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The defocusing NLS equation : quasi-rational and rational solutions

Introduction

We consider the one dimensional defocusing nonlinear Schrödinger equation (dNLS) which can be written in the form

iv t + v xx -2|v| 2 v = 0. ( 1 
)
Nakemura and Hirota presented solutions to this equation in terms of wronskians in 1985 [START_REF] Nakemura | A new example of explode-decay solitary waves in one dimension[END_REF] using bilinear method. They constructed rational solutions by using a connection with a Bäcklund transformation for the classical Boussinesq system (BS)

u t = ((1 + u)v + a 2 v xx ) x v t = (u + 1 2 v 2 ) x . (2) 
Hone [START_REF] Hone | Crum transformation and rational solutios of the nonfocusing nonlinear Schrödinger equation[END_REF] constructed rational solutions in terms of determinant by using Crum dressing method in 1997. In 1999, Barran and Kovalyov presented slowly oscillatory decaying solutions in terms of determinants [START_REF] Barran | A note on slowky decaying solutions of the defocusing nonlinear Schrodinger equation[END_REF].

Clarkson presented rational solutions and rational-oscillatory solutions expressed in terms of special polynomials associated with rational solutions of the fourth Painlevé equation in [START_REF] Clarkson | Special polynomials associated with rational solutions of defocusing nonlinear Schrödinger equation and fourth Pailevé equation[END_REF]. Lenells considered in 2015 solutions of the dNLS equation on the halfline [START_REF] Lenells | The defocusing nonlinear Schrdinger equation with t-periodic data New exact solutions[END_REF] whose Dirichlet and Neumann boundary values become periodic for sufficiently large t. In the same year, Prinari et al. [START_REF] Prinari | Dark-bright soliton solutions with nontrivial polarization interactions to the three-component defocusing nonlinear Schrodinger equation with nonzero boudary conditions[END_REF] derived novel dark-bright soliton solutions with nonzero boundary conditions obtained within the framework of the inverse scattering transform.

Here we present solutions to the defocusing nonlinear Schrödinger equation (dNLS) of order N depending on 2N -2 real parameters in terms of wronskians and Fredholm determinants. Families of quasi-rational solutions to the dNLS equation are obtained. These quasi rational solutions can be expressed as a quotient of two polynomials of degree N (N + 1) in the variables x and t.

We present also rational solutions as a quotient of determinants using certain particular polynomials.

2 Different representations of quasi-rational solutions to the dNLS equation 2.1 Quasi-rational solutions of the dNLS equation in terms of Fredholm determinant

We have to define the following notations. The terms κ ν , δ ν , γ ν and x r,ν are functions of the parameters λ ν , 1 ≤ ν ≤ 2N ; they are defined by the formulas:

κ ν = 2 1 -λ 2 ν , δ ν = κ ν λ ν , γ ν = 1 -λ ν 1 + λ ν , x r,ν = (r -1) ln γ ν -i γ ν + i , r = 1, 3. (3) 
The parameters -1 < λ ν < 1, ν = 1, . . . , 2N , are real numbers such that

-1 < λ N +1 < λ N +2 < . . . < λ 2N < 0 < λ N < λ N -1 < . . . < λ 1 < 1, λ N +j = -λ j , j = 1, . . . , N. (4) 
The condition (4) implies that

κ j+N = κ j , δ j+N = -δ j+N , γ j+N = γ -1 j , x r,j+N = x r,j , j = 1, . . . , N. (5) 
Complex numbers e ν 1 ≤ ν ≤ 2N are defined in the following way:

e j = i N -1 l=1 a l (jǫ) 2l+1 - N -1 l=1 b l (jǫ) 2l+1 , e j+N = i N -1 l=1 a l (jǫ) 2l+1 + N -1 l=1 b l (jǫ) 2l+1 , 1 ≤ j ≤ N -1. (6)
ǫ, a ν , b ν , ν = 1 . . . 2N are arbitrary real numbers. Let I be the unit matrix, and

