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NULL CONTROLLABILITY OF STRONGLY DEGENERATE

PARABOLIC EQUATIONS

ANTOINE BENOIT, ROMAIN LOYER, AND LIONEL ROSIER

Abstract. We consider linear one-dimensional strongly degenerate parabolic equations with
measurable coefficients that may be degenerate or singular. Taking 0 as the point where the
strong degeneracy occurs, we assume that the coefficient a = a(x) in the principal part of the
parabolic equation is such that the function x → x/a(x) is in Lp(0, 1) for some p > 1. After
establishing some spectral estimates for the corresponding elliptic problem, we prove that the
parabolic equation is null controllable in the energy space by using one boundary control.

1. Introduction

We continue our investigation of the controllability of parabolic equations with measurable
coefficients [24] (see also [2]) by studying the case of a strongly degenerate equation of the type

(a(x)ux)x + q(x)u = ρ(x)ut, x ∈ (0, 1), t ∈ (0, T ),

where the nonnegative function a may vanish strongly at x = 0, and the potential q may be
singular at x = 0. Only weakly degenerate (i.e. 1/a ∈ L1(0, 1)) parabolic equations were covered
by the theory developed in [24].

The null controllability of (weakly or strongly) degenerate parabolic equations was considered
in e.g. [1, 4, 5, 9, 10, 11, 13, 14, 15, 26]. Most of the papers were concerned with a parabolic
equation with a(x) = x2−ε, which is strongly (resp. weakly) degenerate for ε ∈ (0, 1] (resp.
ε ∈ (1, 2)). More general choices for the coefficient a were considered in e.g. [14]. However,
several technical assumptions (e.g. x → a(x)/xγ nondecreasing for some exponent γ and a ∈
W 1,∞(0, 1) in [14]) were required in order to derive some Carleman estimate to prove the null
controllability of the parabolic equation. The purpose of this paper is to remove these technical
assumptions in the derivation of the null controllability of the parabolic equation.

More precisely, we propose a general method based on the flatness approach to deal with
quite general parabolic equations, displaying both a strong degeneracy of a and a singularity
of the potential q at the same point, with measurable coefficients, and without any monotony
assumption about a. Roughly, the main assumption is that the function x → x/a(x) is in
Lp(0, 1) for some p > 1. That assumption is slightly stronger (by Hölder inequality) than
Trudinger assumption 1/

√
a ∈ L1(0, 1) (see e.g. [12, 28]) which was made in order to investigate

Key words and phrases. strongly degenerate parabolic equations; null controllability; measurable and singular
coefficient; spectral estimates; flatness.
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the degenerate elliptic system


−(aux)x = f, x ∈ (0, 1),

(aux)(0) = 0,

u(1) = 0.

Our method is based on the flatness approach, introduced in [20] and developed since then
in [22, 24] for the heat equation, in [21] for the Korteweg-de Vries equation, and in [25] for
Schrödinger equation. (See also [23] for a recent study of the reachable states of the heat
equation and [19] for the exact controllability of semilinear heat equations.) In [26], the flatness
approach is used to derive for ε ∈ (0, 1) the null controllability of the control system


ut − (x2−εux)x = 0, x ∈ (0, 1), t ∈ (0, T ),

(x2−εux)(0, t) = 0, t ∈ (0, T ),

u(1, t) = h(t), t ∈ (0, T ),

u(x, ·) = u0(x), x ∈ (0, 1).

For the corresponding elliptic problem


−(x2−εux)x = f, x ∈ (0, 1),

(x2−εux)(0) = 0,

u(1) = 0,

the eigenfunctions and eigenvalues can be expressed in terms of Bessel functions, and the asymp-
totic behaviour of the eigenvalues is perfectly known [26]. For a more general function a, however,
Bessel functions cannot be used and, to the best knowledge of the authors, nothing is known
about the sharp asymptotic behaviour of the eigenvalues. (See [3, 17, 18] for some results in
that direction.) For the application of the flatness approach, what is needed is not a spectral
gap, but merely that the eigenvalues tend to infinity faster than some power of the index of the
eigenvalue.

To be more precise, we are concerned with the null controllability of the system

(a(x)ux)x + q(x)u = ρ(x)ut, x ∈ (0, 1), t ∈ (0, T ), (1.1)

(aux)(0, t) = 0, t ∈ (0, T ), (1.2)

αu(1, t) + β(aux)(1, t) = h(t), t ∈ (0, T ), (1.3)

u(x, 0) = u0(x), x ∈ (0, 1) (1.4)

where (α, β) ∈ R2
+ \ {(0, 0)}, u0 ∈ L2(0, 1) is the initial state, and h ∈ L2(0, T ) is the control

input.
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The given functions a, q, ρ are assumed to satisfy the following conditions:

a(x) > 0 and ρ(x) > 0 for a.e. x ∈ (0, 1), (1.5)

a ∈ L1
loc(0, 1),

(
x→ x

a(x)

)
∈ Lp(0, 1), (1.6)

ρ ∈ Lr(0, 1), lim sup
x→0+

ρ(x) <∞, (1.7)

lim
x→0+

a(x)−1

(∫ 1

x

ds

a(s)

)−2

= +∞, (1.8)

∃v ∈W 1,1(0, 1) s.t.


v(x) > 0 for all x ∈ [0, 1],

(avx)x + qv = 0 in (0, 1),

(avx)(0) = 0,

(1.9)

for some numbers p, r with

p ∈ (1,+∞], r ∈ (p′,+∞] (1.10)

where p′ := p
p−1 · As the functions a and ρ are defined a.e., the limits in (1.7) and (1.8) should

be taken after modifying them on a zero measure set, if needed. Note that (1.6) and (1.8) are
satisfied by any measurable function a : (0, 1)→ R fulfilling the condition

C1x
2−ε1 ≤ a(x) ≤ C2x

2−ε2 ∀x ∈ (0, 1) (1.11)

for some positive constants C1, C2, ε1, ε2 with ε1 ≤ ε2 < 2ε1 ≤ 4. Such a function needs not be
monotonous nor smooth. (Note that a continuous function a : (0, 1)→ R+ satisfying both (1.6)
and (1.8) and vanishing on a sequence xn ↘ 0 could also be constructed, so that (1.1) can be
strongly degenerate at 0 and also weakly degenerate at each xn.) A typical example displaying
both a (possibly strong) degeneracy for a and a singularity for q at x = 0 is the parabolic
equation

(x2−εux)x + µ
u

xε
= ut (1.12)

for 0 < ε < 2 and µ < 1
4(1− ε)2.

Let us introduce some notations. For any t1 < t2 and s ≥ 0, we denote by Gs([t1, t2]) the
space of (Gevrey) functions h ∈ C∞([t1, t2]) for which there exist some positive constants M,R
such that

|h(p)(t)| ≤M p!s

Rp
∀t ∈ [t1, t2], ∀p ∈ N.

Let L2
ρ denote the space of (classes of) measurable functions f : (0, 1)→ R such that

‖f‖L2
ρ

:=

(∫ 1

0
f(x)2ρ(x)dx

) 1
2

<∞.

The main result in this paper is the following

Theorem 1.1. Let the functions a, q, ρ, v : (0, 1)→ R satisfy assumptions (1.5)-(1.9) for some
numbers p and r as in (1.10). Let (α, β) ∈ R2

+ \ {(0, 0)} and T > 0. Pick any u0 ∈ L2
ρ and
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any s ∈ (1, 1 + 1
p′ −

1
r ). Then there exists a function h ∈ Gs([0, T ]) such that the solution u of

(1.1)-(1.4) satisfies u ∈ C0([0, T ], L2
ρ) ∩ C1((0, T ],W 1,1(0, 1)), aux ∈ C1((0, T ],W 1,r(0, 1)), and

u(x, T ) = 0 for all x ∈ [0, 1].

Remark 1.2. A null controllability result with a distributed control can be derived from Theorem
1.1 by using a partition of unity.

Clearly, assumptions (1.5)-(1.8) are easy to test, while assumption (1.9) is not obvious to
check at first glance. We shall provide in the following propositions two classes of coefficients
(a, q, ρ) satisfying (1.9).

Proposition 1.3. Let the numbers p, p′, r be as in (1.10) and let the functions a, q, ρ satisfy

(1.5)-(1.8). Assume in addition that q ∈ Lp′(0, 1) and that either∫ 1

0

1

a(x)

(∫ x

0
|q(s)| ds

)
dx < 1, (1.13)

or

q(x) ≤ 0 for a.e. x ∈ (0, 1). (1.14)

Then (1.9) holds for some function v ∈ W 1,1(0, 1) with avx ∈ W 1,r(0, 1), and the conclusion of
Theorem 1.1 is valid for any u0 ∈ L2

ρ. Finally, if (1.14) is replaced by the condition

∃K ∈ R+ such that q(x) ≤ Kρ(x) for a.e. x ∈ (0, 1), (1.15)

then the conclusion of Theorem 1.1 is still valid for any u0 ∈ L2
ρ.

Proposition 1.4. Let a(x) = x2−ε, q(x) = µx−ε and ρ(x) = 1 for x ∈ (0, 1), where 0 < ε < 1
and

(1− ε)2 − 1

4
< µ ≤ 0. (1.16)

Pick v(x) := xδ with δ := (ε − 1 +
√

(1− ε)2 − 4µ)/2. Then the function v : (0, 1) → (0,∞)
fulfills

(avx)x + qv = 0 in (0, 1), (1.17)

(avx)(0) = 0, (1.18)

and (1.5)-(1.8) hold for some numbers p and r as in (1.10). Furthermore the conclusion of
Theorem 1.1 is valid for (1.12) supplemented with (1.2)-(1.4) for any initial data u0 : (0, 1)→ R
with u0 ∈ L2(0, 1).

Remark 1.5. (1) Note that the main result in [26] corresponds to the case µ = 0.
(2) Note that Proposition 1.4 is not a consequence of Proposition 1.3, since we cannot find

any p in (1,+∞] with both (x→ xε−1) ∈ Lp(0, 1) and (x→ x−ε) ∈ Lp′(0, 1).
(3) Our computations suggest that for a(x) = x2−ε and q(x) = µx−κ, κ should be at most ε.

It would be interesting to see whether it is a necessary condition, or merely a technical
assumption.
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Let us say a few words about the proof of the main result. In a first step, we show that we can
get rid of the term q(x)u in (1.1) by a change of variables, using assumption (1.9). Therefore
we can restrict to the simplified parabolic equation

(aux)x = ρut.

