem 2.9. Let 0 < α < 1 and q > 2
α

. There exists a compact set E ⊂ T which satisfies
dim(E) = α and there exists a positive measure µ ∈ Aq(T) \ {0} such that supp(µ) ⊂ E.

The following theorem is due to Körner (see [13, Theorem 1.2]).

Theorem 2.10. Let h : [0,∞)→ [0,∞) be an increasing continuous function with h(0) = 0
and let φ : [0,∞)→ [0,∞) be a decreasing function. Suppose that

(1)
∫∞
1
φ(x)2dx =∞;

(2) there exist K1, K2 > 1 such that for all 1 ≤ x ≤ y ≤ 2x, K1φ(2x) ≤ φ(x) ≤ K2φ(y);
(3) there exists γ > 0 such that limx→∞ x

1−γφ(x) =∞;
(4) there exist 0 < K3 < K4 < 1 such that for all t > 0, K3h(2t) ≤ h(t) ≤ K4h(2t).

Then there exists a probability measure µ with support of Hausdorff h-measure zero such
that

|µ̂(n)| ≤ φ

(
1

h(|n|−1)

)(
ln

(
1

h(|n|−1)

))1/2

, ∀n 6= 0.

We finish this section by describing the construction of the generalized Cantor set. Let
(kj)j≥0 be integers and let (lj)j≥0 be a a sequence of positive number such that k0 = 1 and

kj ≥ 2, and kjlj < lj−1, j ≥ 1.
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 9

Let E0 = [0, l0]. We dissect the interval E0 = [0, l0] in 2k1−1 intervals of lenghts respectively
l1 and d1 = (l0 − k1l1)/(k1 − 1):

[0, l1]; ]l1, d1 + l1[;
...

[md1 +ml1,md1 + (m+ 1)l1]; ]md1 + (m+ 1)l1, (m+ 1)d1 + (m+ 1)l1[;
...

]l0 − l1 − d1, l0 − l1[; [l0 − l1, l0].
We delete the k1 − 1 open interval of lenght d1 and we keep the k1 equidistant closed

intervals of length l1. We set

E1 =

k1−1⋃
m=0

[md1 +ml1,md1 + (m+ 1)l1].

Suppose that the set En−1 , n ≥ 1, has already been constructed and this set consists of
pn−1 closed intervals of length ln−1:

En−1 =

pn−1⋃
j=1

[aj, aj + ln−1].

We operate the same dissection on each of the intervals [aj, aj + ln−1] with the parameters
(ln, kn) instead of (l1, k1), thus we obtain

En =

pn⋃
j=1

kn−1⋃
s=0

[aj + s(ln + dn), aj + s(ln + dn) + ln]

where dn = (ln−1 − knln)/(kn − 1). The compact set

E =
⋂
n≥0

En

is called the generalized Cantor set. Ohtsuka [22] obtained a criterion for vanishing Cα(E),
see also [5]:

Theorem 2.11. Let E be a generalized Cantor set. Then.

Cα(E) = 0 ⇐⇒
∑
n≥0

1

(k0k1 . . . kn)lαn
=∞.

3. Proof of Theorem A

3.1. Cyclicity and the set all sum of k elements from Z(f). For k ∈ N and E ⊂ T,
let k × E denote the set all sum of k elements from E,

k × E = E + E + ...+ E =

{
k∑

n=1

xn, xn ∈ E

}
.

We have the following result, the case β = 0 was considered by Newman in [18].
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10 K. KELLAY, F. LE MANACH, AND M. ZARRABI

Lemma 3.1. Let 1 < p < 2 and β > 0 such that βq ≤ 1, and let f ∈ A1
β(T).

(a) Let k ∈ N \ {0} be such that k ≤ q/2. If Cα(k ×Z(f)) = 0 for some α <
2

q
(1− βq)k,

then f is cyclic in Apβ(T).
(b) Let k ∈ N\{0} be such that q/2 ≤ k ≤ 1/(2β). If Cα(k×Z(f)) = 0 where α = 1−2kβ,

then f is cyclic in Apβ(T).

