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Level-crossing distributions of kinematic variables in multidirectional
second-order ocean waves

Romain Hascoëta

aENSTA Bretagne, CNRS UMR 6027, IRDL, 2 rue François Verny, 29806 Brest Cedex 9, France

Abstract

The conditional value of a stationary random process, given the level-upcrossing of another
dependent stationary random process, is considered. Assuming that both processes are weakly
non-Gaussian, an analytical approximation for the related conditional distribution is derived. It
is based on a trivariate Edgeworth expansion truncated to non-Gaussian terms of lowest order,
to which Rice’s formula is then applied. As an application, the effect of level-upcrossing condi-
tioning in second-order ocean waves is investigated. Upcrossing events are monitored for the sea
surface elevation. The conditional distributions of different kinematic variables, given upcrossing,
are considered for different sea-state configurations. Predictions from the analytical model are com-
pared with numerical data obtained from Monte Carlo experiments. It is found that the analytical
approximation provides conditional mean and variance in good agreement with numerical data,
although moderate discrepancies appear for the sea states with the most severe wave steepnesses.
Regarding the conditional skewness, given upcrossing, results are mixed, with significant discrep-
ancies between the analytical approximation and numerical estimates, in a number of cases. An
Edgeworth-type approximation is also provided for the upcrossing frequency and compared with
Monte Carlo estimates; this analytical estimate is found to be accurate over a wide range of crossing
levels.

Keywords: water wave, level crossing, nonlinear, second order, Edgeworth series, Rice’s formula

1. Introduction

Stochastic level-crossing in the marine context finds various applications, such as slamming
induced by wave impacts on a marine structure (e.g. [1, 2, 3, 4]) or the study of the random
motions of the sea surface (e.g. [5, 6]). Level-crossing events may be monitored for the sea free-
surface itself, or for some response to wave excitations (e.g. the hull-girder response of a ship;
see [7]). When crossings are monitored for the sea surface, level crossing may be considered at a
point fixed in space, along a line of sight at a given time, or at a moving material point (e.g. a
material point with seakeeping motions [3, 4] or forward motion, [8, 9, 10]).1 Problems of practical
interest may relate to the frequency of free-surface crossings, and/or the conditional distribution

∗Corresponding author
Email address: romain.hascoet@ensta-bretagne.fr (Romain Hascoët)

1More generally, level crossing may be also considered for a random field in a multidimensional space (for instance
on contour lines for a two-dimensional random field; see [6]).
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of wave-related variables, given free-surface crossing. These problems can be addressed by the use
of the level-crossing theory of random processes, based on the pioneering work of Rice [11, 12] and
subsequent developments (see for example [13], chapter 8, and references therein).

In most studies dealing with stochastic level-crossing in ocean waves, a linear wave model is
assumed, which allows the randomness of the free surface and wave-related variables to be modeled
through Gaussian processes. Then it offers a favorable framework, where level-crossing problems
are mostly analytically tractable. As soon as nonlinearities are introduced, the stochastic processes
are no longer Gaussian, and analytical developments become much more challenging. Among the
studies dealing with the statistics of nonlinear ocean waves, most of them limit their investigations
to the effect of second-order Stokes’ corrections.

Based on the pioneering work of Kac and Siegert [14, 15], several studies investigated the
probabilistic properties of a second-order response process through the eigendecomposition of the
related Volterra kernel (see e.g. [16, 17, 18, 19]). However, the generalization of this approach to
multiple random processes – as required for the present topic of crossing sampling – is impeded
by the fact that two interdependent random processes will have distinct Volterra kernels, which, a
priori, do not admit a common set of orthogonal eigenfunctions. Series expansions of the probability
distribution of the considered random processes, is another approach which has been introduced by
Longuet-Higgins to investigate the probabilistic effects of second-order nonlinearities in the context
of ocean engineering ([20, 21]). These series are named in honor of F. Y. Edgeworth [22]. One
advantage of Edgeworth series, compared to the eigendecomposition of the Volterra kernel, is that
it can be readily generalized to multivariate distributions. Besides, their applicability is not limited
to second-order nonlinearities, although accounting for higher-order nonlinearities remains very
challenging in the context of ocean engineering.

The present study makes use of Edgeworth expansions to model the effect of second-order non-
linearities on wave statistics conditioned to free-surface upcrossing. An upcrossing event is defined
as the free-surface upcrossing a given level (i.e. a given altitude) at a position fixed in the reference
frame of the mean flow (i.e. the reference frame where the mean fluid velocity field is zero). Based
on a trivariate Edgeworth expansion, an analytical approximation is derived for the conditional
distribution of a second-order wave variable, given free-surface upcrossing. The Edgeworth-type
approximation of the second-order upcrossing frequency – whose expression was already derived by
Longuet-Higgins [21] – is also considered. For illustrative purpose, three different kinematic vari-
ables are considered: (i) the vertical component of the fluid velocity, (ii) the horizontal component
of the fluid velocity and (iii) the free-surface slope. The analytical approximations obtained for
their respective conditional distributions, given upcrossing, are compared with numerical results
from Monte Carlo simulations of second-order irregular seas. The analytical approximation of the
second-order upcrossing frequency is also compared with numerical estimates. These comparisons
are used to delimit the applicative scope of the analytical approximations. Section 2 introduces the
notations and conventions used throughout the paper. Section 3 sets the theoretical framework of
Edgeworth series and their application to second-order ocean waves. Section 4 applies Rice’s for-
mula to Edgeworth series truncated to the leading order, in order to obtain approximate formulae
for the upcrossing frequency and the conditional distribution of a wave variable given free-surface
upcrossing. Section 5 illustrates the analytical model through a series of examples and assesses its
scope of applicability through comparisons with numerical results from Monte Carlo simulations.
The paper ends with a discussion in Section 6.
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2. Notations

In the present paper, in order to lighten the notation system, the same notations are used to
represent a random process (or random variable) and its realization. The elevation of a short-
crested sea state is modeled as a random field, Π(x, y, t), which depends on two horizontal cartesian
coordinates, x, y, and a time variable, t. The free-surface elevation, Π, is measured vertically,
relative to the mean water level. The space coordinate system is attached to the reference frame of
the mean flow (i.e. the reference frame where the mean Eulerian velocity of the fluid is zero). In the
subsequent developments, η(t) = Π(x0, y0, t) and η̇(t) = dη(t)/dt denote random processes which
respectively represent the second-order free-surface elevation and its time-derivative, at a location
(x0, y0) fixed in the reference frame of the mean flow. A third random process, ξ(t), will denote
a third second-order wave variable which may have a dependency relationship with η(t) and η̇(t).
The values taken by the these three random processes, at a given time, are denoted η, η̇ and ξ. In
the present study, these random values will be first considered as non-conditioned (i.e. at a time
fixed a priori). Then, the question of how the statistics of ξ are changed when the observation time
is conditioned to η(t) upcrossing a given level, `, will be addressed. When discussing the results,
the predictions from the second-order wave model will be compared with those of the linear wave
model. For this purpose, the first-order component of a second-order quantity, q, will be denoted
q(1).

In the main text, it will be always specified whether ξ is non-conditioned or level-crossing
conditioned. In equations, the notation ξ|η(t) ↑ ` will be used to denote the conditional value of
ξ(t), given that η(t) upcrosses the level `. When approximating the probability density function
of non-conditioned variables in terms of truncated Edgeworth series, it is convenient to consider
random variables in standardized form. The wave variables considered in the present work (η, η̇
and ξ), non-conditioned, all have a mean equal to zero.2 The non-conditional standard deviation
of a random variable X will be denoted σX . Hence,

χ = η/ση , (1)

χ̇ = η̇/ση̇ , (2)

ζ = ξ/σξ , (3)

denote the standardized counterparts of the variables η, η̇ and ξ. Note that ζ will not conserve, a
priori, its standardized character when conditioned to level crossing.

3. Edgeworth approximations

Edgeworth series express a probability density function in terms of a “corrected” Gaussian
distribution (although another kind of baseline distribution may be conceivable; see e.g. [23]).
Hence, this mathematical approach is particularly well suited to the study of “weakly” non-Gaussian
processes. The correction factor takes the form of a function series which multiplies the probability
density function of a normal distribution. The normal distribution takes the mean and the variance
from the considered random variable (here the value of a random process at a given fixed time).
The function series involves Hermite polynomials, which form an orthogonal set with respect to

2 This assumption does not limit the scope of the model to be developed below. If necessary, the random variables
of the considered problem can be redefined beforehand, such that their means are equal to zero
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the density function of the standard normal distribution. Compared to the alike Gram-Charlier A
series, Edgeworth series are arranged in such way that the order of a term in the series corresponds
to the order of the correction it brings to the baseline normal distribution. Then, the error can be
consistently controlled when the series is truncated at some order (see [23] for more details).

In the context of ocean engineering, Longuet-Higgins (1963) [20] used a truncated Edgeworth
series to investigate the statistical properties of the sea elevation, and compared the skewness
predicted by the second-order potential flow theory with observed values. Longuet-Higgins (1964)
[21] also used a bivariate Edgeworth expansion to investigate the effect of nonlinearities on the zero-
crossing frequency and the maxima distribution of a stationary random process. Jensen (1995)
[24] used a trivariate Edgeworth expansion, truncated to the leading order, to approximate the
conditional distribution of a second-order wave kinematic variable, given that it is observed at a
wave crest. Jensen (2005) [25] also used a trivariate Edgeworth expansion to predict the average
profile of a second-order wave, given the magnitude of its crest height.