ǫ j = j 1 ≤ j ≤ N, ǫ j = N + j, N + 1 ≤ j ≤ 2N. ( 7 
) (r)
jk ) 1≤j,k≤2N defined by:

d (r) νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν t + x r,ν + e ν ). (8) 
Using all the previous notations, the solution to the dNLS equation can be written as

Theorem 2.1 The function v defined by v(x, t) = det(I + D 3 (x, t)) det(I + D 1 (x, t)) e 2it-iϕ {x=ix,t=-t} , (9) 
is a solution to the defocusing dNLS equation depending on 2N -

1 real para- meters a j , b j , ǫ, 1 ≤ j ≤ N -1 with the matrix D r = (d (r)
jk ) 1≤j,k≤2N defined by

d (r) νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν t + x r,ν + e ν ).
where κ ν , δ ν , x r,ν , γ ν , e ν being defined in(3), ( 4) and [START_REF] Prinari | Dark-bright soliton solutions with nontrivial polarization interactions to the three-component defocusing nonlinear Schrodinger equation with nonzero boudary conditions[END_REF].

Proof: It is a consequence of the previous works of the author [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] with the change of variables defined by {x = ix, t = -t}. 2

Wronskian representation

For this, we need to define the following notations :

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (10) 
with the arguments

Θ r,ν = κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν /2, 1 ≤ ν ≤ 2N. (11) 
The functions φ r,ν are defined by

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3. ( 12 
)
We denote W r (y) the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (y) = det[(∂ µ-1 y φ r,ν ) ν, µ∈[1,...,2N ] ]. ( 13 
)
We consider the matrix D r = (d νµ ) ν, µ∈[1,...,2N ] defined in [START_REF] Gaillard | A new family of deformations of Darboux-Pöschl-Teller potentials[END_REF]. Then we have the following statement [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF]:

Theorem 2.2 det(I + D r ) = k r (0) × W r (φ r,1 , . . . , φ r,2N )(0), (14) 
where

k r (y) = 2 2N exp(i 2N ν=1 Θ r,ν ) 2N ν=2 ν-1 µ=1 (γ ν -γ µ )
.

With these notations, we have the following result

Theorem 2.3 The function v defined by v(x, t) = W 3 (φ 3,1 , . . . , φ 3,2N )(0) W 1 (φ 1,1 , . . . , φ 1,2N )(0) e 2it-iϕ {x=ix,t=-t} .
is a solution to the defocusing dNLS equation depending on 2N -1 real parameters a j , b j , ǫ, 1 ≤ j ≤ N -1 with φ r ν defined in ( 12)

φ r,ν = sin(κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν /2), 1 ≤ ν ≤ N, φ r,ν = cos(κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν /2), N + 1 ≤ ν ≤ 2N, r = 1, 3.
κ ν , δ ν , x r,ν , γ ν , e ν being defined in(3), ( 4) and [START_REF] Prinari | Dark-bright soliton solutions with nontrivial polarization interactions to the three-component defocusing nonlinear Schrodinger equation with nonzero boudary conditions[END_REF].

Proof: It is a consequence of [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF] with the change of variables defined by {x = ix, t = -t}. 2

We can give another representation of the solutions to the dNLS equation depending only on terms γ ν , 1 ≤ ν ≤ 2N . From the relations (3), we can express the terms κ ν , δ ν and x r,ν in function of γ ν , for 1 ≤ ν ≤ 2N and we obtain:

κ j = 4γ j (1 + γ 2 j ) , δ j = 4γ j (1 -γ 2 j ) (1 + γ 2 j ) 2 , x r,j = (r -1) ln γ j -i γ j + i , 1 ≤ j ≤ N, κ j = 4γ j (1 + γ 2 j ) , δ j = - 4γ j (1 -γ 2 j ) (1 + γ 2 j ) 2 ,
x r,j = (r -1) ln