Proof. Let k ∈ N \ {0}. Suppose that f is not cyclic in Apβ(T). Then there exists L ∈
Aq−β(T), the dual of Apβ(T), such that L(1) = 1 and L(Pf) = 0, for all P ∈ P(T).

Since β < 1
2
, by (2.2), we get C1(T) ⊂ A1

β(T) ⊂ Apβ(T). Moreover, by [17] (see also [18,

Lemma 5]), there exists φ ∈ L2(T) such that

L(g) =

∫
T

(
g′(x)φ(x) + g(x)

)
dx, g ∈ C1(T).

Since L ∈ Aq−β(T) which implies (L(en))n∈Z ∈ `q−β(Z), we obtain∑
n∈Z

|nφ̂(n)|q(1 + |n|)−βq <∞. (3.1)

Moreover we have, ∫
T

(
(enf)′(x)φ(x) + (enf)(x)

)
dx = 0, n ∈ Z,

hence, 〈φ′ − 1, enf〉 = 0 where φ′ is defined in terms of distribution. By (3.1), φ′ − 1 ∈
Aq−β(T), by Lemma 2.3, we get supp(φ′ − 1) ⊂ Z(f).

For m ∈ N, we denote by φ∗m the result obtained from convolving φ with itself m times.
Using the fact that S ′ ∗ T = S ∗ T ′ and 1 ∗ S ′ = 0 for any distributions S and T , we have

(φ′ − 1) ∗
((
φ∗(m−1)

)(m−1)
+ (−1)m−1

)
= (φ∗m)(m) + (−1)m.

By induction and by the formula supp(T ∗ S) ⊂ supp(T ) + supp(S) that

supp
(

(φ∗m)(m) + (−1)m
)
⊂ m×Z(f), m ≥ 1. (3.2)

Note that
̂

(φ∗k)(k)(n) = iknkφ̂(n)k for k ≥ 1 and n ∈ Z.

(a) Suppose that 0 < k ≤ q/2 and Cα(k × Z(f)) = 0 for some α <
2

q
(1 − βq)k. We

rewrite (3.1) as ∑
n∈Z

(
|nφ̂(n)|k

) q
k

(1 + |n|)−
q
k
βk <∞.

If we set q′ = q
k
≥ 2 and β′ = βk, we have

(
φ∗k
)(k) ∈ Aq′−β′(T). By (3.2) and by Lemma 2.8

we obtain that
(
φ∗k
)(k)

= (−1)k−1. This contradicts the fact that
̂

(φ∗k)(k)(0) = 0.
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 11

(b) Now suppose that k ≥ q/2 and Cα(k×Z(f)) = 0 where α = 1− 2kβ. Since q ≤ 2k,
we have by (3.1), ∑

n∈Z

|nφ̂(n)|2k(1 + |n|)−2kβ <∞.

Then
(
φ∗k
)(k) ∈ A2

−kβ(T) and
(
φ∗k
)(k)

= (−1)k−1, which contradicts
̂

(φ∗k)(k)(0) = 0. �

3.2. Construction of generalized Cantor set. We need to compute the capacity of
the Minkowski sum of some Cantor type subset of T. We denote by [x] the integer part of
x ∈ R. For λ ∈ [0, 1] and k ∈ N \ {0}, we define

Kk
λ = {m ∈ N, ∃j ∈ N, m ∈ [2j, 2j(1 + λ+ 1/j)− k + 1]}

and we set in R/Z ' [0, 1[,

Skλ =

{
x =

∞∑
i=0

xi
2i+1

, (xi) ∈ {0, 1}N such that i ∈ Kk
λ ⇒ xi = 0

}
.

We denote Kλ = K1
λ and Sλ = S1

λ. We the following lemma.

Lemma 3.2. For all k ≥ 1, we have

(1) k × Sλ ⊂ Skλ;

(2) Cα(Skλ) = 0 if and only if α ≥ 1− λ
1 + λ

;

(3) dim(k × Sλ) =
1− λ
1 + λ

and C 1−λ
1+λ

(k × Sλ) = 0.