We first prove that the boundary-value problem
−(aux)x = f,

(aux)(0) = 0,

αu(1) + β(aux)(1) = 0

possesses a unique solution in some weighted Sobolev space. Next, we pay some attention to
the spectral properties of this boundary-value problem. We show that the eigenvalue λn grows
at least as a power of n, and that the L∞-norm of the corresponding eigenfunction en grows at
most as a power of λn. This is done by using a modified Prüfer method (see [6, 29]) introducing
a phase θn associated with λn. However, since 1/a 6∈ L1(0, 1) in the interesting situation of a
strong degeneracy, the classical argument relating λn to the variation of the phase θn has to be
refined in using a splitting of the interval (0, 1) involving the frequency λn. Roughly, we split

(0, 1) into (0, An)∪ [An, 1) with An := (Cλn)
− p′r
r−p′ , C denoting some positive constant. We show

that en(x) remains close to en(0) for x ∈ (0, An), so that the (bad) integral term
∫ An

0
dθn
dx dx does

not contribute too much in the variation of the phase θn(1)− θn(0).
With these spectral estimates at hand, we can prove that the eigenfunctions en, n ≥ 0, can

be expressed in terms of the generating functions gi, i ≥ 0, defined by g0(x) = 1 and the relation

gi(x) =

∫ x

0

1

a(s)

( ∫ s

0
ρ(σ)gi−1(σ)dσ

)
ds, i ≥ 1.

Finally, the trajectories of the control problem (1.1)-(1.4) can be expanded in the form

u(x, t) =
∞∑
i=0

y(i)(t)gi(x)

for some function y ∈ Gs([0, T ]) (as in [24]), the series being convergent thanks to the spectral
estimates.

The paper is organized as follows. Section 2 is devoted to the study of the corresponding
elliptic problem. We introduce the appropriate weighted Sobolev space, derive some generalized
Hardy inequality and obtain some estimates for both the eigenfunctions and the eigenvalues. In
Section 3, we define and investigate the generating functions. The proof of the main results are
given in Section 4. Finally, in some appendix we prove that the conditions (1.6) and (1.8) are
independent, and we provide a class of functions for which (1.8) holds.

2. Study of the elliptic problem

Through the paper, we denote ‖u‖Lp for ‖u‖Lp(0,1) (1 ≤ p ≤ ∞), and ‖u‖Lp(x1,x2) for the Lp

norm of u on an interval (x1, x2) 6= (0, 1).
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In this section, we investigate the elliptic problem

−(au′)′ = ρf in (0, 1), (2.1)

(au′)(0) = 0, (2.2)

αu(1) + β(au′)(1) = 0, (2.3)

where ′ = d/dx, the functions a and ρ satisfy (1.5)-(1.8) for some numbers p, p′, and r as in
(1.10), (α, β) ∈ R2

+ \ {(0, 0)}.
Let us introduce the spaces

Ha := {u ∈W 1,1
loc (0, 1);

√
au′ ∈ L2(0, 1) and u(1) = 0}, (2.4)

Ha,ρ := {u ∈W 1,1
loc (0, 1);

√
au′ ∈ L2(0, 1) and

√
ρu ∈ L2(0, 1)} (2.5)

endowed respectively with the norms

‖u‖Ha :=

(∫ 1

0
a(x)u′(x)2dx

) 1
2

, ‖u‖Ha,ρ :=

(∫ 1

0
[a(x)u′(x)2 + ρ(x)u(x)2]dx

) 1
2

.

Then the following result holds.

Proposition 2.1. The spaces Ha and Ha,ρ are complete. Furthermore, we have Ha ⊂ L2(0, 1),
Ha,ρ ⊂ L2(0, 1) and Ha,ρ ⊂ L2

ρ with continuous and compact embeddings.

Proof. We first investigate the space Ha. By Hölder inequality, we have for all ε ∈ (0, 1)∫ 1

ε

dx

a(x)
≤
(∫ 1

ε

( x

a(x)

)p
dx

) 1
p
(∫ 1

ε
x−p

′
dx

) 1
p′

<∞,

so that a−1 ∈ L1(ε, 1). Thus, by Cauchy-Schwarz inequality,∫ 1

ε
|u′(x)|dx ≤

(∫ 1

ε
a(x)u′(x)2dx

) 1
2
(∫ 1

ε

dx

a(x)

) 1
2

<∞ (2.6)

if
√
au′ ∈ L2(0, 1), so that u ∈ W 1,1(ε, 1) ⊂ C0([ε, 1]). Therefore, the condition u(1) = 0 is

meaningful whenever
√
au′ ∈ L2(0, 1), and if u ∈ Ha satisfies ‖u‖Ha = 0, then

√
au′ = 0 a.e., u

is constant and u = 0 since u(1) = 0. Thus ‖ · ‖Ha is a norm on Ha, which is clearly Hilbertian.
If (un) is a Cauchy sequence in Ha, then by (2.6) and the fact that un(1) = 0, (un) is a Cauchy

sequence in W 1,1(ε, 1) for all ε > 0. Therefore, there exists u ∈ W 1,1
loc (0, 1) such that un → u in

W 1,1(ε, 1) for all ε > 0, hence in D′(0, 1). There is also some v ∈ L2
a such that u′n → v in L2

a.
But for any ϕ ∈ D(0, 1) := C∞c

(
(0, 1)

)
,∣∣∣∣∫ 1

0
(u′n − v)ϕdx

∣∣∣∣ ≤ (∫ 1

0
(u′n − v)2a dx

) 1
2
(∫ 1

0

ϕ2

a
dx

) 1
2

→ 0,

that is, u′n → v in D′(0, 1). We infer that u′ = v ∈ L2
a, and hence, with u(1) = 0 (since un → u

in W 1,1(ε, 1)), u ∈ Ha and un → u in Ha. Therefore Ha is complete.

Let us now show that Ha,ρ is complete. We first need the following
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Lemma 2.2. Let δ ∈ (0, 1). Then for any ε > 0, there exists some number Cδ,ε > 0 such that∫ 1

δ
|u|dx ≤ ε

∫ 1

δ
|u′|dx+ Cδ,ε

(∫ 1

δ
ρu2dx

) 1
2

∀u ∈ Ha,ρ. (2.7)

Proof of Lemma 2.2: If (2.7) does not hold, there exists ε > 0 and a sequence (un) in Ha,ρ such
that for all n ≥ 1

1 =

∫ 1

δ
|un|dx > ε

∫ 1

δ
|u′n|dx+ n

(∫ 1

δ
ρu2

ndx

) 1
2

. (2.8)

Recall that ρ ∈ Lr(0, 1) for some r ∈ (p′,∞], by (1.7) and (1.10). Since (un) is bounded in

W 1,1(δ, 1), which is compactly embedded in L2r′(δ, 1) (2 ≤ 2r′ < 2p ≤ ∞), there is a subsequence

(unk) such that unk → u in L2r′(δ, 1). Then, by Hölder inequality,∫ 1

δ
ρ(unk − u)2dx ≤

(∫ 1

δ
ρrdx

) 1
r
(∫ 1

δ
|unk − u|

2r′dx

) 1
r′

→ 0,

and hence
∫ 1
δ ρu

2
nk
dx →

∫ 1
δ ρu

2dx. But
∫ 1
δ ρu

2
ndx → 0 by (2.8), and hence

∫ 1
δ ρu

2dx = 0. It

follows that u = 0 a.e. in (δ, 1). But this contradicts the fact that 1 =
∫ 1
δ |unk |dx →

∫ 1
δ |u|dx.

Lemma 2.2 is proved. �
Combining (2.6) and (2.7), we obtain that for all δ ∈ (0, 1), there is some Cδ > 0 such that

‖u‖W 1,1(δ,1) ≤ Cδ‖a‖Ha,ρ ∀u ∈ Ha,ρ. (2.9)

Proceeding as above and using the fact that W 1,1(ε, 1) ⊂ C0([ε, 1]) continuously for any ε ∈
(0, 1), one can prove that Ha,ρ is a Hilbert space.

The next result is concerned with the density of spaces of smooth functions.

Lemma 2.3. The space D(0, 1) is dense in Ha if a−1 6∈ L1(0, 1), while the space {ϕ ∈ C∞([0, 1]);
ϕ(1) = 0} is dense in Ha if a−1 ∈ L1(0, 1).

Proof. 1. Assume first that

a−1 6∈ L1(0, 1). (2.10)

Let u ∈ Ha with
∫ 1

0 au
′ϕ′dx = 0 for all ϕ ∈ D(0, 1). Note that au′ ∈ L1

loc(0, 1) ⊂ D′(0, 1), for∫ ε

δ
|au′|dx ≤

(∫ ε

δ
au′2dx

) 1
2
(∫ ε

δ

dx

a

) 1
2

<∞ if 0 < δ < ε < 1.

Thus 〈(au′)′, ϕ〉D′,D = −〈au′, ϕ′〉D′,D = 0 for all ϕ ∈ D(0, 1) and (au′)′ = 0 in D′(0, 1). Thus

there is some number K ∈ R such that au′ = K a.e. in (0, 1). But K√
a

=
√
au′ ∈ L2(0, 1), hence∫ 1

0
K2

a dx <∞ and K = 0, by (2.10). Thus u = 0 and D(0, 1) is dense in Ha.
2. Assume now that

a−1 ∈ L1(0, 1). (2.11)

Pick any u ∈ Ha with
∫ 1

0 au
′ϕ′dx = 0 for all ϕ ∈ C∞([0, 1]) with ϕ(1) = 0. (Such functions ϕ

belong to Ha, for
∫ 1

0 aϕ
′2dx <∞.) In particular, as

∫ 1
0 au

′ϕ′dx = 0 for all ϕ ∈ D(0, 1), we infer



8 ANTOINE BENOIT, ROMAIN LOYER, AND LIONEL ROSIER

that au′ = K a.e. in (0, 1) for some K ∈ R. Thus

0 =

∫ 1

0
au′ϕ′dx = K

∫ 1

0
ϕ′dx = −Kϕ(0)

for all ϕ ∈ C∞([0, 1]) with ϕ(1) = 0. This yields again K = 0, u = 0, and the density of the
space {ϕ ∈ C∞([0, 1]);ϕ(1) = 0} in Ha. �

The following result gives a generalized Hardy inequality (see [7, 16, 27]).

Lemma 2.4. Let a : (0, 1)→ R be as in (1.5) and (1.8). Extend a to (0,∞) by setting

a(x) = x2 for x ≥ 1, (2.12)

and let

b(x) = a(x)−1

(∫ ∞
x

ds

a(s)

)−2

, x ∈ (0,∞). (2.13)

Then

lim
x→0+

b(x) = +∞ (2.14)

and ∫ 1

0
b(x)u(x)2dx ≤ 4

∫ 1

0
a(x)u′(x)2dx ∀u ∈ Ha. (2.15)

Proof. First, we note that (2.14) follows from (1.8) and the fact that

lim
x→0+

∫ 1
x a(s)−1ds∫∞
x a(s)−1ds

=


∫ 1

0 a(s)−1ds∫∞
0 a(s)−1ds

∈ (0,∞) if
∫ 1

0 a(s)−1ds <∞;

1 if
∫ 1

0 a(s)−1ds =∞.

From [7, 27], if α, β, f are nonnegative measurable functions defined on R+, if

K := sup
r>0

[(∫ r

0
β(x)2dx

) 1
2
(∫ ∞

r
α(x)−2dx

) 1
2

]
<∞ (2.16)

then (∫ ∞
0

[β(x)

∫ ∞
x

f(t)dt]2dx

) 1
2

≤ 2K

(∫ ∞
0

[α(x)f(x)]2dx

) 1
2

. (2.17)

Pick α(x) :=
√
a(x) and β(x) :=

√
b(x). Let us check that condition (2.16) is satisfied. For

0 < ε < r, we have that∫ r

ε
β(x)2dx =

∫ r

ε
a(x)−1

(∫ ∞
x

a(s)−1ds

)−2

dx =

∫ r

ε

d

dx

(∫ ∞
x

a(s)−1ds

)−1

dx

=

(∫ ∞
r

a(s)−1ds

)−1

−
(∫ ∞

ε
a(s)−1ds

)−1

.