In the present study, Edgeworth’s approximations are limited to non-Gaussian corrections of
leading order, involving only the third-order cumulants of the considered distributions (see §3.4 for
further discussion on the order of Edgeworth’s approximations). In §3.1, a bivariate Edgeworth
approximation is provided for the non-conditioned joint distribution of the free-surface elevation
and its time derivative, respectively noted η and η̇. In §3.2, a trivariate Edgeworth approximation is
provided for the non-conditioned joint distribution of η, η̇, and ξ, where ξ is a third wave kinematic
variable.

3.1. Edgeworth approximation for the bivariate distribution of η and η̇

The sea surface elevation, η(t), is modeled as a time-differentiable stationary process, which
induces the non-correlation of η and η̇ at a given time:

E [ηη̇] =
1

2
E

[
d

dt
η2
]

= 0 , (4)

where E is the expectation operator. Taking advantage from the non-correlation of η and η̇, the
Edgeworth approximation of their joint probability density function may be expressed as (see e.g.
[21]):

f̂η,η̇(η, η̇) =
1

σηση̇
f̂χ,χ̇(η/ση, η̇/ση̇) (5)

where

f̂χ,χ̇(χ, χ̇) =
exp
{
− 1

2 (χ2 + χ̇2)
}

2π
{1 + [λ30H3(χ) + 3λ12H1(χ)H2(χ̇) + λ03H3(χ̇)] /6} . (6)

The functions H1, H2, H3 are the three first probabilist’s Hermite polynomials (their expressions
are given in appendix A.1), and λab are two-dimensional cumulants which may be expressed as

λab = E
[
χaχ̇b

]
, for a+ b ≤ 3 . (7)

A “hat” symbol has been used in Eqs. (5-6) to differentiate the Edgeworth approximations, f̂η,η̇
and f̂χ,χ̇, from the exact distributions, fη,η̇ and fχ,χ̇.
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3.2. Edgeworth approximation for the trivariate distribution of η, η̇, and a third variable ξ

Taking into account the non correlation of η and η̇ (see Eq. 4), the Edgeworth approximation
of the probability density function of the triad (η, η̇, ξ) may be expressed as (see [24]):

f̂η,η̇,ξ(η, η̇, ξ) =
1

σηση̇σξ
f̂χ,χ̇,ζ(η/ση, η̇/ση̇, ξ/σξ) , (8)

where

f̂χ,χ̇,ζ =
1

(2π)3/2
√

1− ρ2 − ρ̇2
J3

×
[
1 +

1

6
(λ300H300 + 3λ201H201 + 3λ120H120 + 6λ111H111

+3λ102H102 + λ030H030 + 3λ021H021 + 3λ012H012 + λ003H003)

]
.

(9)

As in Eqs. (5-6), a “hat” symbol has been used in Eqs. (8-9) to differentiate the Edgeworth approx-

imations, f̂η,η̇,ξ and f̂χ,χ̇,ζ , from the exact distributions, fη,η̇,ξ and fχ,χ̇,ζ . The function J3 is the
exponential term of the Gaussian distribution baseline:

J3(χ, χ̇, ζ) = exp

{
−1

2

(1− ρ̇2)χ2 + (1− ρ2)χ̇2 + ζ2 − 2ρχζ − 2ρ̇χ̇ζ + 2ρρ̇χχ̇

1− ρ2 − ρ̇2

}
. (10)

The coefficients

ρ =
E[ηξ]

σησξ
= E[χζ] , (11)

ρ̇ =
E[η̇ξ]

ση̇σξ
= E[χ̇ζ] , (12)

are the non-conditional correlation coefficients of the pairs (η, ξ) and (η̇, ξ). The three-dimensional
cumulants, λabc, may be expressed as follows:

λabc = E
[
χaχ̇bζc

]
, for a+ b+ c ≤ 3 . (13)

Similarly to the pair (η, η̇), the processes η2(t) and η̇(t), considered at a given time, are uncorrelated
with

E
[
η2η̇
]

=
1

3
E

[
d

dt
η3
]

= 0 . (14)

Eq. (14) translates into λ210 = λ21 = 0, result which has been used in Eqs. (6-9). The trivariate
Hermite polynomials, Habc, are given by:

Habc(χ, χ̇, ζ) =
(−1)a+b+c

J3(χ, χ̇, ζ)

∂a

∂χa
∂b

∂χ̇b
∂c

∂ζc
J3(χ, χ̇, ζ) . (15)

As calculations will show, explicit expressions for the third-order Hermite polynomials (with a +
b+ c = 3), appearing in Eq. (9), are not required in the present study.
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3.3. Computation of cumulants

Within the linear wave theory, the realization of a random wave field can be approximated as
the sum of independent Airy waves3 (see e.g. [26, 27])

Π(1)(x, y, t) '
N∑
n=1

Q∑
q=1

anq cos [ωnt− (kn cos θq)x− (kn sin θq)y]

+ bnq sin [ωnt− (kn cos θq)x− (kn sin θq)y] ,

(16)

where the angular frequencies and directions, ωn, θq, account for the discretization of the two-
dimensional wave spectrum. The wave amplitudes anq and bnq, are independent random variables,
which follow centered normal distributions of variance

σnq
2 = G(ωn, θq)∆ωn∆θq , (17)

where G(ω, θ) is the one-sided variance density spectrum (defined for ω > 0 and θ ∈]− π, π]), and
∆ωn, ∆θq are the sizes of frequency and direction discretization intervals. A sea state realization
is fully defined by the realization of the wave amplitudes anq and bnq. The wave numbers, kn, are
related to the wave frequencies, ωn, through the dispersion relation

ω2
n = gkn tanh knh , (18)

where g is the acceleration due to gravity, and h is the water depth.
In the present approach, the space coordinate system (x, y, z) is Eulerian. A Lagrangian-type

wave model may have been an interesting alternative, as this kind of model, in its first-order
approximation, has been shown to account for interesting nonlinear wave features (see e.g. [28, 29,
30, 31]), which are missed by the Eulerian linear model (e.g. the steepening of crests and flattening
of troughs). The Lagrangian approach leads to a model which is nonlinear when expressed in an
Eulerian coordinate system, even when it is restricted to the first order (which explains why it can
render some nonlinear features). This is due to the nonlinearities introduced by the “mapping”
between Eulerian and Lagrangian coordinates. This mapping makes the crossing conditioning
problem less readily tractable than in Eulerian approaches. Within the first-order Lagrangian wave
model, Lindgren & Lindgren [32] addressed this matter by making use of a multivariate form of
Rice’s formula, evaluating the resulting distributions through Monte Carlo integration. The present
study focuses on the level-crossing conditioning in the second-order Eulerian wave model.

Let us consider the second-order values of the free-surface elevation, η(t) = Π(x0, y0, t), its
time derivative η̇(t), and a third wave variable ξ(t), all measured at a fixed horizontal location
(x0, y0). In the present section the random values of the processes are considered non-conditioned,
i.e. considered at a time, t0, given a priori. As the sea state is assumed to be stationary and
homogeneous, the spacetime location x0 = y0 = t0 = 0 may be chosen without loss of generality.
The random wave amplitudes anq and bnq are collected in a random vector U as follows:

U = [ui]i=1,...,2NQ

= [a11, ..., a1Q, a21, ..., a2Q, ..., aNQ, b11, ..., b1Q, b21, ..., b2Q, ..., bNQ]ᵀ .
(19)

3Eq. (16) is equivalent to the alternative parametrization where the wave field is represented as Π(1)(x, y, t) '
N∑

n=1

Q∑
q=1

Anq cos [ωnt− (kn cos θq)x− (kn sin θq)y + φnq ], with φnq and Anq being random phases and amplitudes.

The relation between these two alternative parametrizations is readily obtained from trigonometric identities.
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Then, the second-order values of the wave variables, at this specific spacetime position, may be
expressed as

η = αiui + αijuiuj , (20)

η̇ = βiui + βijuiuj , (21)

ξ = γiui + γijuiuj , (22)

where the Einstein summation convention is used. The first and second terms on the right-hand
sides of Eqs. (20-21-22) are respectively the first-order and second-order contributions of the wave
model. The coefficients αi, βi, γi are the linear transfer functions of the respective wave variables,
in discretized form, and the coefficients αij , βij , γij are their quadratic transfer functions (QTFs),
also in discretized form. For instance the linear transfer coefficients αi are readily obtained from
Eqs. (16-19), setting x = y = t = 0:

αi =

{
1 for i = 1, ..., NQ
0 for i = NQ+ 1, ..., 2NQ

(23)

The exhaustive list of linear transfer functions and quadratic transfer functions of wave variables
obtained from Stokes’ perturbative approach are not reproduced here. In the general case of short-
crested sea states in finite-depth waters (as considered in the present study), the material necessary
to express these functions can be found in a number of publications (see e.g. [33, 34, 35, 36]).