Proof. (1) We prove this by induction. If k = 1 we have Sλ = S1
λ. We suppose the result

true for k − 1 for some k ≥ 2, and we will show that k × Sλ ⊂ Skλ. Observe that we have

k × Sλ ⊂ (k − 1)× Sλ + Sλ ⊂ Sk−1λ + Sλ.

Let x ∈ Sk−1λ , y ∈ Sλ and z = x+ y. Denote by (xi), (yi) and (zi) their binary decomposi-
tion. Let m ∈ Kk

λ , then there exists j ∈ N such that m ∈ [2j, 2j(1+λ+1/j)−k+1]. Since
m ∈ Kk

λ and m,m + 1 ∈ Kk−1
λ ⊂ Kλ, we get xm = ym = xm+1 = ym+1 = 0. Therefore, we

write

z = x+ y =
m−1∑
i=0

xi + yi
2i+1

+
∞∑

i=m+2

xi + yi
2i+1

.

Note that for infinitely many i ≥ m+ 2, we have xi + yi < 2, we see that
∞∑

i=m+2

xi + yi
2i+1

<
1

2m+1
.

We denote by [s] the integer part of s, we have[
2m+1z

]
= 2[2mz] = 2m+1

m−1∑
i=0

xi + yi
2i+1

.
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12 K. KELLAY, F. LE MANACH, AND M. ZARRABI

Therefore, we obtain by uniqueness of the decomposition that

zm =
[
2m+1z

]
− 2[2mz] = 0.

This proves that z = x+ y ∈ Skλ and k × Sλ ⊂ Skλ.

(2) We will first show that the set Skλ is a generalized Cantor set. Let

νj = [2j(1 + λ+ 1/j)− k + 1] + 1

and N0, depending only on k and λ, such that for all j ≥ N0, 2j < νj < 2j+1. We set for
N ≥ N0,

lN =
∞∑
j=N

( 1

2νj
− 1

22j+1

)
.

Since

2j(1 + λ+ 1/j)− k + 1 < νj ≤ 2j(1 + λ+ 1/j)− k + 2,

we have
∞∑
j=N

1

22j(1+λ+ 1
j
)

( 1

22−k −
1

22j(1−λ− 1
j
)

)
≤ lN ≤

∞∑
j=N

1

22j(1+λ+ 1
j
)

( 1

21−k −
1

22j(1−λ− 1
j
)

)
.

There exists C ≥ 1 such that for all j ≥ N ,

1

C
≤ 1

22−k −
1

22j(1−λ− 1
j
)
≤ 1

21−k −
1

22j(1−λ− 1
j
)
≤ C.

And for N ≥ N0,

1

22N (1+λ+ 1
N
)
≤

∞∑
j=N

1

22j(1+λ+ 1
j
)

≤ 1

22N (1+λ+ 1
N
)

+
∞∑
j=0

(
1

22N+1(1+λ)

)2j

≤ 1

22N (1+λ+ 1
N
)

+
∞∑
j=0

(
1

22N+1(1+λ)

)j+1

≤ 1

22N (1+λ+ 1
N
)

+
2

22N+1(1+λ)

≤ 3

22N (1+λ+ 1
N
)
.

Hence we obtain that lN is comparable to 2−2
N (1+λ+1/N), that is,

1

C22N (1+λ+ 1
N
)
≤ lN ≤

3C

22N (1+λ+ 1
N
)
. (3.3)
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 13

Moreover, we have

lN =
1

2νN
−

∞∑
j=N+1

( 1

22j
− 1

2νj

)
<

1

2νN

≤ 1

22N
. (3.4)

For N ≥ N0, we set

EN =


2N−1∑
i=0

xi
2i+1

+ lNz, z ∈ [0, 1], xi ∈ {0, 1}, i ∈ Kk
λ ⇒ xi = 0

 .

Observe that we can write EN as a union of disjoint intervals given by

EN =
⋃

(xi)∈{0,1}2
N

i∈Kk
λ⇒xi=0

E
(xi)
N

where

E
(xi)
N =

2N−1∑
i=0

xi
2i+1

+ lN [0, 1[.