Note that by (2.12),

l := lim
ε→0+

(∫ ∞
ε

ds

a(s)

)−1

∈ [0, 1)
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always exists. It follows that ∫ 1

0
β(x)2dx = 1− l <∞.

Thus ∫ r

0
β(x)2dx

∫ ∞
r

α(x)−2dx =

((∫ ∞
r

ds

a(s)

)−1 − l
)∫ ∞

r

ds

a(s)
≤ 1 ∀r ∈ (0,+∞)

and (2.16) is indeed satisfied with K ≤ 1.
Pick now any u ∈ Ha. Extend u by 0 for x ≥ 1. (Note that u ∈W 1,1(ε,+∞) for all ε ∈ (0, 1).)

Pick f(x) = |u′(x)| for x ∈ (0,+∞). Then for x ∈ (0, 1)

|u(x)| =
∣∣∣∣∫ ∞
x

u′(t)dt

∣∣∣∣ ≤ ∫ ∞
x

f(t)dt

and (2.15) follows from (2.17). �

By (2.14), one may pick x0 ∈ (0, 1) such that b(x) ≥ 1 for 0 < x < x0. Then (2.15) yields∫ x0

0
u(x)2dx ≤ 4‖u‖2Ha ∀u ∈ Ha.

Combined with (2.6) and the fact that u(1) = 0, we infer the existence of some constant C > 0
such that ∫ 1

0
u(x)2dx ≤ C‖u‖2Ha .

Thus Ha ⊂ L2(0, 1) continuously. Actually, the embedding is also compact.

Lemma 2.5. The embedding Ha ⊂ L2(0, 1) is compact.

Proof of Lemma 2.5: Let (un) be a sequence in Ha and let u ∈ Ha be such that un → u
weakly in Ha. We have to show that un → u strongly in L2(0, 1). Since for δ ∈ (0, 1) the
embedding W 1,1(δ, 1) ⊂ L2(δ, 1) is compact, the map v ∈ Ha → v|(δ,1) ∈ L2(δ, 1) is compact for

any δ ∈ (0, 1), and hence un → u in L2(δ, 1). Let ε > 0 be given. By (2.14), there exists some
δ ∈ (0, 1) such that

b(x) ≥ B :=
8

ε2

(
1 + 4 sup

n≥0
‖un‖2Ha

)
∀x ∈ (0, δ).

Using the fact that ‖u‖Ha ≤ supn≥0 ‖un‖Ha and (2.15), we obtain∫ δ

0
|un(x)− u(x)|2dx ≤ B−1

∫ δ

0
b(x)|un(x)− u(x)|2dx ≤ 4B−1‖un − u‖2Ha ≤

ε2

2
·

Since un → u in L2(δ, 1), we have that
∫ 1
δ |un(x)− u(x)|2dx ≤ ε2/2 for n ≥ n0 for some n0 ∈ N.

Thus ‖un − u‖L2(0,1) ≤ ε for n ≥ n0, and un → u in L2(0, 1). �

Lemma 2.6. The embeddings Ha,ρ ⊂ L2(0, 1) and Ha,ρ ⊂ L2
ρ are compact. The space C∞([0, 1])

is dense in Ha,ρ.
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Proof of Lemma 2.6: By (1.7) one may pick some numbers δ ∈ (0, 1
2) and C > 0 such that

0 ≤ ρ(x) ≤ C ∀x ∈ (0, 2δ). (2.18)

Let θ ∈ C∞([0, 1]) be such that

θ(x) =

{
1 if 0 ≤ x ≤ δ,
0 if 2δ ≤ x ≤ 1.

Let u ∈ Ha,ρ. Then θu ∈ Ha, for (θu)(1) = 0 and
√
a(θu)′ = (

√
au′)θ +

√
a θ′u ∈ L2(0, 1).

Indeed,
√
au′ ∈ L2(0, 1), Supp θ′ ⊂ [δ, 2δ],

√
a ∈ L2(δ, 2δ), and u ∈ L∞(δ, 2δ). Furthermore,

‖(θu)′‖L2
a
≤ C‖u‖Ha,ρ ,

so that the map u ∈ Ha,ρ → θu ∈ Ha is continuous. The embedding Ha ⊂ L2(0, 1) being
compact, the map u ∈ Ha,ρ → θu ∈ L2(0, 1) is compact. Clearly, the map u ∈ Ha,ρ → (1−θ)u ∈
W 1,1(0, 1) is continuous. The embedding W 1,1(0, 1) ⊂ L2(0, 1) being compact, we infer that
the map u ∈ Ha,ρ → (1 − θ)u ∈ L2(0, 1) is compact. Thus the embedding Ha,ρ ⊂ L2(0, 1) is
compact.

The fact that Ha,ρ ⊂ L2
ρ continuously comes from the definition of the spaces Ha,ρ and L2

ρ and

of their norms. Using (4.2) and the lines above, we infer that the map u ∈ Ha,ρ → θu ∈ L2
ρ is

compact. On the other hand, the embedding W 1,1(0, 1) ⊂ L2r′(0, 1) is compact, and by Hölder
inequality ∫ 1

0
ρ(1− θ)2u2dx ≤ C

(∫ 1

0
ρrdx

) 1
r
(∫ 1

0
u2r′dx

) 1
r′

.

It follows that the map u ∈ Ha,ρ → (1− θ)u ∈ L2
ρ is compact. Thus the embedding Ha,ρ ⊂ L2

ρ

is compact.
Let us prove that C∞([0, 1]) is dense in Ha,ρ. Pick any u ∈ Ha,ρ. If we set

a(x) = x, ρ(x) = 1, u(x) = (2− x)u(1) ∀x ∈ (1, 2),

then u ∈ Ha(0, 2) := {u ∈ L1
loc(0, 2);

√
au′ ∈ L2(0, 2) and u(2) = 0}. As in Lemma 2.3,

C∞([0, 2]) is dense in Ha(0, 2), so that we can pick a sequence (ϕn) in C∞([0, 2]) with ϕn → u
in Ha(0, 2), and also in L2(0, 2). This gives∫ 1

0
[a(ϕ′n − u′)2 + (ϕn − u)2]dx→ 0.

By (4.2), we have
∫ 2δ

0 ρ(ϕn−u)2dx→ 0. Since ϕn → u in W 1,1(2δ, 1) and in L2r′(2δ, 1), we also
have that ∫ 1

2δ
ρ(ϕn − u)2dx→ 0.

We conclude that ϕn → u in Ha,ρ. �
The proof of Proposition 2.1 is complete. �
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Nest, we investigate the elliptic problem (2.1)-(2.3). Introduce the symmetric bilinear form

a(u, v) =

∫ 1

0
au′v′ dx+ ab(u, v)

where

ab(u, v) =

{
α
βu(1)v(1) if β 6= 0,

0 if β = 0.

Let

H =


Ha,ρ if αβ 6= 0,
{u ∈ Ha,ρ; u(1) = 0} if β = 0,

{u ∈ Ha,ρ;
∫ 1

0 uρ dx = 0} if α = 0,

be endowed with the norm ‖ · ‖Ha,ρ . By (2.9), H is a closed subspace of Ha,ρ, and the bilinear
form a is continuous on H×H. To prove that the bilinear form is coercive, we need the following
lemma.

Lemma 2.7. There exist a constant C > 0 such that∫ 1

0
|u|2ρ dx ≤ C

(∫ 1

0
|u′|2a dx+ u(1)2

)
∀u ∈ Ha,ρ, (2.19)∫ 1

0
|u|2ρ dx ≤ C

(∫ 1

0
|u′|2a dx+

( ∫ 1

0
uρ dx

)2) ∀u ∈ Ha,ρ. (2.20)

Proof of Lemma 2.7: We prove (2.19) only, the proof of (2.20) being similar. If (2.19) is false,
one can pick a sequence (un) in Ha,ρ such that

1 =

∫ 1

0
|un|2ρ dx > n

(∫ 1

0
|u′n|2a dx+ un(1)2

)
. (2.21)

As the sequence (un) is bounded in Ha,ρ, one can extract a subsequence (unk) such that unk → u
weakly in Ha,ρ for some u ∈ Ha,ρ. By Lemma 2.6, unk → u strongly in L2

ρ. As u′nk → 0 strongly

in L2
a by (2.21), we infer that (unk) is a Cauchy sequence in Ha,ρ, and hence unk → u strongly

in Ha,ρ. Letting n→∞ in (2.21), we obtain∫ 1

0
|u′|2a dx = 0, u(1) = 0.

Thus u = 0, but this contradicts the condition
∫ 1

0 |u|
2ρ dx = 1. The proof of Lemma 2.7 is

complete. �
We have to prove that

a(u, u) ≥ K‖u‖2Ha,ρ ∀u ∈ H (2.22)

for some constant K > 0. If β = 0 (resp. α = 0), then (2.19) (resp. (2.20)) yields ‖u‖2L2
ρ
≤

C‖u′‖2L2
a

for u ∈ H, which gives (2.22).

If αβ > 0, then (2.19) yields ∫ 1

0
|u|2ρ dx ≤ C ′a(u, u)

for some C ′ > 0, which gives again (2.22). Thus the bilinear form a is coercive.
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Let f ∈ L2
ρ be given (with also

∫ 1
0 fρ dx = 0 if α = 0). Since the linear form L(v) =

∫ 1
0 fvρ dx

is continuous on H, it follows from Lax-Milgram theorem that there exists a unique function
u ∈ H such that

a(u, v) = L(v) ∀v ∈ H. (2.23)

Assume first αβ 6= 0. Clearly D(0, 1) ⊂ H. Picking v ∈ D(0, 1) in (2.23), we obtain (2.1) in
the sense of distributions. Multiplying in (2.1) by v ∈ C∞([0, 1]) ⊂ H, integrating by parts and
comparing with (2.23), we infer that

(au′)(1)v(1)− (au′)(0)v(0) +
α

β
u(1)v(1) = 0.

Picking v(x) = 1− x (resp. v(x) = 1) yields (2.2) (resp. (2.3)).
If β = 0, we have again D(0, 1) ⊂ H, and picking v ∈ D(0, 1) in (2.23) yields (2.1) in the

sense of distributions. Multiplying in (2.1) by v(x) = 1−x and integrating by parts yields (2.2).
Finally (2.3) comes from the definition of H.

If α = 0, then for any given θ ∈ D(0, 1) the function ϕ(x) = θ(x) −
∫ 1

0 θρds belongs to H.

Picking such a function in (2.23) and using the fact that
∫ 1

0 fρ dx = 0, we obtain
∫ 1

0 au
′θ′dx =∫ 1

0 fθρ dx, so that (2.1) holds in the sense of distributions. Multiplying in (2.1) by v(x) = 1
(resp. by v(x) = 1− 2x), we obtain (2.2)-(2.3).