Starting from Eqs. (20-21-22), the joint cumulants of η, η̇ and ξ, may be expressed in terms
of linear coefficients, quadratic coefficients and Airy wave variances. The first order cumulants are
given by

K100 =E[η] = αiiVi , (24)

K010 =E[η̇] = βiiVi , (25)

K001 =E[ξ] = γiiVi , (26)

where Vi = E[ui
2] is the variance of ith Airy wave amplitude, which is given by Eqs. (17-19). In

the present study, the QTF of η is defined such that η is measured relative to the mean water level;
i.e. K100 = E[η] = 0. The variable η̇, as the time derivative of η, has also a zero mean, K010 = 0.
As for the third variable, in the examples considered in Section 5, its mean is also zero4, K001 = 0.
The other cumulants, up to the third order, are given by

Kabc = E[ηaη̇bξc] , a+ b+ c ≤ 3 . (27)

Longuet-Higgins [20] proposed a general procedure to compute cumulants of arbitrary order, in-
troducing the concept of ‘irreducible terms’. In the present case, cumulants may be also directly
computed by substituting Eqs. (20-21-22) into Eq. (27), yielding for example

K101 = E[ηζ] = αiγiVi + 2αijγijViVj , (28)

K111 = E[ηη̇ξ] = 2αiβjγijViVj + 2αiγjβijViVj + 2βiγjαijViVj + 8αijβikγjkViVjVk . (29)

4See footnote 2.
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In Eq. (28) the quadratic transfer coefficients have been assumed to be given in symmetric form with
αij = αji, βij = βji, γij = γji. The expression of other second-order and third-order cumulants
may be easily deduced from Eqs. (28-29). Then, the cumulants in standardized form, as appearing
in Eqs. (6-9), may be computed as (for the cumulants appearing in Eq. 6, note that λab = λab0)

λabc =
Kabc√

K200
aK020

bK002
c
. (30)

In Eqs. (28-29), the sums of terms involving E[ui
4] and E[ui

6] have been neglected, as they
become respectively negligible compared to the sums of terms ViVj and ViVjVk, when the number of
considered wave harmonics becomes large (NQ→ +∞); i.e. when the wave frequency discretization
step (along with the wave direction discretization step for continuous directional distributions) tends
to zero.

3.4. Order consistency of Edgeworth approximations

In Eqs. (6-9), the third order cumulants bring first-order modifications to the normal distribu-
tion, in the sense that

λabc = O

√∑
i

Vi

 = O(η) , for a+ b+ c = 3. (31)

The terms of the type 2αijγijViVj and 8αijβikγjkViVjVk, as appearing in Eqs. (28-29), respectively
correspond to O(η2) and O(η3) corrections to the second- and third-order standardized cumulants.
When considering order consistency, these terms may be neglected, since the Edgeworth approx-
imations, as expressed in Eqs. (6-9), are truncated to the leading order. In the present study
these higher-order terms are retained. These terms will be useful in Section 5, where the vertical
component of the fluid velocity at the mean water level, w, is one of the wave variables considered
as the third random variable of the problem. In the linear wave theory, η̇(1) = w(1), resulting in
ρ̇(1) = 1. Then, if the O(η2) terms in the computation of ρ̇ were to be neglected, the Edgeworth
approximation as written in Eq. (9) would break down, since the baseline normal distribution would
become degenerate. Apart from this specific point, it has been checked that the decision of retaining
or neglecting higher-order terms does not significantly change the results to be presented in Section
5.

4. Applying Rice’s formulae to Edgeworth approximations

4.1. Upcrossing frequency

The upcrossing frequency of the free-surface elevation, η, at the level ` is given by Rice’s formula
[11, 12]:

µ↑(`) =

∫ +∞

0

τ ′fη,η̇(`, τ ′) dτ ′

=
ση̇
ση

∫ +∞

0

τfχ,χ̇(˜̀, τ) dτ , (32)
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where
˜̀=

`

ση
, (33)

fη,η̇ is the joint distribution of the pair (η, η̇), non-conditioned, and fχ,χ̇ is its standardized version.

When fχ,χ̇ is replaced by its Edgeworth approximation f̂χ,χ̇ (see Eq. 6), the upcrossing frequency
becomes

µ̂↑(`) =
ση̇
ση

∫ +∞

0

τ f̂χ,χ̇(˜̀, τ)dτ

=
1

2π

ση̇
ση

exp

{
−1

2
˜̀2

}[
I0 +

1

6

{
λ30I0H3(˜̀) + 3λ12I2H1(˜̀) + λ03I3

}]
, (34)

where the integrals Ip are defined as

Ip =

∫ +∞

0

τHp(τ) exp

{
−1

2
τ2
}

dτ . (35)

Calculations yield I0 = 1, I2 = 1, I3 = 0, (integration by parts may be used to obtain the values
of I2 and I3) leading to

µ̂↑(`) =
1

2π

ση̇
ση

exp

{
−1

2
˜̀2

}[
1 +

λ30
6
H3(˜̀) +

λ12
2
H1(˜̀)

]
. (36)

An expression similar to Eq. (36) had been already obtained by Longuet-Higgins (see Eq. 31 in
[21]), with an extra factor 2 due to the counting of both upcrossings and downcrossings, and a typo

in the normalization factor (the factor K02
1/2 appearing in Eq. 31 in [21] should be placed at the

numerator). For comparison, the upcrossing frequency predicted by the linear wave theory may be
expressed as

µ↑ (1)(`) =
1

2π

ση̇(1)

ση(1)
exp

{
−1

2

(
`

ση(1)

)2
}
. (37)

The factor appearing into square brackets, in Eq. (36), may be viewed as the leading-order non-
Gaussian correction to the upcrossing frequency.

4.2. Conditional distribution given upcrossing

The conditional distribution of a wave variable ξ, given free-surface upcrossing, may be expressed
in terms of generalized Rice’s formula

fξ|η(t)↑`(ξ) =

∫ +∞

0

τ ′fη,η̇,ξ(`, τ
′, ξ) dτ ′∫ +∞

0

τ ′fη,η̇(`, τ ′) dτ ′

=
1

σξ

∫ +∞

0

τfχχ̇ζ(˜̀, τ, ξ/σξ) dτ∫ +∞

0

τfχ,χ̇(˜̀, τ) dτ

. (38)
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When the distributions fχχ̇ζ and fχ,χ̇ are replaced by their Edgeworth approximations, the following
approximation is obtained:

f̂ξ|η(t)↑`(ξ) =
1

σξ

∫ +∞

0

τ f̂χχ̇ζ(˜̀, τ, ξ/σξ) dτ∫ +∞

0

τ f̂χ,χ̇(˜̀, τ) dτ

. (39)

The integral at the denominator is a normalization factor which has been already computed when
considering the upcrossing frequency in Section 4.1, and may be expressed as (noting that λab0 =
λab): ∫ +∞

0

τ f̂χ,χ̇(˜̀, τ) dτ =
1

2π
e−

1
2
˜̀2

[
1 +

λ300
6
H3(˜̀) +

λ120
2
H1(˜̀)

]
. (40)

The computation of the numerator of Eq. (39) is a bit more involved. It may be decomposed as
follows:

F(˜̀, ζ) =

∫ +∞

0

τ f̂χχ̇ζ(˜̀, τ, ζ) dτ = α000G1(˜̀, ζ) +
∑

a+b+c=3

αabcIabc(˜̀, ζ) (41)

where G1 is given by

G1(˜̀, ζ) =

∫ +∞

0

τJ3(˜̀, τ, ζ) dτ , (42)

the functions Iabc are given by

Iabc(˜̀, ζ) =

∫ +∞

0

τHabc(˜̀, τ, ζ)J3(˜̀, τ, ζ) dτ , (43)

and αabc (with a+b+c = 3) are numerical factors whose expressions can be identified from Eq. (9).
The integrals Iabc may be analytically computed by using a combination of integrations by parts
and Hermite polynomial algebra. The calculations are a bit lengthy and the details are reported in
Appendices A, B, C and D. All calculations done, F may be expressed as follows

F(˜̀, ζ) =Γ0(˜̀, ζ)G0(˜̀, ζ) + Γ1(˜̀, ζ)G1(˜̀, ζ)

+
[
β1H100(˜̀, 0, ζ) + β2H010(˜̀, 0, ζ) + β3H001(˜̀, 0, ζ)

]
J3(˜̀, 0, ζ) ,

(44)

where G0 is defined by

G0(˜̀, ζ) =

∫ +∞

0

J3(˜̀, τ, ζ) dτ . (45)

The expression of the first-order Hermite polynomials, H100, H010, H001, are reported in Appendix
A, Eqs. (80-81-82). Note that H100(χ, χ̇, ζ) 6= H1(χ), H010(χ, χ̇, ζ) 6= H1(χ̇) and H001(χ, χ̇, ζ) 6=
H1(ζ). Closed-form expressions for the integrals G0 and G1 are reported in Appendix D. Γ0 and
Γ1 are polynomials which can be expressed in terms of other polynomials, Pab (3 ≥ a+ b ≥ 2), as
follows:

Γ0 = (−3rα300 − sα201)P20

+ (−3sα003 − rα102 + α012)P02

+ (−2rα201 − 2sα102 + α111)P11 ,

(46)
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Γ1 = α300P30 + α201P21 + α102P12 + α003P03 + α000 , (47)

where r and s are numerical coefficients given by

r =− ρρ̇

1− ρ2
, (48)

s =
ρ̇

1− ρ2
. (49)

The polynomials Pab may be themselves conveniently expressed in terms of first-order polynomials,

P11 =SR+
ρ

1− ρ2
, (50)

P20 =R2 − 1

1− ρ2
, (51)

P02 =S2 − 1

1− ρ2
, (52)

P30 =R

(
R2 − 3

1− ρ2

)
, (53)

P03 =S

(
S2 − 3

1− ρ2

)
, (54)

P21 =S

(
R2 − 1

1− ρ2

)
+ 2

ρ

1− ρ2
R , (55)

P12 =R

(
S2 − 1

1− ρ2

)
+ 2

ρ

1− ρ2
S , (56)

where R and S are given by

R(χ, ζ) =
1

1− ρ2
(χ− ρζ) , (57)

S(χ, ζ) =
1

1− ρ2
(−ρχ+ ζ) . (58)

The terms β1, β2, β3 are numerical coefficients which may be expressed as

β1 =3r2α300 + 2rsα201 + s2α102 − sα111 + α120 , (59)

β2 =2(r3α300 + r2sα201 + rs2α102 + s3α003)− rsα111 − s2α012 + α030 , (60)

β3 =r2α201 + 2rsα102 + 3s2α003 − rα111 − 2sα012 + α021 . (61)

5. Illustrative examples

The analytical approximations obtained in the previous section are now applied to a number of
illustrative examples. Both the upcrossing frequency and the conditional distribution of a kinematic
variable are considered.
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5.1. Considered sea states

5.1.1. Shape of the two-dimensional wave spectrum

Both long-crested and short-crested sea states have been considered in the present study. The
two-dimensional one-sided variance density spectrum G(ω, θ) is assumed to be of the form

G(ω, θ) = D(θ)Ω(ω) , (62)

where ∫ π

−π
D(θ) dθ = 1 , (63)

and Ω is the one-sided wave frequency spectrum. In the considered examples, the sea states are
assumed to have a JONSWAP frequency spectrum [37] with a peak enhancement parameter γ = 3.3.
The normalization of the wave spectrum is set through the specification of the significant wave
height, Hs, which is defined by:

Hs
2 = 16

∫ +∞

0

Ω(ω) dω . (64)

To avoid considering excessively long and short waves, the frequency spectrum is truncated at low
and high frequencies: 1% of wave variance is discarded at low and high frequencies (2% of wave
variance is discarded in total). Following this prescription, the low-frequency and high-frequency
cutoffs lie respectively at 0.74ωp and 3.0ωp, where ωp is the peak angular frequency of the wave
spectrum. This truncation offers two benefits: (i) it makes the Monte Carlo simulation of sea
state realizations (see Section 5.2, below) numerically less demanding; (ii) it limits the issue of
the poor convergence of the second-order perturbative solution, which arises when the interaction
of two waves with an extreme wavelength ratio is considered (see for example [38, 39, 40]). The
normalization of the spectrum following Eq. (64) is performed before the truncation operation.

Two different wave direction distributions have been considered as case studies:

• Unidirectional sea state with a wave direction distribution

D1(θ) = δ(θ), (65)

where δ is the Dirac delta function. Following the convention used for wave phases in Eq. (16),
Eq. (65) means that all the waves propagate in the direction of increasing x-coordinate.

• Multidirectional sea state, with a spreading function given by

D2(θ) = (2/π) cos2 θ , for |θ| < π/2
0 , for |θ| > π/2 .

(66)

It has been found that the choice of the direction distribution does not change qualitatively the
results and their discussion. Therefore, for the sake of conciseness, only results for the short-crested
sea state (D2) are reported in §5.3-5.4.
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5.1.2. Magnitude of wave nonlinearities

In the different examples to be reported in §5.3-5.4, the effect of wave nonlinearity magnitude
is investigated. Two different sources of non-linearity are considered: the wave steepness and the
water depth. For a given sea state, a characteristic wave steepness may be defined as

κp = kp
Hs

2
, (67)

where kp is the wave number corresponding to the peak frequency of the spectrum, and Hs is the
significant wave height. The water depth, h, is nondimensionalized as follows

h̃p = kph . (68)

The level of nonlinearity brought by the finiteness of the water depth may be quantified by the
function

Wnl(h̃p) =
1

2

[
3 coth

(
h̃p

)3
− coth

(
h̃p

)]
, (69)

which corresponds to the amplification factor (relative to the case of infinite water depth) of the
second-order correction for the free-surface elevation of a regular wave of frequency ωp (see for
instance Eq. 3.60 in [36]). The function Wnl has the following limits

lim
h̃p→0

Wnl(h̃p) = +∞ , and lim
h̃p→+∞

Wnl(h̃p) = 1 , (70)

and it rapidly evolves in a quite narrow range of h̃ values, with Wnl(2.2) ' 1.1, Wnl(1.2) ' 2.0
and Wnl(0.57) ' 10. As a consequence, the level of nonlinearity due to finite water depth may be
significantly larger for long waves (with frequencies smaller than ωp) than for short waves (with

frequencies larger than ωp). Here, Wnl(h̃p) is adopted as a characteristic value.
In the illustrative examples presented in Sections 5.3-5.4, the effects of increasing significant

wave height and decreasing water depth (both leading to an increase in wave nonlinearities) are
investigated separately. Seven different configurations of sea severity and water depth are considered
as listed and labelled in Table 1. The configuration series #1-2-3-4 will be used to illustrate the
effect of increasing wave steepness in waters of infinite depth, while the series #1-5-6-7 will be used
to investigate the effect of decreasing water depth for given values of Hs and Tp.

5

5.2. Monte Carlo simulations

In order to obtain a benchmark to be compared with the analytical approximations derived in
Section 4, Monte Carlo realizations of the sea states listed in Table 1 have been carried out. Both
upcrossing frequencies and conditional distributions given upcrossing have been extracted from
the Monte Carlo simulations. A second-order wave code has been specifically developed for the
present study. Its implementation has been validated through a series of comparisons with a code
independently developed by Prevosto in the framework of another project [40]. Comparisons have
been carried out for long-crested/short-crested seas in finite/infinite water depths, for the different
kinematic variables considered in the present study (see Section 5.4.1).

5Note that for given values of Hs and Tp, a decrease in water depth, in addition to increasing Wnl, also leads to
an increase in wave steepness, as reported in the last column of Table 1.
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Configuration Tp Hs Wnl h κp
#1 10 s 1 m 1 ∞ ≈ 2.0 10−2

#2 10 s 2 m 1 ∞ ≈ 4.0 10−2

#3 10 s 4 m 1 ∞ ≈ 8.0 10−2

#4 10 s 6 m 1 ∞ ≈ 0.12
#5 10 s 1 m 2 ≈ 25 m ≈ 2.4 10−2

#6 10 s 1 m 4 ≈ 14 m ≈ 3.0 10−2

#7 10 s 1 m 6 ≈ 10 m ≈ 3.3 10−2

Table 1: List of the different configurations considered for illustrative purpose in Sections 5.3-5.4. Each line of the
table corresponds to a configuration. The first column specifies a number which is used to identify the configuration.
The second column specifies the assumed peak period, Tp. The third column specifies the significant wave height, Hs.
The fourth column specifies the depth-related nonlinear factor Wnl (see Eq. 69). The fifth column gives the value of
the water depth corresponding to the assumed values of Tp and Wnl. The last column gives the characteristic wave
steepness, κp, corresponding to the assumed values of Hs, Tp and Wnl. For all configurations, the wave direction
distribution is assumed to be multidirectional, following Eq. (66).

In the case of short-crested seas, in order to make Monte Carlo simulations numerically less
demanding, the number of discretization angles has been limited to 8. Then, the same angle
discretization has been used when computing the Edgeworth approximations to which Monte Carlo
results are to be compared. It has been checked that increasing the number of discretization angles
does not change significantly the results.

For each Monte Carlo realization, the wave spectrum is discretized in frequencies and directions
(in the case of short-crested seas). Following the discretized spectrum, the wave linear components
(corresponding to the different discretization bins) are first independently drawn with random
phases and amplitudes (see e.g. paragraph 3.5 in [27], for details). Then, the second-order correc-
tions are computed and added to the linear components. Hence, the resulting average second-order
wave spectrum is different from the one specified as input (differences may be large in the low-
frequency and high-frequency tails). This is not an issue in the present study, as long as the same
assumptions and inputs are adopted for the Monte Carlo simulations and the analytical model,
which are to be compared below.

For each configuration listed in Table 1, the number of simulated sea state realizations is 1.6×104,
each realization having a physical duration equal to ' 341 Tp. Hence, for each configuration the
total physical duration of simulated sea state is ' 5.46× 106 Tp. This long duration yields a large
amount of data which enable to probe low upcrossing frequencies (obtained for “extreme” crossing
levels), as well as the tails of conditional distributions, given upcrossing.