Since by (3.4), lN < 1/22N , the intervals E
(xi)
N are disjoint

E
(xi)
N ∩ E(x′i)

N = ∅, (xi) 6= (x′i).

For fixed N ≥ N0, let (xi)0≤i≤2N−1 ∈ {0, 1}2
N

and (yi)0≤i≤2N+1−1 ∈ {0, 1}2
N+1

. We claim
that:

E
(yi)
N+1 ⊂ E

(xi)
N if and only if xi = yi for all 0 ≤ i < 2N and yi = 0 for all 2N ≤ i < νN .

Indeed, suppose that E
(yi)
N+1 ⊂ E

(xi)
N and let u ∈ E(yi)

N+1. We have

u =
2N+1−1∑
i=0

yi
2i+1

+ lN+1z2

=
2N−1∑
i=0

xi
2i+1

+ lNz1,

where z1, z2 ∈ [0, 1[. By (3.4), lN < 1/2νN , and using the uniqueness of the binary rep-
resentation, we obtain xi = yi for all 0 ≤ i < 2N and yi = 0 for all 2N ≤ i < νN . Now

suppose xi = yi for all 0 ≤ i < 2N and yi = 0 for all 2N ≤ i < νN . Let u ∈ E(yi)
N+1. We write

u =
2N−1∑
i=0

xi
2i+1

+
2N+1−1∑
i=νN

yi
2i+1

+ lN+1z, z ∈ [0, 1[.
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14 K. KELLAY, F. LE MANACH, AND M. ZARRABI

Since
2N+1−1∑
i=νN

1

2i+1
+ lN+1 =

1

2νN
− 1

22N+1 + lN+1 = lN ,

we get

2N−1∑
i=0

xi
2i+1

≤
2N−1∑
i=0

xi
2i+1

+
2N+1−1∑
i=ZN

yi
2i+1

+ lN+1z

≤
2N−1∑
i=0

xi
2i+1

+ lN ,

and u ∈ E(xi)
N . This concludes the proof of the claim.

By the claim, for fixed (xi) and for N ≥ N0, we have the following properties:

(i) the interval E
(xi)
N contains precisely

kN+1 = #{(yi)νN≤i≤2N+1−1: yi ∈ {0, 1}} = 22N+1−νN

intervals of the form E
(yi)
N+1,

(ii) the intervals of the form E
(yi)
N+1 contained in E

(xi)
N are equidistant intervals of length

lN+1; the distance of two consecutive intervals of the form E
(yi)
N+1 is equal to 1

22N+1−lN+1
,

(iii) writing E
(xi)
N = [a, b], there exist (yi) and (zi) such that E

(yi)
N+1 = [a, a + lN+1] and

E
(zi)
N+1 = [b− lN+1, b].

Finally we can write Skλ as

Skλ =
⋂

N≥N0

EN .

This shows that Skλ is a generalized Cantor set. By Theorem 2.11, we have for 0 < α < 1
that Cα(Skλ) = 0 if and only if

∞∑
N=N0

1

(kN0 · · · kN−1)lαN
=∞.

where kN0 = 1. Since

2(k−2)(N−N0)+(2N−2N0 )(1−λ)−σN ≤ kN0 · · · kN−1 ≤ 2(k−1)(N−N0)+(2N−2N0 )(1−λ)−σN

where

σN =
N−1∑
j=N0

2j

j

we have, by (3.3), Cα(Skλ) = 0 if and only if
∞∑

N=N0

22N (α(1+λ)−(1−λ))+α2N/N+σN−(k−1)(N−N0)+2N0 (1−λ) =∞.
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 15

Therefore, Cα(Skλ) = 0 if and only if α ≥ 1− λ
1 + λ

.

Finally, (3) follows from (1) and (2) by the capacity property. �

3.3. Proof of Theorem A. We are now ready to prove Theorem A. It follows immediately
from the following theorem stated in Apβ(T) spaces.

Theorem 3.3. Let 1 < p < 2, β > 0 be such that βq ≤ 1.