Finally, using ∫ 1

0
|ρf |dx ≤

(∫ 1

0
ρf2dx

) 1
2
(∫ 1

0
ρ dx

) 1
2

<∞,

we infer from (2.1) that au′ ∈W 1,1(0, 1) for any value of (α, β).
We are in a position to study the spectral problem associated with (2.1)-(2.3).

Theorem 2.8. Let a, ρ and (α, β) be as above. Then there are a sequence (en)n≥0 in L2
ρ and a

nondecreasing sequence (λn)n≥0 in (0,+∞) such that
(i) (en)n≥0 is an orthonormal basis in L2

ρ;

(ii) for all n ≥ 0, en ∈ Ha,ρ, ae
′
n ∈W 1,min(2,r)(0, 1), and en solves

−(ae′n)′ = λn ρ en in (0, 1), (2.24)

(ae′n)(0) = 0, (2.25)

αen(1) + β(ae′n)(1) = 0. (2.26)

Proof. Assume first that α 6= 0. For f ∈ L2
ρ, let T (f) denote the unique solution u ∈ H of

(2.23). The operator T : f ∈ L2
ρ → u = T (f) ∈ L2

ρ is continuous, compact, and selfadjoint by
(2.22), (2.23), and Proposition 2.1. It is also positive definite, for

K‖u‖2Ha,ρ ≤ a(u, u) = (f, u)L2
ρ
.

By the spectral theorem, there are an orthonormal basis (en)n≥0 in L2
ρ and a sequence (µn)n≥0

in (0,+∞) with µn ↘ 0 such that T (en) = µnen for all n ≥ 0. Then (2.24)-(2.26) hold with
λn := µ−1

n > 0.

Assume now that α = 0, and let V := {f ∈ L2
ρ;
∫ 1

0 fρ dx = 0}. For f ∈ V , let T (f) denote the
unique solution u ∈ H of (2.23). Again, the operator T : f ∈ V → u = T (f) ∈ V is continuous,
compact, selfadjoint and positive definite. Therefore there are an orthonormal basis (en)n≥1 in
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V and a sequence (µn)n≥1 in (0,+∞) with µn ↘ 0 such that T (en) = µnen for all n ≥ 1. Let
e0 := 1. Noticing that V = {u ∈ L2

ρ; (u, e0)L2
ρ

= 0}, we see that (en)n≥0 is a orthonormal basis

of L2
ρ and that (2.24)-(2.26) hold with λ0 := 0 and λn := µ−1

n > 0 for n ≥ 1.
By (1.7), one can pick some numbers C > 0 and δ ∈ (0, 1) such that 0 ≤ ρ(x) ≤ C for

0 < x < δ, so that (ae′n)′ = −λnρen ∈ L2(0, δ). Next, en ∈ W 1,1(δ, 1) ⊂ L∞(δ, 1), and

(ae′n)′ ∈ Lr(δ, 1). Thus (ae′n)′ ∈ Lmin(2,r)(0, 1) and ae′n ∈W 1,min(2,r)(0, 1). �

We are now interested in the asymptotic behavior of the eigenvalues λn, n ≥ 0. Indeed, to
apply the flatness approach, we need to prove that λn ≥ Cnκ for some C, κ > 0 and all n ≥ 0.
The estimate we shall derive is likely not sharp, but it is sufficient for the sequel.

Theorem 2.9. Let a, ρ, (α, β) and the sequences (en)n≥0, (λn)n≥0 be as in Theorem 2.8. Then
(i) en ∈W 1,1(0, 1) and ae′n ∈W 1,r(0, 1) for all n ≥ 0;
(ii) there exists some constant C1 > 0 such that

‖en‖L∞(0,1) ≤ C1λ
3
4

(1+ p′r
r−p′ )

n if λn > 0; (2.27)

(iii) let κ := [1
2 + 1

p( p′r
r−p′ )]

−1 > 0 if p <∞ and pick any κ < 2 if p =∞. Then there exists some

constant C2 > 0 such that

λn ≥ C2n
κ ∀n ≥ 0. (2.28)

Proof. (i) We need several lemmas.

Lemma 2.10. Let p, p′ be as in (1.10), let a be as in (1.5)-(1.6), and let q ∈ Lp′(0, 1). Then

there exists a unique function v ∈W 1,1(0, 1) with av′ ∈W 1,p′(0, 1) and such that

(av′)′ = −qv a.e. in (0, 1), (2.29)

(av′)(0) = 0, (2.30)

v(0) = 1. (2.31)

Proof of Lemma 2.10. If a function v as in Lemma 2.10 does exist, then v ∈ C0([0, 1]) and we
obtain by successive integrations

(av′)(y) = −
∫ y

0
(qv)(s)ds ∀y ∈ [0, 1], (2.32)

and

v(x) = 1−
∫ x

0

dy

a(y)

∫ y

0
(qv)(s)ds ∀x ∈ [0, 1]. (2.33)

Using Hardy inequality ∫ 1

0
[
1

y

∫ y

0
|q(s)|ds]p′dy ≤ C

∫ 1

0
|q(s)|p′ds,

Hölder inequality and (1.6), we infer that∫ 1

0

dy

a(y)

∫ y

0
|q(s)|ds <∞. (2.34)
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Therefore, if v ∈ C0([0, 1]) satisfies (2.33), then v ∈W 1,1(0, 1) by (2.34) and av′ ∈W 1,p′(0, 1) by
(2.32). Therefore, it is sufficient to prove the existence and uniqueness of a solution v ∈ C0([0, 1])
of (2.33).

First, one may pick some δ ∈ (0, 1) such that for all x1, x2 ∈ [0, 1] with 0 ≤ x2 − x1 ≤ δ, we
have ∫ x2

x1

dy

a(y)

∫ y

0
|q(s)|ds ≤ 1

2
·

For 0 ≤ x1 < x2 ≤ 1 and γ1, γ2 ∈ R with γ1 = 0 if x1 = 0, we consider the map Γ : C0([x1, x2])→
C0([x1, x2]) defined by

Γ(v)(x) = γ2 −
∫ x

x1

dy

a(y)

(
γ1 +

∫ y

x1

(qv)(s)ds

)
. (2.35)

By (1.6) and (2.34), the map Γ is well defined. Let us prove that it is a contraction provided
that |x2 − x1| is “small enough”. For v, w ∈ C0([x1, x2]), we have

‖Γ(v)− Γ(w)‖L∞(x1,x2) ≤
∫ x2

x1

dy

a(y)

∫ y

x1

|q(s)(v − w)(s)|ds.

The map Γ is a contraction in C0([0, δ]) for x1 = 0, x2 = δ, γ1 = 0 and γ2 = 1, since

‖Γ(v)− Γ(w)‖L∞(0,δ) ≤
1

2
‖v − w‖L∞(0,δ).

This gives a solution v of (2.33) on [0, δ] by the contraction principle. Note that

v(δ) = 1−
∫ δ

0

dy

a(y)

∫ y

0
(qv)(s)ds. (2.36)

If δ ≤ x1 ≤ x2 ≤ 1 and x2 − x1 ≤ δ, then

‖Γ(v)− Γ(w)‖L∞(x1,x2) ≤
(∫ x2

x1

dy

a(y)

∫ y

x1

|q(s)|ds
)
‖v − w‖L∞(x1,x2)

≤ 1

2
‖v − w‖L∞(x1,x2).

Then Γ is a contraction in C0([x1, x2]) if δ ≤ x1 ≤ x2 ≤ 1 and x2 − x1 ≤ δ. Picking x1 = δ,

x2 = x1 + δ, γ1 =
∫ δ

0 (qv)(s)ds, and γ2 = v(δ), we obtain a solution of (2.33) on [0, 2δ]. We can
proceed in a similar way to extend v to [0, 3δ], [0, 4δ],... and finally to [0, 1]. �

Corollary 2.11. Let ρ and r be as in (1.7) and (1.10), and let λ ∈ R. Then there exists a
unique function u ∈W 1,1(0, 1) with au′ ∈W 1,r(0, 1) such that

(au′)′ = −λρu a.e. in (0, 1), (2.37)

(au′)(0) = 0, (2.38)

u(0) = 1. (2.39)

Furthermore, the map λ→ (u, au′) from R to W 1,1(0, 1)×W 1,r(0, 1) is continuous.
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Proof. Since ρ ∈ Lr(0, 1) ⊂ Lp
′
(0, 1), the existence and uniqueness of u follows from Lemma

2.10. The continuity of the map λ ∈ R → u ∈ C0([0, δ]) (or C0([δ, 2δ]), etc.) follows from the
version of the contraction principle with a parameter. Using (2.32) and (2.33) gives the last
sentence in the statement. �

Lemma 2.12. Let λ ∈ R. If 0 < x0 − δ < x0 + δ < 1 and u ∈W 1,1(x0 − δ, x0 + δ) is such that
au′ ∈W 1,1(x0 − δ, x0 + δ) and

(au′)′ = −λρu in (x0 − δ, x0 + δ),

u(x0) = 0,

(au′)(x0) = 0,

then u = 0 in (x0 − δ, x0 + δ).

The proof is similar to those of Lemma 2.10 by applying the contraction principle to the map
Γ from C0([x0 − δ, x0 + δ]) into itself defined by

Γ(u)(x) = −λ
∫ x

x0

dy

a(y)

∫ y

x0

(ρu)(s)ds

when δ > 0 is small enough, and by propagating the uniqueness up to [x0 − δ, x0 + δ] when δ is
as in the statement of the lemma. �

Lemma 2.13. Let n ≥ 0, and let en and λn be as in Theorem 2.8. If u is the function associated
with λ = λn in Corollary 2.11, then

en(x) = en(0)u(x) ∀x ∈ (0, 1), (2.40)

so that en ∈W 1,1(0, 1) and ae′n ∈W 1,r(0, 1).

Proof of Lemma 2.13: As u(0) = 1 and u ∈ C0([0, 1]), we can pick some ε ∈ (0, 1/2) such that

u(x) ≥ 1

2
∀x ∈ [0, 2ε].

Let

v(x) := u(x)

∫ x

ε

ds

u(s)2a(s)
x ∈ (0, 2ε].

Since a−1 ∈ L1
loc(0, 1), v ∈W 1,1

loc (0, 2ε) and

v′(x) = u′(x)

∫ x

ε

ds

u(s)2a(s)
+

1

u(x)a(x)
a.e. in (0, 2ε). (2.41)

Since u, au′ ∈W 1,1(0, 1), it follows that av′ ∈W 1,1
loc (0, 2ε) and that

(av′)′(x) = (au′)′(x)

∫ x

ε

ds

u(s)2a(s)
+

(au′)(x)

u(x)2a(x)
− u′(x)

u(x)2

= −λ(ρu)(x)

∫ x

ε

ds

u(s)2a(s)

= −λ(ρv)(x) a.e. in (0, 2ε).
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Note that the function u satisfies (2.37) for λ = λn in (0, 2ε) and that it is not proportional
to v (otherwise we would have [u(s)2a(s)]−1 = 0 a.e.). Note also that v(ε) = 0 and (av′)(ε) =
1/u(ε) > 0. We may therefore find some number µ ∈ R so that the function U(x) := en(x) −
en(ε)
u(ε) u(x) − µv(x) satisfies the assumptions of Lemma 2.12 for 0 < δ < x0 = ε. We infer from

Lemma 2.12 that U = 0 on (0, 2ε), that is

en(x) =
en(ε)

u(ε)
u(x) + µv(x), x ∈ (0, 2ε). (2.42)

If µ 6= 0, then by (2.25), (2.38) and (2.42), we obtain (av′)(0) = 0 which, combined to (2.39)
and (2.41), yields [

au′(x)

∫ x

ε

ds

u(s)2a(s)

]
(0+) = −1.