5.3. Upcrossing frequency

Fig. 1 shows the upcrossing frequency as a function of the altitude of the crossing level, for
the different sea state configurations listed in Table 1. The results are shown for both the linear
and second-order wave models. Relative to the first-order prediction, the second-order corrections
increase (resp. decrease) the upcrossing frequency for positive (resp. negative) values of the altitude,
`. This evolution can be well understood from the fact that second order corrections tend to increase
the height of wave crests and decrease the depth of wave troughs, relative to the mean water level.

For the second-order wave model, the Monte Carlo estimates of the upcrossing frequency are
compared with the analytical approximation derived from Edgeworth’s expansion (see Eq. 36).
For weakly nonlinear configurations (#1, 2, 5) the analytical approximation is close to numerical
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Figure 1: Upcrossing frequency as a function of the altitude of the level. The upcrossing frequency is shown for
the linear wave model and the second-order model. In the case of the linear wave model, the upcossing frequency
is obtained analytically from Eq. (37) (dotted lines, labelled as ‘O(1)’). For the second-order wave model, the
upcrossing frequency obtained from Monte Carlo simulations (empty circles, labelled as ‘O(2) MC’) is compared with
the approximation obtained from Edgeworth’s expansion (dashed line, labelled as ‘O(2) EW’).

estimates in the range of considered crossing-level altitudes, −1 < `/Hs < 1. When the magnitude
of nonlinearities increase, either due to increasing Hs (#3, 4) or decreasing water depth (#6, 7), the
analytical approximation clearly deviates from the Monte Carlo estimates in the regime of extreme
events (i.e. for low upcrossing frequencies). This is especially visible for `/Hs close to −1, where a
vertical asymptote begins to appear, in Fig. 1. In fact, the Edgeworth approximation crosses zero
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in this region (hence the vertical asymptote in semi-logarithmic scale), and then becomes negative,
which is unphysical. This is due to the Edgeworth correction factor being a cubic function of `
(see Eq. 36); then for λ30 6= 0 (λ30 being the skewness of the free-surface elevation, η) a range of
negative values is inevitable for either extreme positive or extreme negative values of ` (depending
on the sign of λ30). For all considered configurations, λ30 is positive, which explains that a cutoff
appears in the Edgeworth approximation for negative crossing altitudes.

In the range of positive crossing levels, the analytical approximation appears to slightly un-
derestimate the second-order upcrossing frequency compared to Monte Carlo simulations. This is
particularly noticeable for the configuration #4 and #7, for `/Hs close to 1. Overall, excluding the
region where it plunges (in semi-logarithmic scale) to negative values, the Edgeworth-type approx-
imation appears to provide satisfactory predictions for the second-order upcrossing frequency over
a wide range of crossing-level altitudes.

5.4. Conditional distributions given upcrossing

To illustrate the second-order approximation obtained for the conditional distribution of a wave
variable, given free-surface upcrossing, the derived model (see Eqs. 39-40-44) has been applied to
three different kinematic variables, which are introduced in §5.4.1. In §5.4.2 the analytical model is
compared with Monte Carlo results, in terms of probability density function. Then, in §5.4.3, the
comparison between the analytical and numerical results focusses on the conditional mean, variance
and skewness.

5.4.1. Considered kinematic variables

The three wave kinematic variables, to which free-surface upcrossing conditioning is applied,
are the following: (i) w, the vertical component of the fluid velocity, at the mean water level, (ii)
η,x, the slope of the free surface along the direction θ = 0 (which is the average wave direction
of the short-crested sea state considered in the present study; see Eq. 66), (iii) u, the horizontal
component of the fluid velocity along the direction θ = 0, at the mean water level. When interested
in the fluid velocity at the free surface, the values computed at the mean water level, z = 0, may not
be the best proxy. On the other hand, considering the velocity potential directly at z = η may yield
unrealistic fluid kinematics, especially in the crests. This is related to the fact that short waves “ride
over” long waves, in irregular seas. This issue has been extensively investigated within the linear
wave model through comparisons with experimental measurements (see [41, 42, 43, 44, 45, 46] for
instance). A simple approach to build a second-order proxy for fluid kinematics at the free surface,
could be to modify the considered QTFs by adding the second-order contribution coming from the
Taylor expansion of fluid variables, from z = 0 to z = η. Other approaches may be inspired by
solutions already proposed for the linear theory, such as “stretching”-type models (see [41, 42, 43]
for instance). Alternatively, an approach based on the “hybrid wave model”, proposed by Zhang et
al. (1996) [39], may be considered. Depending on the details of the chosen approach, the resulting
proxy for the fluid kinematics at the free surface may differ. Assessing these different approaches
would require comparisons with experimental data, which is beyond the scope of the present study.
Here, for the sake of simplicity, the fluid velocity components, w and u, are derived from the
second-order velocity potential considered at the mean water level, z = 0.

Within the linear wave model, the free-surface upcrossing conditioning has the following effects
on the three wave variables listed above:

1. The vertical component of the fluid velocity at the mean water level is equal to the time
derivative of the free-surface elevation, w(1) = η̇(1). Then, as the random process η(1)(t)
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is Gaussian, w(1)|η(1)(t) ↑ ` follows a Rayleigh distribution whose mode is equal to the non-
conditional standard deviation of η̇(1), ση̇(1) . Hence, the conditional distribution of w(1), given
upcrossing, does not depend on the actual crossing level, `.

2. The free-surface slope, η,x
(1)(t) = Π,x

(1)(x0, y0, t), non-conditioned, is correlated to η̇(1), but
it does not depend on η(1). Then, the resulting probability density function, given upcrossing,
may be expressed as the convolution of a normal distribution with a Rayleigh distribution. Or
alternatively, η,x

(1)|η(1)(t) ↑ ` may be viewed as resulting from the sum of two independent
random variables, one being Gaussian and the other being Rayleigh-distributed (see e.g.
[9, 10]). The normal distribution is centered with a variance equal to [1 − (ρ̇(1))2]σ2

η,x(1) ,

where ρ̇(1) is the non-conditional correlation coefficient between η̇(1) and η,x
(1), and ση,x(1) is

the non-conditional standard deviation of η,x
(1). The Rayleigh distribution has a mode equal

to
∣∣ρ̇(1)∣∣ση,x(1) , and the related random variable is to be added to (resp. subtracted from) the

Gaussian variable if ρ̇(1) > 0 (resp. ρ̇(1) < 0) – see appendix A.1.2 in [10] for more details.
Similarly to w(1), the conditional distribution of η,x

(1), given upcrossing, does not depend on
the actual crossing level, `.

3. The horizontal component of the fluid velocity,

u(1)(t) =

N∑
n=1

gkn/ωn

Q∑
q=1

cos θq · {anq cos [ωnt− (kn cos θq)x0 − (kn sin θq)y0]

+bnq sin [ωnt− (kn cos θq)x0 − (kn sin θq)y0]} ,

(71)

non-conditioned, is correlated to η(1), but it does not depend on η̇(1) (see Section 3 in [10],
for further details). Then, the conditional distribution of u(1), given upcrossing, is Gaussian.
The conditional mean is equal to (σu(1)/ση(1))ρ

(1)`, where σu(1) , ση(1) are the non-conditional

standard deviations of u(1), η(1), and ρ(1) is the correlation coefficient between these two
variables. The conditional variance is given by [1− (ρ(1))2]σ2

u(1) .

Hence, within the linear wave model, the three selected variables have conditional distributions,
given upcrossing, of different types. Below in §5.4.2-5.4.3, we address two different questions: (i) how
nonlinearities modify these conditional distributions, (ii) whether the Edgeworth-type analytical
approximation is capable of rendering these modifications.

5.4.2. Shape of the conditional probability density functions

Figs. 2-3-4 show the conditional probability density function, given upcrossing, for the variables
w, u, η,x respectively. In these figures, each panel corresponds to a configuration as listed in
Table 1. Results within the second-order wave model are shown for two different crossing levels:
`/Hs = −1/2; 1/2. For these two crossing levels the analytical approximation (dotted lines) is
compared with predictions obtained from Monte Carlo simulations (solid lines). The prediction from
the linear wave model is also shown for comparison (dashed line). Within the linear wave model,
the conditional distributions of w(1) and η,x

(1), given upcrossing, do not depend on the altitude of
the crossing level (see §5.4.1). Conversely, the conditional distribution of u(1), given upcrossing,
depends on the level altitude, but only through its mean. In order to make all distributions under
study independent of the crossing level within the linear wave model, u − E[u(1)], instead of u, is
considered in Fig. 3. Here, E[u(1)] should be understood as the conditional mean of u(1), given
that η(1)(t) upcrosses the level `. Hence, for the three variables, Figs. 2-3-4 focus on the first-
order/second-order differences.
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Figure 2: Density function of w, given free-surface upcrossing. The conditional distribution obtained from the linear
wave model (a Rayleigh distribution) is shown as a dashed line (labelled as ‘1st order’ in the legend); it does not
depend on the elevation of the crossing level. The conditional distribution obtained from the second-order wave
model is shown for two different crossing level elevations: `/Hs = −1/2 (black); 1/2 (grey). Results obtained from
the Monte Carlo simulations (labelled as ‘MC’) are shown as solid lines; the approximations based on Edgeworth
expansions (labelled as ‘EW’) are shown as dotted lines. Each panel corresponds to a configuration listed in Table 1;
the configuration number is indicated in the upper-left corner of each plot.