(1) If f ∈ A1
β(T) and dim(Z(f)) < 2

q
(1− βq) then f is cyclic in Apβ(T).

(2) If f ∈ A1
β(T) and C1−βq(Z(f)) > 0 then f is not cyclic in Apβ(T).

(3) For
2

q
(1− βq) ≤ α ≤ 1, there exists a closed set E ⊂ T such that dim(E) = α and

every f ∈ A1
β(T) satisfying Z(f) = E is not cyclic in Apβ(T).

(4) Let k = [q/2]. For all ε > 0, there exists a closed set E ⊂ T such that

dim(E) ≥ max

(
2

q
(1− βq)k − ε, 1− 2(k + 1)β

)
(3.5)

and every f ∈ A1
β(T) satisfying Z(f) = E is cyclic in Apβ(T). Furthermore, if

p = 2k/(2k − 1) for some k ∈ N\{0}, E can be chosen such that dim(E) = 1−βq.

Proof. (1) Note that, by (2.3), dim(Z(f)) < 2
q
(1 − βq) if and only if there exists α <

2
q
(1 − βq) such that Cα(Z(f)) = 0. If Cα(Z(f)) = 0, by Lemma 2.8, there is no

S ∈ Aq−β(T) \ {0} such that supp(S) ⊂ Z(f). So, by Lemma 2.4 (1), f is cyclic in

Apβ(T).

(2) Suppose that C1−βq(Z(f)) > 0. There exists a probability measure µ of energy
I1−βq(µ) < ∞, such that supp(µ) ⊂ Z(f) . So µ ∈ A2

−βq/2(T) \ {0}. Since |µ̂(n)| ≤ 1 for

all n ∈ Z and q ≥ 2, we have µ ∈ Aq−β(T). By Lemma 2.4 (2), f is not cyclic in Apβ(T).

(3) Suppose that
2

q
(1 − βq) < α ≤ 1. There exists ε > 0 such that 2

q
(1 − βq) + ε < α.

Let q′ such that 2
q
− 2β + ε = 2

q′
. Since β > 1

q
− 1

q′
, by Lemma 2.1, Aq

′
(T) ⊂ Aq−β(T). By

Theorem 2.9, as q′ satisfies q′ > 2
α

, there exists a closed subset E ⊂ T such that dim(E) = α

and a non-zero positive measure µ ∈ Aq′(T) ⊂ Aq−β(T) such that supp(µ) ⊂ E. Now (3)
follows from Lemma 2.4 (2).

Now if α = 2
q
(1 − βq) and γ > 2

q
. Then by Theorem 2.10 with φ(t) = (t ln(et))−1/2 for

t ≥ 1 and h(t) = tα

ln(e/t)γ
for t ∈ [0,∞), there exists a probability measure µ with support

of Hausdorff h-measure zero such that

|µ̂(n)| ≤ φ

(
1

h(|n|−1)

)(
ln

(
1

h(|n|−1)

))1/2

≤ (|n|α ln(e|n|)γ)−1/2,
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16 K. KELLAY, F. LE MANACH, AND M. ZARRABI

for n 6= 0. So ∑
n 6=0

|µ̂(n)|q(1 + |n|)−βq ≤ C
∑
n6=0

|n|−αq/2−βq ln(e|n|)−γq/2

≤ C
∑
n6=0

1

|n| ln(e|n|)γq/2
<∞

with C a positive constant. Hence, µ ∈ Aq−β(T). We set E = supp(µ). By Lemma 2.4 the
result is proved.

(4) Let k = [q/2]. Suppose first 2
q
(1 − βq)k > 1 − 2(k + 1)β and let 0 < ε′ < ε satisfy

1− 2(k + 1)β ≤ 2
q
(1− βq)k − ε′. Consider the set Sλ where λ satisfies

2

q
(1− βq)k − ε′ < 1− λ

1 + λ
<

2

q
(1− βq)k.

By Lemma 3.2 (3) we have dim(Sλ) = 1−λ
1+λ

and C 1−λ
1+λ

(k × Sλ) = 0. Therefore, by Lemma

3.1 (a), every f ∈ A1
β(T) such that Z(f) = Sλ is cyclic in Apβ(T).