But this is impossible, since
∫ x
ε

ds
u(s)2a(s)

< 0 and (au′)(x) ≤ 0 for 0 < x < ε. Indeed, λn ≥ 0

yields

(au′)(x) = −
∫ x

0
λnρ(x)u(x)dx ≤ 0, 0 < x < ε.

Thus µ = 0 and en(x) = en(ε)
u(ε) u(x) for x ∈ (0, 2ε).

Using Lemma 2.12 several times, we infer that

en(x) =
en(ε)

u(ε)
u(x) ∀x ∈ (0, 1).

Thus, by Corollary 2.11, en ∈ W 1,1(0, 1), ae′n ∈ W 1,r(0, 1), and letting x → 0 yields en(0) =
en(ε)/u(ε), so that

en(x) = en(0)u(x) ∀x ∈ (0, 1).

The proof of Lemma 2.13 is complete. This ends the proof of (i) in Theorem 2.9.
(ii) In what follows, we fix some n ≥ 0 for which λn > 0 and denote e = en and λ = λn to

simplify the writing. The letter C will denote a constant that may change from line to line.

• Assume first that α 6= 0. We first check that

|e(1)| ≤
√
β

α

√
λ (2.43)

The estimate (2.43) is obvious if β = 0, for e(1) = 0. If β 6= 0, we infer from (2.23) with
u = v = e that ∫ 1

0
a|e′|2dx+

α

β
e(1)2 = λ

∫ 1

0
e2ρ dx.

This yields

|e(1)|2 ≤ β

α
λ

∫ 1

0
e2ρdx =

β

α
λ.

Note also that ∫ 1

0
a|e′|2dx ≤ λ

∫ 1

0
e2ρdx = λ.
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But for 0 < x < 1 we have that

|e(x)− e(1)| ≤
∫ 1

x
|e′(s)|ds ≤

(∫ 1

x

ds

a(s)

) 1
2
(∫ 1

x
ae′2ds

) 1
2

≤
√
λ

(∫ 1

x

ds

a(s)

) 1
2

and ∫ 1

x

ds

a(s)
≤ 1

x

∫ 1

x

s

a(s)
ds ≤ 1

x
‖ s

a(s))
‖L1 (2.44)

where ‖ s
a(s)‖L1 denotes

∫ 1
0

s
a(s)ds. It follows that

|e(x)| ≤ (
β

α
λ)

1
2 +

(
‖ s

a(s)
‖L1

λ

x

) 1
2

, 0 < x < 1. (2.45)

On the other hand, for 0 < x < 1, by Hölder inequality∫ x

0

1

a(s)
(

∫ s

0
ρ(t)dt)ds ≤ ‖ρ‖Lr

∫ x

0

s1− 1
r

a(s)
ds

≤ ‖ρ‖Lr‖
s

a(s)
‖Lp

(∫ x

0
s−

p′
r ds

) 1
p′

≤ Cx
1
p′−

1
r (2.46)

with C := ‖ρ‖Lr‖ s
a(s)‖Lp(1 −

p′

r )
− 1
p′ . The function u(x) still denoting the solution to (2.37)-

(2.39), we have that

u′(x) = − λ

a(x)

∫ x

0
(ρu)(s)ds ≤ 0

if u ≥ 0 on [0, x], and hence for such x

0 ≤ 1− u(x) ≤
∫ x

0
|u′(s)|ds ≤ λ‖u‖L∞(0,x)

∫ x

0

1

a(s)
(

∫ s

0
ρ(t)dt)ds ≤ Cλx

1
p′−

1
r .

It follows that
1

2
≤ u(x) ≤ 1 for x ∈ [0, (2Cλ)

p′r
p′−r ].

(Note that λ
p′r
p′−r → 0 as λ→∞, for r > p′.) Replacing e by −e if needed, we can assume that

e(0) > 0. Using Lemma 2.13, we infer that

e(0)

2
≤ e(x) ≤ e(0) for x ∈ [0, (2Cλ)

p′r
p′−r ]. (2.47)

It follows from (2.24) that

e(0)2 − e(1)2 = −2

∫ 1

0
ee′dx = 2λ

∫ 1

0

e(x)

a(x)
(

∫ x

0
ρeds)dx

= 2λ

(∫ (4Cλ)
p′r
p′−r

0
· · · dx+

∫ 1

(4Cλ)
p′r
p′−r
· · · dx

)
=: 2λ(I1 + I2). (2.48)
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Then, by (2.46) and (2.47),

|I1| ≤ e(0)2

∫ (4Cλ)
p′r
p′−r

0

1

a(x)
(

∫ x

0
ρ(s)ds)dx ≤ e(0)2

4λ
. (2.49)

On the other hand, by (2.45), we have for x ∈ ((4Cλ)
p′r
p′−r , 1)

|e(x)| ≤ (
β

α
λ)

1
2 + (‖ s

a(s)
‖L1(4C)

− p′r
p′−r )

1
2λ

1
2

(1− p′r
p′−r )

≤ C ′λ
1
2

(1+ p′r
r−p′ ) (2.50)

for λ ≥ 1, where C ′ :=
√

β
α + ‖ s

a(s)‖
1
2

L1(4C)
− p′r

2(p′−r) . Since by Cauchy-Schwarz inequality

∫ x

0
ρ|e|ds ≤

(∫ 1

0
ρe2dx

) 1
2
(∫ 1

0
ρdx

) 1
2

= ‖ρ‖
1
2

L1

we obtain with (2.44) that

|I2| ≤
∫ 1

(4Cλ)
p′r
p′−r

|e(x)|
a(x)

(

∫ x

0
ρ(s)|e(s)|ds)dx ≤ C ′λ

1
2

(1+ p′r
r−p′ )

(4Cλ)
p′r
p′−r

‖ s

a(s)
‖L1‖ρ‖

1
2

L1 . (2.51)

Gathering together (2.43) and (2.48)-(2.51), we infer that

1

2
e(0)2 ≤ β

α
λ+

2C ′

(4C)
p′r
p′−r

‖ s

a(s)
‖L1‖ρ‖

1
2

L1λ
3
2

(1+ p′r
r−p′ ).

It follows that

|e(0)| ≤ C ′′λ
3
4

(1+ p′r
r−p′ )

for λ ≥ 1, where C ′′ = C ′′(p, r, ‖ρ‖L1 , ‖ s
a(s)‖L1) > 0. As

e(y)2 − e(1)2 = 2λ

∫ 1

y

e(x)

a(x)
(

∫ x

0
ρeds)dx, ∀y ∈ (0, 1),

and |e(1)| ≤
√
βλ/α, the same calculations as above yield

|e(y)| ≤ C ′′λ
3
4

(1+ p′r
r−p′ ) ∀y ∈ (0, 1) (2.52)

for λ ≥ 1.
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• Assume now that α = 0. Then
∫ 1

0 ρedx = 0 and hence there exists x̄ ∈ ((2Cλ)
p′r
p′−r , 1] such

that e(x̄) = 0. For any y ∈ (0, 1), we have

e(y)2 = 2λ

∫ x̄

y

e(x)

a(x)
(

∫ x

0
ρeds)dx

≤ 2λ

∫ (4Cλ)
p′r
p′−r

0
· · · dx+

∫ 1

(4Cλ)
p′r
p′−r
· · · dx

 =: 2λ(I1 + I2).

The estimate (2.49) for I1 is still valid without any change. For I2, we first notice that for

x > (4Cλ)
p′r
p′−r ,

|e(x)| ≤
∣∣∣∣∫ x̄

x
e′(s) ds

∣∣∣∣ ≤ √λ
(∫ 1

min(x,x̄)

ds

a(s)

) 1
2

≤

‖ s

a(s)
‖L1

λ

(4Cλ)
p′r
p′−r

 1
2

,

so that (2.50) holds again. Therefore (2.51) and (2.52) hold.
• Since λn > 0 for n ≥ 1 and since the number of λn’s in (0, 1) is finite, we infer that (2.52) is
still valid for all the eigenvalues λn > 0 by replacing the constant C ′′ by a larger one denoted
C1. The proof of (ii) is complete.

(iii) Let λ ∈ [0,∞), let u given by Corollary 2.11 and let e(x) := e(0)u(x) with e(0) > 0. We
use a modified Prüfer substitution (see e.g. [6, 29]). We set

ae′ = λ
1
4R cos θ, (2.53)

e = λ−
1
4R sin θ, (2.54)

so that

R = (λ−
1
2 (ae′)2 + λ

1
2 e2)

1
2 ,

cot θ =
cos θ

sin θ
= λ−

1
2
ae′

e
·

We can impose that θ(0) = π
2 , for (ae′)(0) = 0 and e(0) > 0.

We note that R ∈W 1,1(0, 1), since

R ≤ λ−
1
4 |ae′|+ λ

1
4 |e|,

|R′| ≤ R−1|λ−
1
2 (ae′)(ae′)′ + λ

1
2 ee′|

≤ (λ−
1
2 |(ae′)′|2 + λ

1
2 |e′|2)

1
2

≤ λ−
1
4 |(ae′)′|+ λ

1
4 |e′|

and e, ae′ ∈W 1,1(0, 1).
SinceR ∈ C0([0, 1]) andR(x) > 0 for all x ∈ [0, 1] by Lemma 2.12, we infer that infx∈[0,1]R(x) >

0 and R−1 ∈ W 1,1(0, 1). Thus cos θ = λ−
1
4
ae′

R and sin θ = λ
1
4
e
R are both in W 1,1(0, 1). The

functions arcsin and arccos being both of class C1 on (−1, 1), we infer that θ ∈W 1,1(0, 1).
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We obtain by straightforward computations that the pair (R, θ) solves the following Cauchy
problem

R′ = λ
1
2R(

1

a
− ρ) cos θ sin θ, (2.55)

θ′ = λ
1
2 (ρ sin2 θ +

1

a
cos2 θ), (2.56)

R(0) = λ
1
4 e(0), (2.57)

θ(0) =
π

2
(2.58)

on (0, 1). Conversely, if R, θ ∈ W 1,1(0, 1) satisfy (2.55)-(2.58), then the function e, defined in
(2.54), is in W 1,1(0, 1), (2.53) holds, (ae′)′ = −λρe a.e. in (0, 1), and e(x) = e(0)u(x), where u
is as given in Corollary 2.11.

Lemma 2.14. The map λ→ θ(x, λ) is continuous and strictly increasing for all x ∈ (0, 1].

Proof of Lemma 2.14: The continuity of the map λ → θ(x, λ) follows from those of the maps
λ ∈ R+ → u ∈W 1,1(0, 1) and λ ∈ R+ → au′ ∈W 1,r(0, 1) and from the definition of θ.