For the sea state with the smallest magnitude of wave nonlinearities (configuration #1), the
analytical approximations are in very good agreement with the Monte Carlo empirical distributions,
this for the three kinematic variables and the two crossing levels considered. This good agreement,
along with the smallness of the short fluctuations (due to sampling) seen in the Monte Calo curves,
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Figure 3: Density function of u−E
[
u(1)

]
, given free-surface upcrossing. Here, E

[
u(1)

]
denotes the conditional mean

of u(1), given that the process η(1)(t) upcrosses the level `. The way to read this figure is similar to the description
given in the caption of Fig. 2.

show that the statistical precision of the Monte Carlo results is sufficient to effectively gauge the
accuracy of the analytical model. Fig. 5 gives an alternative impression of the statistical precision
achieved in Monte Carlo results, by showing an example of uncertainty envelopes, computed for the
the Monte Carlo curves shown in Fig. 2, panel # 4. For the sake of clarity, Monte Carlo uncertainty
envelopes are not shown in Figs. 2-3-4.

As the magnitude of wave nonlinearities increases (either due to increasing significant wave
height or decreasing water depth) the analytical approximations follow the trends of the Monte
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Figure 4: Density function of η,x, given free-surface upcrossing. The way to read this figure is similar to the
description given in the caption of Fig. 2.

Carlo distributions (the latter being considered as the reference). However, deviations between
analytical and Monte Carlo distributions become also more and more notable as wave nonlinearities
grow. For the three variables considered, a range of negative densities develop in the analytical
approximations, as the magnitude of nonlinearities increases (see panels #4 in Fig. 2, #2 − 3 − 4
in Fig. 3, #3− 4− 7 in Fig. 4).

Without doing formal statistical tests at this stage, the most “robust” analytical approximation
seems to be the one obtained for w. It follows quite faithfully the evolution of Monte Carlo distri-
butions as wave nonlinearities grow (even for the most severe configurations, #4− 7). Besides, the
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Figure 5: Statistical precision of numerical density functions. This figure shows an example of the two-standard-
deviation envelopes (' 95% confidence level when errors are Gaussian) obtained for the Monte Carlo estimates of
the density functions, given upcrossing. Results are shown for the variable w, in the sea state configuration #4, at
two different crossing level elevations: `/Hs = −1/2 (black); 1/2 (grey).

magnitude of spurious negative densities remains limited in the case of w. The most “problematic”
behavior of the analytical approximations may be the one observed for u: as the significant wave
height is increased (#1−2−3−4), for the crossing level `/Hs = −1/2, the analytical approximation
suggests that the conditional distribution qualitatively changes, becoming bimodal. If there were
not the benchmark provided by the Monte Carlo results, the falseness of this behavior would not
be easy to identify.

The appearance of negative probability densities and spurious oscillatory features reflects the
fact that the Edgeworth approximation takes the form of a polynomial correction applied to a
Gaussian baseline. This issue gets amplified as the magnitude of non-Gaussianities – which are
the consequence of wave nonlinearities in the present context – grow in the target distribution (see
e.g. [47, 48] for a detailed discussion about this matter). For the sake of clarity, results in Figs.
2-3-4 are shown for only two different crossing altitudes, `/Hs = −1/2; 1/2. The examination of
the analytical approximations, computed for other crossing altitudes, has shown that the tendency
to develop spurious oscillatory features and negative densities is amplified (resp. reduced) as the
considered crossing altitude is moved away from (resp. brought closer to) the mean water level,
` = 0.

The present results suggest that the Edgeworth-type analytical approximation is able to capture
only the main features of the conditional distributions, given upcrossing. This is not surprising since
the analytical approximation is based on Rice’s integration of the leading-order Edgeworth expan-
sion of the trivariate distribution of η, η̇ and ξ (ξ standing for the level-crossing conditioned variable;
i.e. w, u, or η,x in the present section). The leading-order Edgeworth expansion takes into account
cumulants only up to the third order (see Eq. 9). Then, it would be quite incidental that the result-
ing analytical approximation renders a set of probabilistic features beyond those tightly connected
to the non-conditioned second-order and third-order cumulants of the triad (η, η̇, ξ). Then, one
could expect the analytical approximation to render the effect of wave nonlinearities on the mean,
variance, and skewness of the conditional distributions, given upcrossing. In fact, this induction is
not so obvious because Rice’s integration (see Eq. 38) constitutes a non-trivial transformation of
the original non-conditioned trivariate distribution: it cuts the non-conditioned distribution by the
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plane η = ` and then integrated along the positive crossing velocities, η̇, with an extra weighting
prefactor equal to η̇. This matter is investigated in the next paragraph, where the conditional mean,
variance and skewness, given upcrossing, obtained from the analytical approximation are compared
with those estimated from the Monte Carlo experiments.

5.4.3. Mean, variance and skewness of the conditional distributions

As the mean, variance and skewness of the analytical approximations, do not lend themselves to
closed-form calculations, their evaluation is performed through numerical integration. Beforehand,
a decision has to be made regarding the spurious negative probability densities which may develop
in some cases. In the present study negative densities are simply ceiled to zero. Then the resulting
function is renormalized to ensure that its integration over the entire sample space is equal to 1.
This way, the mean, variance and skewness are computed for a function which actually meets the
mathematical properties of a probability density function.

The resulting values are shown in Figs. 6-7-8 for the variables w, u and η,x respectively. In each
figure, the seven panel columns correspond to the configurations listed in Table 1, and the three
panel lines correspond to the considered statistical quantity (mean, variance, or skewness). In a
given panel, 5 different crossing levels are considered (`/Hs = −1/2;−1/4; 0; 1/4; 1/2), represented
in increasing order, from left to right, with a lightening shading of grey. Results obtained from the
Edgeworth-type approximations (resp. Monte Carlo experiments) are shown as circled dots (resp.
crosses). Similarly to §5.4.2, the mean of the variable u−E[u(1)] is considered instead of the mean
of u, (recall that E[u(1)] denotes the conditional mean of u(1), given that η(1)(t) upcrosses the level
`). For comparison, the values predicted by the linear wave model are shown as horizontal dotted
lines (since they do not depend on the actual crossing level, `).

For the conditional mean, the analytical approximation is overall in good agreement with the
Monte Carlo estimates, even for the most severe configurations in terms of wave nonlinearities.
The largest discrepancy is seen for the variable u, configuration #4, at the crossing levels `/Hs =
−1/2; +1/2. This is due to the oscillations and negative densities appearing in the analytical
approximation of the probability density function (see Fig. 3, panel #4).

For the conditional variance, the values predicted by the analytical approximation are also
in good agreement with the Monte Carlo estimates, for most considered cases. Still, for some
cases, the discrepancies between the analytical approximation and the Monte Carlo results are
more prominent than for the conditional mean, especially for the sea state with the most severe
wave steepness (configuration #4). Similarly to the conditional mean, the appearance of these
discrepancies are related (at least partly) to the development of oscillations and negative densities
in the analytical approximation of the probability density function. Albeit these discrepancies in
some cases, the analytical approximation still provide the correct evolution trends as a function of
the crossing level, even for the most severe sea states in terms of nonlinearities.

Finally, regarding the conditional skewness, the results provided by the analytical approximation
are less satisfactory than for the conditional mean and variance. For the kinematic variable w, the
analytical approximation still provides the correct trend as a function of the crossing level, but with
an offset increasing as wave nonlinearities grow (either due to an increasing significant wave height
or a decreasing water depth). When considering the kinematic variable u, Monte Carlo results
show that second-order wave nonlinearities have a moderate (for nonlinearities due to an increasing
significant wave height) to minor (nonlinearities due to a decreasing water depth) effect on the
conditional skewness. This trend is reproduced by the analytical approximation for the varying
water depth series (configurations #1− 5− 6− 7) but not for the varying Hs series (configurations
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#1 − 2 − 3 − 4), where an increasing data dispersion can be seen in the analytical results. This
dispersion is the signature from the oscillations and negative densities appearing in the analytical
approximation of the probability density function (see Fig. 3). The impact is large on the skewness,
since this statistical quantity is a measure of the distribution asymmetry. The situation is even
less satisfactory for the skewness of η,x. For this variable, the analytical approximation tends to
predict corrections, relative to the linear model, which are of opposite signs compared to Monte
Carlo results.