Now, suppose 2
q
(1− βq)k ≤ 1− 2(k + 1)β. We consider Sλ where

1− λ
1 + λ

= 1− 2(k + 1)β.

By Lemma 3.2 (3) we have

dim(Sλ) =
1− λ
1 + λ

= 1− 2(k + 1)β and C 1−λ
1+λ

((k + 1)× Sλ) = 0.

Thus, by Lemma 3.1 (b), every f ∈ A1
β(T) such that Z(f) = Sλ is cyclic in Apβ(T).

Suppose now that p =
2k

2k − 1
for some k ∈ N \ {0}. As before, we consider Sλ where

1− λ
1 + λ

= 1− 2kβ = 1− βq.

Again by Lemma 3.1 (b), every f ∈ A1
β(T) such that Z(f) = Sλ is cyclic in Apβ(T).

Note that the set E which was considered in Theorem 3.3 (4) satisfies Cα(E) = 0 where

α ≥ max

(
2

q
(1− βq)k − ε, 1− 2(k + 1)β

)
.

�

4. Proof of Theorem B

4.1. Some power sum. To prove Theorem B, we need the following lemmas.
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SPANS OF TRANSLATES IN WEIGHTED `p SPACES 17

Lemma 4.1. Let R be a prime power and m a positive integer. We set k = Rm+1 and
N = (R− 1)(Rm+1 + 1). Then there exists N th roots of unity z1, . . . , zk such that∣∣∣ k∑

j=1

zrj

∣∣∣ ≤ √k, r = 1, . . . , N − 1.

Proof. The proof is inspired from a result by Andersson [2, Lemma 1]. Let F = {xj, 1 ≤
j ≤ k} be a finite field of order k and let E be an extension field of F of order k2. Let
ω be an element that generates the multiplicative group E∗ and let χ be a multiplicative
character on E of order k2 − 1. We set

zj = χd(ω + xj), 1 ≤ j ≤ k,

where d =
∑m

j=0R
j. Since Nd = k2 − 1 the zj are N th roots of unity. For 1 ≤ r ≤ N − 1,

the characters χrd are non-trivial on E, thus by [11, Theorem 1] we get∣∣∣ k∑
j=1

zrj

∣∣∣ =
∣∣∣ k∑
j=1

χrd(ω + xj)
∣∣∣ ≤ √k, r = 1, . . . , N − 1.

�

Lemma 4.2. With the notation of Lemma 4.1, we set

cn =

(∑k
j=1 z

n
j

)
k

(
sin(πn/N)

πn/N

)2

, n ∈ Z.

Then ∑
n∈Z\{0}

|cn|p(1 + |n|)βp ≤ N1+βp

k
p
2

Proof. We have

cr+N` =

(∑k
j=1 z

r
j

)
k

(
sin(πr/N)
πr
N

+ π`

)2

∑
n∈Z\{0}

|cn|p(1 + |n|)βp =
N−1∑
r=1

∑
`∈Z

|cr+N`|p(1 + |N`+ r|)βp

=
N−1∑
r=1

∣∣∣∑k
j=1 z

r
j

∣∣∣p
kp

∑
`∈Z

| sin(πr/N)|2p

π2p| r
N

+ `|2p
(1 + |N`+ r|)βp.

To estimate
| sin(πr/N)|2p

π2p| r
N

+ `|2p
(1 + |N`+ r|)βp

we will consider two cases:
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18 K. KELLAY, F. LE MANACH, AND M. ZARRABI

Case 1: N ≥ 2r.

sin2
(
(r/N)π)

)
π2(r/N + `)2

(1 + |r + `N |)β ≤ (r/N)2−β

(|`| − 1/2)2
(r/N + r2/N + |`|r)β

≤ 1

22−β
1

(|`| − 1/2)2
(1/2 + r/2 + |`|r)β

≤ 1

22−β
(|`|+ 1/2)β

(|`| − 1/2)2
(1 + r)β. (4.1)

Therefore∑
`∈Z

| sin(πr/N)|2p

π2p| r
N

+ `|2p
(1 + |N`+ r|)βp ≤ 1

2(2−β)p

∑
`∈Z

(|`|+ 1/2)βp

(|`| − 1/2)2p
(1 + r)βp. (4.2)

Case 2: N ≤ 2r. For |r + `N | < N ,

sin2
(
(r/N)π)

)
π2(r/N + `)2

(1 + |r + `N |)β ≤ (1 +N)β ≤ 2β(1 + r)β.