γ j + i γ j -i , N + 1 ≤ j ≤ 2N. ( 15 
)
We have the following new representation Theorem 2.4 The function v defined by

v(x, t) = det[(∂ µ-1 y φ3,ν (0)) ν, µ∈[1,...,2N ] ] det[(∂ µ-1 y φ1,ν (0)) ν, µ∈[1,...,2N ] ] e 2it-iϕ {x=ix,t=-t} (16) 
is a solution to the defocusing dNLS equation (1) depending on 2N -1 real parameters a j , b j , ǫ, 1 ≤ j ≤ N -1. The functions φr,ν are defined by φr,j (y) = sin 2γ j (1 + γ 2 j )

x + i 4γ j (1 -γ 2 j ) (1 + γ 2 j ) 2 t -i (r -1) 2 ln γ j -i γ j + i + γ j y -ie j , φr,N+j (y) = cos 2γ j (1 + γ 2 j ) x -i 4γ j (1 -γ 2 j ) (1 + γ 2 j ) 2 t + i (r -1) 2 ln γ j -i γ j + i + 1 γ j y -ie N +j ,
where

γ j = 1 -λ j 1 + λ j , 1 ≤ j ≤ N.
λ j is an arbitrary real parameter such that 0

< λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N.
The terms e ν are defined by [START_REF] Prinari | Dark-bright soliton solutions with nontrivial polarization interactions to the three-component defocusing nonlinear Schrodinger equation with nonzero boudary conditions[END_REF], where a j and b j are arbitrary real numbers,

1 ≤ j ≤ N -1. (17) 
Proof: We have to make the following change of variables defined by {x = ix, t = -t} in the previous works [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF][START_REF] Gaillard | Other 2N-2 parameters solutions to the NLS equation and 2N+1 highest amplitude of the modulus of the N-th order AP breather[END_REF][START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Towards a classification of the quasi rational solutions to the NLS equation[END_REF].

2
Remark 2.1 In the formula ( 16), the determinants det

[(∂ µ-1 y f ν (0)) ν, µ∈[1,...,2N ]
] are the wronskians of the functions f 1 , . . . , f 2N evaluated in y = 0. In particular ∂ 0 y f ν means f ν .

Families of quasi-rational solutions of dNLS equation in terms of a quotient of two determinants

The following notations are used:

X ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, Y ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in [START_REF] Barran | A note on slowky decaying solutions of the defocusing nonlinear Schrodinger equation[END_REF]. Parameters e ν are defined by [START_REF] Prinari | Dark-bright soliton solutions with nontrivial polarization interactions to the three-component defocusing nonlinear Schrodinger equation with nonzero boudary conditions[END_REF].

Below the following functions are used :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , (18) 
for 1 ≤ k ≤ N , and

ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , (19) 
for 1 ≤ k ≤ N . We define the functions ψ j,k for 1

≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term X k is only replaced by Y k . ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , (20) 
for 1 ≤ k ≤ N , and

ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , (21) 
for 1 ≤ k ≤ N . Then we get the following result Theorem 2.5 The function v defined by

v(x, t) = det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) e 2it-iϕ {x=ix,t=-t} (22) 
is a quasi-rational solution of the defocusing dNLS equation ( 1) depending on

2N -2 real parameters a j , b j , 1 ≤ j ≤ N -1,
where

n j1 = ϕ j,1 (x, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕ j,1 ∂ǫ 2k-2 (x, t, 0), n jN +1 = ϕ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕ j,N +1 ∂ǫ 2k-2 (x, t, 0), d j1 = ψ j,1 (x, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 ψ j,1 ∂ǫ 2k-2 (x, t, 0), d jN +1 = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψ j,N +1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N.
The functions ϕ and ψ are defined in ( 18),( 19), ( 20), [START_REF] Gaillard | The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation[END_REF].