Let us show that the map λ→ θ(x, λ) is strictly increasing for all x ∈ (0, 1]. Assume λ1 < λ2,
and let θ1 and θ2 be associated with λ1 and λ2, respectively. Let w := θ2 − θ1. Then w(0) = 0,
and we have a.e. in (0, 1)

w′ = (λ
1
2
2 − λ

1
2
1 )
[
ρ sin2 θ2 +

1

a
cos2 θ2

]
+ λ

1
2
1

[
ρ(sin2 θ2 − sin2 θ1) +

1

a
(cos2 θ2 − cos2 θ1)

]
=: J1 + J2.

Then J1 > 0 and |J2| ≤ 2λ
1
2
1 (ρ+ 1

a)|w| a.e. in (0, 1), where we used the mean value theorem. It
follows that

w′ > −2λ
1
2
1 (ρ+

1

a
)|w| a.e. in (0, 1).

Assume that there exists d ∈ (0, 1] with w(d) < 0. If [c, d] denotes the largest segment to the
left of d where w ≤ 0, then

w′ > 2λ
1
2
1 (ρ+

1

a
)w a.e. in (c, d)

and (
we−2λ

1
2
1

∫ x
d (ρ+a−1)ds

)′
= [w′ − 2λ

1
2
1 (ρ+

1

a
)w]e−2λ

1
2
1

∫ x
d (ρ+a−1)ds > 0 a.e. in (c, d),

so that the function x→ w(x)e−2λ
1
2
1

∫ x
d (ρ+a−1)ds is strictly increasing in [c, d], and thus negative

in [c, d]. This yields c = 0 and w(0) < 0, which is a contradiction. We infer that w(x) ≥ 0 for
all x ∈ [0, 1]. If w(x) = 0 for all x ∈ [c, d] for some c, d with 0 ≤ c < d ≤ 1, then

w′ = (λ
1
2
2 − λ

1
2
1 )[ρ sin2 θ2 +

1

a
cos2 θ2] > 0 a.e. in (c, d)

which is a contradiction. Thus for any d ∈ (0, 1) one can pick some c ∈ (0, d) with w(c) > 0.
Then (

we2λ
1
2
1

∫ x
d (ρ+a−1)ds

)′
= [w′ + 2λ

1
2
1 (ρ+

1

a
)w]e2λ

1
2
1

∫ x
d (ρ+a−1)ds > 0 a.e. in (0, 1),
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and hence w(x) > 0 on [c, 1]. We conclude that w(x) > 0 for all x ∈ (0, 1]. �
Note that the map x→ θ(x, λ) is also strictly increasing for all λ > 0, for the r.h.s. of (2.56)

is positive a.e. on (0, 1), while θ(., 0) ≡ π
2 .

We claim that

lim
λ→+∞

θ(1, λ) = +∞.

Indeed

θ(1, λ)− θ(1

2
, λ) = λ

1
2

∫ 1

1
2

(ρ sin2 θ +
1

a
cos2 θ)dx ≥ λ

1
2

∫ 1

1
2

min(ρ,
1

a
)dx︸ ︷︷ ︸

>0

.

It follows that

θ(1, [0,+∞)) = [
π

2
,+∞).

Let Λn := θ(1, .)−1(nπ) for all n ∈ N∗. We claim that for all n ∈ N∗ there exists a unique
λ ∈ [Λn,Λn+1) such that the function u associated with λ in Corollary 2.11 satisfies

αu(1) + β(au′)(1) = 0. (2.59)

Indeed, if β = 0, then the condition u(1) = 0 is equivalent to sin θ(1, λ) = 0 and λ = Λn is the
only solution in [Λn,Λn+1). If β 6= 0, then (2.59) can be written

α

β
λ−

1
2 sin θ(1, λ) + cos θ(1, λ) = 0.

If α = 0, cos θ(1, λ) = 0 gives θ(1, λ) = nπ + π
2 and λ = θ(1, .)−1(nπ + π

2 ). If α 6= 0, then both
cos θ(1, λ) and sin θ(1, λ) have to be different from 0 and

h(λ) :=
α

β
λ−

1
2 + cot θ(1, λ) = 0.

But the function h is continuous and strictly decreasing in (Λn,Λn+1) with h(Λ+
n ) = +∞ and

h(Λ−n+1) = −∞. It follows that there exists a unique λ ∈ (Λn,Λn+1) such that (2.59) holds.
Consider now the possible solutions λ of (2.59) in [0,Λ1). If β = 0, (2.59) cannot hold, for

sin θ(1, λ) > 0 (since π/2 ≤ θ(1, λ) < π). If α = 0, (2.59) holds only if λ = 0. If α 6= 0 and
β 6= 0, then α/β > 0 and h(0+) = +∞, h(Λ−1 ) = −∞, so that there exists a unique λ ∈ (0,Λ1)
with h(λ) = 0.

We conclude that the eigenvalues λn, n ∈ N, which are all simple by Lemma 2.13, fulfill the
following property:

if β = 0, λn = Λn+1 for all n ∈ N; (2.60)

if α = 0, λ0 = 0 and λn = θ(1, .)−1(nπ +
π

2
) for all n ∈ N∗; (2.61)

if αβ 6= 0, λ0 ∈ (0,Λ1) and λn ∈ (Λn,Λn+1) for all n ∈ N∗. (2.62)

Since λ→ θ(1, λ) is strictly increasing and θ(1,Λn) = nπ, we infer that

if β = 0, θ(1, λn) = (n+ 1)π for all n ∈ N; (2.63)

if α = 0, θ(1, λn) = nπ +
π

2
for all n ∈ N; (2.64)

if αβ 6= 0, nπ < θ(1, λn) < (n+ 1)π for all n ∈ N∗. (2.65)
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Let n ∈ N and let (λn, en) be as in Theorem 2.8. Assume that λn 6= 0. Let (Rn, θn) denote the
pair associated with (λn, en). Since θn = θ(., λn) ∈ W 1,1(0, 1), we can integrate in (2.56) along
(0, 1) to obtain

θn(1)− π

2
= λ

1
2
n

∫ 1

0
ρ sin2 θndx+ λ

1
2
n

∫ 1

0

cos2 θn
a

dx. (2.66)

It follows from (2.63)-(2.65) that

θn(1)− π

2
≥ nπ − π

2
· (2.67)

The first term in the r.h.s. of (2.66) is easily estimated:

λ
1
2
n

∫ 1

0
ρ sin2 θndx ≤ λ

1
2
n‖ρ‖Lr .

To estimate the second term in the r.h.s. of (2.66), we split the integral into two terms as in
(ii), namely

λ
1
2
n

∫ 1

0

cos2 θn
a

dx = λ
1
2
n

∫ (2Cλn)
p′r
p′−r

0

cos2 θn
a

dx+ λ
1
2
n

∫ 1

(2Cλn)
p′r
p′−r

cos2 θn
a

dx =: I1 + I2. (2.68)

• Assume that p <∞ (so p′ > 1). Since for all y ∈ (0, 1)∫ 1

y

dx

a(x)
≤
(∫ 1

y
(
x

a(x)
)pdx

) 1
p
(∫ 1

y
x−p

′
dx

) 1
p′

≤ ‖ x

a(x)
‖Lp

(
y1−p′ − 1

p′ − 1

) 1
p′

,

we infer that

I2 ≤ λ
1
2
n

∫ 1

(2Cλn)
p′r
p′−r

dx

a(x)

≤ λ
1
2
n

‖ x
a(x)‖Lp

(p′ − 1)
1
p′

(2Cλn)
( 1
p′−1) p′r

p′−r

≤ C ′2λ
1
2

+ 1
p
p′r
r−p′

n (2.69)

for some constant C ′2 = C ′2(p, r, ‖ x
a(x)‖Lp , C) > 0.

If p =∞, then p′ = 1,
∫ 1
y

dx
a(x) ≤ ‖

x
a(x)‖L∞ | ln y|, and

I2 ≤ C ′2λ
1
2
n | lnλn| (2.70)

for some constant C ′2 = C ′2(r, ‖ x
a(x)‖L∞ , C) > 0.

• Let us proceed to estimate I1. First, recall that

0 ≤ en(0)

2
≤ en(x) ≤ en(0) for 0 < x < (2Cλn)

p′r
p′−r .
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Using (2.24)-(2.25) and (2.53), we obtain

I1 = λ
1
2
n

∫ (2Cλn)
p′r
p′−r

0

(ae′n)2

a(λ
1
4
nRn)2

dx = λ2
n

∫ (2Cλn)
p′r
p′−r

0

(
∫ x

0 (ρen)(s)ds)2

a(x)Rn(x)2
dx.

But for 0 < x < (2Cλn)
p′r
p′−r ,

|
∫ x

0
(ρen)(s)ds| ≤

(∫ x

0
ρrds

) 1
r
(∫ x

0
er
′
n ds

) 1
r′

≤ ‖ρ‖Lren(0)x
1
r′

while

|Rn(x)|2 ≥ λ
1
2
nen(x)2 ≥ λ

1
2
n

4
en(0)2.

It follows that

I1 ≤ 4‖ρ‖2Lrλ
3
2
n

∫ (2Cλn)
p′r
p′−r

0

x
2
r′

a(x)
dx

≤ 4‖ρ‖2Lrλ
3
2
n‖

x

a(x)
‖Lp
(∫ (2Cλn)

p′r
p′−r

0
x( 2

r′−1)p′dx

) 1
p′

.

Note that ( 2
r′ − 1)p′ = ( 1

r′ −
1
r )p′ > −p′/r > −1 by (1.10). It follows that

∫ (2Cλn)
p′r
p′−r

0
x( 2

r′−1)p′dx =
(2Cλn)

[( 2
r′−1)p′+1] p

′r
p′−r

( 2
r′ − 1)p′ + 1

<∞.

Thus

I1 ≤ C ′′2λ
3
2
−[ 2

r′−1+ 1
p′ ]

p′r
r−p′

n (2.71)

for some constant C ′′2 = C ′′2 (p, r, ‖ x
a(x)‖Lp , ‖ρ‖Lr , C) > 0.

It remains to compare the exponents of λn in (2.69) and (2.71). We have

1

2
+

1

p

p′r

r − p′
>

3

2
− [

2

r′
− 1 +

1

p′
]
p′r

r − p′
· (2.72)

Indeed,

[
1

p
+

2

r′
− 1 +

1

p′
]p′r − (r − p′) = 2

p′r

r′
− r + p′ = (2p′ − 1)r − p′ ≥ r − p′ > 0.