We remark that there are at most two integers of the form r + `N with |r + `N | < N .
Thus ∑

` : |r+`N |<N

| sin(πr/N)|2p

π2p| r
N

+ `|2p
(1 + |N`+ r|)βp ≤ 21+βp(1 + r)βp. (4.3)

Assume now that |r + `N | ≥ N and ` ∈ Z. We note that in this case
∣∣ r
N

+ `
∣∣ =

|r + `N |
N

≥ 1. We have

sin2(rπ/N)

π2(r/N + `)2
(1 + |r + `N |)β ≤ 1

(r/N + `)2π2
Nβ(1/N + |r/N + `|)β

≤ 22β

π2|r/N + `|2−β
rβ.

Then we get∑
`∈Z: |r+`N |≥N

| sin(πr/N)|2p

π2p| r
N

+ `|2p
(1 + |N`+ r|)βp ≤

∑
`∈Z: |r/N+`|≥1

22βp

π2p|r/N + `|(2−β)p
rβp

≤ 22βp+1

π2p

∑
`≥1

1

`(2−β)p
rβp. (4.4)

Combining (4.3) and (4.4) we obtain
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∑
`∈Z

| sin(πr/N)|2p

π2p| r
N

+ `|2p
(1 + |N`+ r|)βp ≤ max

(
21+βp,

22βp+1

π2p

∑
k≥1

1

k(2−β)p

)
︸ ︷︷ ︸

cβ,p

(1 + r)βp. (4.5)

Therefore

∑
n∈Z\{0}

|cn|p(1 + |n|)βp =
N−1∑
r=1

|
∑k

j=1 z
r
j |p

kp

∑
`∈Z

| sin(πr/N)|2p

π2p| r
N

+ `|2p
(1 + |N`+ r|)βp

≤ cβ,p

N−1∑
r=1

|
∑k

j=1 z
r
j |p

kp
(1 + r)βp

≤ cβ,p
N1+βp

k
p
2

.

�

4.2. Proof of Theorem B. To prove (1), we suppose that p ≥ 2 and β > 1
2
− 1

p
. It

suffices to check that the characteristic function of E, χE is in `q−β, the dual space of `pβ.
By Hölder’s inequality∑

n∈Z

|χ̂E(n)|q(1 + |n|)−βq ≤
(∑
n∈Z

|χ̂E(n)|2
)q/2(∑

n∈Z

(1 + |n|)−
2βq
2−q

) 2−q
q
.

The sums
∑
n∈Z

|χ̂E(n)|2 and
∑
n∈Z

(1 + |n|)−
2βq
2−q converge since χE is in L2(T) and β >

1

q
− 1

2
.

In order to prove (2), using notations from Lemmas 4.1 and 4.2, we first define

f(x) =
∑
n∈Z

cne
inx.

The function f is the sum of k triangles each with base 4π/N and height N/k, then f is a
Lipschitz function and its support has measure 4πk/N .

We recall that k = Rm+1 and N = (R − 1)(Rm+1 + 1). Let 0 ≤ β <
1

2
− 1

p
and choose

m such that β <
1

2

m+ 1

m+ 2
− 1

p
. We have

N1+βp

k
p
2

∼ R(m+2)(1+βp)

R
m+1

2
p

∼ Rp(m+2)(β+ 1
p
− 1

2
m+1
m+2

).

Since

p(m+ 2)
(
β +

1

p
− 1

2

m+ 1

m+ 2

)
< 0,
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N1+βp

k
p
2

→ 0, R→∞.

By Lemma 4.1 we have

‖f − 1‖p
Apβ(T)

≤ N1+βp

k
p
2

.