6. Discussion

An analytical approximation for the conditional distribution of a wave kinematic variable, ξ,
given free-surface upcrossing, has been derived for the second-order wave model. The analytical
approximation is based on the application of Rice’s formula to the Edgeworth expansion of the
trivariate distribution of (η, η̇, ξ), truncated to the leading-order. The scope of the analytical model
can be readily extended regarding three aspects. (i) When the interest would be in downcrossing
events only, or both upcrossing and downcrossing events, the analytical formulae derived in the
present study may be readily adapted. (ii) Upcrossing events could be monitored for a second-
order process which is different from the free-surface elevation measured at a fixed station, η(t).
The analytical model would remain readily applicable, as long as the linear and quadratic transfer
functions of the considered process are tractable. For instance free-surface crossing events could
be monitored for a material point with forward motion (see [10] for a recent investigation of the
subject within the linear wave model) and/or seakeeping motions. Free-surface crossing events could
also be checked in space, at a fixed time, along a given direction. Alternatively, crossing events
could be monitored for a quantity different from the free-surface elevation (e.g. the stress response
of a marine structure). (iii) The application of the Edgeworth-based approximations derived in
Sections 4 is not restricted to second-order processes. They may be applied to any couple of
interdependent stochastic processes (one being conditioned to the level-crossing of the other), as
long as the necessary third-order cumulants can be estimated.

6.1. On the experimental context

It is worth noting that the non-conditional joint cumulants, Kabc, may be directly measured from
experimental data (in the field or in a laboratory), without relying on a specific wave theory. This
would necessitate simultaneous observations of the free-surface elevation, η, the elevation rate η̇, and
a third wave variable ξ (for which the conditional distribution, given upcrossing, is wanted). “Non-
conditional” in the experimental context, means that observations should be done on a grid in space
and/or time, which is fixed a priori – such observations may be said asynchronous. Then, from these
empirical estimates of non-conditional joint cumulants, the present analytical model may be used to
compute an approximation for the conditional distribution of ξ, given free-surface upcrossing. Such
an approach may prove useful, as synchronous measurements of ξ – measurements coinciding with
upcrossing events – may be more challenging to achieve, depending on the experimental context.
Alternatively, instead of directly estimating the cumulants Kabc, the QTFs of η, η̇, ξ, could be
empirically estimated, by using a bispectrum analysis; such an approach was applied by Ochi and
Ahn [49] to a free-surface elevation record. Then the cumulants may be estimated from these
empirical QTFs by using Eqs. (28-29).

Experimental measurements may be also useful to further test the analytical model derived
in the present paper. To the best knowledge of the author, no experimental study has estimated
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non-conditional trivariate joint cumulants in a wave field, or has directly estimated the conditional
distribution of a wave variable, given free-surface upcrossing. Several studies have experimentally
investigated the joint distribution of sea slopes, in offshore experiments (e.g. [50, 20] using sun glitter
photographs, [51] using stereo images) or in tank test experiments (e.g. [52] using a slope gauge
and stereo imaging), as it may be of practical importance for remote sensing applications. Huang
et al. (1984) [53] have experimentally investigated the joint distribution of slope and elevation in
model experiments, by using an assembly of wave probes. Several studies have also experimentally
investigated fluid kinematics in irregular waves, both at model scale and full scale (see e.g. [45]
and references therein). Most of these studies focus on the horizontal fluid velocity, as it is a key
quantity to accurately estimate the wave-induced drag on offshore structures such as compliant
platforms. Many of these studies also focus on the kinematics in high and steep waves (e.g. [54]
using particle image velocimetry in model-scale experiments, [55] using particle image velocimetry
and laser Doppler velocimetry in model-scale experiments), bearing in mind the safety of marine
structures with respect to extreme waves. The investigation of the stochastic properties of wave
kinematics, in a given sea state, is scarcer in the literature. For instance, Skjelbreia et al. (1989,
1991) [56, 57] used laser Doppler velocimetry to investigate the statistics of wave kinematics at
different altitudes above and below the mean water level. Measuring wave kinematics at a fixed
point near the mean water level usually excludes the use of current-meters, as their accuracy
is degraded by frequent emergence and reimmersion events. In such a configuration, the use of
optical techniques such as laser Doppler velocimetry or particle image velocimetry in test tank
experiments is preferable. Intermittent emergence will also bring complications in the statistical
analysis of data, as the time series will be “undefined” during the periods where the measurement
point lies outside the water domain (i.e. lies above the free surface). Cieślikiewicz & Gudmestad
(1993) [58] have investigated this problem in the “forward” way (i.e. computing submergence-
biased distributions from unbiased distributions) within the second-order wave model. One solution
to avoid complications due to intermittent emergence, is to measure the fluid velocity at a point
which keeps its instantaneous immersion depth constant, by following the vertical motion of the
free surface. Such measurements may be achieved thanks to particle image velocimetry or a current
meter mounted on a movable frame (see e.g. [59, 60]). Whether in the field or in a laboratory,
one of the biggest challenges may be to acquire a sufficiently large amount of data, to achieve a
satisfactory statistical precision in the estimates of joint cumulants and/or distributions.

It is important to note that comparisons of experimental data with the model derived in the
present study may be carried out at two different levels, separately. At a first level, the comparisons
may focus on the ability of the second-order wave model to render the stochastic properties of
irregular seas. In this case, empirical estimates of the joint cumulants may be directly compared
with the predictions from the second-order wave model, without necessarily considering the question
of crossing conditioning. At a second level, a comparison with experimental results may focus on
the ability of the Edgeworth-based approximation to infer the effect of crossing conditioning from
non-conditional measurements. For this purpose, the non-conditional joint cumulants, Kabc, may be
empirically estimated, and used to compute the Edgeworth-based approximation of the conditional
distribution of a wave variable ξ, given free-surface crossing. Then, if the conditional distribution,
given upcrossing, can be also directly estimated from synchronous measurements, the results from
both approaches may be compared.
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6.2. On the use of the stochastic model in the context of slamming and green water

One of the main applications of level-crossing conditioning, in the marine context, may be
the investigation of stochastic slamming or green water, on ships or marine structures. Both the
frequency of these events and the conditional distribution of the incoming wave kinematics, given
such an event occurs, are of practical interest. This matter can be addressed by modeling free-
surface upcrossings at a “control” point attached to the considered marine platform – for instance
the lowest point of a marine substructure exposed to wave slamming, or a critical flooding point on
a ship’s deck exposed to green water.

Such an approach has been implemented to investigate stochastic slamming within the frame-
work of the linear wave model (see e.g. [2, 3, 4]). The analytical model derived in the present
study may be used to include the effect of second-order wave nonlinearities in such analyses. The
seakeeping motions of a marine platform and its diffracted waves, may be also included in the
analysis, as long as the related transfer functions and quadratic transfer functions can be estimated
(experimentally or numerically). Note however that the present analytical approximation only ren-
ders the “core” of the distributions, and becomes inaccurate toward the tails of distributions. This
means that the Edgeworth-based approach would not be suitable to reckon the risk of failure due
to extreme slamming events – i.e. events which would lead to failure through the overshoot of the
yield or ultimate strength of the structure material. Conversely, the model may be appropriate to
estimate the risk of failure due to fatigue, as the cumulated fatigue damage may be dominated by
a large number of repeated slamming events.

The vertical component of the fluid velocity, at impact, is usually considered as the most decisive
variable when estimating the resulting slamming loads (see e.g. [61, 62, 63, 64, 65]). Depending
on the shape of the slamming-exposed body, it may be important to include additional kinematic
variables (for instance the free-surface slope, the horizontal fluid velocity, or the fluid acceleration)
as input of the considered slamming model (see e.g. [3, 4]). The question then arises as to whether
the model derived in the present paper may be extended to approximate the joint distribution of
multiple variables, given upcrossing. In the particular case where the interest would be in the joint
distribution of (η̇, ξ), given upcrossing, its Edgeworth approximation is readily obtained from

f̂η̇,ξ|η↑`(η̇, ξ) =
1

σξση̇2
η̇f̂χχ̇ζ(˜̀, η̇/ση̇, ξ/σξ)∫ +∞

0

τ f̂χ,χ̇(˜̀, τ) dτ

, η̇ > 0 . (72)

All the material necessary to explicitly compute Eq. (72) is provided in the present study, and no
further development is required. For other cases – i.e. conditional bivariate distributions with η̇ not
being one of the considered random variables, or conditional joint distributions of dimension larger
than two – the non-conditional distribution to be considered (before applying Rice’s formula),
would be of dimension larger than three. To the leading order, the Edgeworth correction to a
N -dimensional Gaussian distribution, with N > 3, would still be an expression involving third-order
cumulants and third-order Hermite polynomials, similar to the expression appearing into square
brackets in Eq. (9). Then, Rice’s integration may be carried out by using a method similar to the one
presented in Appendices B-C-D. Note however that the Hermite polynomials would have a different
expression since the baseline distribution from which they are defined (see Eq. 15) would no longer
be a trivariate Gaussian distribution, but its N-dimensional analog. For instance, if a fourth variable,
υ, were to be introduced in the problem, one would obtain Habc0(χ, χ̇, ζ, υ) 6= Habc(χ, χ̇, ζ). As the
considered dimension N increases, the analytical developments are expected to inflate quickly, and
a computer algebra system may be of help.
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Appendix A. Hermite polynomials

A.1. Univariate polynomials

The probabilist’s Hermite polynomials are defined as follows:

Ha(x) = (−1)a exp
{
x2/2

} da

dxa
exp
{
−x2/2

}
. (73)

The first polynomials, up to the third order, are given by

H0(χ) = 1 , (74)

H1(χ) = χ , (75)

H2(χ) = χ2 − 1 , (76)

H3(χ) = χ3 − 3χ . (77)

(78)