If p <∞, we infer from (2.67)-(2.71) and (2.72) that if λn ≥ 1,

nπ − π

2
≤ C ′′′2 λ

1
2

+ 1
p
p′r
r−p′

n
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for some constant C ′′′2 > 0. Then (2.28) follows.
If p =∞ and λn > 1, we obtain for given κ < 2

nπ − π

2
≤ C ′′′2 λ

1
2
n | lnλn| ≤ C ′′′′2 λκ

−1

n

for some constants C ′′′2 , C
′′′′
2 > 0. Then (2.28) follows. The proof of Theorem 2.9 is complete. �

3. Introduction of the generating functions

We shall see later that the zero-order term q(x)u in (1.1) can be removed thanks to a change
of variables. Consider the simplified system

(aux)x = ρut (3.1)

(aux)(0, t) = 0 (3.2)

and search for a solution of it in the form

u(x, t) =
∞∑
i=0

y(i)(t)gi(x) (3.3)

where y is the flat output and the gi’s are the generating functions.
A formal computation shows that

0 = (aux)x − ρut =
∞∑
i=0

y(i)(t)(agi,x)x −
∞∑
i=0

y(i+1)(t)ρ(x)gi(x).

It is thus natural to impose

(ag0,x)x = 0 (3.4)

(agi,x)x = ρgi−1, i ≥ 1, (3.5)

together with the condition

(agi,x)(0) = 0 ∀i ≥ 0. (3.6)

We infer from (3.4) and (3.6) that g0,x = 0 a.e. We pick

g0(x) := 1 ∀x ∈ [0, 1]. (3.7)

Integrating in (3.5) yields

gi,x(x) =
1

a(x)

∫ x

0
ρ(s)gi−1(s)ds.

We pick

gi(0) = 0, i ≥ 1 (3.8)

to obtain a rapid decay of ‖gi‖L∞ as i→ +∞, so that

gi(x) :=

∫ x

0

1

a(s)
(

∫ s

0
ρ(σ)gi−1(σ)dσ)ds, i ≥ 1.

This defines formally the sequence (gi)i≥0 of generating functions. To obtain the estimate of
‖gi‖L∞ which ensures the convergence of the series in (3.3) for y ∈ Gs([0, T ]), we need the
following
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Proposition 3.1. There are some constants C,R > 0 such that

‖gi‖W 1,1(0,1) + ‖agi,x‖W 1,r(0,1) ≤
C

Ri(i!)
1+ 1

p′−
1
r

∀i ∈ N. (3.9)

Proof. We need the following

Lemma 3.2. Let f ∈ L∞(0, 1) and g(x) =

∫ x

0

1

a(s)

(∫ s

0
ρ(σ)f(σ)dσ

)
ds. Then g ∈W 1,1(0, 1)

and agx ∈W 1,r(0, 1). If, in addition,

|f(x)| ≤ Cxδ for a.e. x ∈ (0, 1), (3.10)

for some constants C, δ ≥ 0, then

|g(x)| ≤ C
‖ s
a(s)‖Lp‖ρ‖Lr

p′
1
p′

xδ+ω

(r′δ + 1)
1
r′ (δ + ω)

1
p′
∀x ∈ [0, 1], (3.11)

where ω := 1
r′ − 1 + 1

p′ = 1
p′ −

1
r > 0.

Proof of Lemma 3.2: We have∣∣∣∣∫ s

0
ρ(σ)f(σ)dσ

∣∣∣∣ ≤ ‖f‖L∞ (∫ s

0
ρ(σ)rdσ

) 1
r

s
1
r′

and

‖s−1

∫ s

0
ρ(σ)f(σ)dσ‖Lp′ ≤ ‖f‖L∞‖ρ‖Lr

(∫ 1

0
s( 1
r′−1)p′ds

) 1
p′

. (3.12)

But ( 1
r′ − 1)p′ = −p′/r > −1, since r > p′. Thus (s → s−1

∫ s
0 ρfdσ) ∈ Lp

′
(0, 1) and (s →

a(s)−1
∫ s

0 ρfdσ) ∈ L1(0, 1) by Hölder inequality. Therefore g ∈ W 1,1(0, 1) and (x→ (agx)(x) =∫ x
0 (ρf)(s)ds) ∈W 1,r(0, 1). Assume now that (3.10) holds. Then∣∣∣∣∫ s

0
ρ(σ)f(σ)dσ

∣∣∣∣ ≤ C‖ρ‖Lr (∫ s

0
σr
′δdσ

) 1
r′

and

|g(x)| ≤ ‖ s

a(s)
‖Lp(0,x)‖s−1

∫ s

0
ρfdσ‖Lp′ (0,x)

≤ C‖ s

a(s)
‖Lp‖ρ‖Lr

(∫ x
0 s

(δ+ 1
r′−1)p′

) 1
p′

(r′δ + 1)
1
r′

≤ C‖ s

a(s)
‖Lp‖ρ‖Lr

x
δ+ 1

r′−1+ 1
p′

(r′δ + 1)
1
r′ ((δ + 1

r′ − 1)p′ + 1)
1
p′

≤ C
‖ s
a(s)‖Lp‖ρ‖Lr

p′
1
p′

xδ+ω

(r′δ + 1)
1
r′ (δ + ω)

1
p′

∀x ∈ [0, 1].

The proof of Lemma 3.2 is complete. �
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Using (3.7) and (3.11), we obtain by an easy induction that for all i ∈ N,

|gi(x)| ≤

(
‖ s
a(s)‖Lp‖ρ‖Lr

p′
1
p′

)i
xiω

[
∏i
j=1(1 + (j − 1)r′ω)]

1
r′ [
∏i
j=1(jω)]

1
p′
∀x ∈ [0, 1]. (3.13)

Since

[

i∏
j=1

(1 + (j − 1)r′ω)]
1
r′ [

i∏
j=1

(jω)]
1
p′ ≥ [(r′ω)

1
r′ ω

1
p′ ]i

(ir′ω)
1
r′

(i!)
1
r′+

1
p′

with 1
r′ + 1

p′ = 1 + 1
p′ −

1
r > 1 and i ≤ 2i for all i ≥ 0, we infer that

‖gi‖L∞ ≤
C

Ri
1

(i!)
1+ 1

p′−
1
r

∀i ≥ 0 (3.14)

for some positive constants C and R.
On the other hand (agi,x)x = ρgi−1 and gi,x(x) = 1

a(x)

∫ x
0 ρgi−1ds, so that, with (3.12)

‖(agi,x)x‖Lr ≤ ‖ρ‖Lr‖gi−1‖L∞ , ‖gi,x‖L1 ≤ C‖ρ‖Lr‖
x

a(x)
‖Lp‖gi−1‖L∞ . (3.15)

Finally, (3.9) follows from (3.6), (3.8), (3.14) and (3.15). �

Next, we show that the eigenfunctions can be expressed in terms of the generating functions.

Proposition 3.3. Let n ∈ N and let en and λn be as in Theorem 2.8. Then

en = en(0)
∑
i≥0

(−λn)igi in W 1,1(0, 1).

Proof. Fix some n ∈ N and set

ẽ =
∑
i≥0

(−λn)igi. (3.16)

The series in (3.16) converges in W 1,1(0, 1) by (3.9). It follows that

aẽx =
∑
i≥0

(−λn)iagi,x in L1(0, 1).

Using (3.9) again, we deduce that aẽx ∈W 1,r(0, 1), and that we have in Lr(0, 1)

(aẽx)x =
∑
i≥0

(−λn)i(agi,x)x

=
∑
i≥1

(−λn)iρgi−1

= −λnρẽ.

On the other hand, by (3.6), (3.7) and (3.8), we have that

ẽ(0) = 1, (aẽx)(0) = 0.
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It follows from Corollary 2.11 that ẽ = u for λ = λn, and from Lemma 2.13 that

en(x) = en(0)
∑
i≥0

(−λn)igi(x) ∀x ∈ [0, 1].

�

We are in a position to prove the main results in the paper.

4. Proof of the main results

4.1. Proof of Theorem 1.1.

4.1.1. Step 1: Reduction to the case q = 0. Let û(x, t) = u(x, t)/v(x), where u satisfies
(1.1) and (1.2) and v is as in (1.9). Then

v2aûx = v2a(
ux
v
− uvx

v2
) = a(uxv − uvx)

and

(v2aûx)x = (aux)xv + auxvx − ((avx)xu+ auxvx)

= [(aux)x + qu]v

= ρutv

= ρv2ût.

Let â(x) := v(x)2a(x) and ρ̂(x) := v(x)2ρ(x). Then û satisfies

(âûx)x = ρ̂ût x ∈ (0, 1), t ∈ (0, T ),

(âûx)(0) = 0, t ∈ (0, T )

with â and ρ̂ satisfying (1.5)-(1.8). Indeed, using (1.9), one may pick some constants C1 and C2

such that

0 < C1 ≤ v(x) ≤ C2 ∀x ∈ [0, 1].

We infer from u = ûv and (1.3) that(
αv(1) + β(avx)(1)

)
û(1, t) + βv(1)(aûx)(1, t) = h(t).

Setting α̂ := αv(1) + β(avx)(1) and β̂ := β/v(1), we arrive to

α̂û(1, t) + β̂(âûx)(1, t) = h(t).

Let û0 := u0/v. Then û0 ∈ L2
ρ̂ ⇐⇒ u0 ∈ L2

ρ.
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4.2. Step 2: Flatness approach. We follow closely [24]. We assume that q = 0 in (1.1). Let
u0 ∈ L2

ρ. As (en)n≥0 is an orthonormal basis in L2
ρ, we can expand u0 as a series of the en’s:

u0 =
∞∑
n=0

cnen in L2
ρ,

where the sequence (cn)n≥0 of real numbers satisfies
∑∞

n=0 c
2
n <∞.

Using (2.27) and (2.28), we notice that the map z →
∑

n≥0 cnen(0)e−λnz is analytic in the

set {z = t + it′; t > 0, t′ ∈ R}. It follows that the map t →
∑

n≥0 cnen(0)e−λnt is real analytic

in (0,∞), and its restriction to [ε, T ] belongs to G1([ε, T ]) ⊂ Gs([ε, T ]) for all ε ∈ (0, T ) and all
s ∈ (1, 2). Pick s ∈ (1, 1 + 1

p′ −
1
r ) and ϕ ∈ Gs([0, T ]) with

ϕ(t) =

{
1 if t ≤ T

3 ,

0 if t ≥ 2T
3 ·

Let

y(t) := ϕ(t)
∞∑
n=0

cnen(0)e−λnt, for 0 < t < T,

u(x, t) :=

{
u0(x) if t = 0,∑∞

i=0 y
(i)(t)gi(x) if 0 < t ≤ T.

Pick any ε ∈ (0, T/3). Then y ∈ Gs([ε, T ]), and there exist some positive numbers M̃, R̃ such
that

|y(i)(t)| ≤ M̃ (i!)s

R̃i
∀t ∈ [ε, T ].

Combined with (3.9), this yields

u ∈ C1([ε, T ],W 1,1(0, 1)), aux ∈ C1([ε, T ],W 1,r(0, 1)).