On the other hand k/N → 0 as R → ∞, hence for every ε > 0, there exists a Lipschitz
function f such that ‖f − 1‖Apβ(T) < ε and with support of measure less than ε. Finally,

Lemma 2.7 concludes the proof.

5. Remarks

We say that (ωn) ∈ R is a weight if there exists C > 0 such that wn ≥ 1 and ωn+k ≤
Cωnωk for all k, n ∈ Z For a weight ω and 1 ≤ p <∞, we set

Apω(T) =

{
f ∈ C(T) : ‖f‖p

Apω(T)
=
∑
n∈Z

|f̂(n)|pωpn <∞

}
.

Note that ‖fS‖Apω(T) ≤ ‖f‖A1
ω(T)‖S‖Apω(T) for f ∈ A1

ω(T) and S ∈ Apω(T). Hence we have
the same result as (2.1) to characterize cyclicity in Apω(T) by norm.

When ωn = O((1 + |n|)ε) for all ε > 0, for instance, by letting ωn = ln(e + |n|)γ where
γ ≥ 0, we can show the same result as Lemma 2.6. By noting that

Apβ(T) ⊂ Apω(T) ⊂ Ap(T)

for all p ≥ 1 and β > 0, we obtain the following result by Theorem A and Theorem B :

Corollary 5.1. Let ω = (ωn)n∈Z be a weight such that lim
n→+∞

logωn
log n

= 0.

(1) Let 1 < p < 2.
(a) If f ∈ A1

ω(T) and dim(Z(f)) < 2/q then f is cyclic in Apω(T).

(b) For
2

q
< α ≤ 1, there exists a closed subset E ⊂ T such that dim(E) = α and

every f ∈ A1
ω(T) satisfying Z(f) = E is not cyclic in Apω(T).

(c) For all 0 < ε < 1, there exists a closed subset E ⊂ T such that dim(E) = 1− ε
and every f ∈ A1

ω(T) satisfying Z(f) = E is cyclic in Apω(T).
(2) Let p > 2. For every ε > 0, there exists a closed subset E ⊂ T such that |E| > 2π−ε

and every u ∈ A1
β(Z) satisfying Z(û) = E is cyclic in Apβ(Z).

Proof. (1) Suppose that 1 < p < 2.

(a) Let f ∈ A1
ω(T) such that dim(Z(f)) < 2/q. Then there exists 0 < β < 1/2 such that

dim(Z(f)) <
2

q
(1− βq). By Theorem 3.3 (1), every g ∈ A1

β(T) satisfying Z(g) = Z(f) is

cyclic in Apβ(T). Therefore, by Lemma 2.6, there exist a sequence of Lipschitz functions
(fn) which are zero on Z(f) such that

lim
n→∞

‖fn − 1‖Apβ(T) = 0.
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Moreover, ωn = O((1 + |n|)β), therefore,

lim
n→∞

‖fn − 1‖Apω(T) = 0.

Again by Lemma 2.6 in Apω(T), we obtain that f is cyclic in Apω(T).

(b) By Theorem 2.9 there exists a closed set E ⊂ T such that dim(E) = α and every
f ∈ A1(T) satisfying Z(f) = E is not cyclic in Ap(T). Let f ∈ A1

ω(T) such that Z(f) = E.
Since f ∈ A1(T), f is not cyclic in Ap(T). However, ‖ · ‖Ap(T) ≤ ‖ · ‖Apω(T), therefore f is
not cyclic in Apω(T).

(c) Let 0 < ε < 1 and β > 0 such that 1 − 2([q/2] + 1)β ≥ 1 − ε. By Theorem 3.3 (4),
there exists a closed set E ⊂ T such that

dim(E) ≥ 1− 2([q/2] + 1)β ≥ 1− ε
and every f ∈ A1

β(T) satisfying Z(f) = E is cyclic in Apβ(T). Since Apβ(T) ⊂ Apω(T), by
Lemma 2.6, by Lemma 2.6, we get our result.

(2) If p > 2, then the result immediately follows from Theorem B.
�
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