Proof: It is also a consequence of the previous work [START_REF] Gaillard | Other 2N-2 parameters solutions to the NLS equation and 2N+1 highest amplitude of the modulus of the N-th order AP breather[END_REF] with the following change of variables defined by {x = ix, t = -t}. 2

We don't give examples of solutions in terms of Fredholm determinants, wronskians or quasi-rational solutions because these types of solutions have been already explicitly constructed by the author until order 13 in the case of the focusing equation and it is easy to deduce these in the defocusing case. These results can be found from the previous published works. We do not give all the references; for the first orders in [START_REF] Gaillard | Deformations of third order Peregrine breather solutions of the NLS equation with four parameters[END_REF], until last orders [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF] in [START_REF] Gaillard | Families of deformations of the thirteenth Peregrine breather solutions to the NLS equation depending on twenty four parameters[END_REF].

3 Structure of the multi-parametric quasi-rational solutions to the dNLS equation

Here we present a result which states the structure of the quasi-rational solutions of the dNLS equation. In this section we use the notations defined in the previous sections. The functions ϕ and ψ are defined in ( 18), ( 19), ( 20), [START_REF] Gaillard | The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation[END_REF].

The structure of the quasi rational solutions to the dNLS equation is given by the following theorem

Theorem 3.1 The function v defined by v(x, t) = det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) e 2it-iϕ {x = ix, t = -t} (23)
is a quasi-rational solution of the defocusing dNLS equation (1) quotient of two polynomials of degrees N (N +1) in x and t depending on 2N -2 real parameters a j and b j , 1 ≤ j ≤ N -1.

Proof: It is sufficient to realize the following change of variables defined by {x = ix, t = -t} in [START_REF] Gaillard | Multi-parametric deformations of the Peregrine breather of order N solutions to the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Towards a classification of the quasi rational solutions to the NLS equation[END_REF].

2
4 Rational solutions of order k to the dNLS equation

Expression of the rational solutions of order k

We consider the polynomials p n (x, t) defined by

             p n (x, t) = n k=0 (-x) k k! t   n -k 2   n -k 2 ! 1 -(n -k) + 2 n -k 2 , n ≥ 0, p n (x, t) = 0, n < 0, (24) 
where [x] is the greater integer less or equal to x. We denote W n,k (x, t) the following determinants

W n,k (x, t) = p n p n-1 . . . p k -p n-1 -p n-2 . . . -p k-1 . . . . . . . . . . . . (-1) n-k p k (-1) n-k p k-1 . . . (-1) n-k p 2k-n (25) 
We define the function v k by

v k (x, t) = W 2k+1,k (x, t) W 2k+1,k+1 (x, t) .
We will call this function a function of order k and with these notations we have the following result

Theorem 4.1 The function v k (x, t) defined by v k (x, t) = W 2k+1,k (x, t) W 2k+1,k+1 (x, t) (26) 
is a rational to the (dNLS) equation

iv t + v xx -2|v| 2 v = 0. Proof: It is well known that v = G F
, where F and G are polynomials, is a solution to the dNLS equation if G and F verify the two following equations:

(iD t + D 2 x )G • F = 0 (27) D 2 x F • F + 2GG = 0, ( 28 
)
where D is the bilinear differential Hirota operator.

We have to verify [START_REF] Gaillard | Tenth Peregrine breather solution of the NLS[END_REF] for G = W 2k+1,k (x, t) and F = W 2k+1,k+1 (x, t). We denote C l and Cl the following columns :

C l =      p l -p l-1 . . . (-1) k+1 p l-k-1      , Cl =      p l -p l-1 . . . (-1) k p l-k      . ( 29 
)
With these notations, W 2k+1,k (x, t) and W 2k+1,k+1 (x, t) can be written as