A.2. Trivariate Hermite polynomials

The trivariate probabilist’s Hermite polynomials are defined by,

Habc(x1, x2, x3) =
(−1)a+b+c

fX(x1, x2, x3)

∂a

∂x1a
∂b

∂x2b
∂c

∂x3c
fX(x1, x2, x3) (79)

where fX is the density function of the trivariate standard normal distribution. In the present
study, the variables η and η̇ are uncorrelated, and Eq. (79) may be particularized into Eq. (15).
From Eqs. (10-15), the first-order polynomials can be readily computed:

H100(χ, χ̇, ζ) =
[
(1− ρ̇2)χ+ ρρ̇χ̇− ρζ

]
/δ3 , (80)

H010(χ, χ̇, ζ) =
[
ρρ̇χ+ (1− ρ2)χ̇− ρ̇ζ

]
/δ3 , (81)

H001(χ, χ̇, ζ) = [−ρχ− ρ̇χ̇+ ζ] /δ3 , (82)

where δ3 is a numerical factor defined by

δ3 = 1− ρ2 − ρ̇2 . (83)

Using the recurrence relations

Habc = − ∂

∂χ
Ha−1bc +Ha−1bcH100 , (84)

Habc = − ∂

∂χ̇
Hab−1c +Hab−1cH010 , (85)

Habc = − ∂

∂ζ
Habc−1 +Habc−1H001 , (86)

higher-order Hermite polynomials may be conveniently expressed in terms of first-order polynomials.
However, as calculations will show, an explicit expression for higher-order Hermite polynomials is
not required in the present study.
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Appendix B. Computation of the integrals Iabc

The level of complexity to compute the integrals Iabc (see Eq. 43) depends on the value of b.
Three different cases need to be considered: b = 0, b = 1, b ≥ 2.

B.1. Computation of Iabc with b ≥ 2

The case where b ≥ 2 is the simplest one. An integration by parts yields

Iabc(˜̀, ζ) = −
[
τHab−1c(˜̀, τ, ζ)J3(˜̀, τ, ζ)

]τ=+∞

τ=0
+

∫ +∞

0

Hab−1c(˜̀, τ, ζ)J3(˜̀, τ, ζ)dτ . (87)

The first term is equal to zero and the second term directly yields

Iabc(˜̀, ζ) = −
[
Hab−2c(˜̀, τ, ζ)J3(˜̀, τ, ζ)

]τ=+∞

τ=0
, (88)

leading to
Iabc(˜̀, ζ) = Hab−2c(˜̀, 0, ζ)J3(˜̀, 0, ζ) . (89)

B.2. Computation of Ia1c
In the case b = 1, the same integration by parts, as for the case b ≥ 2, yields

Iabc(˜̀, ζ) = −
[
τHa0c(˜̀, τ, ζ)J3(˜̀, τ, ζ)

]τ=+∞

τ=0
+

∫ +∞

0

Ha0c(˜̀, τ, ζ)J3(˜̀, τ, ζ)dτ . (90)

The first term is equal to zero. The second term may not be readily computed at first sight.
One possible way, as initially proposed by Longuet-Higgins [21] and further extended by Jensen
[24], is to make use of Hermite polynomial algebra, to substitute Ha0c with the sum of other
Hermite polynomials Habc with b ≥ 1, plus an additional polynomial which does not depend on the
integration variable, τ . If b = 1, then a + c = 2, and substitutions are needed for the polynomials
H200, H002 and H101. The way forward to obtain these substitutions is developed in Appendix C.
For example, considering the integral I012, the substitution derived for H002 (see Eq. 104) can be
used to obtain the following equality

I012(˜̀, ζ) =

∫ +∞

0

H002(˜̀, τ, ζ)J3(˜̀, τ, ζ)dτ

=

∫ +∞

0

{
−2sH011(˜̀, τ, ζ)− s2H020(˜̀, τ, ζ) + P02(˜̀, ζ)

}
J3(˜̀, τ, ζ)dτ , (91)

which then readily yields

I012(˜̀, ζ) =
{
−2sH001(˜̀, 0, ζ)− s2H010(˜̀, 0, ζ)

}
J3(˜̀, 0, ζ) + P02(˜̀, ζ)G0(˜̀, ζ) , (92)

where the coefficient s is defined by Eq. (49) and G0 is defined by Eq. (45).
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B.3. Computation of Ia0c
The analytical calculation of Ia0c may be carried out by using the same trick as for the calculation

of Ia1c. But this time, a substitution should be found for the Hermite polynomials Ha0b with
a + b = 3. The suitable substitutions are derived in Appendix C.2. For example, considering the
integral I300, the substitution derived for H300 (see Eq. 106) gives

I300(˜̀, ζ) =

∫ +∞

0

τ

{
− 3rH210(˜̀, τ, ζ)− 3r2H120(˜̀, τ, ζ)

− r3H030(˜̀, τ, ζ) + P30(˜̀, ζ)

}
J3(˜̀, τ, ζ) dτ ,

(93)

which can also be written as

I300(˜̀, ζ) = −3rI210(˜̀, ζ)− 3r2I120(˜̀, ζ)− r3I030(˜̀, τ, ζ) + P30(˜̀, ζ)G1(˜̀, ζ) . (94)

The numerical coefficient r is defined in Eq. (48), and the function G1 is defined in Eq. (42). Then,
the way forward to compute the terms Iabc with b = 1 and b ≥ 2 has been already presented in
Appendices B.2 and B.1, respectively.

Appendix C. Substitutions for Hermite polynomials of the type Ha0c

This appendix presents how Hermite polynomials Ha0c(χ, χ̇, ζ) may be expressed as the sum of
other Hermite polynomials Habc(χ, χ̇, ζ) with b ≥ 1, plus an additional polynomial which does not
depend on χ̇. For this purpose, let us consider the two following differential operators:

R =−
(
∂

∂χ
+ r

∂

∂χ̇

)
, (95)

S =−
(
∂

∂ζ
+ s

∂

∂χ̇

)
, (96)

where r and s are constant coefficients given in Eqs. (48-49). The application of these differential
operators to J3 gives the relations

R(J3) = R× J3 , (97)

S(J3) = S × J3 , (98)

where R and S are polynomials which do not depend on χ̇ (their expression is given in Eqs. 57-58).
On the other hand Eqs. (97-98) may be also expressed as

R(J3) = [H100 + rH010]× J3 , (99)

S(J3) = [H001 + sH010]× J3 , (100)

which yields by identification the relations

H100 + rH010 =R , (101)

H001 + sH010 =S . (102)

As the the operators R and S are linear, and the polynomials R and S do not depend on χ̇,
successive applications of R and S to J3 may be used to obtain the substitutions necessary to
compute the integrals Ia1c and Ia0c. The procedure is detailed below in Sections C.1-C.2.
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C.1. Substitutions for the integrals Ia1c
The computation of the integrals Ia1c (with a+c = 2) requires substitutions for the polynomials

Ha0b with a+ b = 2. The application of R2, S2 and R ◦ S to J3, respectively yield

H200 + 2rH110 + r2H020 =P20 , (103)

H002 + 2sH011 + s2H020 =P02 , (104)

H101 + sH110 + rH011 + rsH020 =P11 , (105)

where the expressions of P20, P02, P11 are given by Eqs. (51-52-50).

C.2. Substitutions for the integrals Ia0c
The computation of the integrals Ia0c (with a+c = 3) requires substitutions for the polynomials

Ha0b with a+ b = 3. The application of R3, S3, R2 ◦ S, R ◦ S2 to J3, respectively yield

H300 + 3rH210 + 3r2H120 + r3H030 =P30 , (106)

H003 + 3sH012 + 3s2H021 + s3H030 =P03 , (107)

H201 + sH210 + 2rH111 + 2rsH120 + r2H021 + r2sH030 =P21 , (108)

H102 + rH012 + 2sH111 + 2rsH021 + s2H120 + rs2H030 =P12 , (109)

where the expressions of P30, P03, P21, P12 are given by Eqs. (53-54-55-56).

Appendix D. Expressions of the function G0 and G1

After completing the square for τ in the exponential argument of J3, the function G0 (defined
in Eq. 45) may be expressed in closed form as follows

G0(˜̀, ζ) =

√
π

2

√
δ3
δ2

exp

{
−1

2

˜̀2 − 2ρ˜̀ζ + ζ2

δ2

}[
1 + erf

(
ρ̇√

2δ2δ3
(−ρ˜̀+ ζ)

)]
, (110)

where δ3 has been defined in Eq. (83), and

δ2 = 1− ρ2 (111)

has been introduced to compact the expression. Then, an expression for the function G1, defined
in Eq. (42), may be readily obtained by substituting the prefactor τ (using Eq. 81) as follows:

G1(˜̀, ζ) =

∫ +∞

0

1

δ2

(
δ3H010(˜̀, τ, ζ)− ρρ̇˜̀+ ρ̇ζ

)
J3(˜̀, τ, ζ) dτ , (112)

leading to

G1(˜̀, ζ) =
δ3
δ2
J3(˜̀, 0, ζ) +

ρ̇

δ2
(−ρ˜̀+ ζ)G0(˜̀, ζ) . (113)
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