Furthermore,

ρut =
∞∑
i=0

y(i+1)(t)ρgi(x) =
∞∑
i=0

y(i+1)(t)(agi+1,x)x = (aux)x

and aux(0, t) = 0. We notice that for 0 < t ≤ T/3, we have that y(t) =
∑∞

n=0 cnen(0)e−λnt and

u(x, t) =
∞∑
i=0

∂it [
∞∑
n=0

cnen(0)e−λnt]gi(x)

=
∞∑
i=0

[
∞∑
n=0

cnen(0)(−λn)ie−λnt]gi(x)

=

∞∑
n=0

cne
−λnten(0)

∞∑
i=0

(−λn)igi(x)

=

∞∑
n=0

cne
−λnten(x) (4.1)
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for all x ∈ [0, 1]. The above computations are valid, since for 0 < δ ≤ t ≤ T and 0 ≤ x ≤ 1∑
i≥0,n≥0

|cnen(0)(−λn)ie−λntgi(x)| ≤
∑

i≥0,n≥0

|cnen(0)|e
δ
2
λn

( δ2)i
(i!)e−δλn

C

Ri(i!)
1+ 1

p′−
1
r

≤
(
|c0|+ C1

∞∑
n;λn>0

|cn|
λ

3
4

(1+ p′r
r−p′ )

n

e
δ
2
λn

) ∞∑
i=0

1

(Rδ2 )i(i!)
1
p′−

1
r

< ∞
where we used the estimate xi/i! ≤ ex for x = δλn/2 ≥ 0 and i ∈ N.

It follows from (4.1) that u is the free evolution (i.e. with a null control) of the parabolic
equation for 0 < t ≤ T/3. Therefore

lim
t→0+

u(., t) = u0 in L2
ρ.

We pick as control input

h(t) :=

{
0 for t = 0,∑∞

i=0 y
(i)(t)[αgi(1) + β(agi,x)(1)] for 0 < t ≤ T.

It follows from (4.1) that h(t) = 0 for 0 < t ≤ T/3 and from (3.9) combined with the choice

of s that h ∈ C∞([0, T ]) with h(j)(t) =
∑∞

i=0 y
(i+j)(t)[αgi(1) + β(agi,x)(1)]. Let us check that

h ∈ Gs([0, T ]). We have for t ∈ [ε, T ]

|h(j)(t)| ≤
∑
i≥0

|y(i+j)(t)[αgi(1) + β(agi,x)(1)]|

≤ C
∑
i≥0

(i+ j)!s

R̃i+j
1

Rii!
1+ 1

p′−
1
r

≤ C(
2s

R̃
)j
(∑
i≥0

(
2s

RR̃
)i

1

i!
1+ 1

p′−
1
r
−s

)
j!s

for some constant C which does not depend on j and t, where we used (i + j)! ≤ 2i+ji!j!. As
h(t) = 0 for 0 ≤ t ≤ T/3, we conclude that h ∈ Gs([0, T ]). Finally

u(x, t) = 0 ∀(x, t) ∈ [0, 1]× [
2T

3
, T ].

The proof of Theorem 1.1 is complete.

Remark 4.1. We stress that assumption (1.9) was used only in Step 1 the get rid of the term
q(x)u in (1.1). If q ≡ 0 in (1.1), then Theorem 1.1 is still valid with the assumptions (1.5)-(1.8).

4.3. Proof of Proposition 1.3. Since q ∈ Lp′(0, 1), we infer from Lemma 2.10 the existence
and uniqueness of a function v ∈ W 1,1(0, 1) with avx ∈ W 1,r(0, 1) such that (2.29)-(2.31) hold.
The only property still to establish is the fact that v(x) > 0 for all x ∈ [0, 1]. We know that v
satisfies the integral equation (2.33). Therefore, we have

v(x) ≥ 1− ‖v‖L∞(0,x)

∫ x

0

dy

a(y)

∫ y

0
|q(s)|ds ∀x ∈ (0, 1).
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If (1.13) holds, we claim that v(x) > 0 for all x ∈ [0, 1]. Otherwise, there would exist some
x0 ∈ (0, 1] such that v(x0) = 0, and we can assume that it is the least, so that ‖v‖L∞(0,x0) = 1.
But this yields

v(x0) ≥ 1−
∫ x0

0

dy

a(y)

∫ y

0
|q(s)|ds > 0,

a contradiction. If we assume that q(x) ≤ 0 for a.e. x ∈ (0, 1), then we can prove in much
the same way that v(x) ≥ 1 for all x ∈ [0, 1]. Finally, if (1.15) holds, the change of unknowns
ũ(x, t) = e−Ktu(x, t) transforms (1.5) into

(a(x)ũx)x + [q(x)−Kρ(x)]ũ = ρ(x)ũt,

and the conclusion follows from the previous case with (1.14) satisfied. �

4.4. Proof of Proposition 1.4. Plugging v(x) = xδ in (1.17) results in [δ(1+δ−ε)+µ]xδ−ε = 0

for x ∈ (0, 1), so that the choice δ = 1
2 [ε− 1 + ((1− ε)2− 4µ)

1
2 ] gives (1.17). We note that (1.18)

holds, for

(avx)(x) = δx
1−ε+

√
(1−ε)2−4µ
2

with 1−ε+
√

(1− ε)2 − 4µ > 0. Using (1.16), we infer that δ ≥ 0 and that
√

(1− ε)2 − 4µ < 1.
Therefore, we can pick some p ∈ (1,∞) so that

1 >
1

p
> max(1− ε,

√
(1− ε)2 − 4µ). (4.2)

Then the functions x → x/a(x) and x → x/(a(x)v(x)2) are in Lp(0, 1). Applying Lemma 4.2
(see below), we see that (1.8) and

lim
x→0+

[a(x)v(x)2]−1

(∫ 1

x

ds

a(s)v(s)2

)−2

= +∞

hold. As δ ≥ 0, v ∈ C0([0, 1]) so that ρv2 ∈ Lr(0, 1) with r =∞ and lim supx→0+ [ρ(x)v(x)2] <
∞.

For the application of Theorem 1.1, we do again the change of unknown û(x, t) := u(x, t)/v(x),
and we set â = av2, ρ̂ = ρv2, and û0 = u0/v. From

âûx = a(uxv − uvx) (4.3)

we see readily that (aux)(0, t) = 0 implies (âûx)(0, t) = 0. Let

α̂ = αv(1) + β(avx)(1) = α+ βδ,

β̂ =
β

v(1)
= β.

An application of Theorem 1.1 to the simplified system
(âûx)x = ρ̂ût,

(âûx)(0, t) = 0,

α̂û(1, t) + β̂(âûx)(1, t) = h(t),

û(x, 0) = û0(x)

(4.4)
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yields the existence of a control input h ∈ Gs([0, T ]) such that the solution û of (4.4) satisfies
û(., T ) = 0.

Going back to the original dependent variable u(x, t) = û(x, t)v(x), we see that u satisfies
(1.1), (1.3)-(1.4) and u(., T ) = 0. It remains to show that (1.2) holds. Note that (1.2) is not a
direct consequence of (4.3)-(4.4), for v(0) = 0 if δ > 0. We infer from (4.3) that

(aux)(0+, t) = (
âûx
v

)(0+, t) + (
u

v
avx)(0+, t).

The second term is easy to handle. Indeed, (avx/v)(x) = δx1−ε, so that (uavx/v)(0+, t) = 0. To
deal with the first term, we write

û(x, t) =
∑
i≥0

y(i)(t)gi(x)

where the functions gi’s and y are respectively the generating functions and the flat output for
system (4.4). It follows that

â(x)ûx(x, t)

v(x)
=
∑
i≥0

y(i)(t)
â(x)gi,x(x)

v(x)
.

But g0,x = 0 and for i ≥ 1

(âgi,x)(x) =

∫ x

0
ρ̂(s)gi−1(s)ds =

∫ x

0
s2δgi−1(s)ds.

This yields ∣∣∣∣(âgi,x)(x)

v(x)

∣∣∣∣ ≤ xδ+1

2δ + 1
‖gi−1‖L∞ ≤

C

(2δ + 1)Ri−1[(i− 1)!]
1+ 1

p′−
1
r

xδ+1

where we used (3.9). It follows that (âûx/v)(0+, t) = 0. We conclude that (aux)(0+, t) = 0 for
0 < t < T . �

appendix

The conditions (1.6) and (1.8) are independent. 1. Pick a(x) = x2| lnx|α for some α > 0.

Then (1.6) is never satisfied, since
∫ 1

0 x
−p| lnx|−αpdx = +∞ for all p > 1. On the other hand,

by integrating by parts, we have for any ε ∈ (0, 1)∫ 1−ε

x

ds

s2| ln s|α
= α

∫ 1−ε

x

ds

s2| ln s|α+1
+ [−s−1| ln s|−α]1−εx

and for 1− ε small enough and for x ∈ (0, 1− ε)∣∣∣∣α ∫ 1−ε

x

ds

s2| ln s|α+1

∣∣∣∣ ≤ 1

2

∫ 1−ε

x

ds

s2| ln s|α

so that for some positive constants C1, C2 and x > 0 small enough

C1x
−1| lnx|−α ≤

∫ 1−ε

x

ds

s2| ln s|α
≤ C2x

−1| lnx|−α.
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This yields a(x)−1
(∫ 1

x
ds
a(s)

)−2
≥ C−2

2 | lnx|α for 0 < x� 1, and (1.8) is satisfied.

2. Pick Ω =
⋃
n≥1(2−n − 10−n, 2−n + 10−n) ⊂ (0, 1), and a(x) = x2−ε1Ωc(x) + 1Ω(x) for some

ε ∈ (0, 1). Then (1.6) is satisfied for some p > 1, since x/a(x) ≤ xε−1 for 0 < x < 1. On the
other hand, ∫

Ω

dx

x2−ε ≤
∞∑
n=1

2.10−n

(2−n − 10−n)2−ε <∞ =

∫ 1

0

dx

x2−ε ,

which yields
∫

Ωc
dx
x2−ε = +∞ and 1/a 6∈ L1(0, 1). It follows that

lim
n→+∞

a(2−n)

(∫ 1

2−n

ds

a(s)

)2

= +∞

and that (1.8) fails.

Lemma 4.2. Assume that a(x) = [xg(x)]2 for some function g ∈ C1((0, 1), (0,+∞)) satisfying
for some ε ∈ (0, 1

2) and some x0 ∈ (0, 1)∣∣∣∣g′(x)

g(x)

∣∣∣∣ ≤ ε

x
for 0 < x < x0,

g(0+) = +∞,
(xg(x))(0+) = 0,∫ 1

x0

dx

g(x)2
<∞.

Then (1.8) is satisfied.

Proof of Lemma 4.2: We obtain by an integration by parts that∫ x0

x

ds

s2g(s)2
= [−s−1g(s)−2]x0x − 2

∫ x0

x

g′(s)

sg(s)3
ds

≤ 1

xg(x)2
− 1

x0g(x0)2
+ 2ε

∫ x0

x

ds

s2g(s)2
,

which yields √
a(x)

∫ x0

x

ds

a(s)
≤ (1− 2ε)−1

(
1

g(x)
−
√
a(x)

x0g(x0)2

)
→ 0 as x→ 0+.

�

Example 4.3. (1) Let g(x) = x−ε for some ε ∈ (0, 1
2). Then |g′(x)/g(x)| = ε/x and Lemma

4.2 may be applied for any x0 ∈ (0, 1).
(2) Let g(x) = | lnx|α for some α > 0. Then |g′(x)/g(x)| = α/(x| lnx|) and Lemma 4.2 may

be applied for e.g. ε = 1/4 and x0 ∈ (0, 1) small enough.
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