W 2k+1,k (x, t) = |C 2k+1 , . . . , C k | and W 2k+1,k+1 (x, t) = | C2k+1 , . . . , Ck+1 |. We denote A the expression A = (iD t + D 2 x )W 2k+1,k (x, t) • W 2k+1,k+1 (x, t). We have to evaluate A. The polynomials p k verify ∂ x (p k ) = -p k-1 and ∂ t (p k ) = ip k-2 . So A can be written as A = |C 2k+1 , . . . , C k+2 , C k , C k-1 | × | C2k+1 , . . . , Ck+1 | -|C 2k+1 , . . . , C k+1 , C k-2 | × | C2k+1 , . . . , Ck+1 | -|C 2k+1 , . . . , C k | × | C2k+1 , . . . , Ck+3 , Ck+1 , Ck | + |C 2k+1 , . . . , C k | × | C2k+1 , . . . , Ck+2 , Ck-1 | + |C 2k+1 , . . . , C k+2 , C k , C k-1 | × | C2k+1 , . . . , Ck+1 | + |C 2k+1 , . . . , C k+1 , C k-2 | × | C2k+1 , . . . , Ck+1 | -2|C 2k+1 , . . . , C k+1 , C k-1 | × | C2k+1 , . . . , Ck+3 , Ck | + |C 2k+1 , . . . , C k | × | C2k+1 , . . . , Ck+3 , Ck+1 , Ck | + |C 2k+1 , . . . , C k | × | C2k+1 , . . . , Ck+2 , Ck-1 |. A can be reduced to A = 2(|C 2k+1 , . . . , C k+2 , C k , C k-1 | × | C2k+1 , . . . , Ck+1 | + |C 2k+1 , . . . , C k | × | C2k+1 , . . . , Ck+2 , Ck-1 | -|C 2k+1 , . . . , C k+1 , C k-1 | × | C2k+1 , . . . , Ck+2 , Ck |).
A can be rewritten as the following determinant of order 2k + 3

A = C 2k+1 . . . C k+2 C k+1 C k 0 . . . 0 -C k-1 0 . . . 0 -Ck+1 -Ck C2k+1 . . . Ck+2 Ck-1 . (30) 
We denote by L the rows and by C the columns of this determinant of order 2k + 3. We combine the lines of the previous determinant in the following way:

we replace L k+2+j by L k+2+j +L j for 1 ≤ j ≤ k+1, then we obtain the following determinant 

A = p 2k+1 p 2k . . . p k+1 p k 0 . . . 0 -p k-1 -p 2k -p 2k-1 . . . -p k -p k-
This last determinant is clearly equal to 0, which proves that:

A = (iD t + D 2 x )W 2k+1,k (x, t) • W 2k+1,k+1 (x, t) = 0.
The relation ( 28) can be proven with the same type of arguments.

We give a sketch of the proof. We denote B the expression B = D 

C * l =      p l -p 1-l . . . (-1) k-1 p 1-k+1      . ( 33 
)
The product G × G can be written as

G × (G[k + 1, k + 1]) [k + 2, k + 2],
where

G[i, j] means that G[i, j
] is obtained from G by deleting the row i and the column j.

We denote C l

C l =        p l -p 1-l . . . (-1) k-1 p 1-k+1 (-1) k+1 p 1-k-1        . ( 34 
)
Using the Jacobi identity, we can write 

G × G as G × (G[k + 1, k + 1])G[k + 2, k + 2] -G[k + 1, k + 2]G[k + 2, k + 1] = | C 2k+1 , . . . , C k+2 , C k | × | C2k+1 , . . . , Ck+1 | -| C 2k+1 , . . . , C k+1 | × | C2k+1 , . . . ,

Some examples of rational solutions to the dNLS equation

In this section we will give some explicit examples of rational solutions to the dNLS equation. We recall that k means the order of the solution defined by

v k (x, t) = W 2k+1,k (x, t) W 2k+1,k+1 (x, t) .

4.2.1

Rational solutions of order 1 to the dNLS equation Example 4.1 The function v k (x, t) defined by

v k (x, t) = -2 x -x 2 + 6 it -x 4 + 12 t 2 (35) 
is a rational solution to the (dNLS) equation.

4.2.2

Rational solutions of order 2 to the dNLS equation

Example 4.2 The function v k (x, t) defined by v k (x, t) = -3 -x 8 + 16 ix 6 t + 120 x 4 t 2 -720 t 4 x (-x 8 + 72 x 4 t 2 + 2160 t 4 ) ( 36 
)
is a rational solution to the (dNLS) equation.

4.2.3

Rational solutions of order 3 to the dNLS equation Example 4.3 The function v k (x, t) defined by

v k (x, t) = n(x, t) d(x, t) (37) 
with n(x, t) = 4 (-x 14 + 30 itx 12 + 540 t 2 x 10 -4200 it 3 x 8 -10800 t 4 x 6 + 151200 it 5 x 4 -504000 t 6 x 2 + 3024000 it 7 )x and d(x, t) = x 16 -240 t 2 x 12 -7200 t 4 x 8 -2016000 t 6 x 4 + 6048000 t 8 is a rational solution to the (dNLS) equation.

4.2.4

Rational solutions of order 4 to the dNLS equation Example 4. [START_REF] Clarkson | Special polynomials associated with rational solutions of defocusing nonlinear Schrödinger equation and fourth Pailevé equation[END_REF] The function v k (x, t) defined by

v k (x, t) = n(x, t) d(x, t) (38) 
with n(x, t) = -5 x 24 + 240 itx 22 + 7560 t 2 x 20 -134400 it 3 x 18 -1436400 t 4 x 16 + 12096000 it 5 x 14 + 98784000 t 6 x 12 + 677376000 it 7 x 10 -1905120000 t 8 x 8 + 71124480000 it 9 x 6 + 533433600000 t 10 x 4 -1066867200000 t 12 and d(x, t) = (x 24 -600 t 2 x 20 + 25200 t 4 x 16 -14112000 t 6 x 12 -4021920000 t 8 x 8 + 106686720000 t 10 x 4 + 1066867200000 t 12 )x is a rational solution to the (dNLS) equation.

4.2.5

Rational solutions of order 5 to the dNLS equation Example 4.5 The function v k (x, t) defined by

v k (x, t) = n(x, t) d(x, t) (39) 
with n(x, t) = -6 (-x 34 + 70 itx 32 + 3360 t 2 x 30 -100800 ix + 317889898025863914167956270809525282120914619051540480000000000 t 50 is a rational solution to the (dNLS) equation.

We could go on and present more explicit rational solutions, but they become very complicated. For example, in the case of order 10 the numerator includes 60 terms and the denominator 31 terms with big coefficients. It will be relevant to study in detail the structure of these solutions.

Conclusion

Different representations of quasi-rational solutions to the defocusing nonlinear Schrödinger equation have been given. First quasi rational solutions in terms of wronskians of order 2N depending on 2N -2 real parameters have been presented. Another representation in terms of Fredholm determinants are given depending on 2N -2 real parameters. These solutions give families of quasirational solutions to the dNLS equation expressed as a quotient of two polynomials of degree N (N + 1) in the variables x and t depending on 2N -2 real parameters. Rational solutions as a quotient of determinants have been also given using certain particular polynomials and some explicit expressions are given for some orders. It will be relevant to study the structure of these last solutions.

2 xF

 2 • F + 2GG. We have to evaluate B. The polynomials p k verify ∂ x (p k ) = -p k-1 . So B can be written as B = 2(| C2k+1 , . . . , Ck+3 , Ck+1 , Ck | × | C2k+1 , . . . , Ck+1 | + | C2k+1 , . . . , Ck+2 , Ck-1 | × | C2k+1 , . . . , Ck+1 | -| C2k+1 , . . . , Ck+2 , Ck | × | C2k+1 , . . . , Ck+2 , Ck | + |C 2k+1 , . . . , C k | × |C 2k+1 , . . . , C k |). The determinant G = |C 2k+1 , . . . , C k | is equal to |C * 2k+1 , . . . , C * k+2 |, where C * l is defined by:

  Ck+2 , Ck |. So, B can be rewritten as the sumB = 2| C2k+1 , . . . , Ck+1 |×(| C2k+1 , . . . , Ck+3 , Ck+1 , Ck |+| C2k+1 , . . . , Ck+3 , Ck+2 , Ck-1 |+ | C 2k+1 , . . . , C k+2 , C k |)-2| C2k+1 , . . . , Ck+2 , Ck |×(| C2k+1 , . . . , Ck+2 , Ck |+| C 2k+1 , . . . , C k+2 , C k+1 |). But the sums | C2k+1 , . . . , Ck+3 , Ck+1 , Ck |+| C2k+1 , . . . , Ck+3 , Ck+2 , Ck-1 |+| C 2k+1 , . . . , C k+2 , C k |)and (| C2k+1 , . . . , Ck+2 , Ck |+| C 2k+1 , . . . , C k+2 , C k+1 |) are equal to 0 which proves that B = 0. Then we get the relation[START_REF] Gaillard | The Peregrine breather of order nine and its deformations with sixteen parameters solutions of the NLS equation[END_REF]. So we get the result. 2

  28 t 3 -2116800 t 4 x 26 + 33022080 it 5 x 24 +423360000 t 6 x 22 -3217536000 ix 20 t 7 -1778112000 t 8 x 18 +522764928000 it 9 x 16 + 2782389657600 t 10 x 14 +39431411712000 it 11 x 12 +1552163751936000 t 12 x 10 -11435109396480000 ix 8 t 13 -14195308216320000 t 14 x 6 +198734315028480000 it 15 x 4 -248417893785600000 t16 x 2 + 1490507362713600000 it17 )x and d(x, t) = -x 36 +1260 t 2 x 32 -302400 t 4 x 28 +76204800 t 6 x 24 +30939148800 t 8 x 20 + 12943232870400 t 10 x 16 -1623857227776000 t 12 x 12 -21292962324480000 t 14 x 8 -2235761044070400000 t 16 x 4 + 2981014725427200000 t 18 is a rational solution to the (dNLS) equation. = 7 x 48 -672 itx 46 -45360 t 2 x 44 + 2016000 it 3 x 42 + 67102560 t 4 x 40 -1717148160 it 5 x 38 -35611349760 t 6 x 36 +580375756800 it 7 x 34 +6847687123200 t 8 x 32 -82242658713600 it 9 x 30 -1292786998272000 t 10 x 28 -2839061643264000 it 11 x 26 -158869157787648000 t 12 x 24 +2004377520144384000 it 13 x 22 -104275895095443456000 t 14 x 20 + 2511365792151896064000 it 15 x 18 + 22959387883325988864000 t 16 x 16 -142130012484808212480000 it 17 x 14 -1281924569969568645120000 t 18 x 12 -3781319401921409187840000 it 19 x 10 -4253984327161585336320000 t 20 x 8 -158815414880699185889280000 it 21 x 6 -1191115611605243894169600000 t 22 x 4 + 1191115611605243894169600000 t 24 and d(x, t) = (-x 48 +2352 t 2 x 44 -1481760 t 4 x 40 +516499200 t 6 x 36 +79481606400 t 8 x 32 + 125617211596800 t 10 x 28 +52451663859302400 t 12 x 24 -25764484412620800000 t 14 x 20 + 427924663835074560000 t 16 x 16 -154800517473763983360000 t 18 x 12 -17488602233886517493760000 t 20 x 8 + 238223122321048778833920000 t 22 x 4 + 1191115611605243894169600000 t 24 )x is a rational solution to the (dNLS) equation. 62 + 126 itx 60 + 11340 t 2 x 58 -693000 ix 56 t 3 -32916240 t 4 x 54 + 1236422880 it 5 x 52 +38294182080 t 6 x 50 -981414403200 it 7 x 48 -20719094457600 t 8 x 46 + 373342708569600 it 9 x 44 +6234317431372800 t 10 x 42 -78116020651468800 ix 40 t 11 -380937010696704000 t 12 x 38 +7441864983641088000 it 13 x 36 +234509627737921536000 t 14 x 34 -10491528929367822336000 it 15 x 32 + 28872638199346765824000 t 16 x 30 -6740728931108306534400000 it 17 x 28 -169474893181970199183360000 t 18 x 26 +2400831552640985128304640000 it 19 x 24 +29802589444030637579304960000 t 20 x 22 -228707538154566157550223360000 it 21 x 20 +230292480111126109028352000000 t 22 x 18 +11716238554181895101585817600000 it 23 x 16 +91133252091673859628623462400000 t 24 x 14 -235200751536287015684171366400000 it 25 x 12 +13016193545913179761829058969600000 t 26 x 10 -93948903546617439225800294400000000 it 27 x 8 -67643210553564556242576211968000000 t 28 x 6 +947004947749903787396066967552000000 it 29 x 4 -631336631833269191597377978368000000 t 30 x 2 + 3788019790999615149584267870208000000 it 31 )x and d(x, t) = x 64 -4032 t 2 x 60 +5201280 t 4 x 56 -3353011200 t 6 x 52 +613601049600 t 8 x 48 --4541284257512341630970803868707504030298780272164864000000000 t 46 x 6 +63577979605172782833591254161905056424182923810308096000000000 it 47 x 4 -26490824835488659513996355900793773510076218254295040000000000 t 48 x 2 +158944949012931957083978135404762641060457309525770240000000000 it 49 )x and d(x, t) = -x 100 +9900 t 2 x 96 -37540800 t 4 x 92 +75243168000 t 6 x 88 -86477751360000 t 8 x 84 + 69030822212352000 t 10 x 80 -18841861512714240000 t 12 x 76 +32133190371945062400000 t 14 x 72 + 8001282884188898304000000 t 16 x 68 -71696063588052183920640000000 t 18 x 64 -122350825624182265506299904000000 t 20 x 60 +163239507932764545783559618560000000 t 22 x 56 -88634453383495458565418231267328000000 t 24 x 52 + 5976929116686443410537623060480000000000 t 26 x 48 -9037618519244139622561816267613798400000000 t 28 x 44 -2978595180594090148758587450945867612160000000 t 30 x 40 + 182653836076595912222107290719280011673600000000 t 32 x 36 + 732385622391101433187551102767316006548275200000000 t 34 x 32 -59727919899994725237823441224569207950147584000000000 t 36 x 28 + 7743361476932166250721550026156249805131612160000000000 t 38 x 24 + 872923144660058559307277530405151995358292738048000000000 t 40 x 20 + 81506554657420499600797701201590344042893237288960000000000 t 42 x 16 -4042431062558334406356586777069179723940202136207360000000000 t 44 x 12 -18922017739634756795711682786281266792911584467353600000000000 t 46 x 8 -662270620887216487849908897519844337751905456357376000000000000 t 48 x 4
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737286926745600 t 10 x 44 -609647929867468800 t 12 x 40 -164001698405056512000 t 14 x 36 + 436233208152604262400000 t 16 x 32 -57117582890101985771520000 t 18 x 28 +10315477913333460605337600000 t 20 x 24 +1960527679738492460256460800000 t 22 x 20 + 327241269096776028738551808000000 t 24 x 16 -24597531110387111360936804352000000 t 26 x 12 -180381894809505483313536565248000000 t 28 x 8 -10101386109332307065558047653888000000 t 30 x 4 + 7576039581999230299168535740416000000 t 32 is a rational solution to the (dNLS) equation.

4.2.8

Rational solutions of order 8 to the dNLS equation Example 4.8 The function v k (x, t) defined by

with n(x, t) = -9 x 80 +1440 itx 78 +166320 t 2 x 76 -13305600 it 3 x 74 -846568800 t 4 x 72 + 43445445120 it 5 x 70 +1870141996800 t 6 x 68 -68163843686400 it